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ABSTRACT

Satellite observations are used to deduce the relationship between cloud water and precipitation water for

low-latitude shallow marine clouds. The specific sensors that facilitate the analysis are the collocated CloudSat

profiling radar and the Moderate Resolution Imaging Spectroradiometer (MODIS). The separation of the

cloud water and precipitation water signals relies on the relative insensitivity of MODIS to the presence of

precipitation water in conjunction with estimates of the path-integrated attenuation of the CloudSat radar

beam while explicitly accounting for the effect of precipitation water on the observed MODIS optical depth.

Variations in the precipitation water path are shown to be associated with both the cloud water path and the

cloud effective radius, suggesting both macrophysical and microphysical controls on the production of pre-

cipitation water. The method outlined here is used to place broad bounds on the mean relationship between

the precipitation water path and the cloud water path in shallow marine clouds, given certain clearly stated

assumptions. The ratio of precipitation water to cloud water is shown to increase from zero at low cloud water

path values to roughly 0.5 at 500 g m22 of cloud water. The retrieval results further show that the median

influence of precipitation on the observed optical depth increases monotonically with optical depth varying

between 1% and 5% at 500 g m22 of cloud water with the source of the uncertainty deriving from the as-

sumption of the nature of the precipitation drop size distribution.

1. Introduction

Recent observations have hinted at the ubiquitous

nature of precipitation in shallow marine clouds (Haynes

and Stephens 2007). Precipitation processes can affect

cloud microphysics through the action of coalescence

while they may also modulate cloud macrophysical

structure (Paluch and Lenschow 1991; Comstock et al.

2005; Stevens et al. 1998) through the latent heating of

condensation and evaporation. As is evidenced by the

frequent occurrence of pockets of open cellular con-

vection (Stevens et al. 2005; Wood et al. 2008) in driz-

zling stratocumulus, even modest precipitation rates can

affect the mesoscale organization of warm clouds (Wang

and Feingold 2009) and thus influence key macro-

physical quantities such as cloud fraction and cloud

liquid water path that govern the radiative effects of

these clouds. The sensitive nature of the relationship

between precipitation and low cloud cover contributes

to uncertainty in anthropogenic modifications of the

earth’s climate. For example, the potential for pollution

aerosol to suppress precipitation and alter cloud orga-

nization (Albrecht 1989) represents a large uncertainty

in the understanding of anthropogenic forcing of the

climate system. Furthermore, cloud feedbacks are widely

understood as being the largest source of uncertainty in

climate prediction (Stephens 2005; Dufresne and Bony

2008), and variability in the parameterization of warm

clouds in climate models has been shown to dominate the

total cloud feedback (Bony and Dufresne 2005; Webb

et al. 2006). It is therefore critical that we improve our

understanding of the relative frequency of occurrence

and magnitude of precipitation in warm cloud regimes on

the global scale.

Several remote sensing methods provide a window

into the nature of global precipitation. The current gen-

erations of remote sensing techniques have difficulty

quantifying precipitation from shallow weakly precipitat-

ing clouds, however. Passive estimates of precipitation are

commonly provided by passive microwave techniques

(Kummerow et al. 2001; Hilburn and Wentz 2008). In

the case of shallow precipitation the algorithm must

infer rain rates from an emission signal that is sensitive
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to the presence of both cloud and precipitation water.

These methods invariably suffer from an ambiguity re-

garding the ratio of cloud water emission to precipitation

water emission and therefore must rely on assumptions

from either cloud-resolving models (Kummerow et al.

2001) or climatological observations (Hilburn and Wentz

2008) to infer the cloud–rain partitioning. A recent al-

gorithm (Haynes et al. 2009) applied to CloudSat radar

data has demonstrated excellent ability in identifying

weakly precipitating clouds. However, the attenuation-

based precipitation algorithm must make analogous as-

sumptions regarding the ratio of cloud to rainwater. An

estimation-based retrieval utilizing both an attenuation

constraint and the full radar reflectivity profile (L’Ecuyer

and Stephens 2002; Mitrescu et al. 2010) may soon offer

improved estimates of this partitioning from the CloudSat

data. Note that the 13-GHz Tropical Rainfall Measuring

Mission (TRMM) precipitation radar (PR; Iguchi et al.

2000) algorithm does not suffer from the ambiguity of

an assumption regarding the cloud–rain partition be-

cause it is insensitive to small cloud droplets. None-

theless, light precipitation may pass undetected by this

sensor because reflectivity falls below the radar’s mini-

mum detectable signal of 17 dBZ because of low pre-

cipitation water contents, the presence of small drizzle

droplets, partial beam filling of the radar volume, or

some combination of the above. In fact, a recent anal-

ysis by Berg et al. (2010) estimates that the PR misses

59% of precipitation events and 9% of the total pre-

cipitation volume. Given the current ambiguous state

of precipitation retrievals in shallow cloud regimes,

there exists a need for the development of novel ap-

proaches of simultaneously inferring cloud and rain-

water amounts.

Some progress toward the goal of inference of cloud-

to-rainwater ratios has already occurred. For example,

a series of papers (Masunaga et al. 2002a,b) uses mul-

tisensor information from the TRMM Microwave Im-

ager (TMI) and Visible and Infrared Scanner (VIRS)

sensors (Kummerow et al. 1998) to demonstrate the

physical basis for a separation of the cloud and pre-

cipitation signals using both a solar scattering (VIRS)

signal and an attenuation (TMI) signal. Shao and Liu

(2004) utilize these same physical principles to establish

a drizzle index that uses the TRMM observations. Rapp

et al. (2009) demonstrate that TMI water path retrievals

are improved when ancillary rain and cloud information

from the PR and VIRS are included in the retrieval al-

gorithm. Bennartz et al. (2010) infer the rainwater path

of warm clouds from coincident observations from the

Advanced Microwave Scanning Radiometer-Earth

Observing System (AMSR-E) and the Spinning En-

hanced Visible and Infrared Imager (SEVIRI). This

study continues along this line of inquiry by introducing

a multisensor technique to infer the column-integrated

precipitation water path Wp as a function of the cloud

water path Wc using two state-of-the-art sensors fly-

ing in the National Aeronautics and Space Adminis-

tration (NASA) A-train constellation (Stephens et al.

2002; L’Ecuyer and Jiang 2010). Specifically, we employ

retrieved optical depth t and cloud effective radius re,c

based on visible and near-infrared reflectances from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument and the integrated two-way at-

tenuation of the CloudSat Cloud Profiling Radar (CPR)

beam. The method is premised on the assumption that

visible and near-infrared observations are primarily

sensitive to the presence of cloud while the CPR path-

integrated attenuation PIAhydro is primarily sensitive to

the presence of precipitation. The very different sensi-

tivities of the optical and radar observations to cloud

and precipitation water permit an estimate of the rela-

tive amounts of the cloud and precipitation water in the

column.

2. Data

Three years (June 2006–May 2009) of collocated

pixel-scale level-2 data from the CloudSat (Stephens

et al. 2008) CPR, release 4 (R04), and MODIS MOD06

and MOD35 (Platnick et al. 2003) collection 5 are used

in this study. The CPR and MODIS have similar fields of

view, and therefore we assume that the two instruments

are sampling approximately the same cloud volume. Both

the MODIS cloud flags and the CPR-range-resolved re-

flectivity are used to reduce the data to shallow liquid

clouds by following the method of Lebsock et al. (2008).

In this study the data are further reduced to low-latitude

clouds between 308N and 308S to avoid any potential

biases in the MODIS cloud optical depth observations

related to large solar zenith angles (Greenwald 2009).

The pixel-resolution clouds that remain following the

data screening have 10.8-mm brightness temperatures

greater than 270 K, are identified as liquid by the MODIS

microphysical retrieval, and have been screened for

cirrus contamination using both the MODIS cirrus flag

(Ackerman et al. 1998) and the Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observation (CALIPSO)

lidar (Winker et al. 2007) cloud flags as implemented

in the Geometric Profile (GEOPROF) lidar product.

An attempt is made to minimize the effects of spatial

heterogeneity on the MODIS retrievals by only re-

taining clouds that are identified by MODIS as 100%

cloudy over a 5-km area surrounding the CloudSat

pixel.
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3. Method

a. Identification of cloud and precipitation

The precipitation flag in the CloudSat 2C Precipitation

Column algorithm (2C-PRECIP-COLUMN) product

(Haynes et al. 2009) is used to distinguish nonpre-

cipitating scenes from those that are likely raining or

drizzling. That product defines four rain categories (non-

precipitating, possible, likely, and certain) based on a

combination of observed reflectivity and the two-way

path-integrated attenuation (PIA) of the radar beam. In

this study, these categories are condensed into two broad

pixel classes (nonprecipitating and precipitating) in which

the possible, likely, and certain pixels are all identified

as precipitating. This new precipitating category exhibits

attenuation-corrected near-surface reflectivity greater

than 215 dBZ, which is indicative of the onset of drizzle

(Frisch et al. 1995). As a result of condensing the precip-

itation flag, the precipitating category spans a large range

of clouds from drizzling clouds in which precipitation is

falling within a cloud but not reaching the ground to heavy

rain. The nonprecipitating cases, on the other hand, are

assumed to have negligible water in the precipitation

mode.

We note that a 215-dBZ reflectivity can be reason-

ably explained by either large cloud droplets or the

presence of drizzle. For example, using the formulas out-

lined in Matrosov et al. (2004), a reflectivity of 215 dBZ

corresponds to a cloud droplet effective radius of 15.3 mm

when a number concentration of 250 cm23 is assumed

and 23.3 mm when a number concentration of 20 cm23

is assumed. For this reason we use the near-surface

reflectivity as opposed to the maximum reflectivity to

define the precipitation flag because one would not

expect cloud droplets of this size to reside at cloud

base.

b. Precipitation DSD

Throughout this paper, two different assumptions are

made regarding the precipitation drop size distribution

(DSD) to place broad bounds on the precipitation water–

to–cloud water ratio. The precipitation DSD is generally

assumed to follow a truncated exponential distribution

N(r) dr 5 Noe2lr dr, where the truncation occurs at 30 mm.

The first is a Marshall–Palmer distribution (Marshall and

Palmer 1948) in which variations in rainwater content

are determined entirely by modulation of the slope pa-

rameter l, which imposes a positive correlation equal to 1

between the droplet number concentration and the mean

radius of the distribution. The second distribution is a

drizzle distribution qualitatively based on the results of

Comstock et al. (2004), who found that variations in the

precipitation water content are dominated by variations

in the drizzle drop number concentration, with a non-

negligible influence from variations in the mean drop-

let radius, and that the variability in these parameters is

negatively correlated. Loosely based on these observa-

tions, the drizzle distribution is described by the ex-

pression l 5 [20 log10(lp 1 4) 1 30]21, where lp is the

precipitation water content in grams per meter cubed, l

is in units of inverse micrometers, and No varies with l

to match lp. This relationship imposes the observed neg-

ative correlation between droplet number concentration

and mean radius below mean radii values of 52 mm and

reverses the sign of the correlation above this threshold,

allowing the distribution to take on a salient feature

of the Marshall–Palmer distribution as water content

increases.

c. Water path estimates

1) MODIS CLOUD WATER PATH

If it is assumed that the MODIS observations are in-

sensitive to the presence of precipitation, estimates of

Wc are provided from the cloud optical depth tc and

cloud effective radius re,c products by

W
c
5 g

c
r

w
t

c
r

e,c
, (1)

where gc is a scaling parameter related to the vertical

distribution of water and the interpretation of the re-

trieved re,c. Assuming a vertically homogenous cloud

gives gc 5 2/3 (Stephens 1978), where re,c is interpreted as

a water content–weighted mean radius. If one assumes

a nonprecipitating adiabatic cloud in which cloud water

content increases linearly with height, it is straightfor-

ward to show (Szczodrak et al. 2001; Bennartz 2007) that

gc 5 5/9, where re,c is interpreted as the cloud-top effec-

tive radius. To some extent the second expression is

more appealing because it includes an additional level of

realism without adding to the complexity of the calcu-

lation. There is observational evidence of the approx-

imate adiabaticity of stratocumulus clouds (Albrecht

et al. 1990; Brenguier et al. 2003; Wood 2005a); how-

ever, geometrically thicker shallow cumulus clouds dis-

play water contents much lower than those predicted by

adiabatic theory (Warner 1970; Rauber et al. 2007).

Related to the interpretation of the observed effective

radius is the complication that re,c may be derived from

any nonconservative scattering near-infrared wave-

length. In the particular case of MODIS, three estimates

of re,c are made using the 1.6-, 2.1-, and 3.7-mm channels,

each of which has a different penetration depth corre-

sponding to different levels in the cloud (Platnick 2000).

For example, radiation at 3.7 mm is absorbed more

strongly by water drops than at the other wavelengths,

FEBRUARY 2011 L E B S O C K E T A L . 421



causing it to have the greatest sensitivity to the cloud-top

radius. Because large precipitation-size drops tend to

reside below cloud top, it is reasonable to assume that

re,c derived from the 3.7-mm channel will be less sensitive

to the presence of precipitation than will the other

channels. This is a common assumption that has some

theoretical underpinning (Chang and Li 2002; Nakajima

et al. 2010) and will be further justified by the results of

this study.

2) CLOUDSAT WATER PATH AND ATTENUATION

The PIA is defined as the two-way attenuation of the

radar beam due to gases and hydrometeors. In decibel

units this may be expressed as

PIA 5 PIA
gas

1 PIA
hydro

5 2

ð‘

0

(k
gas

1 k
hydro

) dz, (2)

where k is the volume extinction coefficient. PIAgas may

be calculated from model temperature and moisture fields,

allowing PIAhydro to be found as the difference between

PIAgas and the observed PIA. PIAhydro may further be

divided into cloud and precipitation components:

PIA
hydro

5 PIA
cloud

1 PIA
precip

. (3)

At the CPR frequency of 94 GHz, attenuation due to

cloud water is modeled well by the Rayleigh approxi-

mation. In this case the cloud water path Wc is linearly

related to the vertically integrated attenuation, where

the magnitude of the relationship between Wc and

PIAcloud has a modest dependence on temperature T.

The Rayleigh approximation breaks down at 94 GHz

for precipitation-sized drops, and attenuation must be

modeled using Mie theory, which introduces a dependence

on the precipitation DSD. By treating the cloud and pre-

cipitation modes separately, the total water path may be

expressed as

W
T

5 W
c
1W

p
5 a

c
(T)PIA

cloud
1 a

p
(T , DSD)PIA

precip
,

(4)

where ac,p is an attenuation coefficient relating the PIA

to the cloud or precipitation water path. Figure 1a shows

a for various combinations of temperature and DSD.

Note the modest temperature dependence of a for cloud

water and the strong dependence on the details of the

DSD for precipitation water. Further details describing

the temperature and DSD dependence of the attenua-

tion of millimeter-wave radar are described in Lhermitte

(1990).

3) COMBINING MODIS AND CLOUDSAT

The previous two sections describe the theoretical

foundation for simultaneous derivation of the cloud and

precipitation water path from the combination of MODIS

and CloudSat observations. This section formalizes the

approach given certain assumptions. To begin, if one

were to assume that the optical measurements were in-

sensitive to the presence of precipitation, then the cloud

FIG. 1. (a) The attenuation at 94 GHz as a function of water content for various temperatures and DSDs. (b) The

visible volume extinction coefficient for various hydrometeor distributions, with the assumption that the extinction

efficiency is equal to 2. The 94-GHz cloud attenuation is modeled by the Rayleigh approximation under which

attenuation is solely governed by water content. Details of the precipitation DSDs are provided in the text.
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water path would derive entirely from the MODIS ob-

servations [Eq. (1)],

W
c
5 g

c
tr

e,c
, (5)

and the precipitation water path would then follow from

the CloudSat PIA estimate [Eqs. (3) and (4)],

W
p

5 a
p
(PIA�W

c
/a

c
). (6)

Figure 1b shows that in general the extinction by cloud

droplets is an order of magnitude larger than that of

precipitation drops for a given liquid water content.

Nonetheless, here we relax the above restriction by as-

suming that the MODIS effective radius observation is

insensitive to the presence of precipitation because

of the limited penetration depths of the near-infrared

channels but that the optical depth, which is a cloud-

integrated parameter, is sensitive to the presence of

precipitation. In this case the optical depth can be written

as the sum of the cloud and precipitation component,

t 5 t
c
1 t

p
, (7)

and it follows that

t 5 k
c
W

c
1 k

p
W

p
, (8)

where kc 5 (rgcre,c)
21 and kp 5 (rgpre,p)21. Here, re,p is

a function of the precipitation DSD and gp is set equal to

the familiar value of 2/3 whereas re,c and gc are derived

from the MODIS observations.

With the assumption of a precipitation DSD and the

insensitivity of the MODIS effective radius to the pres-

ence of precipitation, Eqs. (1), (3), (4), (7), and (8) rep-

resent a closed system of equations for Wc and Wp given

observations of t and PIA. The solution to these equa-

tions follows from algebraic manipulation as

W
c
5

a
p
PIA� t/k

p

(a
p
/a

c
)� (k

c
/k

p
)

and (9)

W
p

5
a

c
PIA� t/k

c

(a
c
/a

p
)� (k

p
/k

c
)

. (10)

To understand these equations better, it is instructive to

examine the limiting case in which the precipitation

optical depth is assumed to be 0 and thus kp 5 0. In this

case the equations revert to the simpler expressions

given by Eqs. (5) and (6), where the cloud water is de-

rived entirely from the MODIS observations and the

precipitation water follows from the PIA minus a cor-

rection due to the MODIS cloud water. It can be seen

then that Eqs. (9) and (10) represent more general forms

of Eqs. (5) and (6) with the additional coupling between

the two equations given by kp, which describes the mag-

nitude of the influence of precipitation water on the ob-

served optical depth. Through the use of Eqs. (9) and

(10), the results that follow show that the influence of

precipitation mode water on the cloud optical depth is

generally less than 10% and in the median lies between

1% and 5%, depending on the assumed shape of the

DSD.

In practice, Eqs. (9) and (10) must be solved itera-

tively because of the dependence of the precipitation

attenuation coefficients ap and kp on the precipitation

liquid water content. An initial guess is made of the

liquid water content and associated values of ap and kp.

The values of Wc and Wp are then calculated. The pre-

cipitation water content is then recalculated by assuming

that the precipitation is uniformly distributed through-

out the column and that the radar determines the top of

the rain column. The attenuation coefficients are ad-

justed accordingly, and the calculation is repeated until

a convergent answer is reached, which typically takes

three or fewer iterations.

Calculation of the attenuation coefficients ac(T ),

ap(T, DSD), and kp(DSD) requires ancillary information

regarding the atmospheric temperature structure and the

precipitation DSD. We account for the temperature

variation using a cloud mean temperature derived from

the reflectivity profiles in the CloudSat 2B-GEOPROF

product and the temperature profiles in the European

Centre for Medium-Range Weather Forecasts (ECMWF)

auxiliary analysis (ECMWF-AUX) product. In the

specific case of nonprecipitating clouds, no DSD as-

sumption is necessary and there is a unique relation-

ship between Wc and PIAhydro. CloudSat and MODIS

will therefore provide two independent estimates of Wc

for nonprecipitating clouds. In the case of precipitating

clouds, we must assume a DSD, introducing an element

of uncertainty that can at best be estimated by varying the

assumed DSD.

We must mention that an additional source of un-

certainty derives from potential contamination of the

surface return due to multiple scattering (Battaglia and

Simmer 2008). Multiple scattering would tend to nega-

tively bias the PIA estimate and thus the WT; however,

the influence of multiple scattering in these shallow low-

water-path clouds is expected to be negligible (Battaglia

et al. 2008) in comparison with the other uncertainties.

d. PIA estimates

Haynes et al. (2009) outline a method for estimating

PIAhydro over the global oceans using a climatological

database of the clear-sky surface cross section (so,clr) for
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various wind speeds U and sea surface temperatures

(SST). PIAhydro may be calculated from the observed

surface cross section so for cloudy-sky scenes as

PIAhydro 5 so,clr(U, SST) 2 so 2 PIAgas. PIAgas is esti-

mated from temperature and humidity fields in the

CloudSat ECMWF-AUX product. Following the un-

certainty analyses of Eyre (1990) and Eyre et al. (1993),

the uncertainty in the model humidity fields is approxi-

mately 15%. PIAgas is linear with column water vapor

to a very good approximation, meaning that the PIAgas

estimate will also be uncertain by 15%. For the pixels

retained in this analysis, this leads to a mean uncertainty

in PIAgas of 0.52 dB. Haynes et al. (2009) also adopt wind

speed and SST from the ECMWF model analysis because

of potential contamination of the passive microwave

observations in the presence of precipitation.

Here, we introduce an independent estimate of PIAhydro

that we believe to be more accurate than the database

method. The method employs an along-track interpolation

of the clear-sky surface cross section into cloudy pixels.

The primary advantage of this method is that it does not

depend on the ECMWF model-derived fields so that un-

certainty in the model-derived moisture and humidity

fields is minimized. The details of the method are outlined

below:

1) 100 pixels surrounding each cloudy pixel (as identi-

fied in the CloudSat 2B-GEOPROF-lidar product)

are isolated.

2) The 10 closest observations of so,clr on either side of

the cloudy pixel are put into a subset, along with their

pixel position. Linear regression is performed be-

tween pixel position and so,clr. If 20 clear-sky pixels

are not available, then no estimate of PIAhydro is

made.

3) The linear fit is used to estimate so,clr for the cloudy

pixel, and PIAhydro is then calculated as ŝ
o,clr
� s

o
,

where the caret denotes an estimate based on the

linear interpolation. Uncertainty in the PIA is cal-

culated as d
PIA

5 (d2
so

1 d2
ŝo,clr

)1/2.

The drawback of this method is that it requires obser-

vations of so,clr near cloudy pixels and cannot be used in

substantially overcast scenes. In the analysis that fol-

lows, only pixels in which the mean distance between the

clear-sky pixels used to create the linear fit and the

cloudy pixel in question is less than 37 km (30 pixels) are

retained. For this subset, the uncertainty is dominated

by the uncertainty in the observed surface cross section

d
so

, which has a constant value of 1 dB, as opposed to

uncertainty in the linear fit d
ŝo,clr

, which has a mean value

of 0.24 dB.

Figure 2 shows a joint histogram of the two estimates of

PIAhydro. Two notable features are immediately evident.

First, a nearly constant 0.5-dB bias is observed in the

database estimate relative to the interpolation estimate of

PIAhydro. We speculate that this bias may result from

subgrid-scale variability in the ECMWF model humidity

and wind speed fields that are largely accounted for in the

interpolation method. In particular, small-scale variations

in winds in the immediate vicinity of precipitation that are

not captured by the model with its native resolution of

0.58 should be represented in the interpolation method.

Second, a spur of the joint histogram occurs in which

the database estimate substantially overestimates the in-

terpolation method at low values of PIAhydro. Isolating

the data composing this spur shows that nearly all of these

cases are those in which the surface wind speed is less

than 4 m s21 (not shown). Uncertainty in the database

estimates of so,clr approaches 20 dB under these low–

wind speed conditions because of the rapid increase of

so,clr with decreasing wind speed from 0 to 4 m s21.

Furthermore, the nonlinear nature of the relationship

between U and so,clr (Haynes et al. 2009) would lead us to

suspect the positive bias (as opposed to random un-

certainty) seen in Fig. 2 in these particular low–wind

speed situations.

Figure 2 suggests that the database estimate of PIAhydro

is unreliable at wind speeds below 4 m s21. However, if

the low–wind speed cases are eliminated, a 0.5-dB bias

is still evident in the remaining database estimates of

PIAhydro. This is not a major issue in the case of a heavily

precipitating cloud in which the attenuation due to pre-

cipitation far surpasses that of cloud. A 0.5-dB bias is

FIG. 2. Joint distribution of the climatological database and

along-track interpolation estimates of the PIA. The three diagonal

dashed lines correspond to the 1-to-1 line and the 61-dB un-

certainty estimate. The vertical and horizontal dashed lines show

the zero coordinate axes.
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approximately equivalent to the attenuation of a cloud

with a water path of 60 g m22, however, which is a fairly

typical value for stratocumulus cloud regimes. For the

purposes of this study, we wish to be able to observe at-

tenuation by nonprecipitating clouds, and therefore we

restrict the analysis to cases in which the interpolation-

based estimate is available. This is a conservative decision

designed to maximize the accuracy of the PIA estimate,

which limits the data to 2.1% of the total shallow-cloud

data available, providing 73 100 unique pixels. This

number is artificially low as a result of a known error

in the GEOPROF lidar product (R04) that causes an

overestimation of boundary layer cloudiness and will

be corrected in the R05 release. Even after the cor-

rection to the GEOPROF lidar algorithm, future work

must focus on correcting the bias identified in the cli-

matological database estimates of the PIA to expand

the feasibility of the method developed here to heavily

overcast scenes.

4. Results and discussion

a. Effective radius

In the previous section it was speculated that the ef-

fective radius derived from the 3.7-mm channel would be

more representative of the cloud-top radius and thus less

sensitive to the presence of precipitation than the 2.1- or

1.6-mm channels because of its shallow penetration

depth. Evidence suggestive of this tendency is presented

in Fig. 3 and Table 1, which show the distribution of re

retrieved from the 3.7- and 2.1-mm channels (results for

1.6 mm are nearly identical to those for 2.1 mm). The

distribution of re,3.7 has a smaller mean value and tends

toward 0 for radii in excess of 30 mm, whereas re,2.1

shows a tail that extends to radii larger than the 30-mm

threshold beyond which MODIS does not provide ef-

fective radii estimates. This result may be indicative of the

sensitivity of the 2.1-mm channel to large precipitation-

size drops residing deeper in clouds, suggesting that the

3.7-mm channel may offer the Wc estimate that is least

influenced by precipitation. These tendencies are evi-

dent even for clouds that are categorized as nonpre-

cipitating, which may imply a ubiquitous presence of

small numbers of large droplets affecting the 1.6- and

2.1-mm channels or may reflect a nonadiabatic cloud

profile in which droplet size decreases with height near

cloud top.

With knowledge of the penetration depths of the 3.7-

and 2.1-mm channels, the adiabatic model predicts that

re,3.7 is greater than re,2.1 for nonprecipitating clouds.

Figure 3 and the statistics in Table 1 demonstrate that

the observations show the opposite behavior. These

observational results suggest that the sign of the differ-

ence between re,3.7 and re,2.1 may be sensitive to cloud-

top entrainment effects as well as the presence of drizzle

within cloud, which is consistent with the sensitivity

analysis presented by Nakajima et al. (2010). To explore

these points further, Fig. 4 shows the joint distribution of

re,2.1 and re,3.7. This figure shows a very modest average

tendency for adiabadicity (re,3.7 . re,2.1) when re,2.1 is less

than 10 mm. Beyond this point, re,2.1 begins to over-

estimate re,3.7, which is suggestive of the onset of co-

alescence processes.

In addition to the inference that re,3.7 provides the best

estimate of the cloud-top radius, several additional im-

portant points may be made regarding Figs. 3 and 4.

First, it is worth noting the large overlap between the

precipitating and nonprecipitating re distributions that

suggests that use of re alone to identify precipitation is

entirely inappropriate. This observation fits well with

parameterizations of the autoconversion process that

depend more strongly on the cloud water content than

on the cloud droplet number concentration (Wood

2005b). Second, the sign of the difference between re,3.7

and re,2.1 has a complicated dependency on re,2.1 and is

TABLE 1. Statistics for the effective radii distributions shown

in Fig. 3.

Nonprecipitating Precipitating

Channel (mm): 2.1 3.7 2.1 3.7

Mean 6 std

dev (mm)

15.2 6 5.3 13.2 6 3.6 18.3 6 5.0 15.8 6 3.7

Median (mm) 14.3 12.7 17.7 15.3

FIG. 3. PDFs of the MODIS effective radius re estimates for the

3.7- and 2.1-mm channels. Note the extension of the 2.1-mm dis-

tribution beyond 30 mm for both precipitating and nonprecipi-

tating clouds. Statistics of the distributions are provided in Table 1.
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not by itself a useful indicator of the presence of pre-

cipitation. A more appropriate precipitation index should

most likely be based on several parameters including

re,3.7, re,3.7 2 re,2.1, and t. Third, from an algorithmic point

of view, the results further suggest that the arbitrary

truncation of the reported MODIS re at 30 mm may result

in the loss of some information, particularly at the 2.1-

and 1.6-mm channels where there is a tendency to retrieve

values larger than 30 mm.

b. Nonprecipitating cloud water path

Figure 4 shows the CloudSat attenuation-based Wc

plotted against the MODIS Wc derived from using the

3.7-mm channel and gc 5 5/9 for all nonprecipitating

pixels using Eq. (1). As previously mentioned, in this

special case of nonprecipitating clouds, a is merely a

function of temperature, which is taken from the

ECMWF-AUX product, and the details of the cloud

droplet size distribution are unimportant. Because these

clouds are nonprecipitating, WT is equivalent to Wc so

that CloudSat provides an independent estimate of the

same quantity using Eq. (4). A large amount of scatter is

evident in the CloudSat data, which is consistent with the

uncertainty in the PIA estimate of approximately 1 dB

(;120 g m22). Important, however, is that negligible

bias is observed between the two estimates of Wc along

the entire range of data.

Table 2 provides summary statistics for the linear re-

gression of CloudSat Wc onto the various MODIS cloud

water paths. Note that the correlation coefficients for

these fits are approximately 0.5, resulting from the im-

precise nature of the CloudSat observations. However, it

is expected that the CloudSat observations, which de-

pend only on temperature, will be more accurate than

the various MODIS observations, which depend on the

assumed value of gc. We therefore use the CloudSat

observations to determine the most appropriate esti-

mate of re,c and associated value of gc for the derivation

of cloud water path from this dataset. Cloud water path

derived from the 3.7-mm channel offers the least biased

result, consistent with the assumption that this channel

is most representative of the droplet radius at cloud

top. This result is in agreement with the recent work of

Greenwald (2009), who found that the adiabatic ap-

proximation yields improved agreement between the

MODIS and Advanced Microwave Scanning Radiom-

eter for Earth Observing System (AMSR-E) Wc values.

The minimal bias between Wc derived from CloudSat

and Wc derived using 3.7 mm bolsters confidence in both

estimates as accurate measures of the cloud water

path, although it must be reiterated that the agreement

FIG. 4. Joint PDFs of the MODIS re estimates for the 3.7- and 2.1-mm channels. Below re,2.1 of 10 mm, the two

estimates agree well, with the 3.7-mm channel slightly overestimating the 2.1-mm channel. Above this threshold, re,2.1

overestimates re,3.7 by increasing amounts.

TABLE 2. Summary statistics for the linear regression of CloudSat

cloud water path onto six different estimates of the MODIS cloud

water path for nonprecipitating clouds. Note that the slope found

using the MODIS 3.7-mm channel and the adiabatic stratifica-

tion (slope 5 0.98) minimizes the bias between the two estimates.

The sample size is N 5 68 433. The CloudSat and MODIS data

both display serial autocorrelation, leading to an effective sample

size N* 5 26 853, where N* is calculated using the formula N* 5

N(1 2 r1r2)/(1 1 r1r2), where r1 and r2 are the lag-1 autocorrelations

of the two datasets (Bretherton et al. 1999). A one-sided Student’s

t test gives the statistical significance of the correlations at greater

than the 99% level.

Adiabatic (gc 5 5/9) Homogenous (gc 5 2/3)

Channel (mm): 3.7 2.1 1.6 3.7 2.1 1.6

Intercept 3.36 2.19 9.61 3.36 2.19 9.61

Slope 0.98 0.93 0.75 0.82 0.77 0.62

Correlation 0.49 0.50 0.47 0.49 0.50 0.47
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between the two estimates is only valid in a statistical

sense because of the large amount of scatter in the

CloudSat PIA values.

Based on the results shown in Fig. 5 and Table 2 as

well as on the re,c distributions shown in Figs. 3 and 4, the

remainder of this paper will refer to Wc as that derived

using the 3.7-mm channel and gc 5 5/9. Although not the

central focus of this work, we pause here to note that the

agreement between the PIA and Wc derived using re,3.7

and the adiabatic approximation does not necessarily

verify the adiabatic model and that the agreement be-

tween the two cloud water estimates may be merely

coincidental.

c. Estimating the relationship between cloud water
and precipitation water

Using the statistical agreement between CloudSat and

MODIS water path estimates in nonprecipitating clouds

as a foundation, it is possible to exploit these instruments

to separate the cloud and rain contributions to total water

path in precipitating scenes. Equations (9) and (10) are

solved to produce simultaneous estimates of Wc and

Wp. Results are shown in Fig. 6 for all pixels as well as

the subset of precipitating pixels. For reference, these

figures also show lines of constant ratio (Wp:Wc). A

trend of increasing Wp with increasing Wc is seen, with

precipitation-to-cloud ratio increasing from approxi-

mately 0 at Wc 5 0 g m22 to approximately 0.5 at Wc 5

500 g m22. This behavior is consistent with in situ ob-

servations that show a correlation between precipitation

and Wc (Pawlowska and Brenguier 2003; Comstock et al.

2004; vanZanten and Stevens 2005). An interesting fea-

ture observed in Fig. 6 is the occurrence of nonzero Wp at

very low values of Wc in the precipitating subset. These

pixels may be indicative of rainout processes, in which

FIG. 5. The CloudSat attenuation-based cloud water path esti-

mate WT as a function of the MODIS 3.7-mm estimate Wc using the

adiabatic assumption for nonprecipitating pixels. The circles and

error bars show the mean and the standard deviation. The solid line

shows the 1-to-1 line, and the dashed lines show the 6120 g m22

(;1 dB) bounds. The dotted line shows the linear best fit. Note the

negligible bias between the two estimates.

FIG. 6. Estimates of the mean relationship between the cloud water path Wc and the precipitation water path Wp

given two assumptions regarding the precipitation DSD. The parameters that describe the DSD are described in the

text. The circles and error bars respectively show the median value and the range of 75% of the data. The dashed lines

show the ratio Wp:Wc for values of 1:1, 1:2, and 0:1, as indicated on the right axis.
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residual precipitation remains but cloud water has been

depleted. Note that this feature is not evident in the all-

pixels plot, which is dominated by nonprecipitating

clouds at water paths below about 150 g m22 and pre-

cipitating clouds above approximately 300 g m22.

Uncertainties in the retrieved values of Wc and Wp

are estimated using standard error propagation tech-

niques as

d
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where the MODIS cloud product provides dt and dre

and dtre represents the covariance of the MODIS opti-

cal depth and effective radius uncertainties, which are

highly correlated. The value of dPIA is derived as out-

lined in section 3d. Figure 7 highlights the behavior of

the uncertainties, which are strong functions of the re-

trieval state space. From Fig. 7 the uncertainty in Wc can

be roughly approximated as 50% whereas the un-

certainty in Wp decreases from greater than 100% at

values of less than 100 g m22 to less than 20% at values

of several hundred grams per meter squared. From these

uncertainty estimates, we can conclude that much of the

variability apparent in Fig. 6 is derived not from natural

sources but rather from the imprecision inherent in the

satellite observations.

Figure 8 shows the mean Wp as a function of Wc for

various values of re,c,3.7. This figure highlights a clear as-

sociation between cloud droplet size and Wp. This ob-

servation provides evidence for a frequently speculated

pathway (Albrecht 1989) whereby anthropogenic cloud

condensation nuclei could influence the precipitation

water content and thus the rain rate of shallow maritime

clouds through modification of the droplet size distribu-

tion and thus the coalescence rate. The dependence of Wp

on both the cloud water path and the effective radius

shown in Fig. 8 is consistent with previous analyses

(Lebsock et al. 2008; Leon et al. 2008; Kubar et al. 2009;

L’Ecuyer et al. 2009) of CloudSat data that show a de-

pendence of the drizzle occurrence on both macro-

physical (Wc) and microphysical (re,3.7) parameters. The

logarithmic scale on the ordinate highlights a qual-

itative tendency for the fractional differences in Wp

to decrease with Wc. This inference is primarily ex-

emplified below cloud water paths of 100 g m22 and

effective radii of less than 10 mm, which is a subset of

clouds that contains most of the nonprecipitating and

weakly drizzling clouds. Other areas of the parameter

space display little tendency with Wc in the fractional

sensitivity of Wp to re.

The sensitivity at low Wc is most likely indicative of

the efficiency of the autoconversion process, whereas at

higher cloud water paths the sensitivity is most likely

more representative of the accretion process. The domi-

nance of the autoconversion process at low cloud water

path and the accretion process at higher cloud water

path is elucidated through simple heuristic models in

much greater detail by Wood et al. (2009), who suggest

that the fractional sensitivity of precipitation to micro-

physical perturbations decreases with Wc. That result

conflicts with the concept of precipitation susceptibility

presented by Sorooshian et al. (2009), who argue that

precipitation is most susceptible to microphysical in-

fluence at moderate liquid water paths whereas it is

moisture limited and thus insensitive to microphysics

at low values of cloud water path. The limited qualitative

analysis presented here would seem to support the notion

that the precipitation sensitivity decreases with cloud

FIG. 7. The median percent uncertainty d of the (left) cloud and (right) precipitation water paths. The error bars show

the range encompassing 75% of the data.
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water path as suggested by Wood et al. (2009), although

we note that these results are by no means conclusive.

The method outlined in Eqs. (9) and (10) explicitly

includes a contribution to the observed optical depth

from precipitation water; therefore, the results can pro-

vide some insight into the extent to which precipitation

affects the observed MODIS optical depths. Figure 9

shows the median percentage of the optical depth that is

due to precipitation as a function of the total observed

optical depth. The influence of the precipitation optical

depth is observed to increase as a function of the optical

depth itself, which is consistent with the increasing values

of Wp with Wc shown in Fig. 6. The result is very sensitive

to the precipitation DSD, with the Marshall–Palmer

model predicting precipitation optical depth influence on

the order of 1% and the drizzle distribution with its

smaller drop sizes predicting a median effect on the order

of 5% with values that exceed 10% occasionally occur-

ring. This result is important because it provides a rough

estimate of the magnitude of the bias one might incur by

associating all of the observed optical depth to cloud

water when estimating Wc from visible and near-infrared

observations.

5. Summary

Estimates are made of the mean relationship between

the cloud water path and the precipitation water path

in shallow marine clouds in the low latitudes. This is

the first large-scale observational estimate of this re-

lationship known to the authors and could provide some

bounds on the assumptions that are imposed a priori in

remote sensing retrievals of precipitation rate such as

that used by Haynes et al. (2009) or passive microwave

approaches (Kummerow et al. 2001; Hilburn and Wentz

2008). The analysis relies on the relative insensitivity of

the MODIS observations to the presence of precipitation

in combination with a novel approach for deducing the

path-integrated attenuation using interpolation of the

along-track surface reflectivity from the CloudSat CPR.

By utilizing the relative insensitivity of the MODIS ob-

servations to precipitation and the large sensitivity of the

FIG. 8. The mean Wp as a function of Wc for four re,3.7 bins assuming a drizzle distribution.

Similar results are found using the Marshall–Palmer distribution. The curves are not plotted

where data sampling (nsamples) is less than 30 points. The error bars show the standard errors SE

[5s/(nsamples)
1/2].

FIG. 9. The median percentage of the optical depth tp that is due

to precipitation water, as a function of the observed optical depth

ttotal for all pixels (nonprecipitating and precipitating). The error

bars show the range encompassing 75% of the data.
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PIA to the presence of precipitation, the cloud water path

and the precipitation water path are deduced simulta-

neously.

The mean precipitation water path is shown to in-

crease with increasing cloud water, consistent with a

description of clouds in which the production of pre-

cipitation water is largely governed by the cloud water

content. However, an additional dependence of the

precipitation water path on the cloud effective radius is

shown. The absolute magnitude of the radius de-

pendence increases with cloud water path whereas the

fractional sensitivity is largest at low values of water

path, providing qualitative support of the idea that the

fractional sensitivity of precipitation to cloud droplet

size decreases with cloud water path.

The CloudSat attenuation observations are used to

evaluate several estimates of the cloud water path from

the MODIS instrument for nonprecipitating clouds. It

was found that using the effective radius derived from

the 3.7-mm channel and the assumption of an adiabati-

cally stratified cloud minimizes the bias between the

CloudSat attenuation and the MODIS cloud water path.

Furthermore, distribution functions of effective radius

derived from the MODIS 3.7- and 2.1-mm channels are

presented. In an average sense, re,3.7 slightly over-

estimates re,2.1 when re,2.1 is less than 10 mm, indicating

a modest tendency toward adiabadicity. The sign of this

relationship reverses beyond 10 mm, suggesting the ini-

tiation of the coalescence process or potential dilution at

cloud top. It is observed that the distribution of re,2.1 has

a tail that extends beyond 30 mm, which is well beyond

the size of a representative cloud droplet radius. Taken

together, the above results suggest the use of re,3.7 when

a radius associated with the cloud droplet distribution is

desired. In addition, the existence of a tail of the re,2.1

distribution beyond 30 mm suggests that termination of

the reported re at this arbitrary threshold is inappropriate

and may result in the loss of some information regarding

identification of drizzle and rain. The results suggest that

the use of either an effective radius threshold or the sign

of the difference of re,2.1 and re,3.7 by themselves are im-

precise predictors of the presence of precipitation.

Some caveats that deserve future exploration are men-

tioned. A key assumption in the method presented here

is that the MODIS re,3.7 is unaffected by the presence of

precipitation. The validity of this assumption is only cur-

sorily explored in this work and deserves a thorough ex-

ploration elsewhere. In particular, a detailed modeling

study of the effects of drizzle and rain on visible/near-

infrared-based estimates of cloud water path and effective

radius is needed. In addition, data from several recent field

campaign [i.e., the Variability Of The American Monsoon

Systems (VAMOS) Ocean–Cloud–Atmosphere–Land

Study (VOCALS) and the Rain In Cumulus Over Ocean

(RICO)] could be exploited to shed light on this issue.

One limitation of the method is the reliance on the

interpolation-based method to deduce the radar-path-

integrated attenuation, and future work will focus on

reducing the bias in the climatological-database method

for deducing the path-integrated attenuation to expand

the applicability of this work. Furthermore, we have

shown that the derivation of the precipitation water path

is highly sensitive to the shape of the drop size distribu-

tion. Because of this sensitivity, only broad constraints

are placed on the precipitation water path in this study.

Substantial additional research, possibly employing air-

craft data from field campaigns, is needed to characterize

better the global statistics of the DSDs encountered in

the full range of shallow precipitating clouds examined

in this work.
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