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The September 29th 2009 tsunami caused widespread coastal modification within the islands of Samoa and
northern Tonga in the South Pacific. Preliminary measurements indicate maximum runup values of around
17 m (Okal et al., 2010) and shore-normal inundation distances of up to ~620 m (Jaffe et al., 2010). Geological
field reconnaissance studies were conducted as part of an UNESCO-IOC International Tsunami Survey Team
survey within three weeks of the event in order to document the erosion, transport, and deposition of
sediment by the tsunami. Data collected included: a) general morphology and geological characteristics of the
coast, b) evidence of tsunami flow (inundation, flow depth and direction, wave height and runup), c) surficial
and subsurface sediment samples including deposit thickness and extent, d) topographic mapping, and e)
boulder size and location measurements. Four main types of sedimentary deposits were identified: a) gravel
fields consisting mostly of isolated cobbles and boulders, b) sand sheets from a few to ~25 cm thick, c) piles of
organic (mostly vegetation) and man-made material forming debris ramparts, and d) surface mud deposits
that settled from suspension from standing water in the tsunami aftermath. Tsunami deposits within the reef
system were not widespread, however, surficial changes to the reefs were observed.
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1. Introduction

On September 29, 2009, three near-simultaneous great submarine
earthquakes occurred along the northern Tonga Trench region and
generated a region-wide tsunami (Fig. 1) that caused nearly 200 deaths
and severe damage to coastal housing and infrastructure in American
Samoa, Samoa and Tonga (Dominey-Howes and Thaman, 2009). The
earthquake epicenterswere approximately 190 km southwest of Samoa
near the north end of a 3000-km-long segment of the north–northeast
trending Pacific/Australia plate boundary (http://earthquake.usgs.gov/
earthquakes/recenteqsww/Quakes/us2009mdbi.php; last accessed on
01/18/2011) (Beavan et al., 2010; Lay et al., 2010). The first earthquake,
which was located at 15.51°S, 172.03°W, occurred as a normal-fault
Fig. 1. Modeled (MOST) maximum deep water wave amplitude of the 29th September 20
Tsunami Research. The colors relate to the deep water wave amplitude in centimeters (http
02/24/11). The inset map shows measured tsunami runup values for Upolu.
Data from Okal et al. (2010); Fritz et al. (2011).
rupture within the outer rise of the subducting Pacific plate followed
within minutes by interplate subduction events of a similar magnitude
(Lay et al., 2010). The second earthquake was composed of two sub-
events (thefirst at 15.75°S, 172.25°W, the secondat16.0°S, 172.25°W)—
their combined Moment Magnitude was equivalent to Mw 8.0. The
earthquakes triggered a tsunami with maximum local runup of about
17 m (Fig. 1) (Okal et al., 2010) and shore-normal inundation distances
of up to ~620m (Jaffe et al., 2010). The tsunami arrived 15–20 min after
the shaking that was strongly felt in Samoa. The tsunami was either
observed or recordedon tide gages across a significant part of the Pacific.

In coastal areas at risk from tsunami inundation, and where there
are limited written historical records and/or studies of prehistoric
events (such as is the case for the islands of Samoa), analysis of
09 South Pacific Tsunami by the NOAA Pacific Marine Environmental Lab, Center for
://nctr.pmel.noaa.gov/samoa20090929/pagopago_20090929a_maxh.png; last accessed

http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2009mdbi.php
http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/us2009mdbi.php
http://nctr.pmel.noaa.gov/samoa20090929/pagopago_20090929a_maxh.png
http://doi:10.1016/j.earscirev.2011.03.004
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modern tsunami deposits associated with events like that of the 29th
September 2009 can provide critical information on the coastal
impacts including the movement of coastal sediment, relative
magnitude of the event, and local vulnerability to inundation. In
addition, the spatial distribution of the deposits, combined with
sediment texture and composition, provides valuable criteria in the
discrimination between tsunami deposits and those formed by other
processes such as extreme storms or variations in sea level
(Nanayama et al., 2000; Goff et al., 2004; Kortekaas and Dawson,
2007; Nanayama et al., 2007; Morton et al., 2008).

The historical record of tsunamis affecting Samoa is poorly
documented, partly because the Samoans had no written language
and their history was preserved through oral traditions. The NOAA
National Geophysical Data Center on-line tsunami database (http://
www.ngdc.noaa.gov/hazard/tsu.shtml; last accessed 01/05/11) lists
36 definite tsunamis since 1837 that have caused measured runup in
the Samoan Islands. Tsunamiswith a runup greater than 2 m are listed
in Table 1. The largest documented event prior to the 2009 tsunami
was in 1917 with a maximum reported runup of 12.2 m. This tsunami
was associated with an 8.3 magnitude earthquake in the Samoa–
Tonga region. The 1960 far-field tsunami associated with the 9.5
magnitude great Chile earthquake was the most recent significant
event to affect Samoa prior to the 2009 event and resulted in
maximum runups of 4.9 m. For a more detailed review of tsunamis
prior to 2009, refer to Okal et al. (2011-this issue).

Documenting the sedimentary characteristics of recent tsunami
deposits is an important tool used for the identification of paleotsu-
nami in the geologic record (Goff et al., 2004; Peters and Jaffe, 2010;
Chagué-Goff et al., 2011). The primary goal of this study is to identify
and characterize the September 2009 tsunami deposits and to further
the development of geologic criteria for identifying historical deposits
in the geologic record. Identifying and interpreting tsunami deposits
can improve our understanding of tsunami hazards both in Samoa and
globally. Recent studies of the sedimentary record left by tsunamis
have contributed substantially to our knowledge of tsunamigenic
processes including: refinement and evaluation of models for
coseismic subsidence using peat–mud couplets (Shennan et al.,
1996), multiple tsunami sources (Williams et al., 2005), and
anomalous sand sheets (Atwater, 1987) in the U.S. Pacific northwest;
distinguishing between extreme storm and tsunami deposits in Japan
(Nanayama et al., 2000; Goto et al., 2010), the US Atlantic coast (Tuttle
et al., 2004), Caribbean (Morton et al., 2008), Portugal (Kortekaas and
Dawson, 2007), Australia (Switzer and Jones, 2008), and New Zealand
(Goff et al., 2004); extending the record of Holocene tsunamis for
thousands of years in Kamchatka, Russia (Pinegina et al., 2003), Chile
(Cisternas et al., 2005), Japan (Fujiwara et al., 2000; Nanayama et al.,
2007), Washington (Atwater and Hemphill-Haley, 1997), and
New Zealand (Goff et al., 2010a; 2010b); and calculating tsunami
flow speed from the deposit thickness and grain size (Jaffe and
Gelfenbaum, 2007).

Worked summarized in this paper was done as part of an
interdisciplinary United Nations Education, Scientific and Cultural
Organization (UNESCO) Intergovernmental Oceanographic Commis-
sion (IOC) International Tsunami Survey Team (ITST) survey, officially
Table 1
Historical Samoan tsunamis since 1837 with a measured runup greater than 2 m (data from

Year Location of observation Max water height
(m)

1868 Apia, Upolu 3.0
1907 Savai`i Island 3.6
1917 South Coast, Samoa 12.2
1960 Apia, Upolu 4.9
2009 Samoa 14.5
referred to as the UNESCO-IOC ITST Samoa (see Goff and Dominey-
Howes, Editorial, this issue). We report initial findings regarding
deposits from the 2009 South Pacific Tsunami, measurements of flow
characteristics from physical evidence left behind by the tsunami, and
changes to the coastal landscape.

1.1. Physical setting

The Samoan archipelago consists of threemain and several smaller
islands (Fig. 2) that are the subaerial expression of an ~1000 km long
volcanic chain produced by the Pacific Tectonic Plate overriding a
stationary mantle plume hotspot (Koppers et al., 2008). Westward
Pacific plate motion at about 7.1 cm yr−1 results in volcanic edifices
becoming younger towards the east with the current hotspot located
beneath the Vailulu`u Seamount to the east of Tutuila. Young volcanic
rocks (0.39 Ma and younger) exposed at the surface on Savai`i are the
result of post-erosional volcanism (Koppers et al., 2008).

The main islands of Samoa represent the summits of high
volcanoes with heavily embayed and irregular coastlines. Three
general coastal types are identified based on coastal landforms and
adjacent reef characteristics. These are: a) steep, commonly cliffed
with little or no reef development, b) fringing reef fronting a narrow
coastal plain with beaches, barrier spits, and coastal wetlands
associated with streams, and c) wide fringing reef transitional to a
shallow barrier reef (Richmond, 1992; 1995). Fringing reefs are the
most common type of reef in Samoa. For example, on Tutuila about
90% of surveyed reefs are less than 217 mwide with an average width
of 116 m (Gelfenbaum et al., 2011-this issue). The major coastal
sedimentary deposits occur in back-reef settings, on the coastal plains,
that are typically narrow, and at stream mouths. In general, the
volume of coastal deposits is relatively low and the coastal system is
sediment limited (Apotsos et al., 2011-this issue), when compared to
continental systems. The more spatially extensive and thicker coastal
deposits in Samoa occur on the east coasts of both Tutuila and Upolu
and the south coast of Upolu as a result of exposure to consistent
onshore SE tradewinds, relatively high wave energy, and well-
developed reef complexes that provide much of the sediment (Kear
and Wood, 1959; Richmond, 1991, 1992, 1995).

A rapid response International Survey Team (ITST) began collect-
ing tsunami water level data six days after the event (Okal et al.,
2010). Following discussions with the team led by Okal and with
members of the UNESCO-IOC ITST Samoa, we decided to focus the
majority of our detailed studies in the Aleipata District, east Upolu
(Fig. 2), where inundation was extensive and sediment supply was
high resulting in considerable onshore deposition of sediment. Tracts
of undeveloped land that were left relatively untouched in this area
during the initial clean-up effort, allowed for observation and
sampling of the unmodified deposit. Other sites where we collected
data on Upolu included Lalomanu, Vaovai, Si`umu, and Mulivai
(Fig. 2). In addition to the sites where we spent at least a half day
collecting data, we drove most of the Upolu coastal road and made
brief site visits that included photographs and observational notes at
numerous sites. The locations of our primary study sites are shown in
Fig. 2 and listed in Table 2.
NOAA National Geophysical Data Center on-line database).

Max inundation distance
(m)

Tsunami source

Earthquake (8.5)
110 Volcano

Earthquake (8.3)
Earthquake (9.5)

440 Earthquake (8.0)

http://www.ngdc.noaa.gov/hazard/tsu.shtml
http://www.ngdc.noaa.gov/hazard/tsu.shtml


Fig. 2. Location map showing the main islands of Samoa and general topography and bathymetry. Bathymetric and topographic data are from the EarthRef.org Seamount Catalog,
http://earthref.org/cgi-bin/sc.cgi?id=SMNT-137S-1725W (Last accessed 6/2010). The earthquake epicenter was just over 150 km to the south.
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2. Survey methods and data collection

A combination of handheld GPS, laser rangefinder and real-time
kinematic (RTK) GPS were used for surveying and marking sample
locations. The RTK-GPS was used for obtaining micro-topographic
profiles, with horizontal and vertical accuracy between points less than
0.02 m. The elevation accuracy relative to mean tidal level varied
depending upon the quality of the available elevation points for
calibration. Geodetic benchmarks with elevations known relative to
mean tidal level were used for calibration wherever possible. This
calibration was undertaken along the eastern coastline of Upolu where
the surveys could be tied into a geodetic benchmark at Lalomanu. For
surveys at the other sites visited where geodetic benchmarks were not
available, natural tide markers such as the debris line at the high water
mark and tide levels at various times of the day (compared to Apia tide
tables) were used to calibrate the data to mean tidal level. For RTK-GPS
measurementswe estimate the uncertainty relative tomean sea level to
be ±0.2 m to account for the variability in calibration method.
Handheld GPS units were used for spot location determination and
had an accuracy of about +/−5 m. A laser rangefinder was used to
measure elevations (flow depths) with an accuracy of about+/−0.1 m
over the relatively short distances used in this type of survey. The
topographic surveys extended from the nearshore (inner reef flat)
landward to beyond the limit of inundation as identified by field
inspection. Survey transects were collected in shore-parallel, shore-
normal, and flow-parallel lines. Line-spacing density was a function of
the size of the study area and timespent at the site. Theoffshoredistance
of nearshore surveys were limited to wading depths and therefore
Table 2
Summary table of sites visited. Data collected include: P— geo-located photographs, F—
flow indicator measurements, S — sediment deposit measurements, T — topographic
mapping. Detailed data for Satitoa and Mulivai are presented in this report.

Location Island Lat Lon ~Time at site Data collected

Maloata Tutuila −14.304 −170.816 1 day P,F,S,T
Poloa Tutuila −14.318 −170.835 1 day P,F,S,T
Satitoa Upolu −14.026 −171.428 3 days P,F,S,T
Lalomanu Upolu −14.047 −171.441 b1 day P
Vaovai Upolu −14.035 −171.682 1 day P,F,S,T
Si'umu Upolu −14.012 −171.783 b1 day P,F,S,T
Mulivai Upolu −14.010 −171.803 b1 day P,F,S,T
Puleia Savai'i −13.774 −172.368 b1 day P,F,S,T
partially controlled by tide stage at the time of survey, with lower tides
allowing a greater distance to be traversed.

Three physical tsunami characteristics were measured from proxy
data at the sites of tsunami sediment investigation: (1) inundation
distance and runup elevation, (2) flow depths, and (3) flow direction.
The inundation distance is the maximum inland distance reached by
the tsunami flow and was typically recognized in the field by the
boundary between damaged and healthy vegetation. Debris wrack
lines (cross referenced with eyewitness observations) were also used
to determine inundation extent. Where possible, the runup elevation
was also measured, this being the elevation at points along the
maximum inundation extent. Flow depth is the height above ground
level of the tsunami flow. Flow depths were estimated by reference to
features such as damage to structures, gougemarks on vegetation and
debris caught in tree branches. When the ground elevation at flow
depth measurement points is known flow heights (flow elevation
relative to mean sea level) can be calculated. Flow directions were
identified from the alignment of damaged features such as the
direction of bent plants, uprooted or snapped trees, or debris piles
preferentially aligned in particular directions. Flow direction in-
dicators indicate a) the strongest flow direction of the tsunami, b) the
initial flow direction, or c) possibly the final flow direction (which
may be return flow). The orientation of flow direction was measured
by compass (either magnetic or GPS).

Sub-surface samples were collected by push coring using plastic
pipe, gouge auger, Russian peat auger (D-core), or from hand-
excavated trenches. Surficial samples consisted of scrapings of the
upper layers of sediment from either subaerial or submarine
environments. In boulder deposits, boulder size (a, b, and c axis),
orientation of the long (a axis) and location were recorded.

Site surveys were either reconnaissance type lasting a few hours,
or more detailed lasting at least half a day. Observations and
measurements in a typical reconnaissance survey included: general
morphology and physical characteristics of the coast such as
orientation, exposure, landforms, and slope, the presence or absence
of sedimentary deposits and erosional features, tsunami inundation
and runup, flow depth and flow direction, if suitable markers were
present. At detailed survey sites the above data were acquired
togetherwithmore detailed topographic data and sediment sampling.
Detailed surveyswere carried out on Upolu at Aleipata and Vaovai and
reconnaissance surveys were carried out at Lalomanu, Vaovai, Si`umu,
Mulivai, and Puleia (Table 2 and Fig.2).

image of Fig.�2
http://earthref.org/cgi-bin/sc.cgi?id=SMNT-137S-1725W


Fig. 3. Pre-tsunami Ikonos satellite image (left) and oblique aerial photograph (right) of the Aleipata District on the east coast of Upolu showing the complex reef configuration and
coastal plain. Oblique photograph (view to the south) was taken a few days after the tsunami and shows the inundated coastal plain (brown zone landward of shoreline. (Photograph
by Jose Borrero). The earthquake epicenter was to the south.
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3. Results: detailed study sites

3.1. Aleipata study site

The Aleipata study area lies on the windward coast in an area
bordered by a wide, shallow (b~5 m) fringing reef that is dissected by
several deep (N~20 m) channels and two small offshore islands
Fig. 4. Oblique aerial photograph taken between Satitoa Village and the wharf in Aleipat
Photograph taken within a few days of the tsunami (photograph courtesy of the RNZAF). The
our field work but is destroyed in this photograph.
creating a complex coastal physiography (Fig. 3). There is a sandy
coastal plain that approaches 300 m in width with the seaward
margin marked by near-continuous rock revetment along the
shoreline that protect the coastal road (Fig. 4). The landward margin
of the coastal plain abuts against a gradually westward ascending
alluvial slope commonly with low-lying wetlands along the contact
with the sandy coastal plain. The coastal plain has low-relief and
a showing the approximate boundaries between tsunami impact zones and deposits.
coastal road was protected by a rip-rap revetment that was largely rebuilt by the time of

image of Fig.�3
image of Fig.�4
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gently undulates without well-defined beach ridges, possibly the
result of gardening activities due to human occupation. Several
villages and their associated gardens are located along the coastal
plain.

Fig. 5 summarizes the data collected near the village of Satitoa,
Aleipata and shows tsunami flow depth and direction measurements,
trench locations, and topographic survey points. Topographic profiles
were collected along shore-normal (2), oblique (1), and shore-parallel
(2) transects and along the wharf. In addition, 28 measurements of
flow depth and 23 flow directions were measured. The flow direction
indicators were oriented either obliquely onshore towards the north,
or roughly shore-parallel towards the northeast. Tsunami flow depth
measurements decrease landward from a maximum of 5.45 m at the
shoreline. Erosion, as evidenced by exposed roots, excavated soil, and
minor scarps, was prominent at the shoreline, along the shore-parallel
coast road, and approximately the first 25 m of the coastal plain.
Deposits from the tsunami included sand sheets, gravel fields
consisting of scattered and isolated boulders, mud caps, and
accumulations of organic and man-made debris.

3.2. Vaovai study site

Vaovai (Fig. 2) is located on the coast in south–central Upolu in a
sparsely populated low-lying coastal plain. The adjacent reef flat
varies in width from about 950 m at its widest to about 300 m
Fig. 5. Map (left) from the Aleipata District near Satitoa Village showing topographic sur
Topographic profiles (right) show trench locations and flow height measurements.
opposite a large channel near the main study site. Offshore there is a
detached reef platform capped by a small carbonate sand and gravel
island. The coastal plain is backed by ameandering fluvial channel and
associated wetlands. At Vaovai (Fig. 6) one topographic profile was
obtained from the intertidal zone up to the limit of inundation. Along
the profile a sand sheet was sampled at trenches WS09_T20–T22
where the sand thickness ranged from a thin veneer (b1 cm) to a thick
wedge about 25 cm thick. Seven flow depths and three flow directions
were also obtained. A detailed topographic map from closely-spaced
RTK-GPS transects was made at the Vaovai area in order to define the
zone of intense shoreface erosion as evidenced by a fresh scarp and
loss of coastal land.

4. Results: tsunami deposit characteristics

Where available for transport, mud, sand, and gravel size material,
as well as vegetation and man-made debris, were moved by the
tsunami and formed distinct sedimentary deposits. Four main
sedimentary deposits were identified.

4.1. Gravel fields

The gravel-size fraction ranges from granule (2–4 mm), pebble (4–
64 mm), cobble (64–256 mm) to boulder (256–4096 mm) size classes
(Blair and Mcpherson, 1999). The gravel deposits we observed were
vey points, sediment trench locations, and flow depth and direction measurements.

image of Fig.�5


Fig. 6. Topographic profile (top), Google Earth image of the area (bottom left), and shaded relief map (bottom right) from Vaovai, south–central Upolu. The profile shows flow height
measurements, trench locations, ground surface, and tide levels and distance from the shoreface (0) in meters. The map is constructed from the RTK-GPS surveys and shows the
approximate pre-tsunami shoreface.
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usually in the cobble to medium-boulder size classes and typically
only the boulder-size material was routinely measured in the field.
Gravel deposits typically occurred as either isolated coral boulders
derived from the adjacent reef system and deposited on the lower
beach face, or as fields of basalt boulders derived from coastal
engineering structures and deposited inland on the coastal plain. In
both cases the boulders were found either on the surface or partially
buried by sand. Fig. 7 illustrates characteristics of a number of typical
boulder deposits from the islands of Samoa including: a) coral heads
and microatolls (Porites sp?) that have been transported from the reef
flat onto the lower beach face. Living microatolls at this site presently
extend from just beyond the toe of the beach to about 70 m from the
shore. Many of the coral clasts have been overturned and/or broken
during transport. Although runup was near 12 m at the Poloa site
(west coast Tutuila), there were very few coral clasts observed to be
deposited beyond the beach; b) isolated large boulders moved
landward on the coastal plain from shoreline protection structures
at the shoreline. In this case an ~1 m boulder has moved approxi-
mately 60 m and is associated with a patchy veneer of dark basalt-rich
sand; c) dispersed gravel field of mostly boulders transported from
locally constructed seawall and groin structures along the adjacent
beach. The gravel is deposited on an eroded soil surface that was a
flourishing garden at the time of the tsunami. There was very little
sand deposited with the gravel because the adjacent beach is
composed mostly of pebble to cobble sized material; and d) mixed
gravel deposits near the shoreline consisting of rounded perched
beach basalt clasts, angular basalt clasts, and coral debris. The angular
basalt clasts are most likely derived from the underlying basalt
platform and could be the result of hydraulic excavation during the
tsunami. At the Puleia site (Fig. 7d), fresh coral pieces were not
observed and most coral fragments were rounded, suggesting they
were deposited prior to the tsunami and most likely from storms.
Although it was clear the tsunami had sufficient capacity to transport
boulders, we observed a number of small gravel beaches on Upolu and
Savai`i where there appeared to be little landward transport of the
coarse material from the beach face as a result of the tsunami. It is not
clear if this is because the gravel beaches already form a wave-
resistant structure that naturally dissipates wave energy, or, if local
physiography or orientation limited tsunami impact.

A well-developed boulder field (Fig. 8) deposited by the tsunami
was investigated near the village of Satitoa (Fig. 2). Boulder a, b, and c-
axis dimensions, orientation, and a GPS waypoint were recorded for
each measured boulder. Field measurements of flow directions in this
area ranged from directly onshore to obliquely onshore towards the
north (340° to 010°). A damaged seawall along the coastal road
(Fig. 4) appears to be the source for most of the basalt clasts of the
boulder field. A few small rounded boulders were encountered, but
they appear to have been derived locally from pre-existing housing
structures or landscaping features. Overall, 160 boulders were
measured in this location. Most of the boulder deposition occurred
between 25 and 175 m from the shoreline, the first 25 m being
primarily an area of strong erosion. There is no strong trend in the
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Fig. 7. a) Photograph of a large (a-axis 1.6 m), overturned and partially buried, coral microatoll (Porites sp?) in the foreground and several other coral clasts scattered along the
foreshore. The coral boulders are covered with recently deceased encrusting marine fauna (with associated strong odor) indicating recent deposition which is consistent with
eyewitness accounts that the coral heads on the beach were not present prior to the tsunami. View towards the west from Paloa on the west coast of Tutuila. b) Photograph showing
a large basalt boulder from a shoreline engineering structure and displaced about 60 m inland. The tape measure is extended to 95 cm in length. Photograph taken at Si'umu in
south–central Upolu where the tsunami flow depth reached 4.35 m. c) Photograph fromMaloata on the northwest coast of Tutuila showing a gravel field deposited on an eroded soil
surface. The source of most of the boulders was a low retaining wall and groin near the shoreline about 100 m away. d) Photograph of a mixed gravel deposit from a small coastal
embayment east of the village of Puleia, south Savai`i. The gravel contains rounded basalt clasts from a perched beach on the basalt platform, angular basalt clasts of possible tsunami
origin and derived from the underlying platform, and coral fragments from the adjacent reef system.
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boulder size distribution, however most of the boulders are aligned
with their a-axis perpendicular to the dominant flow direction. The
Satitoa boulder deposits are further discussed by Etienne et al.,
2011-this issue.

4.2. Sand sheets

In locations bordered by well-developed beaches and/or reef sand
bodies, we often observed sand-rich tsunami deposits that ranged
from very thin veneers (b1 cm) to broad sand sheets up to 10's of
centimeters thick and 100 m inland. Well-developed sand sheets
were typically thicker in topographic lows and thinner on topographic
highs (Figs. 9 and 10). Physical structures, such as walls or stairs, often
had thick (10–20 cm) shadow sand deposits in the lee of the structure.
However, in general, the sand sheets in Samoa were thin and patchy
because of the relative lack of an extensive sand supply.

Sand sheet characteristics are illustrated in Fig. 9. These include:
a) thin (b5 cm) sand sheets of limited extent composed of sediment
from the adjacent beach and reef flat as evidenced by the appearance
of well-sorted, rounded, medium sand, similar to the sand on adjacent
beaches, and fresh coral andHalimeda fragments that could only come
from the adjacent reef. We observed both heavily eroded beaches
with prominent scarps and those that appeared natural with very
little evidence of recent erosion, such as the beach adjacent to the
deposit in Fig. 9a, which appeared undisturbed with no strong
erosional indicators); b and c) the tsunami sand basal contact is often
sharp, especially where the contact is erosional and the sand overlies a
material of contrasting composition and/or color. Internal layering can
be complexwithmultiple laminations and variations in sediment size,
although generally the laminations are planar. In general, the overall
vertical sequence within the sand sheets appeared to be normally
graded, and the upper surface was occasionally capped by a fine-
grained deposit; d)man-made and natural obstacles can obstruct flow
resulting in deposition of sediment in the lee of the structure.

In addition to well-developed coarse-clast deposits, the Aleipata
District was the site of detailed surveys of sand sheet deposits that
extended up to ~250 m from the shoreline. Fig. 10 shows a
topographic profile across the coastal plain near Satitoa Village,
trench locations (see Jaffe et al., 2011-this issue for detailed
discussion), deposit thickness and three characteristic stratigraphic
sections. Localized thick sand accumulations were common in the lee
of structures, such as low walls, and in topographic depressions. The
tsunami sand deposit consisted of a poorly-sorted light yellow
medium sand fining upwards to a moderately-sorted medium-fine
sand, overlain by a moderately well-sorted gray fine sand. The contact
between the yellow and gray sands was sharp, but did not appear
erosional. The yellow and gray sand sequence thinned and fined
landward to a poorly sorted light yellow medium to muddy sand.
Most deposits were characterized by a sharp basal erosional contact
with the underlying orange-brown volcanic soil. Whilst the tsunami
sand was exposed at the surface near the coast, it was overlain by a
thin (1–3 mm) discontinuous, gray mud cap further inland. The mud
cap became thicker and finer inland, reaching a maximum of 6–8 cm
in shallow, topographic lows. A thick layer of organic debris (up to
12 cm in topographic lows) was observed overlying the thinning sand
layer close to the forest edge (see Chagué-Goff et al., 2011 for further
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Fig. 8.Map (left) showingmajor flow directions (red arrows), boulder volume (circles) and a-axis orientations (black lines) of boulders within the gravel field at Satitoa. Photograph
(right) shows basalt boulders from the pre-tsunami coastal seawall that have been transported landward and incorporated into the sand sheet. Dark surface in lower right is a thin
mud cap overlying sand.
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details). The thicker sand deposits had multiple laminations with
varying degrees of particle segregation. Internal sedimentary struc-
ture of the tsunami sand deposits was often complex, showing a wide
variation of grain size, composition, and number and type of
laminations. Internal structure varied with distance from the
shoreline and is thought to have recorded complex interactions
between wave forces, microtopography, and local sediment supply. In
some localities clusters of the green alga Halimeda were incorporated
in sand deposits. The sand appeared to be derived from a combination
of areas including the reef flats (fresh Halimeda fragments), beaches
(well-sorted abraded sand), and in some cases erosion of the land
surface (brownish sandy soil).

4.3. Organic and man-made debris ramparts

Debris wrack lines, formed by a variety of floating material, were
common near the limit of inundation. The post-tsunami debris line is
usually very conspicuous in the field and is best mapped prior to
clean-up and debris removal activities. The inundation limit can
usually be identified by deposits of floating debris such as vegetation,
marine or man-made debris, and the limit of salt-burned vegetation.
Stranding of debris often occurs when the tsunami loses its capacity to
move debris in a landward direction, or when the tsunami encounters
a topographic high that retards the flow.

In coastal areas that were very heavily vegetated, in addition to
inundation wrack lines thick piles of vegetation debris (vegetation
ramparts) occurred seaward of the inundation limit where landward
transport of the thick debris no longer occurred. The vegetation
ramparts represent a zone where coastal vegetation significantly
retards the ability of tsunami to transport debris (Fig. 11). The
vegetation ramparts commonly accumulated around existing ob-
structions such as tree stumps, buildings, or land surface inclines.

4.4. Surface mud deposits

Mud drapes on the upper surface of tsunami deposits were
common and represent fine-sediment deposition during the final
stages of tsunami inundation. The largest source of fine-grained
sediment is most-likely from soil erosion of the land surface with
additional input from either marine or coastal wetland environments.
Surface mud deposits varied from thin mud drapes (b1 cm thick) to
multi-layered, thick (4+ cm) mud caps that showed pronounced
desiccation cracks two weeks after the tsunami (Fig. 11 inset). In
Aleipata, thick mud drapes appear to be the result of fine-grained
sediment settling out from ponded water and the drapes were thin
and patchy near the coast where erosion was high and thicker inland
where ponded water remained for a period of time after tsunami
inundation.

4.5. Reef impacts

At several sites along the southern coast of Upolu near Si`umu and
Mulivai we were able to observe impacts to the fringing reef at low
tide as well as the deposition of reef-derived material in the onshore
tsunami deposits. In general, living coral colonies appeared to have
suffered only a small amount of damage from the tsunami, especially
in areas that are subjected to frequent high waves such as south-
facing coasts (Fig. 12). Corals from more protected reef environments
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Fig. 9. a) Photograph at the coast near Mulivai Village in south–central Upolu showing a thin sand sheet that extends less than 10 m from the beach berm (inundation in this area was
over 100 m). In addition to beach sand there are scattered coral fragments on the surface of the deposit, some of which appear rather fresh. The red andwhite scale is 2 m in length. b)
Photograph of a shallow trench near Satitoa, east Upolu, showing a sharp basal contact between tsunami sand (light color) and underlying soil (dark material). The deposit is capped
by a light gray silty fine sand. The trench face is cut at a low-angle to enhance the internal stratigraphic characteristics. c) Photograph of a wedge-shaped sand deposit that thickens
landward towards a coastal tidal stream. The sand deposit was thickest (~25 cm) at about 50 m from the shoreline. View to the south. The location is near Vaovai, south–central
Upolu. d) Photograph of a thin sand deposited on a concrete floor in the lee of a man-made structure (Satitoa Village, Upolu).
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that were subjected to strong tsunami influence appeared to suffer
greater damage (Dominey-Howes and Thaman, 2009; McAdoo et al.,
2011-this issue). Accumulations of reef debris within the reef system
appeared to have undergone some reorganization by the tsunami
(Dominey-Howes and Thaman, 2009) but it is very difficult to
quantify what underwater material was moved by the tsunami. At
Si`umu and Poloa we observed the visible impact to corals caused by
man-made debris that was deposited on the reef during tsunami
return-flow conditions. For example, at Poloa the tsunami uprush and
return flow passed through a school building and deposited furniture,
building materials, and school supplies on the adjacent reef. However,
overall the lack of extensive damage to the reefs of Samoa is
consistent with the results from studies in the aftermath of the
2004 Indian Ocean tsunami (e.g. Stoddart, 2007) where specific
studies determined less than half the reefs sustained some form of
damage and only 15% had a high level of damage (Hagan et al., 2007).

Reef flat boulder accumulations that are widespread in Samoa, are
often partially cemented, and for the most part do not appear to move
during the tsunami (Fig. 12). The initial mechanism that deposited
these clasts could either be a tsunami or more likely a large storm. For
example, Cyclone Ofa in 1990 created large reef flat rubble banks on
the north coast of Upolu, of which many remnants are still present
(Rearic, 1990; Richmond and Morton, 2007). We investigated the reef
flat deposits (Fig. 12) near Si'umu (Fig. 1), Upolu and saw little
evidence of coarse clast erosion, transport, or deposition from the
tsunami. Patchy accumulations of staghorn corals (Acropora sp?) and
other detritus occurred along some shorelines and in many cases
appeared to be re-deposited reef debris as evidenced by complete
algal encrustation.

Themost common type of visible evidence of reef-derivedmaterial
being deposited on land was bleached and connected clusters of
Halimeda (Fig. 12). Halimeda clusters are fragile and break down
relatively quickly when exposed on land. They occur in a wide variety
of reef settings.

5. Discussion

The September 29, 2009 South Pacific Tsunami provided an
opportunity to examine sedimentary deposits in a variety of tropical
coastal settings in the Samoan Islands. Complex and highly variable
local physiography caused spatially variable tsunami characteristics
(Okal et al., 2010) at the local level that combined with variable
sediment supply that resulted in a non-uniform distribution of
sedimentary deposits. In general, sediment availability for redistribu-
tion at the coast was limited and resulted in thin and patchy tsunami
sediment deposits over much of the coast. In areas where sediment
supply was abundant, well-developed deposits occurred, such as in
the Aleipata District. Although the shallow lagoons and reef passages
are sites of abundant reef-derived sediment accumulations, it is not
clear that they supplied much sediment to the coast.
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Fig. 10. Illustration showing a topographic profile and tsunami sediment thickness along a shore-normal profile near Satitoa (see Fig. 2 for location). The inserts show characteristic
stratigraphic profiles for 3 locations along the profile (the stratigraphic sections were not done exactly along the profile and their locations are approximate).

Fig. 11. Photograph along the landward margin of the coastal plain near Satitoa
showing a vegetation rampart in the background and a thick (4 cm) mud cap in the
foreground. The inset shows a close-up of the mud cap that exhibits a general fining
upward trend and a higher amount of vegetative material in the lower section.

48 B.M. Richmond et al. / Earth-Science Reviews 107 (2011) 38–51
5.1. Potential for preservation of paleotsunami deposits in Samoa

Trench observations during reconnaissance work for paleotsunami
deposits indicate that there are numerous sand and soil couplets
preserved in the sedimentary record. It seems likely that in areas
subjected to minimal bioturbation, there is the opportunity for
deposit preservation. The preservation of microfossils in sediments
underlying the 2009 South Pacific tsunami is unknown, although it
was noted that soils beneath the event had poorly preserved
foraminifera tests and only rare diatom frustules (Chagué-Goff et al.,
2011). These microfossil assemblages were only studied from the
underlying soil and we are unable to determine the likely preserva-
tion of microfossils in any possible, rapidly deposited paleotsunami
sediments. However, in a similar tropical setting on Futuna Is., Wallis
and Futuna, Goff et al. (in press) found good microfossil preservation
in paleotsunami deposits up to 2000 years old.

Visual inspection during a comprehensive sampling regime of sand
and mud couplets (Fig. 13) underlying the 2009 South Pacific tsunami
at Mulivai revealed distinct variations in grain size with a fining
upward trend in several predominantly sand units. Chagué-Goff et al.
(2011) however, suggested that there could be a distinct down-
washing of fine-grained sediment over time, leading to a general
coarsening of the sandy deposit (Szczuciński et al., 2007). This would
reduce the preservation of chemical signatures and microfossils alike
in older deposits. Szczuciński (2010, in press) reported that after
5 years, c. 50% of the deposits left in Thailand following the 2004
Indian Ocean Tsunami were still identifiable, and that the main
changes included erosion, redeposition, removal of find particulates
from the upper part of the mainly sandy deposits, and a decrease in
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Fig. 12. a) Photograph from the outer reef flat of the fringing reef at Si`umu, S Upolu showing mostly undisturbed platy coral heads that appear to have survived the tsunami with
little destruction. Onland runup was 3.7 m at this location (Okal et al., 2010). b) Photograph of the reef flat at Si`umu showing lightly cemented boulder clasts that did not move
during the tsunami. Also note the platy coral heads in undisturbed growth position. c) Photograph from the inner reef flat at Vaovai showing dead staghorn corals that were
transported from somewhere in the reef system where they had accumulated and were being encrusted by algae. Live staghorn corals that were moved by the tsunami typically
appeared white because of the recent expulsion of their symbiotic zooxanthellae algae. d) Photograph of Halimeda clusters deposited within the erosion zone along the Aleipata
coast. Note the exposed coconut palm roots that are good indicators of recent erosion.

Fig. 13. Photographs from Mulivai, southern Upolu showing event stratigraphy. The right photograph shows a series of five sand and soil couplets, some with well developed soil
horizons. The preservation of such deposits bodes well for paleotsunami research. Preliminary dating places the soil beneath unit 5 at about 500 years BP. The left photograph shows
two well-developed soil horizons separated by a thick (~10 cm+) sand unit at Mulivai, Upolu.
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salt content. It seems likely that older sediments will be preferentially
preserved in areas of low bioturbation, but that a key focus of
identifying them as paleotsunami deposits will be on their geograph-
ical location and the ability to compare numerous sites throughout the
region in order to determine the regional extent of contemporane-
ously aged sediments (McFadgen and Goff, 2007).

5.2. Tsunami flow characteristics

Due to the highly irregular coastal configuration in the Samoan
islands the resultant tsunami flow patterns were often very complex,
as inferred from the observed tsunami flow directions and deposit
characteristics. The complexity is derived primarily from the
interaction between multiple tsunami waves and locally complex
topography and bathymetry. For example, flow direction indicators at
Satitoa show numerous directions and there were clear indications of
onshore (NW) and oblique (NE) flow directions. However, because of
the low-lying nature of the coastal plain and the presence of several
shallow depressions that ponded water, there was very little evidence
of a strong return flow. In contrast, along steep coasts such as Poloa,
Tutuila, there was high runup, limited inundation and strong return
flow indicators such as abundant man-made debris strewn on the
adjacent reef.

In general, while moving landward across the coastal plain,
tsunami waves transported organic materials (soil and coconut
trees) and man-made debris (cars, boats, building walls, concrete
slabs, etc.). This material aided in the incorporation of additional
debris by increasing water density and opportunity for debris impact.
Soils were eroded by wave turbulence and scouring under buildings
caused a loss of support under the footings. Buildings and trees
collapsed as the tsunami waves scoured around the foundations and
roots and applied a number of forces including hydrodynamic
pressures, buoyancy, uplift, and impact by debris (Ghobarah et al.,
2006). The combination of forces evolved inland as the waves
traversed the coastal plain: hydrodynamic pressure, uplift and
buoyancy forces were greater near the coastline where flow depth
and presumably flow speed were the greatest and diminished inland.
As hydrodynamic forces decreased, forces exerted by carried debris
increased inland as more detritus was added to the flow. This detrital
charge conferred a higher power of destruction to the waves
(Saatcioglu et al., 2006; Ghobarah et al., 2006). High-density debris
was transported inland as bedload, whereas buoyant debris accumu-
lated on top of the wave.

6. Conclusions

Key findings from the investigation of the tsunami deposits, flow
patterns, and associated landscape changes include:

1) In areas where there was a pre-existing supply of sediment and
sufficient wave forces occurred, tsunami sediment deposits were
widespread, and for the most part, distinguishable from pre-
tsunami sediment
a. Areas with sufficient beach sand deposits often produced

tsunami sand sheets that filled in topographic lows and thinned
on topographic highs. However, not all well-developed beaches
with significant flow depths and inundation distances produced
extensive sand sheets, suggesting other causative factors in
sand sheet generation such as local tsunami flow parameters.
Physical structures, such as walls or stairs, often had thick (10–
20 cm) shadow sand deposits in the lee of the structure.

b. Mud drapes on the upper surface of tsunami deposits were
common and represent fine-sediment deposition at the final
stage of inundation. The largest source offine-grained sediment is
most likely from soil erosion of the land surface with additional
input from either marine or coastal wetland environments.
c. Internal sedimentary structures of the tsunami sand deposits
are complex, showing a wide variation in grain size, composi-
tion, and number and type of laminations. Internal structure
varied with distance from the shoreline and is thought to have
recorded complex interactions between wave forces, micro-
topography, and sediment supply.

2) Erosion at the shoreline was widespread and resulted in the
transport of sediment and debris in both landward and seaward
directions. The shoreline provided sand and gravel (including
revetment boulders) to the onshore sedimentary deposits.
Maximum erosion of back beach areas, up to ~2 m, appeared to
be driven by the offshore return flow of the tsunami in many
localities as evidenced by offshore-directed flow indicators
associated with major beach scarps.

3) Exploratory trenches in a number of inland sites show the
existence of a number of buried sand deposits separated by
paleosoils. These sand layers strongly indicate the presence of past
extreme wave inundations that deserve further investigation.

4) Flow direction indicators often show numerous directions at any
one locality and in some cases the relationship between the oldest
(bottom) and youngest (top) gives an approximation of tsunami
flow direction through time. The complexity is derived from the
interaction between multiple tsunami waves and locally complex
topography and bathymetry.

5) Coastal slopes exhibited a strong control on runup, inundation, and
return flow characteristics. Steep coasts typically exhibit high
runup, limited inundation and strong return flow indicators,
whereas low-lying coasts show lower runup, greater inundation,
and less pronounced return flow indicators.

6) Maximum transported clast size is often dependent upon the size
of available material, and in many cases the tsunami probably had
the ability to transport much larger clasts. Where coastal
protection structures were constructed, mostly of basalt boulders,
it was common to find boulders transported inland several tens to
~100+m inland. Automobiles and domestic appliances appeared
to be particularly susceptible to tsunami transport.

7) Wrack lines of thick vegetation debris (vegetation ramparts) are
common and occur where landward transport no longer occurs.
They are typically seaward of the tsunami inundation line and
represent a zone where coastal vegetation significantly retards
tsunami flow.
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