

Contents lists available at ScienceDirect

Journal of Archaeological Science

journal homepage: http://www.elsevier.com/locate/jas

Investigating the production and distribution of plain ware pottery in the Samoan archipelago with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)

Suzanne L. Eckert^{a,*}, William D. James^b

^a Department of Anthropology, Texas A&M University, TAMU 4352, College Station, TX 77843, USA ^b Elemental Analysis Laboratory, Texas A&M University, TAMU 3012, College Station, TX 77843, USA

ARTICLE INFO

Article history: Received 10 November 2009 Received in revised form 5 March 2011 Accepted 8 March 2011

Keywords: LA-ICP-MS Ceramics Pottery Polynesia Samoa Provenance

ABSTRACT

This paper presents a provenance study of 170 ceramic artifacts and 21 ceramic tiles from three islands in the Samoan archipelago using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Our analyses confirm that LA-ICP-MS can be used to differentiate between clay formations on a single island. We identify different distribution patterns for pottery recovered from lowland and highland sites on Tutuila Island. We also examine evidence for movement of pottery between islands, and find only limited evidence for such movement. Our findings suggest dynamic patterns of prehistoric interaction and site use that need to be evaluated with further data from across the archipelago.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Pottery production provenance has been of interest to archaeologists studying migration pathways, social and economic interaction, and political organization have all focused on pottery production provenance. Most ceramic provenance studies in the South Pacific have focused on petrographic analyses, which inform primarily on production at the archipelago level (Dickinson, 2006). However, recent work has begun to apply geochemical techniques to ceramic artifacts in an attempt to understand production provenance at the island, and the intra-archipelago, levels (Cochrane and Neff, 2006; Descantes et al., 2001).

The research presented here focuses on plain ware pottery recovered from sites within the Samoan archipelago. The research was designed to accomplish two goals. First, we demonstrate that laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses can differentiate between ceramic materials produced from geologically similar volcanic series on the same island. Second, we examine compositional groups derived from LA-ICP-MS analyses of pottery recovered from sites located on three islands within the Samoan archipelago and relate these groups to intra- and inter-island production organization and distribution. We conclude that LA-ICP-MS can provide the type of data that we seek, however results must be considered using multiple statistical techniques and an understanding of the geological context. Further, more data are necessary from the Samoan archipelago to confirm and interpret the ceramic distribution patterns presented here.

2. Geological and cultural background

2.1. Geological setting

The Samoan archipelago (Fig. 1) is comprised of six large volcanic islands and numerous small coral islands. Volcanic islands in the archipelago have formed during the westward movement of the Pacific Plate over a hotspot of erupting magma (Nunn, 1998); as a result, islands in the west are geologically older than islands in the east. As the islands moved away from the hotspot, volcanic activity ceased (although see Hawkins and Natland, 1975 for a discussion of anomalous volcanic activity). Over time across the archipelago, volcanoes collapsed forming calderas, these calderas were partially filled through later plutonic activity and erosion, deep valleys and

^{*} Corresponding author. Tel.: +1 979 845 5242; fax: +1 979 845 4070. *E-mail address*: sleckert@tamu.edu (S.L. Eckert).

^{0305-4403/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.jas.2011.03.009

Fig. 1. Maps of each island examined in this study showing location of sites and clay collection locations in relation to volcanic series.

high sea cliffs were cut into the landscape, subsidence and coral reef formation changed the coastlines, and sea level rise ca. 20 000 BP filled some valleys and covered early barrier reefs (Stice, 1981).

Archaeological samples in this project come from three islands: Ofu and Tutuila in American Samoa, and Upolu in the independent State of Samoa. Ofu, the smallest island examined in this study, is the most western island of the Manu'u group. The Manu'u group consists of a cluster of three small volcanic islands located on the eastern edge of the archipelago. Ofu Island consists of one shield volcano that formed during the late Pliocene or early Pleistocene (McCoy, 1965) and is dominated by the Tuafanua volcanic series (Stice and McCoy, 1968).

The majority of archaeological samples, as well as clay samples, for this project come from sites on Tutuila Island. Four of the island's main volcanoes and numerous secondary eruptions experienced peak activity during the late Pliocene (McDougall, 1985; Stearns, 1944). This resulted in the formation of four of the island's five distinct volcanic series including Alofau, Olomoana, Pago, and Taputapu. A resurgence of volcanic activity added another 21 square

kilometers of land to Tutuila Island known today as the Leone volcanic series (Stearns, 1944). Despite being formed in geologically close succession and from the same magma bed, the five volcanic series on Tutuila Island are mineralogically, chemically and morphologically diverse, partially due to the numerous dikes, plugs, and extra-caldera lavas that transect much of the island (Natland, 1980; Stearns, 1944; Walker and Eyre, 1995).

Upolu Island is also comprised of five volcanic series. The Fagaloa volcanic series formed in the late Pliocene (Kear and Wood, 1959; Natland and Turner, 1985); the Salani and the Mulifanua series both formed during the Last Interglacial (Kear and Wood, 1959); the Lefaga volcanic series formed during the early to middle Holocene; and the Puapua volcanic series formed between 1950 and 750 BP (Kear et al., 1981). This last volcanic series is of especial interest because it occurred after the Samoan archipelago had been settled by pottery-producing groups, and would have had implications for changing subsistence and settlement patterns on the island.

The Samoan archipelago's geologically active environment has serious implications for both site preservation and prehistoric social behavior (Rieth et al., 2008). While volcanic eruptions would affect any site within its blast range, different types of natural processes differentially affect preservation and visibility of coastal and highland sites. Coastal sites are affected by mountain slides, island subsidence, coral reef formation, and sea level changes (Dickinson, 2007; Dickinson and Green, 1998; Rieth et al., 2008). Many highland sites are situated in unstable areas that are subjected to cycles of heavy rainfall, erosion and deposition (Eckert and Welch, 2009). Once prehistoric settlements were abandoned, postdepositional physiogenic, biogenic and chemical agents worked to modify and alter the archaeological debris and the spatial relationships between the remains (Sidle et al., 2006). Although the current study examines only six sites as an initial attempt to trace the movement of pottery, the dynamic geological environment – both past and present – will need to be considered in future studies that attempt to reconstruct past social interactions.

Natural catastrophes brought on by severe weather or geological activity would have provided challenges to past residents of the islands. Human reaction to catastrophic events varies widely (Grattan and Torrence, 2007; Johnson, 2002; Kornbacher, 2002), and depend both on natural and social factors (Dodgshon et al., 2000; Sheets, 2007; Torrence and Doelman, 2007; Torrence et al., 2000). People may move their residence to a different area of the island, move to a different island in the archipelago, or leave the region entirely. If abandoned, the area affected by the event may never be reoccupied, quickly reoccupied, or only eventually reoccupied. Traditional subsistence practices may be reestablished, or changed entirely. Social networks, access to material resources, craft production, subsistence, political organization, and economic organization may remain the same or be substantially altered. With this in mind, it is not unlikely that production and circulation of ceramic vessels changed over the 1500+ years of their production in the Samoan archipelago as people responded to their natural and social environment.

Clearly, human responses to catastrophic events, as well as changes in landscape and site preservation, have implications for any study done in the Samoa archipelago. As with previous research on the islands, we believe that studying the prehistoric record can provide an understanding of the past, however we are cautious in the specifics of our interpretations. In this study, we are careful to select sites that date within 500 years of one another to help control for as few unique natural events effecting prehistoric residents as possible. We do not assume, or even imply, that pottery was moving between the specific sites within our study, but only between the different volcanic zones on which the sites are located. Finally, we recognize that there are clay sources and sites that may have disappeared (or appeared) since the pottery we are studying was produced.

2.2. Plain ware pottery and its cultural setting

Pottery was produced for approximately the first 1500 years of Samoan occupation, from circa 2800 to 1500+ BP (Addison et al., 2008; Addison and Asaua, 2006; Addison et al., 2006; Rieth and Hunt, 2008). The Mulifanua ferry berth site, located just off the northwest coast of Upolu Island, is the earliest site known in the archipelago (Jennings, 1974; Petchey, 2001). The most reliable radiocarbon dates for this site suggest an occupation of approximately 2800 years ago (Petchey, 2001). Decoration on sherds from Mulifanua includes dentate-stamping on and below the rim (Green, 1974); currently, this is the only known dentate-stamped pottery-bearing site in the archipelago. However, two other sites, To'aga (Kirch and Hunt, 1993) and 'Aoa (Clark et al., 1997; Clark and Michlovic, 1996), have provided radiocarbon dates between 3100 and 2700 BP but no dentate-stamped pottery.

The date for the cessation of pottery production throughout the Samoan archipelago is debated: while the conventional view has been that pottery ceased to be produced at 1700 BP (Davidson, 1979), Rieth and Hunt (2008) recently argued for an end date of 1500 BP, Kirch and Hunt (1993) suggest an end date of 1200 BP, and Clark et al. (1997); Clark and Michlovic (1996) have argued that pottery was produced as recently as 400 years ago. The American Samoa Historic Preservation Office (2009) has stated that the inability to adequately date the end of pottery production is a result of the fact that, at the time the chronology was being outlined and refined (Burley et al., 1995; Davidson, 1979; Green and Davidson, 1969, 1974: Kirch, 2000), pottery-bearing sites were all assumed to date to the earliest period of Samoan prehistory: charcoal was rarely collected from these sites to confirm this assumption. As pottery in well-dated contexts begins to be collected, an end date for this period will be more firmly established.

The vast majority of pottery produced on the Samoan Islands is undecorated; where decoration does exist, it is usually simple patterns along the rim. Commonly known as Polynesian Plain Ware, the period in which this pottery is produced is significant because most Oceania archaeologists believe that it is from the pottery-producing culture that all subsequent Polynesian culture springs (Burley et al., 1995; Clark, 1996; Davidson, 1979; Hiroa, 1930; Irwin, 1992; Kirch, 1984, 2000; Kirch and Green, 2001; Pawley, 1966; Pawley and Ross, 1993; Shutler and Shutler, 1975). However, this cultural continuity has yet to be established archaeologically (Smith, 2002); as such, the term "Plain Ware" is used here, so as avoid untested cultural affiliations.

Plain Ware recovered from across the archipelago was slab-built and low-fired. Although pottery can be divided into thick and thin categories, or into fine and coarse categories, the temporal and functional interpretation of these distinctions remain unclear (Clark and Herdrich, 1988; Eckert and Pearl, 2006; Eckert and Welch, 2009; Green, 1974; Jennings and Holmer, 1980; Kirch and Hunt, 1993; Moore and Kennedy 2003: 103–110). Large sherds and rim forms vary within and across sites, but represent primarily wide-mouthed, globular vessels and platters. Ceramic assemblages from various sites show evidence that at least some vessels were used for cooking (Clark and Michlovic, 1996:161; Eckert and Pearl, 2006; Eckert and Welch, 2009; Hunt and Erkelens, 1993:137). The general consensus is that pottery vessels were probably used in a variety of ways including to store, cook, and serve food items.

3. Methods

3.1. Ceramic chemical characterization using LA-ICP-MS

This is a provenance study, an attempt to determine where ceramic vessels were produced. Archaeologists determine

Table 1

Provenience and chronological information for samples used in this study.

Site	Island	Sample size	Volcanic series	Associated dates
Mulifanua	Upolu	8 sherds	Mulifanua	2880–2750 cal BP (Petchey, 2001)
Va'oto	Ofu	15 sherds	Tuafanua	2840–2120 cal BP (Hood, 2008)
Aganoa	Tutuila	13 sherds	Olomoana	2760–2510 cal BP (Hood, 2007a,b)
'Aoa	Tutuila	48 sherds	Olomoana	2455–2195 cal BP (Clark and Michlovic, 1996)
Ulu Tree	Tutuila	33 sherds	Leone	n/a
Vainu'u	Tutuila	53 sherds	Taputapu	2270–2440 cal BP
				(Eckert and Welch, 2009)
Clay 175	Tutuila	3 tiles	Olomoana	n/a
Clay 177	Tutuila	3 tiles	Olomoana	n/a
Clay 617	Tutuila	3 tiles	Olomoana	n/a
Clay 619	Tutuila	3 tiles	Alofau	n/a
Clay 621	Tutuila	3 tiles	Olomoana	n/a
Clay 1197	Tutuila	3 tiles	Leone	n/a
Clay 1200	Tutuila	3 tiles	Leone	n/a

provenance through both direct and indirect evidence of production (Costin, 2005, 2007; Costin and Hagstrum, 1995; Mathien, 2001; Weisler, 1998). Direct evidence of production involves the identification of features (e.g. kilns), tools (e.g. polishing stones), and debris (e.g. waster sherds) associated with the production process. Evidence of this nature has never been found in the Samoan archipelago. As such, archaeologists working in Samoa need to rely on indirect evidence of production, which involves inferences about the raw materials used to produce pottery (Costin, 1991, 2005; Mills and Crown, 1995).

In a perfect world, ceramic chemical data could be statistically clustered into compositional groups that could then be matched with geological sources (Bishop et al., 1982). However, ceramic material is a complex mixture of paste matrix (the fired clay) and temper (non-plastics naturally occurring or intentionally added to the clay). Ceramic resource material is often wide spread with indistinct boundaries (Neff and Glowacki, 2002) and so a oneon-one match with a "quarry source" is actually not a reasonable expectation. Further, the numerous decisions made by a potter during the production process affect the final chemical composition. Potters may collect clays from primary locations eroding from a parent rock, or from secondary locations such as a streambed (Orton et al., 1993). Once clays are collected, they can be seasoned to encourage bacterial growth, they can be mixed with other clays, they can be cleaned of their naturally occurring non-plastics, and/or they can have one or more non-plastics added to them (Orton et al., 1993; Rice, 1987; Shepard, 1956). All of these actions by potters potentially change the chemistry of the final ceramic product.

Although attempts should be made to match wild clays with ceramic material, wild clays and other aspects of regional geology are viewed as supplemental information and should never be solely relied upon (Bishop et al., 1982; Neff and Glowacki, 2002). Rather, researchers rely on inferences made from statistically robust

Table 2

Mean and standard deviation of oxide concentrations for each element in Tutuila clays.

Element	Clay 175 (<i>n</i> = 3)	Clay 177 (<i>n</i> = 3)	Clay 617 (<i>n</i> = 3)	Clay 619 (<i>n</i> = 3)	Clay 621 (<i>n</i> = 3)	Clay 1197 (<i>n</i> = 3)	Clay 1200 (<i>n</i> = 3)
Na23	10.3734 ± 0.8484	10.8315 ± 1.5123	34.7446 ± 1.5742	13.7657 ± 1.7175	13.3634 ± 4.5956	12.8367 ± 2.4600	08.9327 ± 0.4148
Mg24	00.9154 ± 0.0388	00.7924 ± 0.0299	00.8359 ± 0.0792	00.9525 ± 0.0820	00.9384 ± 0.0447	02.5267 ± 1.1665	01.2224 ± 0.3475
Al27	25.9893 ± 2.0594	29.4727 ± 3.3615	18.6027 ± 1.4303	22.8256 ± 0.4730	25.0268 ± 2.5203	23.3155 ± 4.3077	28.3966 ± 1.3378
Si29	32.7335 ± 1.4021	32.7305 ± 2.0338	22.5842 ± 1.2009	33.6206 ± 2.3737	34.5053 ± 1.8406	31.8417 ± 0.9146	31.6169 ± 0.5816
K39	00.2697 ± 0.0387	00.2308 ± 0.0500	00.7513 ± 0.0555	00.4547 ± 0.0461	00.4775 ± 0.0730	00.2900 ± 0.2395	00.0756 ± 0.0007
Ca44	00.9967 ± 0.0575	00.3168 ± 0.0241	01.3545 ± 0.0672	01.3738 ± 0.2464	00.6630 ± 0.0900	03.0186 ± 2.4773	00.3712 ± 0.0174
Sc45	00.0051 ± 0.0041	00.0051 ± 0.0032	00.0037 ± 0.0014	00.0304 ± 0.0005	00.0270 ± 0.0012	00.0275 ± 0.0029	00.0343 ± 0.0009
Ti47	03.6413 ± 0.2986	03.5900 ± 0.2106	03.2389 ± 0.1392	04.8012 ± 0.2038	04.6202 ± 0.2736	04.4204 ± 0.4147	04.8683 ± 0.1279
V51	00.1588 ± 0.0038	00.1756 ± 0.0106	00.1706 ± 0.0116	00.2443 ± 0.0150	00.2452 ± 0.0127	00.2722 ± 0.0221	00.3097 ± 0.0082
Cr52	00.0090 ± 0.0023	00.0087 ± 0.0027	00.0953 ± 0.0217	00.1663 ± 0.0134	00.0777 ± 0.0242	00.2043 ± 0.0108	00.2568 ± 0.0536
Mn55	03.5536 ± 0.1766	05.4690 ± 7.0895	01.9029 ± 0.0181	02.5461 ± 0.3084	02.3108 ± 0.2372	02.1441 ± 0.1063	01.8639 ± 0.0835
Fe57	19.1539 ± 1.2212	14.9532 ± 0.9067	14.2110 ± 1.2481	17.5626 ± 0.1401	16.0426 ± 0.8870	17.2975 ± 2.0249	20.2816 ± 0.5884
Co59	00.0383 ± 0.0029	00.0359 ± 0.0013	00.0439 ± 0.0038	00.0579 ± 0.0083	00.0400 ± 0.0024	00.0586 ± 0.0041	00.0630 ± 0.0025
Ni60	00.0113 ± 0.0015	00.0265 ± 0.0017	00.0457 ± 0.0040	00.1126 ± 0.0132	00.0326 ± 0.0021	00.1545 ± 0.0182	00.1487 ± 0.0030
Cu65	00.0047 ± 0.0002	00.0111 ± 0.0015	00.0153 ± 0.0007	00.0137 ± 0.0014	00.0046 ± 0.0003	00.0381 ± 0.0092	00.0123 ± 0.0005
Zn66	00.1330 ± 0.0084	00.0952 ± 0.0017	00.1339 ± 0.0127	00.0879 ± 0.0041	00.0709 ± 0.0050	00.1898 ± 0.0356	00.0997 ± 0.0010
Rb85	00.0042 ± 0.0004	00.0023 ± 0.0001	00.0251 ± 0.0011	00.0186 ± 0.0019	00.0154 ± 0.0020	00.0126 ± 0.0050	00.0059 ± 0.0003
Sr88	00.1234 ± 0.0088	00.0803 ± 0.0080	00.0987 ± 0.0012	00.1117 ± 0.0076	00.0969 ± 0.0030	00.1397 ± 0.0690	00.0824 ± 0.0045
Zr90	00.7744 ± 0.0615	00.5309 ± 0.0681	00.5004 ± 0.0258	00.5874 ± 0.0211	00.7382 ± 0.0858	00.4669 ± 0.0614	00.6272 ± 0.0315
Ba138	00.6359 ± 0.0178	00.3255 ± 0.1272	00.2496 ± 0.0043	00.2742 ± 0.0226	00.2522 ± 0.0055	00.4008 ± 0.0730	00.3403 ± 0.0042
La139	00.0733 ± 0.0085	00.0470 ± 0.0061	00.0542 ± 0.0011	00.0604 ± 0.0094	00.0678 ± 0.0036	00.0550 ± 0.0127	00.0604 ± 0.0055
Ce140	00.1790 ± 0.0102	00.1084 ± 0.0078	00.1446 ± 0.0079	00.1503 ± 0.0113	00.1686 ± 0.0031	00.1324 ± 0.0267	00.1465 ± 0.0073
Pr141	00.0169 ± 0.0059	00.0133 ± 0.0016	00.0159 ± 0.0013	00.0164 ± 0.0014	00.0186 ± 0.0005	00.0142 ± 0.0039	00.0160 ± 0.0010
Nd142	00.0991 ± 0.0109	00.0673 ± 0.0080	00.0744 ± 0.0071	00.0793 ± 0.0085	00.0923 ± 0.0054	00.0664 ± 0.0172	00.0769 ± 0.0053
Sm152	00.0204 ± 0.0018	00.0150 ± 0.0019	00.0169 ± 0.0009	00.0170 ± 0.0011	00.0205 ± 0.0013	00.0140 ± 0.0037	00.0167 ± 0.0014
Eu153	00.0063 ± 0.0006	00.0047 ± 0.0006	00.0053 ± 0.0002	00.0052 ± 0.0003	00.0062 ± 0.0003	00.0045 ± 0.0011	00.0052 ± 0.0004
Gd158	00.0183 ± 0.0023	00.0135 ± 0.0017	00.0155 ± 0.0010	00.0154 ± 0.0007	00.0188 ± 0.0005	00.0127 ± 0.0027	00.0159 ± 0.0010
Tb159	00.0028 ± 0.0004	00.0020 ± 0.0003	00.0025 ± 0.0001	00.0023 ± 0.0002	00.0029 ± 0.0001	00.0019 ± 0.0003	00.0024 ± 0.0001
Dy164	00.0136 ± 0.0014	00.0092 ± 0.0011	00.0117 ± 0.0010	00.0114 ± 0.0006	00.0141 ± 0.0005	00.0093 ± 0.0016	00.0122 ± 0.0009
Ho165	00.0023 ± 0.0003	00.0015 ± 0.0001	00.0021 ± 0.0001	00.0020 ± 0.0001	00.0025 ± 0.0001	00.0017 ± 0.0003	00.0022 ± 0.0001
Er166	00.0049 ± 0.0005	00.0030 ± 0.0002	00.0048 ± 0.0003	00.0044 ± 0.0003	00.0053 ± 0.0001	00.0038 ± 0.0004	00.0051 ± 0.0003
Tm169	00.0006 ± 0.0001	00.0005 ± 0.0001	00.0008 ± 0.0001	00.0006 ± 0.0001	00.0007 ± 0.0001	00.0005 ± 0.0001	00.0007 ± 0.0001
Yb174	00.0044 ± 0.0006	00.0028 ± 0.0002	00.0048 ± 0.0005	00.0042 ± 0.0004	00.0050 ± 0.0001	00.0037 ± 0.0007	00.0048 ± 0.0002
Lu175	00.0005 ± 0.0001	00.0004 ± 0.0002	00.0007 ± 0.0001	00.0005 ± 0.0001	00.0006 ± 0.0001	00.0004 ± 0.0001	00.0006 ± 0.0001
Hf180	00.0135 ± 0.0015	00.0107 ± 0.0014	00.0097 ± 0.0007	00.0111 ± 0.0004	00.0141 ± 0.0017	00.0088 ± 0.0016	00.0124 ± 0.0003
Ta181	00.0038 ± 0.0003	00.0023 ± 0.0003	00.0025 ± 0.0002	00.0029 ± 0.0001	00.0034 ± 0.0002	00.0027 ± 0.0002	00.0032 ± 0.0001
Pb208	00.0055 ± 0.0013	00.0079 ± 0.0017	00.0097 ± 0.0013	00.0006 ± 0.0001	00.0006 ± 0.0001	00.0050 ± 0.0024	00.0005 ± 0.0001
Th232	00.0071 ± 0.0008	00.0047 ± 0.0006	00.0056 ± 0.0005	00.0059 ± 0.0002	00.0068 ± 0.0003	00.0053 ± 0.0006	00.0066 ± 0.0005
U238	00.0019 ± 0.0001	00.0013 ± 0.0002	00.0019 ± 0.0002	00.0018 ± 0.0003	00.0023 ± 0.0004	00.0014 ± 0.0001	00.0017 ± 0.0001

sample sizes to interpret compositional groups as "recipes" used by ceramic production groups. These compositional groups are then assigned production provenance based on the "criterion of abundance" (Bishop et al., 1982), which assumes that artifacts originate where they are most common.

Previous pottery production provenance studies in the Samoan archipelago have relied upon petrography. The primary tempers reported for pottery recovered from sites in Samoa is igneous rock or beach sand (Clark and Michlovic, 1996; Dickinson, 1969, 1993, 2006; Eckert, 2006; Eckert and Pearl, 2006; Eckert and Welch, 2009). These petrographic analyses indicate production within the Samoan archipelago. These analyses sometimes suggest production on a specific island and occasionally indicate production in a coastal setting. Overall, however, the production provenance of pottery from Samoan sites cannot be determined to a specific volcanic series through petrography. As a result, geochemistry was turned to in an attempt to better identify possible production provenances.

The Samoan archipelago is an ideal setting in which to attempt chemical characterization of pottery as geochemical work on basalts, from which the clays in this study are derived, has successfully differentiated volcanic series on Tutuila Island.

Fig. 2. Bivariate plot showing differentiation of clay samples. Values given are log - base 10 oxide concentrations.

Specifically, Johnson et al. (2007) found that basalt rock samples collected from known prehistoric quarries on Tutuila differentiated by quarry using Instrumental Neutron Activation Analysis (INNA). LA-ICP-MS is a microprobe technique determined to be more appropriate than INNA for this study for three reasons. First, it is relatively non-destructive when compared to INAA. Second, previous research in other regions, including Fiji (Cochrane and Neff, 2006), has established that it can successfully differentiate between clays (Larson et al., 2005; Neff, 2003). Third, unlike INAA that is a bulk technique suitable for homogenous materials, LA-ICP-MS allows for characterization of specific components of heterogeneous materials (Cogswell et al., 2005; Neff, 2003), in this case focusing on paste clays rather than temper or pigments.

3.2. LA-ICP-MS methodology and statistical analyses

LA-ICP-MS analyses were conducted on a Perkin Elmer Elan DRCII housed at the Elemental Analysis Laboratory, Department of Chemistry, Texas A&M University. A New Wave UP-213 laser ablation system with associated software was used for sample induction. At the start of each batch of 10 samples, a series of standards were analyzed: NIST standard SRM 610, NIST standard SRM 612, Glass Buttes obsidian, Pachuca obsidian, and MURR's Ohio Red Clay. A blank was also run prior to each batch. The standards and blank runs were used to calibrate data using the Gratuze method as discussed below (Gratuze, 1999; Neff, 2003; Speakman and Neff, 2005). Each sample had a fresh paste surface exposed and was then placed in the induction chamber with this fresh surface toward the laser system. Prior to the analyses, the following parameters were set: the diameter of the laser beam was adjusted to 30 µm; each pass of the laser over the sample would remove 5 mm of material; the repetition rate of the laser was set to 10 Hz; and the maximum energy of the beam was set to 70%. Ablation rasters were set so that only paste matrix was sampled. After an initial pass to remove possible surface contaminants, two ablation passes were needed to generate abundance data for 39 elements: Al, Ba, Ca, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Gd, Hf, Ho, K, La, Lu, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Si, Sm, Sr, Ta, Tb, Th, Ti, Tm, U, V, Yb, Zn, and Zr.

Once raw count elemental signals were collected from the LA-ICP-MS analyses, the data were quantified using an approach outlined by Gratuze et al. (2001). The formulas for this approach are explained and provided by both Neff (2003) and Speakman and Neff (2005). Briefly put, the approach corrects for background noise, standardizes by calculating a ratio to the counts for a single element (in our case, Al), and converts elemental signals to signals of their oxides. These signals are then converted to oxide concentrations, with a result that the sum of the oxide concentrations within each sample will equal 100. The assumption underlying this quantification is that all elements being measured represent all of the material, other than oxygen, that is ablated from the samples. This assumption may introduce some error for elements that occur in more than one oxidation state and ignores any water that may have been in the sample. Overall, however, experiments on a range of materials, including ceramic, have shown that this approach yields results in reasonable agreement with data generated by other geochemical techniques (Neff, 2003; Speakman and Neff, 2005). Oxide concentrations were then log-base 10 transformed.

Three statistical techniques were used to explore patterning in the data and to assign sherds to compositional groups: bivariate scatter plots, k-means clustering, and principal components analysis (PCA). Bivariate scatter plots provide an easy means to visually examine the relationship between any two elements and helps in determining which elements may be driving separation into compositional groups. K-means cluster analysis (Baxter, 2003) is a non-hierarchical clustering technique used for grouping cases; its advantage over other clustering methods is that as a non-hierarchical technique it minimizes intracluster variation while maximizing intercluster variation.

The cluster solution with the greatest difference between the average sum of the squared distances for randomly generated data and the original data is considered to be the "best" cluster solution (Kintigh and Ammerman, 1982). PCA (Shennan, 1997) compresses a large number of variables into a smaller number of uncorrelated variables called principal components; the first principal component accounts for as much of the variability as possible, and each remaining component accounts for as much of the remaining

Fig. 3. First two components of PCA on log - 10 oxide concentrations for 147 sherds recovered from sites on Tutuila Island: (V) Vainu'u; (A) 'Aoa; (G) Aganoa; (U) Ulu Tree.

 Table 3

 Summary of k-means 5-cluster solution for ceramic sherds recovered from sites on Tutuila Island.

Cluster	1	2	3	4	5
	1	<u>۲</u>	J	4	J
Objects	40	55	15	18	19
sum of weights	40	55	15	18	19
within-class variance	2.375	2.486	2.51/	1./9/	2.222
win dist to centroid	0.020	0.883	0./52	0.058	0.702
Ave dist to centroid	1.48/	1.503	1.422	1.229	1.387
wax dist to centroid	2.164	2.585	3.353	2.622	2.199
Group members listed by site	Aganoa	Aganoa	Aganoa	Vainu'u	Vainu'u
1 5	AG001	AG192	AG704	V008.134	V010.270
	AG194	AG387	Vainu'u	V008.138	V010.274
	AG396	AG607	V010.276	V008.141	V010.282
	AG451	AG631	V026.458	V013.82	V010.284
	AG587	AG649	V026.472	V046.72	V022.151
	AG634	'Aoa	V036.371	V046.73	V022.152
	AG641	Aoa1	V036.385	V046.74	V026.476
	'Aoa	Aoa2	V037.252	V051.31	V036.383
	Aoa3	Aoa4	V037.254	V057.84	V037.255
	Aoa7	Aoa5	V088.286	V057.86	V037.256
	Aoa15	Aoa6	V088.300	V057.87	V039.158
	Aoa22	Aoa8	V096.244	V057.88	V039.159
	Aoa25	Aoa9	V096.245	V057.89	V039.160
	Aoa26	Aoa10	V096.246	V102.91	V088.299
	Aoa27	Aoa11	V096.247	V102.92	V088.302
	Aoa29	Aoa12	V097.109	V102.93	V088.306
	Aoa31	Aoa13		V106.68	V097.106
	AoaAS1	Aoa14		V106.69	V097.107
	AoaAS2	Aoa16			V097.108
	AoaAS12	Aoa17			
	AoaAS13	Aoa18			
	AoaAS14	Aoa19			
	AoaAS16	Aoa20			
	Ulu Tree	Aoa21			
	ULU001	Aoa23			
	ULU003	Aoa24			
	ULU004	Aoa28			
	ULU006	Aoa30			
	ULU010	AoaAS3			
	ULU015	AoaAS5			
	ULU044	AoaAS6			
	ULU053	AoaAS7			
	ULU054	AoaAS8			
	ULU071	AoaAS9			
	ULU081	AoaAS10			
	ULU099	AoaAS11			
	ULU108	AoaAS15			
	ULU109	AoaAS17			
	ULU146	AoaAS18			
	ULU194	Ulu Tree			
	ULU201	ULU014			
	ULU205	ULU026			
		ULU032			
		ULU052			
		ULU082			
		ULU092			
		ULU100			
		ULU107			
		ULU143			
		ULU147			
		ULU152			
		ULU204			
		ULU216			
		ULU223			
		ULU225			
		vainu'u			
		V008.140			
		v013.83			
Mean and SD of oxide					
CONCENTRATIONS	01.0070 + 0.0920	00 2011 + 0 4217	00 1659 + 0 1104	00.0274 + 0.0125	00.0066 + 0.0002
INd23 Mg24	01.0970 ± 0.0820	$00.3811 \pm 0.421/$	00.1338 ± 0.1124	00.0274 ± 0.0135	00.0000 ± 0.0002
1V1824 A127	00.7090 ± 0.0013	01.2399 ± 0.7248	$00.3090 \pm 0.24/9$ 52 4267 \pm 7 4255	00.0774 ± 0.0714	00.0900 ± 0.0521
Si20	$5 \pm .7 \pm .0 \pm 0.5500$ AA 2025 ± 7.2127	32.0300 ± 0.0003 38 78/7 \pm 5 7120	33.4307 ± 7.4333 10 8288 \pm 3 06/1	$3\pi./4// \pm 3.1049$ 31 1363 \pm 3 0006	14.7023 ± 0.7462
K39	-1.525 ± 1.5127 01 2748 \pm 0 1767	$30.70 \pm 7 \pm 3.7129$ 00 4087 \pm 0 3005	10.0200 ± 3.0041	00 6343 ± 0 4265	
N33	01.270 ± 0.1707	50.7002 ± 0.3003	55.2137 ± 0.1362	UCF.U ± CFC0.00	00.0127 ± 0.0007

(continued on next page)

Table	e 3	(continued)
-------	-----	------------	---

	Cluster	1	2	3	4	5
Sc45 0.0307 ± 0.0237 0.0588 ± 0.0627 0.0054 ± 0.0015 0.0373 ± 0.0052 0.00081 ± 0.0008 Ti47 0.13765 ± 0.0768 0.38457 ± 1.4271 0.04755 ± 0.1711 0.5576 ± 0.6433 0.11640 ± 0.7069 VS1 0.01088 ± 0.0169 0.02211 ± 0.0875 0.00280 ± 0.0096 0.2229 ± 0.0993 0.00417 ± 0.0123 Cr52 0.00994 ± 0.5287 0.1266 ± 0.6797 0.0417 ± 0.2931 0.0699 ± 0.7484 0.01465 ± 0.0660 Fe57 10.7217 ± 6.3106 17.3324 ± 4.7396 33.3225 ± 14.9809 24.0703 ± 2.3273 38.5401 ± 2.4074 Co59 0.00210 ± 0.0461 0.0370 ± 0.0197 0.0067 ± 0.0025 $0.0.520 \pm 0.0164$ 0.00080 ± 0.0091 Ni60 0.0673 ± 0.0074 0.02723 ± 0.2560 0.0240 ± 0.0149 0.01223 ± 0.0935 0.0027 ± 0.0252 Cu65 0.00316 ± 0.0256 0.0459 ± 0.0307 0.00145 ± 0.0100 0.00081 ± 0.0073 0.0073 ± 0.0073 0.0073 ± 0.0074 0.00012 ± 0.0028 Sh85 0.0472 ± 0.0202 0.0237 ± 0.151 0.0085 ± 0.0047 0.00081 ± 0.0073 0.0012 ± 0.0002 Sr88 0.01425 ± 0.1400 0.01052 ± 0.0213 0.0147 ± 0.0208 0.0080 ± 0.0063 0.0017 ± 0.0012 Zr90 0.04617 ± 0.2544 0.04522 ± 0.0213 0.0138 ± 0.0047 0.00048 ± 0.0046 0.0028 ± 0.0014 Ba138 0.04056 ± 0.0250 0.00522 ± 0.0219 0.0138 ± 0.0046 0.0024 ± 0.0104 0.00025 ± 0.0001 Pr141 0.0166 ± 0.0052 0.0132 ± 0.0042 0.00045 ± 0.0026 0.00035 ± 0.0007 <td>Ca44</td> <td>02.6906 ± 0.7620</td> <td>01.5566 ± 1.3871</td> <td>00.3208 ± 0.2168</td> <td>00.1118 ± 0.0612</td> <td>00.0274 ± 0.0048</td>	Ca44	02.6906 ± 0.7620	01.5566 ± 1.3871	00.3208 ± 0.2168	00.1118 ± 0.0612	00.0274 ± 0.0048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc45	00.0307 ± 0.0237	00.0588 ± 0.0627	00.0054 ± 0.0015	00.0373 ± 0.0052	00.0051 ± 0.0008
V5100.1088 \pm 0.081200.2211 \pm 0.087500.0280 \pm 0.099600.2829 \pm 0.099300.0417 \pm 0.0123Cr5200.0899 \pm 0.106900.3261 \pm 0.218900.0493 \pm 0.035700.2669 \pm 0.128000.0433 \pm 0.0173Mn5500.9094 \pm 0.528701.0256 \pm 0.679700.4107 \pm 0.293101.0699 \pm 0.748400.1465 \pm 0.0660Fe5710.7217 \pm 6.310617.3324 \pm 4.739633.3225 \pm 14.980924.0703 \pm 2.327338.5401 \pm 2.4074Co5900.0210 \pm 0.046100.0370 \pm 0.007700.0076 \pm 0.002500.0520 \pm 0.016400.0080 \pm 0.0091Ni6000.0673 \pm 0.025600.0479 \pm 0.02720.0273 \pm 0.256000.0240 \pm 0.014900.1223 \pm 0.993500.0257 \pm 0.0252Cu6500.0173 \pm 0.116701.706 \pm 0.089600.0567 \pm 0.006500.941 \pm 0.029500.146 \pm 0.0072Sn6600.1472 \pm 0.020200.0237 \pm 0.015100.0085 \pm 0.004700.0093 \pm 0.007400.0012 \pm 0.0088Sr8800.1425 \pm 0.140000.1005 \pm 0.092000.0147 \pm 0.026000.0080 \pm 0.0261 \pm 0.0088Sr8800.4617 \pm 0.254400.5422 \pm 0.136300.1343 \pm 0.043700.6061 \pm 0.230900.1355 \pm 0.0174Ba13800.4056 \pm 0.025000.9592 \pm 0.018600.0594 \pm 0.026500.0099 \pm 0.0025Ce14000.1999 \pm 0.074300.1246 \pm 0.049600.0366 \pm 0.018600.0594 \pm 0.026500.0099 \pm 0.0037Pr14100.0166 \pm 0.004300.0124 \pm 0.004300.0027 \pm 0.001100.0025 \pm 0.0011 \pm 0.00010.00011 \pm 0.0007 <t< td=""><td>Ti47</td><td>01.3765 ± 0.0768</td><td>03.8457 ± 1.4271</td><td>00.4755 ± 0.1711</td><td>05.5676 ± 0.6433</td><td>01.1640 ± 0.7069</td></t<>	Ti47	01.3765 ± 0.0768	03.8457 ± 1.4271	00.4755 ± 0.1711	05.5676 ± 0.6433	01.1640 ± 0.7069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V51	00.1088 ± 0.0812	00.2211 ± 0.0875	00.0280 ± 0.0096	00.2829 ± 0.0993	00.0417 ± 0.0123
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cr52	00.0899 ± 0.1069	00.3261 ± 0.2189	00.0493 ± 0.0357	00.2669 ± 0.1280	00.0343 ± 0.0175
Fe57 10.7217 ± 6.3106 17.3324 ± 4.7396 33.3225 ± 14.9809 24.0703 ± 2.3273 38.5401 ± 2.4074 Co59 00.0210 ± 0.0461 00.370 ± 0.0197 00.007 ± 0.0025 00.520 ± 0.0164 00.0080 ± 0.0091 Ni60 00.0673 ± 0.0276 00.2703 ± 0.2560 00.0240 ± 0.0149 00.1223 ± 0.0935 00.0257 ± 0.0252 Cu65 00.316 ± 0.0256 00.0459 ± 0.0307 00.0166 ± 0.0110 00.6000 ± 0.0406 00.0081 ± 0.0073 Zn66 00.1733 ± 0.1167 00.1706 ± 0.0896 00.567 ± 0.0025 00.093 ± 0.0074 00.0121 ± 0.0085 Sv88 00.1425 ± 0.1400 00.1005 ± 0.0920 00.0147 ± 0.0026 00.0080 ± 0.0063 00.017 ± 0.0012 Zr90 00.4617 ± 0.2544 00.5422 ± 0.1363 00.1333 ± 0.0213 00.0464 ± 0.0268 00.0095 ± 0.0219 Ba138 00.4055 ± 0.0250 00.0592 ± 0.0219 00.018 ± 0.0046 00.242 ± 0.0104 00.0024 ± 0.0029 Ce140 00.1939 ± 0.0743 00.1246 ± 0.0496 00.0356 ± 0.0116 00.0094 ± 0.00351 00.0017 ± 0.0071 N142 00.0785 ± 0.0314 00.0634 ± 0.0233 00.0122 ± 0.0011 $00.0072 \pm 0.0011 \pm 0.0004$ 00.001 ± 0.0007 N142 00.0785 ± 0.0344 00.0192 ± 0.0012 00.0005 ± 0.0021 00.0014 ± 0.0016 00.001 ± 0.0007 N142 00.0078 ± 0.0013 00.0022 ± 0.0011 00.0072 ± 0.0011 $00.0072 \pm 0.0011 \pm 0.0007$ 00.001 ± 0.0007 N142 00.0073 ± 0.0013 00.0025 ± 0.0011 00.0072 ± 0.0021 00.0011 ± 0.0007 N153<	Mn55	00.9094 ± 0.5287	01.0256 ± 0.6797	00.4107 ± 0.2931	01.0699 ± 0.7484	00.1465 ± 0.0660
$ \begin{array}{c} Co59 \\ O(0.0210 \pm 0.0461 \\ O(0.0673 \pm 0.0074 \\ O(0.273 \pm 0.256 \\ O(0.0240 \pm 0.0149 \\ O(0.223 \pm 0.0935 \\ O(0.0257 \pm 0.0252 \\ O(0.0216 \pm 0.0256 \\ O(0.0216 \pm 0.0256 \\ O(0.0217 \pm 0.0222 \\ O(0.0237 \pm 0.0151 \\ O(0.0085 \pm 0.0047 \\ O(0.0083 \pm 0.0073 \\ O(0.0083 \pm 0.0074 \\ O(0.0083 \pm 0.0073 \\ O(0.0083 \pm 0.0073 \\ O(0.0083 \pm 0.0074 \\ O(0.0083 \pm 0.0073 \\ O(0.0083 \pm 0.0074 \\ O(0.0083 \pm 0.0074 \\ O(0.0093 \pm 0.0075 \\ O(0.0095 \pm 0.027 \\ O(0.0095 \pm 0.027 \\ O(0.0095 \pm 0.027 \\ O(0.0095 \pm 0.0027 \\ O(0.0011 \\ O(0.0095 \pm 0.0027 \\ O(0.0011 \\ O(0.0095 \pm 0.0027 \\ O(0.0011 \\ O(0.0072 \pm 0.0011 \\ O(0.0011 \pm 0.0006 \\ O(0.0023 \pm 0.0007 \\ O(0.0012 \pm 0.0001 \\ O(0.0002 \pm 0.0007 \\ O(0.0012 \pm 0.0001 \\ O(0.0002 \pm 0.0007 \\ O(0.0012 \pm 0.0001 \\ O(0.0002 \pm 0.0001 \\ O(0.0002 \pm 0.0007 \\ O(0.0012 \pm 0.0001 \\ O(0.0003 \pm 0.0001 \\ O(0.0003 \pm 0.0001 \\ O(0.0002 \pm 0.0001 \\ O(0.0001 \pm 0.0000 \\ O(0.0001 \pm$	Fe57	10.7217 ± 6.3106	17.3324 ± 4.7396	33.3225 ± 14.9809	24.0703 ± 2.3273	38.5401 ± 2.4074
Ni60 00.0673 ± 0.0074 00.2723 ± 0.2560 00.0240 ± 0.0149 00.1223 ± 0.0935 00.0257 ± 0.0252 Cu65 00.0316 ± 0.0256 00.0459 ± 0.0307 00.0146 ± 0.0110 00.0600 ± 0.0406 00.0081 ± 0.0073 Zn66 00.1733 ± 0.1157 00.1706 ± 0.0890 00.0557 ± 0.0065 00.0941 ± 0.0295 00.0146 ± 0.0052 Rb85 00.0472 ± 0.0202 00.0237 ± 0.0151 00.0085 ± 0.0047 00.0093 ± 0.0074 00.0012 ± 0.0008 Sr88 00.1425 ± 0.1400 00.1005 ± 0.0920 00.147 ± 0.0026 00.0080 ± 0.0063 00.017 ± 0.0012 Zr90 00.4617 ± 0.2544 00.5422 ± 0.1363 00.1333 ± 0.0213 00.0464 ± 0.0268 00.0089 ± 0.0035 La139 00.4656 ± 0.0250 00.592 ± 0.0219 00.018 ± 0.0046 00.0242 ± 0.0104 00.0042 ± 0.0029 Ce140 00.1939 ± 0.0743 00.1246 ± 0.0496 00.0356 ± 0.0186 00.0554 ± 0.0250 00.093 ± 0.0074 Nd142 00.0785 ± 0.0344 00.0634 ± 0.0233 00.0123 ± 0.0054 00.0016 ± 0.0006 Nd142 00.078 ± 0.0344 00.0032 ± 0.0011 00.0072 ± 0.0021 00.0014 ± 0.0002 Gd158 00.0156 ± 0.0034 00.0012 ± 0.0024 00.0014 ± 0.0006 00.0023 ± 0.0007 00.0001 ± 0.0001 F159 00.0024 ± 0.0016 00.0017 ± 0.0002 00.0014 ± 0.0001 00.0007 ± 0.0001 00.0007 ± 0.0001 D164 00.0102 ± 0.0007 00.0014 ± 0.0004 00.0007 ± 0.0002 00.0014 ± 0.0001 D164 00.0006 ± 0.0003 00.0014 ± 0.0001 00	Co59	00.0210 ± 0.0461	00.0370 ± 0.0197	00.0067 ± 0.0025	00.0520 ± 0.0164	00.0080 ± 0.0091
$ \begin{array}{c} Cu65 \\ Cu65 \\ Cu65 \\ Cu65 \\ Ou.0173 \pm 0.1167 \\ Ou.773 \pm 0.022 \\ Ou.0237 \pm 0.0307 \\ Ou.005 \pm 0.0047 \\ Ou.005 \pm 0.0047 \\ Ou.0091 \pm 0.0295 \\ Ou.0074 \\ Ou.0091 \pm 0.0073 \\ Ou.0071 \pm 0.022 \\ Ou.0237 \pm 0.0151 \\ Ou.0058 \pm 0.0047 \\ Ou.0093 \pm 0.0074 \\ Ou.0093 \pm 0.0074 \\ Ou.0017 \pm 0.0202 \\ Ou.0237 \pm 0.0151 \\ Ou.0058 \pm 0.0047 \\ Ou.0093 \pm 0.0074 \\ Ou.0003 \pm 0.0074 \\ Ou.0017 \pm 0.0012 \\ Ou.0003 \pm 0.0074 \\ Ou.0017 \pm 0.0012 \\ Ou.0014 \pm 0.0003 \\ Ou.0017 \pm 0.0012 \\ Ou.0014 \pm 0.0003 \\ Ou.0017 \pm 0.0012 \\ Ou.0018 \pm 0.0046 \\ Ou.0242 \pm 0.0114 \\ Ou.0046 \pm 0.0025 \\ Ou.0018 \pm 0.0046 \\ Ou.0242 \pm 0.0114 \\ Ou.0046 \pm 0.0025 \\ Ou.0018 \pm 0.0014 \\ Ou.0016 \pm 0.0005 \\ Ou.0012 \pm 0.0012 \\ Ou.0015 \pm 0.0057 \\ Ou.015 \pm 0.0014 \\ Ou.0012 \pm 0.0012 \\ Ou.0011 \pm 0.0002 \\ Ou.0011 \pm 0.0002 \\ Ou.0011 \pm 0.0002 \\ Ou.0011 \pm 0.0002 \\ Ou.0011 \pm 0.0001 \\ Ou.0012 \pm 0.0001 \\ Ou.0012 \pm 0.0001 \\ Ou.0012 \pm 0.0001 \\ Ou.0002 \pm 0.0001 \\ Ou.0012 \pm 0.0001 \\ Ou.0002 \pm 0.0001 \\ Ou.0001 \pm 0.0000 \\ Ou.001 \pm 0.0001 \\ Ou.0001 \pm 0.0001 \\ Ou.0002 \pm 0.0001 \\ Ou.0001 \pm 0.0001 \\ Ou.0002 \pm 0.$	Ni60	00.0673 ± 0.0074	00.2723 ± 0.2560	00.0240 ± 0.0149	00.1223 ± 0.0935	00.0257 ± 0.0252
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu65	00.0316 ± 0.0256	00.0459 ± 0.0307	00.0146 ± 0.0110	00.0600 ± 0.0406	00.0081 ± 0.0073
Rb85 00.0472 ± 0.0202 00.0237 ± 0.0151 00.0085 ± 0.0047 00.0093 ± 0.0074 00.0112 ± 0.0008 Sr88 00.1425 ± 0.1400 00.1005 ± 0.0920 00.0147 ± 0.0266 00.0080 ± 0.0063 00.0117 ± 0.0012 Ba138 00.4617 ± 0.2544 00.5422 ± 0.1363 00.1343 ± 0.0437 00.0661 ± 0.2309 00.1355 ± 0.0174 Ba138 00.4050 ± 0.2813 00.4037 ± 0.3957 00.0383 ± 0.0213 00.0464 ± 0.0268 00.0089 ± 0.0035 La139 00.0656 ± 0.0250 00.0592 ± 0.0219 00.0108 ± 0.0046 00.0242 ± 0.0104 00.0042 ± 0.0029 Ce140 00.1939 ± 0.0743 00.1246 ± 0.0496 00.027 ± 0.0011 00.0065 ± 0.0019 00.0010 ± 0.0027 Nd142 00.0785 ± 0.0344 00.0634 ± 0.0233 00.0123 ± 0.0044 00.0016 ± 0.0094 00.0010 ± 0.0006 Nd142 00.0785 ± 0.0344 00.0032 ± 0.0042 00.0022 ± 0.0011 00.0072 ± 0.0021 00.0011 ± 0.0007 Sm152 00.0150 ± 0.0052 00.0132 ± 0.0042 00.0022 ± 0.0011 00.006 ± 0.0003 00.0022 ± 0.0001 00.0010 ± 0.0002 Gd158 00.0102 ± 0.0007 00.0017 ± 0.0001 00.0004 ± 0.0001 00.0001 ± 0.0001 0.0001 ± 0.0001 Dy164 00.0104 ± 0.0034 00.0012 ± 0.0001 00.0003 ± 0.0001 00.0002 ± 0.0001 00.0001 ± 0.0002 Dy164 00.0006 ± 0.0003 00.0002 ± 0.0001 00.0002 ± 0.0001 00.0002 ± 0.0001 00.0002 ± 0.0001 Dy164 00.0005 ± 0.0002 00.0014 ± 0.0002 00.0012 ± 0.0000 00.0012 ± 0.000	Zn66	00.1733 ± 0.1167	00.1706 ± 0.0896	00.0567 ± 0.0065	00.0941 ± 0.0295	00.0146 ± 0.0052
Sr88 00.1425 ± 0.1400 00.1005 ± 0.0920 00.0147 ± 0.0026 00.0080 ± 0.0063 00.017 ± 0.0012 Zr90 00.4617 ± 0.2544 00.5422 ± 0.1363 00.1343 ± 0.0437 00.6061 ± 0.2309 00.1355 ± 0.0174 Ba138 00.4050 ± 0.2813 00.4037 ± 0.3957 00.0383 ± 0.0213 00.0664 ± 0.0268 00.0089 ± 0.0035 La139 00.0656 ± 0.0250 00.0592 ± 0.0219 00.0108 ± 0.0046 00.0242 ± 0.0104 00.0042 ± 0.0029 Ce140 00.1939 ± 0.0743 00.1246 ± 0.0496 00.0356 ± 0.0186 00.0594 ± 0.0255 00.0095 ± 0.0057 Pr141 00.0166 ± 0.0063 00.0142 ± 0.0023 00.0123 ± 0.0054 00.0016 ± 0.0094 00.0049 ± 0.0031 Sm152 00.0150 ± 0.0052 00.0132 ± 0.0042 00.0025 ± 0.0011 00.0072 ± 0.0021 00.0014 ± 0.0020 Eu153 00.0126 ± 0.0043 00.019 ± 0.0031 00.0021 ± 0.0099 00.0664 ± 0.0019 00.0010 ± 0.0006 Tb159 00.0026 ± 0.0007 00.0017 ± 0.0026 00.0017 ± 0.0007 00.0015 ± 0.0014 00.0001 ± 0.0001 Dy164 00.0018 ± 0.0066 00.0014 ± 0.0024 00.0017 ± 0.0002 00.0019 ± 0.0005 00.0002 ± 0.0001 Tb169 00.0042 ± 0.0016 00.0032 ± 0.0011 00.0002 ± 0.0007 00.0002 ± 0.0001 0.0001 ± 0.0000 Fr166 00.0012 ± 0.0017 00.0032 ± 0.0011 00.0007 ± 0.0002 00.0012 ± 0.0001 0.0001 ± 0.0000 Tb174 00.0005 ± 0.0002 00.0004 ± 0.0001 00.0002 ± 0.0001 0.0001 ± 0.0000 Tb174 <td>Rb85</td> <td>00.0472 ± 0.0202</td> <td>00.0237 ± 0.0151</td> <td>00.0085 ± 0.0047</td> <td>00.0093 ± 0.0074</td> <td>00.0012 ± 0.0008</td>	Rb85	00.0472 ± 0.0202	00.0237 ± 0.0151	00.0085 ± 0.0047	00.0093 ± 0.0074	00.0012 ± 0.0008
Zr90 00.4617 ± 0.2544 00.5422 ± 0.1363 00.1343 ± 0.0437 00.6061 ± 0.2309 00.1355 ± 0.0174 Ba138 00.4050 ± 0.2813 00.4037 ± 0.3957 00.0383 ± 0.0213 00.0464 ± 0.0268 00.0089 ± 0.0035 La139 00.0656 ± 0.0250 00.592 ± 0.0219 00.0108 ± 0.0046 00.0242 ± 0.0104 00.0042 ± 0.0029 Ce140 00.11393 ± 0.0743 00.1246 ± 0.0496 00.0356 ± 0.0186 00.0594 ± 0.0255 00.0092 ± 0.0057 Pr141 00.0166 ± 0.0063 00.0140 ± 0.0048 00.0027 ± 0.0011 00.0055 ± 0.0019 00.010 ± 0.0006 Nd142 00.0785 ± 0.0344 00.634 ± 0.0233 00.0123 ± 0.0054 00.316 ± 0.0094 00.0049 ± 0.0031 Sm152 00.0150 ± 0.0052 00.0132 ± 0.0042 00.0025 ± 0.0011 00.0072 ± 0.0021 00.0011 ± 0.0007 Eu153 00.0026 ± 0.0043 00.019 ± 0.0031 00.0021 ± 0.0009 00.066 ± 0.0003 00.0023 ± 0.0007 00.0010 ± 0.0002 Gd158 00.0126 ± 0.0047 00.0017 ± 0.0005 00.0012 ± 0.0007 00.0014 ± 0.0001 00.0001 ± 0.0001 Dy164 00.0100 ± 0.0034 00.0031 ± 0.0001 00.0003 ± 0.0001 $00.0002 \pm 0.0001 \pm 0.0000$ F166 00.0043 ± 0.0017 00.0032 ± 0.0001 00.0002 ± 0.0000 00.0012 ± 0.0001 Tm169 00.0065 ± 0.0002 00.0004 ± 0.0001 00.0007 ± 0.0002 00.0011 ± 0.0000 H174 00.0065 ± 0.0002 00.0014 ± 0.0001 00.0007 ± 0.0002 00.0001 ± 0.0000 H169 00.0065 ± 0.0002 00.0014 ± 0.00	Sr88	00.1425 ± 0.1400	00.1005 ± 0.0920	00.0147 ± 0.0026	00.0080 ± 0.0063	00.0017 ± 0.0012
Ba138 00.4050 ± 0.2813 00.4037 ± 0.3957 00.0383 ± 0.0213 00.0464 ± 0.0268 00.0089 ± 0.0035 La139 00.0656 ± 0.0250 00.592 ± 0.0219 00.0108 ± 0.0046 00.0242 ± 0.0104 00.0042 ± 0.0029 Ce140 00.1939 ± 0.0743 00.1246 ± 0.0496 00.0356 ± 0.0186 00.0594 ± 0.0265 00.0095 ± 0.0057 Pr141 00.0166 ± 0.0063 00.0140 ± 0.0048 00.027 ± 0.0011 00.0055 ± 0.0051 00.0010 ± 0.0006 Nd142 00.0785 ± 0.0344 00.0634 ± 0.0233 00.0123 ± 0.0054 00.0316 ± 0.0094 00.0049 ± 0.0031 Sm152 00.0150 ± 0.0052 00.0132 ± 0.0042 00.0025 ± 0.0011 00.0072 ± 0.0021 00.0011 ± 0.0007 Eu153 00.0024 ± 0.0013 00.0038 ± 0.0012 00.0013 ± 0.0007 00.0010 ± 0.0002 00.0010 ± 0.0002 Gd158 00.0100 ± 0.0034 00.0017 ± 0.0005 00.0012 ± 0.0002 00.0010 ± 0.0001 00.0002 ± 0.0001 Dy164 00.0100 ± 0.0034 00.0014 ± 0.0004 00.0003 ± 0.0001 00.0008 ± 0.0002 00.0001 ± 0.0000 F166 00.0042 ± 0.0016 00.002 ± 0.0001 00.0002 ± 0.0001 00.0002 ± 0.0001 00.0002 ± 0.0001 Tm169 00.0005 ± 0.0002 00.0004 ± 0.0001 00.0007 ± 0.0002 00.0002 ± 0.0001 Lu175 00.0005 ± 0.0002 00.0004 ± 0.0001 00.0008 ± 0.0002 00.0001 ± 0.0006 Hi180 00.0105 ± 0.0026 00.0014 ± 0.0023 00.0024 ± 0.0006 00.0114 ± 0.0005 Hi180 00.0075 ± 0.0026 00.0032 ± 0.0007 <	Zr90	00.4617 ± 0.2544	00.5422 ± 0.1363	00.1343 ± 0.0437	00.6061 ± 0.2309	00.1355 ± 0.0174
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba138	00.4050 ± 0.2813	00.4037 ± 0.3957	00.0383 ± 0.0213	00.0464 ± 0.0268	00.0089 ± 0.0035
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La139	00.0656 ± 0.0250	00.0592 ± 0.0219	00.0108 ± 0.0046	00.0242 ± 0.0104	00.0042 ± 0.0029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ce140	00.1939 ± 0.0743	00.1246 ± 0.0496	00.0356 ± 0.0186	00.0594 ± 0.0265	00.0095 ± 0.0057
Nd142 00.0785 ± 0.0344 00.0634 ± 0.0233 00.0123 ± 0.0054 00.0316 ± 0.0094 00.0049 ± 0.0031 Sm152 00.0150 ± 0.0052 00.0132 ± 0.0042 00.0025 ± 0.0011 00.0072 ± 0.0021 00.0011 ± 0.0007 Eu153 00.0034 ± 0.0013 00.0038 ± 0.0012 00.0006 ± 0.0003 00.0023 ± 0.0007 00.0003 ± 0.0002 Gd158 00.0126 ± 0.0043 00.0109 ± 0.0031 00.0021 ± 0.0009 00.0064 ± 0.0019 00.0010 ± 0.0006 Tb159 00.0020 ± 0.0007 00.0017 ± 0.0005 00.0003 ± 0.0001 00.0010 ± 0.0001 0.0001 ± 0.0001 Dy164 00.0101 ± 0.0034 00.0081 ± 0.0024 00.0017 ± 0.0007 00.0008 ± 0.0002 00.0001 ± 0.0004 Ho165 00.0042 ± 0.0016 00.0032 ± 0.0011 00.0007 ± 0.0002 00.0001 ± 0.0001 0.0000 ± 0.0001 Tm169 00.0066 ± 0.0003 00.0004 ± 0.0001 00.0007 ± 0.0002 00.0018 ± 0.0006 00.0001 ± 0.0000 Yb174 00.0043 ± 0.0017 00.003 ± 0.0011 00.0007 ± 0.0002 00.0018 ± 0.0006 00.0001 ± 0.0000 Hu175 00.0005 ± 0.0002 00.0004 ± 0.0001 00.0008 ± 0.0002 00.0001 ± 0.0000 Hf180 00.0057 ± 0.0026 00.0034 ± 0.0012 00.0013 ± 0.0007 00.0022 ± 0.0001 Ha181 00.0057 ± 0.0026 00.0037 ± 0.0013 00.0013 ± 0.0007 00.0033 ± 0.0001 Hb208 00.0057 ± 0.0026 00.0037 ± 0.0035 00.0013 ± 0.0007 00.003 ± 0.0001	Pr141	00.0166 ± 0.0063	00.0140 ± 0.0048	00.0027 ± 0.0011	00.0065 ± 0.0019	00.0010 ± 0.0006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nd142	00.0785 ± 0.0344	00.0634 ± 0.0233	00.0123 ± 0.0054	00.0316 ± 0.0094	00.0049 ± 0.0031
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm152	00.0150 ± 0.0052	00.0132 ± 0.0042	00.0025 ± 0.0011	00.0072 ± 0.0021	00.0011 ± 0.0007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eu153	00.0034 ± 0.0013	00.0038 ± 0.0012	00.0006 ± 0.0003	00.0023 ± 0.0007	00.0003 ± 0.0002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd158	00.0126 ± 0.0043	00.0109 ± 0.0031	00.0021 ± 0.0009	00.0064 ± 0.0019	00.0010 ± 0.0006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tb159	00.0020 ± 0.0007	00.0017 ± 0.0005	00.0003 ± 0.0001	00.0010 ± 0.0002	00.0001 ± 0.0001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy164	00.0100 ± 0.0034	00.0081 ± 0.0024	00.0017 ± 0.0007	00.0050 ± 0.0014	00.0007 ± 0.0004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ho165	00.0018 ± 0.0006	00.0014 ± 0.0004	00.0003 ± 0.0001	00.0008 ± 0.0002	00.0001 ± 0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er166	00.0042 ± 0.0016	00.0032 ± 0.0011	00.0007 ± 0.0002	00.0019 ± 0.0005	00.0002 ± 0.0001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tm169	00.0006 ± 0.0003	00.0004 ± 0.0001	00.0009 ± 0.0003	00.0002 ± 0.0000	00.0001 ± 0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yb174	00.0043 ± 0.0017	00.0030 ± 0.0011	00.0007 ± 0.0002	00.0018 ± 0.0006	00.0002 ± 0.0001
Hf180 00.0105 ± 0.0052 00.0104 ± 0.0023 00.0024 ± 0.0006 00.0111 ± 0.0037 00.0015 ± 0.0004 Ta181 00.0057 ± 0.0026 00.0030 ± 0.0012 00.0013 ± 0.0007 00.0025 ± 0.0009 00.0033 ± 0.0011 Pb208 00.0057 ± 0.0041 00.0037 ± 0.0035 00.0010 ± 0.0005 00.0013 ± 0.0005 00.0013 ± 0.0005	Lu175	00.0005 ± 0.0002	00.0004 ± 0.0001	00.0008 ± 0.0002	00.0002 ± 0.0000	00.0001 ± 0.0000
Ta181 00.0057 ± 0.0026 00.0030 ± 0.0012 00.0013 ± 0.0007 00.0025 ± 0.0009 00.0003 ± 0.0001 Pb208 00.0057 ± 0.0041 00.0037 ± 0.0035 00.0010 ± 0.0005 00.0013 ± 0.0005 00.0013 ± 0.0001	Hf180	00.0105 ± 0.0052	00.0104 ± 0.0023	00.0024 ± 0.0006	00.0111 ± 0.0037	00.0015 ± 0.0004
Ph208 00.0057 + 0.0041 00.0037 + 0.0035 00.0010 + 0.0005 00.0013 + 0.0005 00.0003 + 0.0001	Ta181	00.0057 ± 0.0026	00.0030 ± 0.0012	00.0013 ± 0.0007	00.0025 ± 0.0009	00.0003 ± 0.0001
10200 $00.0017 \pm 0.0017 \pm 0.0017 \pm 0.0017 \pm 0.0017 \pm 0.0017 \pm 0.0017 \pm 0.00017 \pm 0.$	Pb208	00.0057 ± 0.0041	00.0037 ± 0.0035	00.0010 ± 0.0005	00.0013 ± 0.0005	00.0003 ± 0.0001
Th232 00.0112 ± 0.0047 00.0078 ± 0.0023 00.0029 ± 0.0015 00.0055 ± 0.0020 00.008 ± 0.0002	Th232	00.0112 ± 0.0047	00.0078 ± 0.0023	00.0029 ± 0.0015	00.0055 ± 0.0020	00.0008 ± 0.0002
U238 00.0026 ± 0.0015 00.0015 ± 0.0006 00.0005 ± 0.0001 00.0011 ± 0.0006 00.0001 ± 0.0000	U238	00.0026 ± 0.0015	00.0015 ± 0.0006	00.0005 ± 0.0001	00.0011 ± 0.0006	00.0001 ± 0.0000

variability as possible. Although not the only statistical methods used in compositional studies (Baxter, 1994; Bishop et al., 1982), these three techniques are commonly used and were selected as the best suite of techniques given our sample size.

3.3. The sample

All told, 170 ceramic artifacts and 21 ceramic tiles produced from raw clay samples were chemically characterized through LA-ICP-

Fig. 4. First two components of PCA of log - 10 oxide concentrations for 147 sherds recovered from sites on Tutuila Island plotted by k-means 5-cluster solution: Clusters 3, 4, and 5 are dominated by sherds recovered from the highland site of Vainu'u; Clusters 1 and 2 are dominated by sherds recovered from the lowland sites of Aganoa, 'Aoa, and the Ulu Tree site.

Fig. 5. Bivariate plot of log - base 10 oxide concentrations for Ti and Rb showing differentiation of sherds recovered from Tutuila Island by k-means 5-cluster solution.

MS (Table 1). A total of 13 clay samples were collected in 2006 from the vicinity of three ceramic-bearing sites on Tutuila Island (Fig. 1). After various laboratory tests to determine workability, shrinkage rates, and porosity (Rice, 1987), seven of these clays were determined to have sufficient qualities to produce low-firing ceramic vessels. Combined, these seven different clays represent three of Tutuila's volcanic series. Three tiles were produced from each clay for a total of 21 tiles. These tiles measured approximately $3 \times 3 \times 1$ cm and were fired at 700 °C for 30 min. The resulting tiles were similar to ceramic sherds recovered from archaeological sites in terms of paste color, hardness, and texture.

Ceramic artifacts examined were recovered from six sites (Fig. 1): Mulifanua on Upolu Island; Va'oto on Ofu Island; and Aganoa, 'Aoa, Ulu Tree Site, and Vainu'u on Tutuila Island. These sites were chosen

Fig. 6. First two components of PCA of log - 10 oxide concentrations for sherds recovered from sites on three different islands in the Samoan Archipelago: (T) Tutuila Island; (O) Ofu Island; (U) Upolu Island.

 Table 4

 Summary of k-means 5-cluster solution for ceramic sherds recovered from sites on three islands in the Samoan archipelago.

Class	1	2	2	4	r
Class	1	2	3	4	5
Objects	49	42	24	36	19
Sum of weights	49	42	24	36	19
Within class variance	2 017	72	1 650	1 000	1 707
Within-class variance	3.017	2.404	1.032	1.555	1.797
Minimum distance to centroid	0.666	0.975	0.821	0.732	0.658
Average distance to centroid	1.630	1.444	1.227	1.287	1.229
Maximum distance to centroid	4.656	3.425	1.986	2.199	2.622
Group members listed by island	Tutuila	Ofu	Ofu	Tutuila	Tutuila
Group members instea by island	AC001	Vacto 971	Vacto ⁸⁶⁰	40021	V010 270
	AGOOT		Value 070	ADAZI	V010.270
	AG194	Tutuila	Vaoto876	Aoa24	V010.274
	AG396	AG192	Vaoto18	AoaAS18	V010.282
	AG451	AG387	Vaoto864	AoaAS3	V010.284
	AG587	AG607	Vaoto865	V008.134	V022.151
	AC634	AC631	Vanto866	V008 138	V022 152
	AG034	10051	Value to 067	V008.138	V022.132
	AG641	AG649	Vaoto867	V008.141	V026.476
	Aoa1	Aoa10	Vaoto868	V010.276	V036.383
	Aoa3	Aoa11	Vaoto870	V013.82	V037.255
	Aoa7	Aoa12	Vaoto872	V026.458	V037.256
	Aoa14	Aoa13	Vanto 873	V026 472	V039 158
	AcalE	Acc17	Vacto 873	V026.271	V030.150
	AUAID	AUd 17	Va010874	V030.371	V039.139
	Aoa16	Aoa2	Vaoto875	V036.385	V039.160
	Aoa18	Aoa23	Vaoto877	V037.252	V088.299
	Aoa19	Aoa30	Tutuila	V037.254	V088.302
	Aoa20	Aoa4	AG704	V046.72	V088.306
	A0222	A025	AogAS11	V046 73	V097 106
	A022E	A005	Inchr	V04674	V007.100
	A0a25	Аоаб	opoiu	VU46./4	VU97.107
	Aoa26	Aoa8	Mulifanua1	V051.31	V097.108
	Aoa27	Aoa9	Mulifanua2	V057.84	
	A0a28	AoaAS10	Mulifanua3	V057 86	
	40220	A02AS15	Mulifanua4	V057.87	
	Aug 21		Mullanua4	V057.87	
	A0a3 I	AOAAS17	Mullfanua5	V057.88	
	AoaAS1	AoaAS5	Mulifanua6	V057.89	
	AoaAS2	AoaAS6	Mulifanua7	V088.286	
	AoaAS12	AoaAS7	Mulifanua8	V088.300	
	AoaAS13	AcaAS8		V096 244	
	Acc A C14	100/150		V000 245	
	A0dAS14	A0dAS9		V096.245	
	AoaAS16	ULU026		V096.246	
	ULU001	ULU032		V096.247	
	ULU003	ULU052		V097.109	
	1111004	UI1082		V102.91	
		1111002		V102.01	
		010092		V102.92	
	ULU010	ULU100		V102.93	
	ULU014	ULU143		V106.68	
	ULU015	ULU147		V106.69	
	1111044	ULU152			
	1111053	1111204			
	010055	010204			
	ULU054	ULU216			
	ULU071	ULU223			
	ULU081	ULU225			
	ULU099	V008.140			
	UILU107	V01383			
	1111108	1013.05			
	010109				
	ULU146				
	ULU194				
	ULU201				
	UI11205				
Mean and SD of oxide	010205				
concentrations					
Na23	00.8030 ± 0.5822	00.2769 ± 0.0304	01.2920 ± 0.6551	02.3510 ± 1.1343	00.2751 ± 0.0563
Mg24	01.4646 ± 0.4783	00.9792 ± 0.4371	01.4132 ± 0.8438	02.5625 ± 1.5696	00.8728 ± 0.0715
Al27	37.6133 ± 14.5828	33.6420 ± 7.7371	30.0391 ± 7.7336	24.6443 ± 9.0198	37.6569 ± 4.7306
Si29	384839 ± 115330	391220 ± 42115	462360 ± 82390	32 0725 + 6 9379	333818 ± 68315
K30	010054 ± 0.0924	00.3580 ± 0.2104	01.4961 ± 1.2075	011210 ± 10000	003006 ± 0.0010
NJ3	01.0034 ± 0.9634	00.3369 ± 0.3104	$01.4001 \pm 1.20/3$	01.1210 ± 1.0020	00.3020 ± 0.0037
Ca44	02.0635 ± 1.3360	01.3957 ± 0.4573	03.0061 ± 0.4716	10.7392 ± 4.5730	00.7288 ± 0.0978
Sc45	00.0241 ± 0.0156	00.0427 ± 0.0376	00.0441 ± 0.0326	00.0946 ± 0.0778	00.0350 ± 0.0097
Ti47	02.1655 ± 0.1277	04.2747 ± 1.6395	01.9366 ± 0.0310	04.3368 ± 1.4135	04.0569 ± 0.8925
V51	00.1605 ± 0.2483	00.2220 ± 0.1148	00.1860 ± 0.1084	00.2795 ± 0.0856	00.2287 ± 0.1155
Cr52	00.1655 ± 0.3033	003220 ± 02451	00.1967 ± 0.0668	002691 ± 01427	00.2067 ± 0.1360
C132 M=55	00.1000 ± 0.0000	00.0220 ± 0.2431	00.1307 ± 0.0000	00.2031 ± 0.1427	00.2007 ± 0.1300
	01.9603 ± 0.9441	00.9955 ± 0.0183	00.9111 ± 0.0651	01.2380 ± 0.7149	$00.8599 \pm 0.3/69$
Fe57	12.4359 ± 3.6064	16.4594 ± 4.5655	11.3689 ± 3.2442	18.6519 ± 5.3822	19.8623 ± 7.2359
Co59	00.0229 ± 0.0322	00.0302 ± 0.0163	00.0353 ± 0.0605	00.0501 ± 0.0212	00.0387 ± 0.0193
Ni60	00.1086 ± 0.1800	00.2104 ± 0.1319	00.1546 ± 0.2199	00.2511 ± 0.0295	00.1247 ± 0.0990
Cu65	00.0283 ± 0.0261	00.0413 ± 0.0100	00.0382 ± 0.0266	00.0514 ± 0.0423	00.0493 ± 0.0303
7=00	00.0203 ± 0.0201	00.0415 ± 0.0135	00.0362 ± 0.0200	00.0514 ± 0.0425	00.0432 ± 0.0302
21100	00.1298 ± 0.0613	00.1586 ± 0.0765	00.1940 ± 0.0384	00.1257 ± 0.0832	00.1354 ± 0.0709

Table 4	(continued))
---------	-------------	---

Class	1	2	3	4	5
Rb85	00.0391 ± 0.0341	00.0224 ± 0.0134	00.0494 ± 0.0193	00.0345 ± 0.0281	00.0199 ± 0.0022
Sr88	00.1728 ± 0.1847	00.1046 ± 0.1002	00.1168 ± 0.0045	00.1306 ± 0.0134	00.0326 ± 0.0047
Zr90	00.4379 ± 0.1752	00.5809 ± 0.1404	00.5065 ± 0.0830	00.5551 ± 0.1687	00.5514 ± 0.2543
Ba138	00.3500 ± 0.3362	00.4244 ± 0.4182	00.3404 ± 0.0403	00.1855 ± 0.0307	00.2999 ± 0.0784
La139	00.0570 ± 0.0221	00.0628 ± 0.0218	00.0642 ± 0.0238	00.0414 ± 0.0187	00.0432 ± 0.0252
Ce140	00.1521 ± 0.0803	00.1211 ± 0.0474	00.1931 ± 0.0748	00.0980 ± 0.0506	00.1055 ± 0.0745
Pr141	00.0147 ± 0.0058	00.0143 ± 0.0046	00.0159 ± 0.0058	00.0097 ± 0.0043	00.0116 ± 0.0089
Nd142	00.0669 ± 0.0283	00.0651 ± 0.0200	00.0774 ± 0.0347	00.0446 ± 0.0218	00.0545 ± 0.0395
Sm152	00.0137 ± 0.0054	00.0130 ± 0.0038	00.0146 ± 0.0046	00.0100 ± 0.0044	00.0114 ± 0.0071
Eu153	00.0036 ± 0.0018	00.0037 ± 0.0010	00.0032 ± 0.0011	00.0030 ± 0.0013	00.0031 ± 0.0013
Gd158	00.0111 ± 0.0042	00.0105 ± 0.0029	00.0125 ± 0.0041	00.0087 ± 0.0008	00.0094 ± 0.0052
Tb159	00.0018 ± 0.0006	00.0016 ± 0.0004	00.0020 ± 0.0006	00.0014 ± 0.0005	00.0015 ± 0.0008
Dy164	00.0086 ± 0.0030	00.0077 ± 0.0022	00.0102 ± 0.0034	00.0066 ± 0.0028	00.0071 ± 0.0036
Ho165	00.0015 ± 0.0005	00.0013 ± 0.0004	00.0019 ± 0.0007	00.0012 ± 0.0005	00.0012 ± 0.0006
Er166	00.0033 ± 0.0013	00.0030 ± 0.0010	00.0044 ± 0.0016	00.0028 ± 0.0012	00.0027 ± 0.0013
Tm169	00.0005 ± 0.0002	00.0004 ± 0.0003	00.0006 ± 0.0002	00.0004 ± 0.0001	00.0003 ± 0.0001
Yb174	00.0033 ± 0.0013	00.0028 ± 0.0011	00.0046 ± 0.0019	00.0027 ± 0.0011	00.0026 ± 0.0012
Lu175	00.0004 ± 0.0001	00.0003 ± 0.0001	00.0005 ± 0.0002	00.0003 ± 0.0001	00.0003 ± 0.0001
Hf180	00.0088 ± 0.0028	00.0109 ± 0.0023	00.0118 ± 0.0059	00.0102 ± 0.0028	00.0106 ± 0.0039
Ta181	00.0037 ± 0.0017	00.0031 ± 0.0009	00.0064 ± 0.0028	00.0030 ± 0.0013	00.0034 ± 0.0019
Pb208	00.0034 ± 0.0018	00.0039 ± 0.0003	00.0072 ± 0.0042	00.0027 ± 0.0008	00.0020 ± 0.0012
Th232	00.0070 ± 0.0025	00.0082 ± 0.0020	00.0127 ± 0.0048	00.0059 ± 0.0017	00.0070 ± 0.0033
U238	00.0033 ± 0.0004	00.0022 ± 0.0009	00.0038 ± 0.0030	00.0016 ± 0.0007	00.0014 ± 0.0008

in an attempt to examine pottery that met numerous criteria. First, we wanted to examine pottery from sites located on different volcanic series on Tutuila Island. Second, we wanted to examine pottery from sites located on different islands across the Samoan archipelago. Third, we wanted to examine pottery from sites that were broadly contemporaneous; as such, an attempt was made to examine pottery taken from contexts that dated to between 2800 and 2300 BP, but we recognize that some samples were recovered from much better dated contexts than other samples.

4. Results

4.1. Tutuila clays

Prior to examining the geochemical variability of ceramic artifacts recovered on Tutuila Island, we needed to determine whether geochemical variation in Samoan clays is detectable using LA-ICP-MS as well as whether any detected variation is sufficient to differentiate between intra-island volcanic series. The results of the LA-ICP-MS characterization clearly differentiate between the seven clays from the three volcanic series (Table 2). Although the number of tile samples does not meet the minimal adequate sample size necessary to perform k-means cluster analysis or PCA, bivariate plots of different elements show that clays and volcanic series can be differentiated (Fig. 2), and that this differentiation is primarily driven by Co, Cr, Cu, Ni, Rb, V, and Zn. Examination of these bivariate plots show that specific elements can be used to distinguish between specific volcanic series; for example, Cu and Rb can be used to distinguish the Alofau series (Clay 619) from the Leone series (Clays 1197 and 1200).

Without studies focused on the clay collection and processing practices of prehistoric Samoan potters, we hesitate to claim that these specific clays were being used to produce the artifacts examined here. However, we are confident that our tile samples begin to represent the range of geological variability present in Tutuilan clays and are sufficient to examine whether or not LA-ICP-MS can be used to distinguish between clays from different volcanic series. The level of differentiation produced by this characterization is extremely encouraging for the application of this LA-ICP-MS toward examining intra-island pottery production provenance on Tutuila Island.

4.2. Production and distribution of pottery on Tutuila Island

We next analyzed 147 ceramic artifacts recovered from four archaeological sites on Tutuila Island. The first two principal components explain 82.01% of the variability observed in the LA-ICP-MS analyses. Four groupings can be observed on a bivariate plot of these two components (Fig. 3). The first, most distinct group consists of 32 artifacts from Vainu'u that clearly separate from the remainder of the samples and can be observed on the left side of Fig. 3. A second, less distinct group, observed along the upper Yaxis, contains the rest of the Vainu'u samples along with one sample from 'Aoa. A third, also less distinct, group in the lower right hand corner contains samples mainly from Ulu Tree, but also three samples from 'Aoa and two from Aganoa. The largest group, observed along the right side of the graph, contains samples from Ulu Tree, Aganoa, and 'Aoa.

A k-means 5-cluster solution was determined to be the best cluster solution (Kintigh and Ammerman, 1982). This solution groups the assemblage with three clusters dominated by samples from Vainu'u and two clusters both containing samples from Aganoa, 'Aoa, and Ulu Tree (Tables 2 and 3). Samples plotted by k-means cluster using the first two PCA components show comfortable agreement between the two methods (Fig. 4). Finally, bivariate plots suggest that clusters are driven by differences in Co, Cr, Cu, Fe, Rb, Ti, V, and Zn (Fig. 5; see also Fig. 9); for example, cluster 5 samples are relatively low in V and Rb when compared to samples from other clusters. Examination of PCA and k-means cluster results provides two clear patterns: the majority of the ceramic material from the highland site of Vainu'u is compositionally different than material from the other sites, and material from the other three sites cluster together. Each of these patterns is considered in turn.

The data presented here show that the majority of Vainu'u samples cluster together, with limited overlap with coastal site material. This suggests that pottery produced at Vainu'u was not being moved back and forth from Vainu'u to lowland sites. These findings are in agreement with previous investigations at the site. Although no direct evidence of pottery production was recovered from Vainu'u, petrographic data and refired paste color suggest that the pottery recovered was produced from nearby sources (Eckert and Welch, 2009). As such, Eckert and Welch argued that pottery at Vainu'u was being produced for on-site use.

Fig. 7. Bivariate plot showing differentiation of sherds by island. Values given are log - 10 oxide concentrations: (0) Ofu Island; (U) Upolu Island.

Two sherds recovered from Vainu'u, V008.140 and V013.83, are grouped in k-means cluster 2 (Table 3). This cluster is dominated by material from the three lowland sites. Examination of these two sherds on the PCA graph as well as on bivariate plots of different elements show that they do not separate out from the lowland material. We interpret this as suggesting that these two samples were made from the same suite of clays that sherds recovered from lowland sites were made. These two sherds may represent vessels that were produced at lowland sites, and were then brought to Vainu'u. If we can eventually trace the production provenance of these vessels with a larger compositional database of Tutuila pottery and raw clays, then we may gain a clearer idea of which lowland villages were associated with activities occurring at Vainu'u.

Pottery recovered from Ulu Tree, Aganoa and 'Aoa all seem to have been produced from the same two clay provinces as reflected by the k-means clusters (Table 3) and PCA graph (Fig. 3). These findings could reflect a variety of different behaviors. On the one hand, potters at different villages may have been using the same clay sources to produce their wares; on the other hand, pottery may have been produced at only one or two villages and then was moved between villages. A third alternative is that pottery was produced at multiple villages, but then moved between villages during feasts, life cycle events, or exchange. Without a larger compositional database of pottery and raw clays, and more detailed technological analyses of artifacts, we currently cannot distinguish between these three possibilities.

One ceramic sherd, AG704, recovered from Aganoa appears to be an anomaly. Although it clusters with the Vainu'u material in the k-means cluster analysis, it separates out at the central bottom portion of the PCA graph (Fig. 3). Chemically, what separates this sherd from the rest of the samples is a relatively low amount of V, Zn and Cr when compared to sherds from other villages. This sherd may have been produced from the clay on Tutuila Island that is not well represented in the data set, or it may have been produced off island. This latter possibility is explored in the next section.

4.3. Production and distribution of pottery across the Samoan archipelago

To examine evidence for movement of pottery between islands in the Samoan archipelago, we added 8 sherds from Upolu Island and 15 sherds from Ofu Island to the Tutuila database. The first two

Fig. 8. Bivariate plot showing placement of two sherds recovered on Tutuila island but clustered with sherds from Ofu and Upolu islands in the k-means 5-cluster solution. Values given are log - 10 oxide concentrations: (O) Ofu Island; (U) Upolu Island; (A) 'Aoa site on Tutuila Island; (G) Aganoa site on Tutuila Island.

principal components of the PCA account for only 54.51% of the variability observed in the LA-ICP-MS data, and the first three principal components of the PCA only account for 64.09%. Despite these low percentages, sherds collected from Ofu Island and Upolu Island do group toward the top of a bivariate plot of the first two PCA components (Fig. 6). A k-means 5-cluster solution separates the Ofu and Upolu material from the Tutuila material, but combines these two islands into the same cluster (Table 4). The PCA graph suggests that these two islands may be distinguishable from one another if examined separate from the Tutuila material (Fig. 6). However, if we exclude the Tutuila data, we do not have a sample size large enough to perform k-means analysis or PCA. As such, we examined bivariate plots and found that specific elements can be used to separate Ofu and Upolu ceramic material. For example, material from Ofu is relatively high in Rb and relatively low in V

when compared to material from Upolu (Fig. 7a); similarly, material from Ofu is relatively high in Ba and relatively low in U when compared to material from Upolu (Fig. 7b). In other words, these elements can be used to distinguish material from Ofu Island and Upolu Island.

Three anomalous samples need to be addressed: AG704 recovered from Aganoa on Tutuila Island, AoaAS11 recovered from 'Aoa on Tutuila Island, and Vaoto871 recovered from Va'oto on Ofu Island. On the PCA plot, each of these samples lie to the far left of the graph, suggesting that they may be compositionally different than the majority of the material analyzed. The two ceramic samples recovered from sites on Tutuila Island are grouped with the material from Upolu and Ofu in the k-means cluster analysis (Table 4), tentatively suggesting these two sherds may have been produced on one of these two islands. We compared the two

Fig. 9. Bivariate plot of log - 10 oxide concentrations for V and Ti showing differentiation of Tutuila sherds by k-means 5-cluster solution along with placement of sherd recovered from the site of Va'oto on Ofu island: (O) sample Vaoto871; (1) cluster 1 dominated by Tutuila coastal sites; (2) cluster 2 dominated by Tutuila coastal sites; (3) cluster 3 dominated by Vainu'u; (4) cluster 4 dominated by Vainu'u; (5) cluster 5 dominated by Vainu'u.

anomalous samples recovered from Tutuila Island on bivariate plots using those elements identified above as distinguishing between material from Ofu Island and Upolu Island (Fig. 8). These plots show that, despite their k-means cluster assignment, these two samples do not group with either the Ofu material or Upolu material and therefore cannot be comfortably identified as having been produced on either of these islands. These two sherds are produced from clays that are not well represented in the data set and, as such, cannot be assigned a production provenance without further data.

Vaoto871, recovered from Ofu Island, is grouped with material from Tutuila Island in the k-means cluster analysis (Table 4). When examined with the Tutuila material using elements identified as those that can distinguish between Vainu'u and lowland sites, this sample clearly groups with the coastal village material (Fig. 9). As such, this sample may represent a vessel that was moved from a coastal village on Tutuila Island to Va'oto on Ofu Island. Although this sample is the only evidence for the movement of pottery between islands, residents from different islands may have been interacting through activities that did not require pottery, or offislanders were not obligated to bring goods that required pottery for transportation. Due to the availability of workable clay on islands throughout the Samoan archipelago as well as the low level of skill required to produce plain ware vessels, pottery was probably not an exchange good in high demand.

5. Discussion and conclusions

Using LA-ICP-MS, we can confidently distinguish between different clay formations on a single island in the Samoan archipelago. The above analysis shows that both experimental tiles made from wild clays and ceramic artifacts recovered from archaeological sites can be differentiated. Pottery recovered from sites on Tutuila Island have different patterns of distribution: pottery from lowland sites were made from the same suite of clays and may have been moving between villages through various social events, while pottery from a highland site was made from a different suite of clays and does not appear to have been distributed far from the site. Despite limitations placed on this study by sample size and chronological control, these findings provide more detail concerning the intra-island production and distribution of pottery than petrography alone. Unfortunately, greater chronological control and more detailed technological analyses are needed to confidently interpret these patterns.

In terms of inter-island interaction, our LA-ICP-MS analyses confirm previous petrographic studies (Clark and Michlovic, 1996; Dickinson, 1969, 1993, 2006; Eckert, 2006; Eckert and Pearl, 2006; Eckert and Welch, 2009) suggesting that pottery was being made on all three Samoan Islands examined here. Further, we found only limited evidence for movement of pottery between islands. One sherd recovered from a site on Ofu shared compositional characteristics with sherds recovered from a site on Tutuila and is interpreted as having been moved between these two islands. Clearly, data from more sites representing the entire 1500+ years of pottery production is necessary to see if this one sherd is evidence of an uncommon event, or if movement of pottery was more common in some periods, or between some islands, than others.

Examination of pottery from multiple islands allow us to conclude that LA-ICP-MS can provide the type of data that we seek, and may be a viable geochemical technique at other volcanic islands in the Pacific. However, results must be considered using multiple statistical techniques and an understanding of the geological context. LA-ICP-MS analyses provide archaeologists with the potential to test hypotheses concerning ceramic manufacture and distribution that has not previously been achieved in Samoan ceramic studies. A larger database of both clays and sherds from multiple sites on multiple islands, along with better chronological control, is necessary to thoroughly take advantage of this potential.

Acknowledgments

Fieldwork and laboratory analyses were funded with assistance from the Wenner-Gren Foundation (Grant #7780), Program for the Enhancement for Scholarly and Creative Activities at Texas A&M University, the National Parks Service, and the National Science Foundation (Grant #0911326). Jeff Clark at the University of North Dakota and Phil Johnson at ASPA generously provided ceramic samples. Daniel Welch, Phil Johnson, David Herdrich and three anonymous reviewers provided comments on various ideas presented in this article that greatly enhanced our work.

References

- Addison, D.J., Asaua, T.S., 2006. One hundred new dates from Tutuila and Manu'a: additional data addressing chronological issues in Samoan prehistory. The Journal of Samoan Studies 2, 95–117.
- Addison, D.J., Tago, T., Toloa, J., Pearthree, E., 2006. Ceramic deposit below 5th–6th century AD volcanic ash fall at Pava'ia'i, Tutuila Island, American Samoa: preliminary results. New Zealand Journal of Archaeology 27, 5–18.
- Addison, D.J., Toloa, J., Tago, T., Vaueli, S., 2008. Samoan plain ware ceramics on Tutuila Island, American Samoa: some thoughts on their spatial and chronological distribution. In: Addison, D.J., Sand, C. (Eds.), Recent Advances in the Archaeology of the Fiji/West-Polynesia Region. University of Otago Studies in Prehistoric Anthropology No. 21, Department of Anthropology, Gender and Sociology, University of Otago, Dunedin, New Zealand, pp. 97–115.
- American Samoa Historic Preservation Office, 2009. Culture History of American Samoa. http://www.ashpo.org/history.htm.
- Baxter, M.J., 1994. Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press, Edinburgh.
- Baxter, M.J., 2003. Statistics in Archaeology. John Wiley & Sons, London.
- Bishop, R.L., Rands, R.L., Holley, G.R., 1982. Ceramic compositional analysis in archaeological perspective. In: Schiffer, M.B. (Ed.), Advances in Archaeological Method and Theory No. 5. Academic Press, New York, pp. 275–330.
- Burley, D.V., Nelson, D.E., Shutler Jr., R., 1995. Rethinking tongan lapita chronology in Ha'apai. Archaeology in Oceania 30, 132–134.
- Clark, J.T., 1996. Samoan prehistory in review. In: Davidson, J.M., Irwin, G., Pawley, A., Brown, D. (Eds.), Oceanic Culture History: Essays in Honour of Roger Green. New Zealand Journal of Archaeology Special Publication, pp. 445–460.
- Clark, J.T., Michlovic, M.T., 1996. Early settlement in the polynesian homeland: excavations at 'Aoa valley, Tutuila Island, American Samoa. Journal of Field Archaeology 23, 151–167.
- Clark, J.T., Sheppard, P., Jones, M., 1997. Late ceramics in Samoa: a test using hydration-rim measurements. Current Anthropology 38, 898–904.
- Clark, J. T., Herdrich, D. J., 1988. The Eastern Tutuila Archaeological Project: 1986 Final Report. Report prepared for the American Samoa Historic Preservation Office, Pago Pago, Tutuila, American Samoa.
- Cochrane, E.E., Neff, H., 2006. Investigating compositional diversity among Fijian ceramics with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS): implications for interaction studies on geologically similar islands. Journal of Archaeological Science 33, 378–390.
- Cogswell, J.W., Abbott, D.R., Miksa, E.J., Neff, H., Speakman, R.J., Glascock, M.D., 2005. A provenance study of Hohokam schist-tempered pottery and raw materials from the middle Gila River Valley, Arizona: techniques and prospects. In: Speakman, R.J., Neff, H. (Eds.), Laser Ablation-ICP-MS in Archaeological Research. University of New Mexico Press, Albuquerque, pp. 105–116.
- Costin, C.L., 1991. Craft specialization: issues in defining, documenting, and explaining the organization of production. In: Schiffer, M.B. (Ed.), Advances in Archaeological Method and Theory No. 3. University of Arizona Press, Tucson, pp. 1–56.
- Costin, C.L., 2005. Craft production. In: Maschner, J.D.G. (Ed.), Handbook of Archaeological Methods. AltaMira, Walnut Creek, pp. 1034–1107.
- Costin, C.L., 2007. Thinking about production: phenomenological classification and lexical semantics. Archaeological Papers of the American Anthropological Association 17 (1), 143–162.
- Costin, C.L., Hagstrum, M.B., 1995. Standarization, labor investment, skill, and the organization of ceramic production in late prehispanic highland Peru. American Antiquity 60 (4), 619–639.
- Davidson, J.M., 1979. Samoa and Tonga. In: Jennings, J.D. (Ed.), The Prehistory of Polynesia. Harvard University Press, Cambridge, pp. 82–109.
- Descantes, C., Neff, H., Glascock, M.D., Dickinson, W.R., 2001. Chemical characterization of micronesian ceramics through instrumental neutron activation analysis: a preliminary provenance study. Journal of Archaeological Science 28, 1185–1190.
- Dickinson, W.R., 1969. Temper sands in prehistoric potsherds from Vailele and Falefa, Upolu. In: Green, R.C., Davidson, J.M. (Eds.), Archaeology in Western Samoa: Volume I. Bulletin 6. Auckland Institute and Museum, Auckland, pp. 271–273.
- Dickinson, W.R., 1993. Sand temper in prehistoric potsherds from the To'aga site. In: Kirch, P.V., Hunt, T.L. (Eds.), The To'aga Site: Three Millennia of Polynesian Occupation in the Manu'a Islands, American Samoa. University of California Archaeological Research Facility No. 51, Berkeley, pp. 151–156.
- Dickinson, W.R., 2006. Temper sands in prehistoric oceanian pottery: geotectonics, sedimentology, petrography, and provenance. The Geological Society of American Special Paper 406 Boulder.
- Dickinson, W.R., 2007. Upolu (Samoa): perspective on island subsidence from volcano loading. The Journal of Island and Coastal Archaeology 2 (2), 236–238.

- Dickinson, W.R., Green, R.C., 1998. Geoarchaeological context of holocene subsidence at the ferry, berth Lapita site, Mulifanua, Upolu, Samoa. Geoarchaeology 13 (3), 239–263.
- Dodgshon, R.A., Gilbertson, D.D., Grattan, J.P., 2000. Endemic stress, farming communities and the influence of Icelandic volcanic eruptions in the Scottish highlands. In: McGuire, W.G., Griffiths, D.R., Hancock, P.L., Stewart, I.S. (Eds.), The Archaeology of Geological Catastrophes. The Geological Society of London, London, pp. 267–280.
- Eckert, S.L. 2006. Ancestral polynesian plain ware production and technological style: a view from Aganoa, Tutuila Island, American Samoa. The Journal of Samoan Studies 2, 65–73.
- Eckert, S.L., Pearl, F.S., 2006. Report on analysis of polynesian plain ware from the Ulu Tree site, on the island of Tutuila, American Samoa. The Journal of Samoan Studies 2, 75–86.
- Eckert, S.L., Welch, D.R., 2009. Excavations at Vainu'u (AS-32-016): a Multi-Component Highland Site Near Tuaolo Village, Tutuila Island, American Samoa. Report Submitted to the National Park Service and American Samoa Historic Preservation Office. American Samoa Government, Pago Pago.
- Grattan, J.P., Torrence, R., 2007. Beyond gloom and doom: the long-term consequences of volcanic disasters. In: Grattan, J.P., Torrence, R. (Eds.), Living under the Shadow: The Cultural Impacts of Volcanic Eruptions. Left Coast Press, Walnut Creek, pp. 1–18.
- Gratuze, B., 1999. Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the near east: sources and distribution of Obsidian within the Aegean and Anatolia. Journal of Archaeological Science 26, 869–881.
- Gratuze, B., Blet-Lemarquand, M., Barrandon, J.N., 2001. Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. Journal of Radioanalytical and Nuclear Chemistry 247, 645–656.
- Green, R.C., 1974. Pottery from the lagoon at Mulifanua, Upolu. In: Green, R.C., Davidson, J.M. (Eds.), Archaeology in Western Samoa: Volume II. Bulletin 7. Auckland Institute and Museum, Auckland, pp. 170–175.
- Green, R.C., Davidson, J.M. (Eds.), 1969. Archaeology in Western Samoa: Volume I. Bulletin 6. Auckland Institute and Museum, Auckland.
- Green, R.C., Davidson, J.M. (Eds.), 1974. Archaeology in Western Samoa: Volume II. Bulletin 7. Auckland Institute and Museum, Auckland.
- Hawkins Jr., J.W., Natland, J.H., 1975. Nephelinites and basanites of the Samoan linear volcanic chain: their possible tectonic significance. Earth and Planetary Science Letters 24, 427–439.
- Hiroa, T.R., 1930. Samoan Material Culture. In: Bernice P. Bishop Museum Bulletin 75 Honolulu (originally published under the name Peter H. Buck).
- Hood, D., 2007a. Radiocarbon Dating Results For Samples AGANOA: FS942, AGA-NOA: FS981, AGANOA: FS986A, AGANOA: FS1019A, AGANOA: FS1019B, AGA-NOA0392, AGANOA0398, AGANOA0691, AGANOA0831, AGANOA1073, AGANOA0986B. Letter on file at ASHPO, Pago Pago, American Samoa.
- Hood, D., 2007b. Radiocarbon Dating Results For Samples AGANOA0098, AGA-NOA0355, AGANOA0871, AGANOA0955. Letter on file at ASHPO, Pago Pago, American Samoa.
- Hood, D., 2008. Radiocarbon Dating Results For Samples AS-13-13-108, AS-13-13-854, AS-13-13-1282, PAVAIAI006. Letter on file at ASHPO, Pago Pago, American Samoa.
- Hunt, T.L., Erkelens, E., 1993. The To'aga ceramics. In: Kirch, P.V., Hunt, T.L. (Eds.), The To'aga Site: Three Millennia of Polynesian Occupation in the Manu'a Islands, American Samoa. University of California Archaeological Research Facility No. 51, Berkeley, pp. 123–148.
- Irwin, G., 1992. The Prehistoric Exploration and Colonization of the Pacific. Cambridge University Press, Cambridge.
- Jennings, J.D., Holmer, R. N., 1980. Archaeological Excavations in Western Samoa. Pacific Anthropological Records 32, Honolulu, Hawaii.
- Jennings, J.D., 1974. The ferry berth site, Mulifanua district, Upolu. In: Green, R.C., Davidson, J.M. (Eds.), Archaeology in Western Samoa: Volume II. Bulletin 7. Auckland Institute and Museum, Auckland, pp. 176–178.
- Johnson, L.L., 2002. Natural disasters and culture change in the Shumagin Islands. In: Torrence, R. (Ed.), Natural Disasters and Cultural Change. Routledge, London, pp. 193–203.
- Johnson, P.R., Pearl, F.B., Eckert, S.L., James, W.D., 2007. INAA of pre-contact basalt quarries on the Samoan Island of Tutuila: a preliminary baseline. Journal of Archaeological Science 34, 1078–1086.
- Kear, D., Wood, B.L., 1959. The Geology and Hydrology of Western Samoa. In: New Zealand Geological Survey Bulletin, 63.
- Kear, D., Kammer, D., Brands, C.D.L., 1981. The hydrogeology of western Samoa. In: Dale, W.R. (Ed.), Pacific Island Water Resources. New Zealand Department of Scientific and Industrial Research, pp. 75–85. South Pacific Tech Investment 2.
- Kintigh, K.W., Ammerman, A., 1982. Heuristic approaches to spatial analysis in archaeology. American Antiquity 47, 41–63.
- Kirch, P.V., 1984. The Evolution of Polynesian Chiefdoms. Cambridge University Press, Cambridge.
- Kirch, P.V., 2000. On the Road of the Winds. University of California Press, Berkeley. Kirch, P.V., Green, R.C., 2001. Hawaiki, Ancestral Polynesia. Cambridge University Press, Cambridge.
- Kirch, P.V., Hunt, T.L., 1993. Synthesis and interpretations. In: Kirch, P.V., Hunt, T.L. (Eds.), The To'aga Site: Three Millennia of Polynesian Occupation in the Manu'a Islands, American Samoa. University of California Archaeological Research Facility No. 51, Berkeley, pp. 229–245.
- Kornbacher, K.D., 2002. Horsemen of the Apocalypse: the relationship between sever environmental perturbations and culture change on the north coast of

Peru. In: Torrence, R. (Ed.), Natural Disasters and Cultural Change. Routledge, London, pp. 204–234.

- Larson, D.O., Sakai, S., Neff, H., 2005. Laser ablation-inductively coupled plasmamass spectrometry (LA-ICP-MS) as a bulk chemical characterization technique: comparison of LA-ICP-MS, digestion-ICP-MS, and INAA data on virgin branch anasazi ceramics. In: Speakman, R.J., Neff, H. (Eds.), Laser Ablation-ICP-MS in Archaeological Research. University of New Mexico Press, Albuquerque, New Mexico, pp. 95–104.
- Mathien, F.J., 2001. The organization of turquoise production and consumption by the prehistoric chacoans. American Antiquity 66, 103–118.
- McCoy Jr., F.W., 1965. The geology of Ofu and Olosega Islands, Manu'a Group, American Samoa. Unpublished MA thesis, Department of Geology, University of Hawaii.
- McDougall, I., 1985. Age and evolution of the volcanoes of Tutuila, American Samoa. Pacific Science 39, 311–320.
- Moore, J. R., Kennedy, J., 2003. Results of an Archaeological Cultural Resource Evaluation for the East and West Tutuila Water Line Project, Tutuila Island, American Samoa. Draft report prepared for the American Samoa Power Authority. Haleiwa, Hawaii; Archaeological Consultants of the Pacific.
- Mills, B.J., Crown, P.L., 1995. ceramic production in the American Southwest: an introduction. In: Mills, B.J., Crown, P.L. (Eds.), Ceramic Production in the American Southwest. University of Arizona Press, Tucson, pp. 1–29.
- Natland, J.H., 1980. The progression of volcanism in the Samoan linear volcanic chain. American Journal of Science 280A, 709–735.
- Natland, J.H., Turner, D.L., 1985. Age progression and petrological development of Samoan shield volcanoes: evidence from K–Ar ages, lava compositions, and mineral studies. In: Brocher, T.M. (Ed.), Investigations of the Northern Melanesian Borderland. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 3, pp. 139–171. Houston.
- Neff, H., 2003. Analysis of Mesoamerican plumbate pottery surfaces by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Journal of Archaeological Science 30, 21–35.
- Neff, H., Glowacki, D.M., 2002. Ceramic source determination by instrumental neutron activation analysis in the American Southwest. In: Glowacki, D.M., Neff, H. (Eds.), Ceramic Production and Circulation in the Greater Southwest. The Cotsen Institute of Archaeology, University of California, Los Angeles, pp. 1–14.
- Nunn, P.D., 1998. Pacific Island Landscapes: Landscape and Geological Development of Southwest Pacific Islands, Especially Fiji, Samoa, and Tonga. Institute of Pacific Studies, The University of the South Pacific, Fiji.
- Orton, C., Tyers, P., Vince, A., 1993. Pottery in Archaeology. Cambridge University Press, Cambridge.
- Pawley, A.K., 1966. Polynesian languages, a subgrouping based on shared innovations in morphology. Journal of the Polynesian Society 75, 39–64.
- Pawley, A.K., Ross, M.D., 1993. Austronesian historical linguistics and culture history. Annual Review of Anthropology 22, 425–459.

- Petchey, F.J., 2001. Radiocarbon determinations from the Mulifanua Lapita site, Upolu, western Samoa. Radiocarbon 43, 63–68.
- Rice, P., 1987. Pottery Analysis: a Sourcebook. University of Chicago Press, Chicago. Rieth, T.M., Hunt, T.L., 2008. A radiocarbon chronology for Samoan prehistory. Journal of Archaeological Science 35, 1901–1927.
- Rieth, T.M., Morrison, A.E., Addison, D.J., 2008. The temporal and spatial patterning of the initial settlement of Samoa. Journal of Island and Coastal Archaeology 3, 214–239.
- Sheets, P., 2007. People and volcanoes in the Zapotitan valley, El Salvador. In: Grattan, J.P., Torrence, R. (Eds.), Living under the Shadow: The Cultural Impacts of Volcanic Eruptions. Left Coast Press, Walnut Creek, pp. 67–89.
- Shennan, S., 1997. Quantifying Archaeology. Academic Press, New York.
- Shepard, A.O., 1956. Ceramics for the Archaeologist. Publication 609. Carnegie Institution of Washington, Washington, D.C.

Shutler Jr., R., Shutler, M.E., 1975. Oceanic Prehistory. Cummings Publishing, Menlo Park.

- Sidle, R.C., Ziegler, A.D., Negishi, J.N., Nik, A.R., Siew, R., Turkelboom, F., 2006. Erosion Processes in Steep Terrain - Truths, Myths, and Uncertainties Related to Forest Management in Southeast Asia. Forest and Ecology Management 224, 199–225.
- Smith, A., 2002. Archaeology of West Polynesian prehistory terra australis: The Research and its Contexts. Pandanus Books. Australian National University.
- Speakman, R.J., Neff, H., 2005. The application of laser ablation-icp-ms to the study of archaeological materials—an introduction. In: Speakman, R.J., Neff, H. (Eds.), Laser Ablation-ICP-MS in Archaeological Research. University of New Mexico Press, Albuquerque, New Mexico, pp. 1–16.
- Stearns, H.T., 1944. Geology of the Samoan Islands. Bulletin of the Geological Society of America 55, 1279–1332.
- Stice, G.D., 1981. Geology. In: Atlas of American Samoa. U.S. Office of Coastal Zone Management, American Samoan Government, and Department of Geography, University of Hawaii, Honolulu.
- Stice, G.D., McCoy Jr., F.W., 1968. The geology of the Manu'a Islands, Samoa. Pacific Science 22, 426–457.
- Torrence, R., Doelman, T., 2007. Chaos and selection in catastrophic environments: Willaumez Peninsula, Papua New Guinea. In: Grattan, J.P., Torrence, R. (Eds.), Living under the Shadow: The Cultural Impacts of Volcanic Eruptions. Left Coast Press, Walnut Creek, pp. 42–66.
- Torrence, R., Pavlides, C., Jackson, P., Webb, J., 2000. Volcanic disasters and cultural discontinuities in holocene time, in west New Britain, Papua New Guinea. In: McGuire, W.G., Griffiths, D.R., Hancock, P.L., Stewart, I.S. (Eds.), The Archaeology of Geological Catastrophes. The Geological Society of London, London, pp. 225–244.
- Walker, G.P.L., Eyre, P.R., 1995. Dike complexes in American Samoa. Journal of Volcanology and Geothermal Research 69, 241–254.
- Weisler, M.I., 1998. Hard evidence for prehistoric interaction in polynesia. Current Anthropology 29 (4), 521–532.