3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

Conceptualisation of a learning environment for
programming through an analysis of the underlying
research issues in teaching programming

Toana Tuugalei Chan Mow

Computing department
National University of Samoa
Apia, Samoa
i.chanmow@nus.edu.ws

Abstract- This paper provides insights into the underlying
research on issues in teaching introductory programming at
university which gave rise to the conceptualisation of the CABLE
model a learning environment for teaching computer
programming trialed at the National University of Samoa over a
period of 3 years. The paper describes why students find
programming difficult. From analysis of the research, potential
solutions are proposed. These solutions form the basis of
recommendations for the conceptualization and establishment of
a model of a learning environment called CABLE. Findings from
the analyses of research on issues in teaching programming are
also used as recommendations on methodology and
implementation details of the proposed pedagogical model.

CABLE;
modelling;

Keywords-programming; computer programming;
collaborative learning; cognitive apprenticeship;
metacognition; computer mediated communication

I. INTRODUCTION (HEADING 1)

“Computer science educators have shown growing concern
over the difficulties with which novice Computer programmers
learn programming principleS. Computer programming is a
challenging subject area which places a heavy cognitive load
on students [1 - 3]. Most novice programmers have had little or
no previous experience in programming and takes on average
10 years for a novice to be proficient in programming [4]. This
paper describes why students find programming challenging
and then recommends potential solutions from which the
proposed pedagogical model CABLE is conceptualized. From
these recommendations the components of CABLE are then
proposed and put together to formulate the CABLE learning
environment. This learning environment was then trialed over a
period of 3 years in programming courses at the National
University of Samoa.

Wing Au; Gregory Yates
School of Education
University of South Australia
Adelaide, Australia
wing.au@unisa.edu.au; gregory.yates@unisa.edu.au

IL. ISSUES AND DIFFICULTIES IN LEARNING PROGRAMMING

A. Cognitive requirements of programming

Programming requires students to hold a wide range of
information in working memory. These include the details of
syntax and semantics specific to the programming language
being used, some mental model of how to solve each problem,
and the ability to differentiate between solving the problem and
specifying the solution [5]. Computer programming also
requires that the user be proficient in the use of (a) the
development environment, (b) the programming language, and
(c) compiler/interpreter, which are separate levels of the
programming interface that the user must master in order to
program successfully [5] ;[6]. Consequently, these demands
would impose a heavy cognitive load on the student, making
the learning of programming a complex and cognitively
challenging task.

B. Precision

Another factor which contributes to the difficulty in
learning programming is precision [7]. In programming, every
eventuality and possibility must be taken into account and
catered for. Such a level of precision is likely to be challenging
for the novice programmer, and extremely demanding for those
who are not accustomed to it.

C. Mental Models

The task of programming involves the construction of
several mental models [8]. Firstly, computer programs are
usually written as a solution to some problem, and it is obvious
that an understanding or mental model of this problem domain
needs to be established before there is any attempt to write an
appropriate program [9]. The programmer must also develop a
mental model of the program itself and how it will be executed
[2L:[51; [9]. Learners are successful if they can construct viable
models that match the design models of computer
programming elements.

3rd Annual International Conference on Computer Science Education:

Innovation & Technology (CSEIT 2012)
Copyright © GSTF 2012

ISSN: 2251-2195

doi: 10.5176/2251-2195_CSEIT12.42

103

© 2012 GSTF

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

D. Lack of Direct Manipulation

A programming language differs from a typical user
interface in that it is less immediate and more complex. Most
programming languages require learners to carry out a number
of actions in editing, compilation, and execution before a
feedback is obtained. In most programming languages (with
the exception of visual languages), only some statements in a
programming language have clear and immediate feedback
(mostly output statements), and the feedback is only immediate
if the language is interactive. The actual programming model is
not continuously presented to the learner at the interface and
the learning process is interrupted. Furthermore, the situation in
which the program is to be executed may not be available for
inspection, because it may be in the future, or because the
program may be applied to a greater range of data situations
than are currently visible to the programmer. This lack of direct
manipulation in programming systems has been identified as
one of the factors contributing to the difficulty of
programming, and a source of frustration to novice
programmers [7]; [8].

E. Hard Mental Operations

The complexity of programming is a contributing factor to
its challenging nature and "hard mental operations" refers to
concepts which are complex and cognitively challenging [5]. In
computer programming, these complex operations are almost
unavoidable as there are many concepts in programming which
are difficult for students to master, and which require them to
think in unfamiliar and complex ways. Examples of hard
mental operations for novice programmers include iterations,
recursion and optimization problems. Formulation of effective
instructional strategies such as scaffolding, coaching, and
modeling [9]; [10] is needed to help students master such
complex and mentally challenging operations.

111

Because of the complexity and abstract nature of
computer programming, good instructional methods in
teaching computer programming, is vital. This need for better
instructional methods is also reinforced and reiterated by [11],
[12] and [13]. Support for the need for focused research in the
area of instructional approaches, is also evident in the final
report of the Joint Task Force on Computing Curricula, IEEE
Computer Society, Association for Computing Machinery,
Computing Curricula,[14].Specifically,[14], highlighted the
need for “a range of strategies that have been validated by
practice”, the need for “pedagogical innovation for continued
success” and also encouragement for ‘“continued
experimentation” in this area.

From our current review of the literature, potential
solutions have emerged which can be used in the construction
of a pedagogical model and also provide justification of the
need for such an innovation. These potential solutions and
recommendations are listed below.

THE CASE FOR A PEDAGOGICAL MODEL

104

IV. POTENTIAL SOLUTIONS AND RECOMMENDATIONS FOR
THE FORMULATION OF A PEDAGOGICAL MODEL

A. Cognitive Apprenticeship

The literature has established the cognitively
demanding nature of computer programming [3]; [5]; [7], and
with it the need for instructional strategies to accommodate or
alleviate the heavy cognitive load. Studies have suggested
cognitive apprenticeship and collaborative learning, as best
practices for improving higher order learning and critical
thinking skills [15- 16]. Cognitive apprenticeship is a model of
instruction that involves the effective communication of
domain knowledge in such a way that the students become
aware of the thought processes involved in knowledge
construction within that domain [17]. Cognitive apprenticeship
is directed at teaching processes that experts use to handle
complex tasks, and is characterized by a number of teaching
methods [18]. The first of these, is modeling where the teacher
models his or her thought processes in solving problems within
a domain [19]. The second of these methods is guided practice
or coaching where the student attempts to solve the problems
for themselves with the support of the teacher to answer
specific queries. A third method is scaffolding, where the
teacher assists students to manage complex task performance
and then gradually withdraws support from the student
(fading). Other key components of this approach are
articulation, where the student attempts to articulate their
problem solving strategies; reflection, where the students are
encouraged to reflect on how they approached tasks and solved
problems, possibly by discussion with other students and,
finally, exploration which is intended to encourage learner
autonomy and problem formulation by students.

B. Collaborative Learning

Another instructional strategy that is gaining
prominence as an effective teaching method is collaborative
learning. There are many approaches to collaborative learning
but all have the following characteristics in common [7]. Tt is a
learning activity suitable for group work; it is small group
based (usually 2-5); it has tasks which encourage cooperative
behavior; it is characterized by student interdependence;
individual student accountability and responsibility for task
completion. The need for group support for students learning
programming is well documented [20]. This is important for
two reasons. Firstly, studies have shown the benefits of
collaborative learning on learning computer programming [20].
Secondly, most programming in real world situations is done in
teams and hence identifies the need for exposure of students to
team work. The benefits of group work is also supported by
studies on “pair programming1” [21];[22] and also the use of
computer supported collaborative environments for
programming [23].

! Writing the source code of a program in teams of two. Also called
"peer programming,"

© 2012 GSTF

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

C. Suitability of Cognitive Apprenticeship and Collaborative
Learning as primary components of the Pedagogical
Model

The suitability of cognitive apprenticeship and
collaborative learning as instructional approaches for teaching
programming is premised on several factors. Firstly, these
pedagogical practices are based on sound educational theories
[16 - 17]. Underlying both collaborative learning and cognitive
apprenticeship is Constructivism theory, Problem based
learning and Vygotsky's social constructivism and the concept
of guidance and collaboration in the zone of proximal
development (ZPD). Secondly, both are supposed to stimulate
cognitive and metacognitive processes in student learning.
Thirdly, these practices allegedly promote social interactions
which is claimed to foster the learning process [12];[19].
Finally, both practices are consistent with the Vygotskian
notion of scaffolding, which is seen as vital in teaching of
cognitively challenging tasks [10];[12].

From an analysis of research on areas of difficulty in
the teaching of programming recommendations on instructional
strategies which could overcome these challenges include
teacher mediation, the wuse of scaffolding, coaching,
articulation, modeling, visualization techniques, the use of the
debugger facility, advanced organizers, multiple and worked
examples. These recommendations all point to the suitability of
cognitive apprenticeship and collaborative learning as
components of the proposed pedagogical model.

D. Effective Teacher Mediation

Effective teacher mediation is necessary for improved
programming ability [24 - 25]. Effective teacher intervention
takes the form of: (a) selecting and creating tasks designed to
achieve educational goals; (b) focusing students’ attention on
particular aspects of their experience; (c) providing formal
mathematical language for the mathematical concepts; (d)
emphasizing planning for algorithm development, (e)
suggesting paths to pursue; (f) providing metacognitive
prompts and asking higher-order questions; (g) facilitating
disequilibrium using computer feedback as a catalyst; (h)
providing tailored feedback regarding students’ problem-
solving efforts; (i) discussing errors and common
misunderstandings; (j) continually connecting the ideas
developed to those embedded in other contexts; (k) providing
modeling and coaching; and (1) promote both student—teacher
and student—student interaction.

E. Visualisation Techniques

Programming involves the loss of direct manipulation
of data and subsequently the lack of immediate feedback [5].
These two consequences indicate a need for learner support in
the form of visualization tools or techniques [26 - 27]. An
example of visualization tools is the use of the debugger
features and the variable stack feature of JBuilder, the
integrated developer environment (IDE) used in programming
courses at NUS. Visualization techniques can also be provided

105

in the form of coaching, modeling and scaffolding processes of
the cognitive apprenticeship approach. Hence, the visualization
of program execution via the step through features of the
JBuilder debugger, the visualization of the variable stack are all
useful features of the JBuilder environment which provide
learner support.

F. Strategies for Building Mental Models

The need for students to build good mental models of
both the problem and its solution [5] has been identified as
crucial in facilitating the transition from a novice to an expert.
Again, this points to the suitability of cognitive apprenticeship
as the idea of the expert modeling concepts to the novice and
the use of coaching, scaffolding, articulation, feedback and
reflection, are all conducive to building of good mental models
in a novice or apprentice. Other recommended strategies
include the use of advanced organizers, visualization
techniques, multiple and worked examples

G. Technological Solutions

The use of the computer as a communications tool in
the form of computer-mediated communications (CMC), such
as e-mail and websites has revolutionized the delivery of
instruction and provides an effective learning environment
[28]. The three main advantages to online learning are that
students (a) can choose their own pace of study, (b) are able to
organize their own schedule and not be tied to time and place,
and (c) can choose a pace of study independent of others.
Advantages of computer mediated communication (CMC) in e-
learning are as follows. Firstly with CMC learners acquire
knowledge within the context in which it is used. Secondly the
use of CMC eliminates the problem of transfer of knowledge
from the context of learning to the context of practice — situated
learning. The third advantage is the motivation provided by the
presence of a diverse real audience instead of just the teacher as
in a conventional classroom. Yet another advantage of CMC is
the provision for a more diverse range of people to interact.

For the proposed model, CMC techniques such as e-
mail, discussion forum, online notes, interactive quizzes and
bulletin boards can be used to electronically implement key
aspects of cognitive apprenticeship such as scaffolding,
coaching, modeling, and reflection. The use of a hybrid or
blended model is ideal as it uses online techniques to
supplement face-to-face interactions [28]. The hybrid model is
preferred over the online model as it is then possible to
maintain face-to-face communications but at the same time
utilize online techniques to provide learning independent of
time and place [28]. Since the intention is to integrate online
learning techniques as part of the proposed instructional model,
factors which may affect its effectiveness are (a) the cost and
access to the technology, (b) the reliability of the technology,
and (c) prerequisite skills, such as ability to use the online
software and good skills in reading and writing.

© 2012 GSTF

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

V. DEFINITION OF THE PEDAGOGICAL MODEL “CABLE”

The main argument of this paper is that effective
instruction is crucial for improving student performance in
computer programming. It is therefore appropriate at this stage
to define the CABLE model and its components. Although it is
based on the cognitive apprenticeship approach, the CABLE
model is further enhanced by incorporating the principles and
practice of collaborative learning. Furthermore elements of this
cognitive apprenticeship-based approach will be implemented
electronically by means of e-mail, bulletin board, online notes
and worked examples. This is referred to as tele-
apprenticeship. Hence CABLE is a hybrid model which uses
both face-to-face and online mode of delivery. The components
of CABLE are as follows:

o Cognitive apprenticeship (Modeling,
Coaching, Scaffolding, Articulation,
Reflection)

Computer-mediated communication(E-mail,
Bulletin board, Online resources)
Collaborative learning

A theoretical model for teaching programming has
now been established by combining a selection of best
practices from the literature. It is important to realize however,
that this is a theoretical model and the next step in the process
would be to define the implementation details or how this
theoretical model can be put into practice. The following
section will describe each of the components of CABLE and
how these components will be implemented.

VI. IMPLEMENTATION DETAILS OF CABLE

A. Modelling

One of the main distinguishing features of cognitive
apprenticeship is modeling. Within CABLE, the teacher being
the expert will provide modeling through a variety of
techniques. These include: (a) demonstrating object-oriented
programming concepts and skills, (b) creating programs with
classes and objects using certain problem solving heuristics,
and (c) demonstrating how to model JAVA applications by
stepping the students through the component processes. In
practical terms, modeling will be achieved by demonstrating
concepts on the blackboard, and by live demonstrations where
the lecturer uses a computer to create a program within the
integrated developer environment (IDE) while the students
observe the process through a data projector display.

B. Coaching

A second component of the CABLE approach is
coaching. This would be achieved in several ways: by the
lecturer giving expert coaching in class, by means of expert
help via e-mail, and also peer coaching from other students as
they collaborate in certain programming activities. Coaching
would also be facilitated by means of interactive online tests
[29].Students could test their level of knowledge and skills by
taking these tests and by clicking on a button, the test would be

graded and instant feedback of their test score will be returned.

106

C. Use of the Debugger

Another feature which facilitates coaching and
modeling is the use of the debugger utility of JBuilder, the
integrated developer environment for creating Java programs.
The coaching or modeling process is made more transparent by
the use of a debugger within the JAVA editor JBuilder. The
debugger allows students to step through any JAVA program
and allows the student to see the sequence of execution of the
JAVA program. More importantly it facilitates tracing of the
values of the attributes in a program as the program executes.
Hence, the debugger not only provides valuable feedback to the
student in the location and causes of program errors or bugs,
but also provides the learner with a visualization of the process
of execution of a computer program [6]; [30].

D. Contextualised Learning

Yet another feature of the cognitive apprenticeship
approach is situating abstract tasks in authentic contexts. In the
proposed research, JAVA programming will be taught within
the context of the systems development life cycle so that
students can see the process steps as integrated in a larger
context but can at the same time still focus on the individual
activity. Hence students would be given a problem in the form
of a requirements document and they would provide the
solution by proceeding through the various phases of the
systems development life cycle just as they would in a real life
situation or the workplace. Situated learning would also be
facilitated by means of collaboration in pairs for modeling
activities as in real life activities of software development are
actually carried out by a team of developers. To increase the
potential for transfer of problem solving skills across a
diversity of situations, students need to see and identify
similarities between problem contexts and the application of
approaches. Within the proposed model, this will be achieved
by the lecturer modeling the heuristics of instantiating objects
across a variety of situations and by emphasizing the
similarities between problem contexts and the application of
common approaches.

E. Articulation and Think Alouds

Another important feature of cognitive apprenticeship
is identifying the processes of the task and making them visible
to the students. In CABLE this would be achieved by the
lecturer modeling his thought processes by thinking out aloud.
The students would also be encouraged to think out loud as
they step through such processes as instantiating objects. This
will also be facilitated by means of posting online notes and
online sample solutions on the class website. [31] maintain that
familiarity with the language of a discipline and academic
genre is an important and defining factor in students’ ability to
read and write appropriately within the discipline. Research
conducted by [32] on effective instructional approaches in
computer programming have shown that modeling and
articulation of the expert’s thinking processes and the expert’s

© 2012 GSTF

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

use of language is very important and conducive to learning
computer programming. Hence, the articulation process is very
important in that it forces the issue of the correct use of expert
language or programming language by the students. The
lecturer would gradually withdraw the guidance (fading) when
students demonstrate they could now step through the process
with confidence. The learners would then be given more
complex tasks.

F. Individualised Feedback

In the CABLE approach, feedback is structured and is
given on a weekly basis. Feedback will be provided by an
online system where the lecturer provides individualized
feedback via individualized e-mails sent to and received from
each student. On a weekly basis, the students are expected to
send an e-mail to the lecturer, which answers several questions.
The first question requires them to describe what activities or
topics they had done during the week and to indicate how they
felt about their progress. The second and third question
requires them to describe any areas they are having problems
with, asking any questions they needed answers to. The last
question requires the student to reflect upon what they have
learnt and how useful they thought what they had learnt would
be to them. The lecturer would then respond to each student via
e-mail and it was hoped that this communication would not
only provide remediation, but also encourage students to reflect
on their work. From the individualized feedback, the lecturer
could gauge areas most students were having problems with
and use it to post some frequently asked questions (FAQs) and
their solutions on the class web-site, providing further feedback
and guidance to students in the class.

G. Metacognition

A second differentiating factor between CABLE and
the traditional approach is the cultivation of metacognition.
This can be facilitated by encouraging students to reflect on
their progress, problems encountered, what they had learnt, the
usefulness of what they had learnt and also by the articulation
of their thinking processes in the form of “think-alouds”.

H. Collaborative Learning

The third differentiating factor between the CABLE
and the traditional model is the incorporation of elements of
collaborative learning. With CABLE, coaching and mediation
would also be provided by a more capable peer as the students
are paired, with the more capable student collaborating with the
weaker student in carrying out their programming tasks in
class. The value and effectiveness of collaborative learning, in
fostering learning, is well documented in numerous studies
[33].

In addition to all the recommended components of the
CABLE model, the course reader was also revised to provide
additional assistance for the students. The notes were structured
so that Java programming was situated as part of the systems
development life cycle for the development of systems

(“programming in the large”). Secondly, the notes and

107

exercises had been structured to encourage the articulation of
steps in the Java activities such as those of instantiating an
object. This was to encourage students to use some problem-
solving heuristic to arrive at a solution. This was also aimed at
facilitating the students learning of the syntax and semantics of
Java.

VIL

This paper has described how from analysis of the
research on programming, potential solutions were proposed
which form the basis of recommendations for the
conceptualization and establishment of a model of an effective
learning environment called CABLE. Findings from the
analyses of research on issues in teaching programming were
also used as recommendations on methodology and
implementation details of the proposed pedagogical model.

In this paper, the transition from theoretical model to
practical approach is established with the definition of the
implementation details of the CABLE approach. The CABLE
environment was evaluated in a series of field trials (Projects 1,
2, and 3).). In Project 1 and Project 2, the CABLE approach
was evaluated by contrasting it with the traditional didactic
approach to university instruction. The main aim of Project 3,
however, was to evaluate the effectiveness of the learning
environment, based on self reporting by students on their levels
of engagement.

Students in both the CABLE and traditional groups
were given the same set of instructional materials in their
JAVA training, and participated in similar lectures and
practicum classes. The main differences between the two
approaches were: (a) the use of structured and individualized
feedback in CABLE by means of an email help desk, (b) the
provision of a rich meta-cognitive experience through
articulation and the use of “think alouds”, feedback from the
lecturers, careful scaffolding in terms of questions posed
throughout the study materials, and (c) structured collaboration
in class projects and activities.

In Project 1 and Project 2, the effectiveness of the
CABLE approach was evaluated using a post-test on computer
programming skills and problem solving skills. Student
attitudes towards the CABLE approach were evaluated using a
post-study questionnaire, test scores, student interviews, and
weekly feedback from the online helpdesk. In Project 3, levels
of student engagement were evaluated by self reporting
measures.

In Project 1, the results indicated that the CABLE
group performed better in the post-test than the traditional
group. Initial analysis based on the post-test indicated that
CABLE had advantaged high-ability more than low-ability
students. However, a more sensitive measurement using
hierarchical regression analyses indicated that CABLE had a
positive effect on achievement irrespective of ability level.
The treatment effect was significant and independent of
initialability level and gender.

Additional analyses, based on classifying items into
recall and elaborative categories revealed that the positive

IMPLEMENTATION

© 2012 GSTF

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

impact of the CABLE treatment was far stronger in the case of
examination items demanding of high-level problem-solving
cognition. This outcome indicates that the CABLE experience
could lead to improved problem-solving and critical thinking
skills. This supports earlier findings by Snyder Farrell and
Baker (2000), and Hogan and Tudge (1999), on the positive
effects of cognitive apprenticeship on problem-solving.
Hence, the results of Project 1 support the hypothesis that the
CABLE approach has positive effects on student achievement.

The results of Project 2 showed that students in the
CABLE group scored more highly in the post-test than those
in the traditional (non-CABLE) group. Hence these results
support the hypothesis that students exposed to CABLE
outperformed those taught in the traditional university mode.
No significant differences could be discerned between
CABLE and non-CABLE groups in student attitudes to the
learning environment (as indexed on PAS), as both groups
exhibited high levels of liking for their course instruction. In
terms of collaborative learning, students in the CABLE group
showed high levels of positive affect for collaborative
learning, and with the high-ability group showing a stronger
preference. The results were very similar to those in Phase 1.
High levels of liking for the online environment was
evidenced in the responses in the questionnaire, responses in
student interviews, and the evaluation using the Triple P
framework. There were no differences in the responses
between ability groups. Evaluation using the Triple P
framework indicated that in terms of the level of growth of the
online community, the online community in this phase had
progressed to stage three of the five stage model (Salomon’s
stages of growth) where students were involved in information
exchange using e-mail and the discussion forum. Hence, the
results support the hypothesis that students exposed to
CABLE exhibited positive feelings towards the online aspects
of the environment.

The results of Project 3 indicated that based on
ratings of 7 variables, that CABLE classes appeared to be
more strongly motivating than non-CABLE classes. There
were significant differences between the students in the two
treatments in terms of sense of reward and stimulation.

In summary the key findings of the CABLE trials are

as follows:
Finding 1: The CABLE model can be implemented as a viable
instructional model in the teaching of Java programming. This
confirms the possibility of making the transition from an
instructional model of CABLE to a viable learning
environment.

Finding 2: CABLE is a viable instructional model which can
be introduced into the normal conduct and administration of
university — programming courses, without apparent,
detrimental consequences.

Finding 3: Students exposed to CABLE evidenced increased
achievement on Java programming scores relative to those
taught in the traditional (non-CABLE) mode.

108

Finding 4: There were no significant differences in student
attitudes towards the learning environment, between students
taught with the CABLE model and those taught in the
traditional university mode of instruction.

Finding 5: Students taught programming in CABLE showed
positive attitudes towards the collaborative elements of
CABLE.

Finding 6: Students exposed to CABLE reported positive
evaluations towards the online learning elements of CABLE.

Finding 7: Students taught under CABLE reported higher
levels of mental engagement when compared to students
taught using traditional methods of course instruction

The actual trialing and evaluation of the CABLE
environment is the detailed subject of other papers: i) Chan
Mow, Au & Yates, 2004; ii) Chan Mow, Au & Yates, 2006;
and iii) Chan Mow, Au & Yates, 2008. The ultimate goal of
designing a learning environment such as CABLE, informed
by recent learning theories and design, is that it is hoped that an
effective learning environment will lead to improved teaching
and learning of computer programming within the university
context.

REFERENCES

[1] Chan Mow, LT (2006). The Effectiveness of Cognitive
Apprenticeship based Learning Environment (CABLE) in Teaching
Computer Programming. Unpublished PHD dissertation, University of
South Australia

Phit-Huan Tan, Choo-Yee Ting and Siew-Woei Ling (2009) Learning
difficulties in programming course: Undergraduates’ perspective and
perception. Proceedings of IEEE International. Conference on
Computing Technology and Development, 2, pp: 42-46.

[2]

(3]

Garner, S. (2006) Cognitive load reduction in problem solving domains,
Edith Cowan University, 2006.

Winslow. L.E. (1996) “Programming pedagogy- a psychological
overview”. SIGCSE Bulletin, Vol 28, pp.17-22.

Pane J.F, Myers, B.A.& Ko A. (2004) Natural programming languages
and environments. Communications of ACM 47(9),pp. 47-52

Bruce-Lockhart,M.P, Norvell T.S.& Cotronis, Y.(2007). “Program and
algorithm visualization in engineering and physics”. Electronic Notes in
Theoretical Computer Science, vol 178, pp. 111-119.

Blackwell, A.(2001). “First steps in programming: a rationale for
attention investment models”. Presented at I[EEE Symposia on Human-
Centric Computing Languages and Environments. Arlington, VA, pp.2-
10.

AKX, Lui,A K., Kwan,R., Poon, M, Cheung,Y.H.Y.(2004). < Saving
weak programming students: applying constructivism in a first
programming course”. SIGCE Bulletin, 36(2).

[4]
[5]
[e]

(7]

(8]

[9] Dickey, M. D. (2008). Integrating cognitive apprenticeship methods in a
Web-based educational technology course for P-12 teacher education.

Computers and Education, 51(2),
[10] Winnips,J.C.(2001). “Scaffolding by design. a model for www learner
support”. Unpublished PHD dissertation, Netherlands :University of

Twente.
Salomon,G., Perkins,D.N. & Globerson,T. (1991) Partners in cognition:

Extending human intelligence with intelligent technologies. Educational
Researcher, 20(3), pp.2-9.

[11]

© 2012 GSTF

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

3rd Annual International Conference on Computer Science Education: Innovation & Technology (CSEIT 2012)

Blair,A. & Hume, T. (1994). An Exploration of the Application of
Constructive learning Techniques to Software development using Object
orientation as a Vehicle. Paper presented at CTI Annual Conference.
Retrieved March 12, 2003, from
http://www.ulst.ac.uk/cticomp/therhume.html

Cheng,W.F.J.(2010) Teaching and Learning to Program: A Qualitative
study of Hong Kong sub degree students Unpublished PHD dissertation,
University of Sydney.

The Joint National Task Force on Computing Curricula Report.(2013)
IEEE Computer Society, Association for Computing Machinery,
Computing Curricula 2013, Computer Science, Strawman Draft Report

Parham,R.J.(2003). “An assessment and evaluation of computer science
education”. Journal of Computer Science in Colleges, 19(2), pp.116-127.

Brown, F. A. (2008). Collaborative learning in the EAP classroom:
Students’ perception. [Online] Available: WWW.esp-
world.info/Articles 17/issue 17.htmL.

Brill, J. M., & Galloway, C. (2007). Perils and promises: University
instructors’ integration of technology in classroom-based practices.
British Journal of Educational Technology, 38, 95-105.

Moursound,D.G. (2002) Increasing your expertise as a problem solver:
Some roles of computers. Eugene, OR: ISTE. Copyright (C) David
Moursund. Retrieved August 11th, 2004 from
http://www.uoregon.edu/~moursund/PSBook1996/chapter_9.htm.

Jarvela,S. (1998) “Socioemotional aspects of students learning in a
cognitive apprenticeship environment”. Instructional Science, 26,
pp.439-471.

Kolling, M. & Rosenberg,J. (2001)“Guidelines for teaching object
orientation with java”. SIGCSE Bulletin, 33(3), pp.33-36.

Carmichael,LH.W., Burnett,J.D.,Higginson, W.C., .Moore,B.G. &
Pollard,P.J. (1985). “Computers, children and classrooms: a multisite
evaluation of the creative use of microcomputers by elementary school
children”. Toronto, Ontario, Canada: Ministry of Education.
Williams,L., Wiebe,E., Yang,K., FerzliM. & Miller,C. (2002)“In
support of pair programming in the introductory computer science
course”, Computer Science Education, 2, pp.197-202.

Calvani, A., Fini, A., Pettenati, M. C., Sarti, L., and Masseti, M. (2006).
Design of collaborative learning environments: bridging the gap
between cscl theories and open source platforms, In Journal of e-
Learning and Knowledge Society

109

[24]

[25]

[26]

[27]

[28]

[29]

[30]

311

[32]

[33]

Pedroni,M.(2003) “Teaching introductory programming with the
inverted curriculum approach”, Diploma thesis, Department Computer
Science, ETH Zurich. [Electronic Version].

Clements,D.H. (1999) “The future of educational computing research:
the case of computer programming, information technology in childhood
education”, pp. 147-179. Retrieved Jan 2nd , 2004 from http:/
investigations.terc.edu/relevant/pdf/Educational Computing.pdf .
Brusilovsky,P. & Spring, M. (2004) “Adaptive, engaging, and
explanatory visualisation in a C programming course”, ED-
MEDIA’2004 World Conference on Educational Multimedia,
Hypermedia and Telecommunications,eds L. Cantoni & C. McLoughlin,
Lugano, AACE, 21-26 June 2004,Switzerland, pp. 1264-1271.

Yuen, AHK. (2006) “Learning to program through interactive
simulation” ,Educational Media International, 43(3), pp. 251-268.

Wang, F. K. and Bonk, C. J. (2005). A design framework forelectronic
cognitive apprenticeship. Journal. Asynchronous. Learning.
Networks.5(2) http://www.sloan-

c.org/publications/jaln/v5n2/vSn2_wang.asp).

Schank, R.C., Berman,T. & McPherson,J. (1999) Learning by doing. In
C. M. Reigeluth (Ed.), Instructional design theories and models: A new
paradigm of instructional theory, pp. 161-181. Mahwah, NJ: Lawrence
Erlbaum.

Chmiel ,R. &.Loui,M.C. (1998) “Debugging: from Novice to Expert” :
Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 2004, Norfolk, Virginia, USA, ACM 2004,
ISBN 1-58113-798-2.

Lea, M., & Street, B. (1998) Student writing in Higher Education: an
academic literacies approach. Studies in Higher Education, 23(2),
pp.157-172.

Tholander,J.,Rutz,F. Karlgren, K. & Ramberg,R. (1999) “Design and
evaluation of an apprenticeship setting for learning object-oriented
modeling”. In: Cumming, G., Okamoto, T., & Gomez, L., (Eds.),
Proceedings of The International Conference on Computers in
Education, Chiba, Japan, Nov. 1999.

Johnson,D.W. & Johnson,R.T. (1999) “Learning together and alone:
cooperative, competitive, and individualistic learning” (5th ed.). Boston:
Allyn & Bacon.

© 2012 GSTF

Copyright of Annual International Conference on Computer Science Education: Innovation & Technology is
the property of Global Science & Technology Forum and its content may not be copied or emailed to multiple
sites or posted to alistserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

