# Common Variants in FTO Are Not Significantly Associated with Obesity-Related Phenotypes among Samoans of Polynesia

Rebekah Karns<sup>1</sup>, Satupaitea Viali<sup>2</sup>, John Tuitele<sup>3</sup>, Guangyun Sun<sup>1</sup>, Hong Cheng<sup>1</sup>, Daniel E. Weeks<sup>4,5</sup>, Stephen T. McGarvey<sup>6</sup> and Ranjan Deka<sup>1</sup>\*

<sup>1</sup>Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA

<sup>2</sup>Ministry of Health, Samoa, Apia, Samoa

<sup>3</sup> Tafuna Family Health Center, Pago Pago, American Samoa

<sup>4</sup>Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

<sup>5</sup>Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA

<sup>6</sup>Department of Epidemiology and International Health Institute, Brown University, Providence, RI, USA

## **Summary**

The association between obesity and the fat mass and obesity-associated (FTO) gene has been widely replicated among Caucasian populations. The limited number of studies assessing its significance in Asian populations has been somewhat conflicting. We performed a genetic association study of 51 tagging, genome-wide association studies, and imputed single nucleotide polymorphisms with 12 measures of adiposity and skeletal robustness in two Samoan populations of Polynesia. We included 465 and 624 unrelated American Samoan and Samoan individuals, respectively; these populations derive from a single genetic background traced to Southeast Asia and represent one sociocultural unit, although they are economically disparate with distinct environmental exposures. American Samoans were significantly larger than Samoans in all measures of obesity and most measures of skeletal robustness. In separate analyses of American Samoa and Samoa, we found a total of 36 nominal associations between FTO variants and skeletal and obesity measures. The preponderance of these nominal associations (32 of 36) was observed in the Samoan population, and predominantly with skeletal rather than fat mass measures (28 of 36). All significance disappeared, however, following corrections for multiple testing. Based on these findings, it could be surmised that FTO is not likely a major obesity locus in Polynesian populations.

Keywords: Obesity, FTO, association analysis, Samoa

## Introduction

Genome-wide association studies (GWAS) have provided new insights into obesity genetics with the identification of sequence variants in several genes including *INSIG2*, *FTO*, *MC4R*, *BDNF*, and *SH2B1* (Herbert et al., 2006; Frayling et al., 2007; Dina et al., 2007; Loos et al., 2008; Chambers et al., 2008; Thorleifsson et al., 2009). Among these genes, *FTO* has emerged as the strongest candidate conferring risk of obesity, with replication of common variants across populations of European and Hispanic descent (Dina et al., 2007; Frayling et al., 2007; Scuteri et al., 2007; Grant et al., 2008; Thorleifsson et al., 2009). Less certain and inconclusive, however, are the associations of *FTO* variants with body fatness measures in Asian populations (Cha et al., 2008; Ng et al., 2008; Tan et al., 2008; Li et al., 2008; Yajnik et al., 2009; Fang et al., 2010; Li et al., 2010). In comparison to most worldwide populations, levels of obesity are considerably higher in Oceanic populations (Collins et al., 1990) and associations of GWAS obesity-related loci among these populations are yet to be thoroughly explored. Based on a relatively smaller number of subjects, Ohashi et al. (2007) reported that *FTO* variants are not associated with obesity in six Oceanic populations, including one Polynesian group from Tonga. We conducted an association study of common *FTO* variants with obesity-related traits among Samoans of Polynesia who

<sup>\*</sup>Corresponding author: Ranjan Deka, Ph.D., Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, Ohio 45267, USA. Tel: 513-558-5989; Fax: 513-558-4397; E-mail: ranjan.deka@uc.edu

have a remarkably high prevalence of overweight and obesity (McGarvey, 1991; Keighley et al., 2006).

Samoans of Polynesia are distributed in two polities: the independent nation of Samoa and the U.S. territory of American Samoa. Both groups share a common evolutionary history, form a single sociocultural unit with frequent exchange of mates, and genetically represent a single homogenous population without evidence of substructure (McGarvey, 2001; Tsai et al., 2004). There is, however, substantial economic disparity between the two locales, which reflects the patterns of distribution of adiposity in the two groups. Based on the Polynesian body mass index (BMI) standards of 26-32 kg/m<sup>2</sup> and >32 kg/m<sup>2</sup> defining overweight and obesity, respectively (Swinburn et al., 1999), 59% of men and 71% of women are obese in American Samoa compared to 29% of men and 53% women in the less developed nation of Samoa (Keighley et al., 2006). To determine the significance of FTO variants in this population, we conducted a comprehensive association analysis of FTO tagging variants, supplemented with previously identified GWAS single nucleotide polymorphisms (SNPs) and SNPs imputed from the Phase III HapMap database with measures of obesity in adults residing in the Samoan islands. We expanded the phenotypic traits beyond those typically included in GWAS (classical measures including weight and BMI) to 12 anthropometric measures of body fatness and skeletal robustness. In all, we tested association of 51 FTO variants in a sample of 1089 unrelated individuals.

# **Materials and Methods**

#### Subjects

A total of 1089 adult individuals (465 American Samoan and 624 Samoan) were included in this study. The sample from American Samoa included 260 males and 205 females; the Samoan sample included 300 males and 324 females. These subjects were recruited in a previous longitudinal study of adiposity and cardiovascular disease risk factors performed from 1990 to 1995 (Galanis et al., 1999; McGarvey, 2001). They were between the ages of 25 and 59 years with all four grandparents of Samoan ancestry. Anthropometric measurements of height (Ht), weight (Wt), waist circumference (WC), and hip circumference (HC) were obtained following standard protocols. Body mass index (BMI = Wt in kg/Ht in  $m^2$ ) and waisthip ratio (WHR = WC/HC) were calculated. A set of body fat measures including thigh circumference (THICIR), upper arm circumference (UAC), and calf circumference (CLFCIR) was obtained. In addition, three measures of skeletal mass and frame size were obtained according to Lohman et al. (1998), including the elbow breadth (distance between the

epicondyles of the humerus), wrist breadth (distance between the medial aspect of ulna styloid and lateral aspect of radial styloid), and knee breadth (the distance between the most medial and lateral aspects of the femoral condyles). All data were collected at baseline, 1990–1991.

## **SNP** Selection and Genotyping

A total of 32 SNPs, including 24 tagging SNPs within 30 kb upstream and 30 kb downstream of the original and potentially most significant FTO SNP (rs9939609) reported by Frayling et al. (2007) and seven additional significant SNPs from previous GWAS (rs9939973, rs1421085, rs1121980, rs17817449, rs8050136, rs3751812, rs7190492), were genotyped. Tagging SNPs were selected based on pairwise  $r^2$ (>0.8) among all common SNPs with minor allele frequency (MAF  $\geq 0.05$ ) using the approach of Carlson et al. (2004). These SNPs fall within introns 1 and 2 of the FTO gene. In addition, we imputed SNPs to increase the coverage of FTO variants within a 70 kb region containing the original SNPs. Imputation was performed using all available populations in HapMapIII as reference, since the inclusion of multiple reference haplotypes increases the performance and quality of the imputation in novel populations (Marchini & Howie, 2010). The final set of SNPs included in the study was 60, with 24 tagging, 8 GWAS, and 28 imputed SNPs. The SNPlex protocol (Applied Biosystems, Foster City, CA, USA) was used for SNP genotyping, which is a multiple oligonucleotide ligation/polymerase chain reaction assay with universal ZipChute probe detection. Six internal replicates and negative controls were included to assure genotypic quality control, and the consistency rate was 100%. The overall genotype call rate of the 32 genotyped SNPs was >99.5%.

#### **Statistical Analysis**

Descriptive statistics of the study sample were computed using SAS v.9.2 (SAS Institute, Inc., Carey, NC, USA). All phenotypic traits were normalised using the Box-Cox method and adjusted for age and gender. Linkage disequilibrium (LD;  $r^2$ ) between markers was estimated in Haploview (v.4.1) (Barrett et al., 2005). Genotype imputation was performed in Mach1, a Markov-chain-based haplotyper for unrelated populations (Li et al., 2009), and imputed SNPs were compiled with original SNPs prior to association testing. All genetic association analyses were performed using PLINK v1.07 (Purcell et al., 2007), using a 1 df linear model to assess the additive effects of the SNPs. A permutation test with 10,000 replications was used to assess significance after accounting for the presence of multiple markers. Association results were combined through fixed-effects meta-analyses using PLINK v1.07. Genotype

| Table 1 | Descriptive | statistics | of the | phenotypic | measures. |
|---------|-------------|------------|--------|------------|-----------|
|---------|-------------|------------|--------|------------|-----------|

|                                       | American Samoa (N = $465$ ) | Samoa (N = 624)    | D        |  |
|---------------------------------------|-----------------------------|--------------------|----------|--|
| Irait                                 | Mean $\pm$ S.D.             | Mean $\pm$ S.D.    | P        |  |
| Age (years)                           | $38.58 \pm 7.83$            | $38.09 \pm 8.82$   | 0.34     |  |
| Height* (cm)                          | $166.86 \pm 8.02$           | $164.97 \pm 8.03$  | 0.0001   |  |
| Body mass index* (kg/m <sup>2</sup> ) | $34.71 \pm 6.16$            | $29.90 \pm 5.22$   | < 0.0001 |  |
| Weight* (kg)                          | $97.24 \pm 19.72$           | $81.43 \pm 15.22$  | < 0.0001 |  |
| Waist circumference* (cm)             | $108.04 \pm 15.01$          | $95.10 \pm 13.37$  | < 0.0001 |  |
| Hip circumference* (cm)               | $114.74 \pm 12.71$          | $103.48 \pm 10.20$ | < 0.0001 |  |
| Waist-hip ratio*                      | $0.94 \pm .06$              | $0.92 \pm .07$     | < 0.0001 |  |
| Calf circumference (cm)               | $42.59 \pm 4.47$            | $39.47 \pm 3.80$   | < 0.0001 |  |
| Thigh circumference* (cm)             | $48.38 \pm 6.08$            | $44.54 \pm 5.37$   | < 0.0001 |  |
| Upper arm circumference* (cm)         | $37.65 \pm 4.85$            | $34.03 \pm 4.11$   | < 0.0001 |  |
| Elbow (cm)                            | $6.88 \pm .76$              | $6.94 \pm 0.66$    | 0.16     |  |
| Wrist* (cm)                           | $5.68 \pm .58$              | $5.57 \pm .44$     | 0.0004   |  |
| Knee <sup>*</sup> (cm)                | $10.41 \pm 1.21$            | $10.05 \pm 1.08$   | < 0.0001 |  |

\*American Samoa mean values are significantly greater than Samoa mean values.

frequencies and their conformity to Hardy–Weinberg equilibrium (HWE) were also assessed in PLINK, using an exact test (Wiggington et al., 2005). SNPs that showed significant deviations from HWE with a *P*-value of <0.01 and/or had an MAF of <0.05 were excluded from analysis.

## Results

Descriptive statistics of the 12 anthropometric measures from both polities are presented in Table 1. As previously stated, all measures were adjusted for the effects of age and gender due to their correlation with body fat. The American Samoans had significantly higher fat-related measures, were taller, and had significantly larger skeletal measurements except elbow breadth in comparison to the Samoans.

Two genotyped SNPs and seven imputed SNPs were excluded from the analysis due to low MAF (<0.05) and deviations from HWE (P < 0.01). The pairwise LD plot of the remaining 51 SNPs was identical for American Samoa and Samoa (data not shown). There were no significant differences in allele frequencies between American Samoa and Samoa; compiled SNP statistics with comparative minor allele frequencies from Asian (CHB) and Caucasian (CEU) HapMaps are presented in Table 2. In general, Samoan allele frequencies were relatively closer to those of the Asian population than those of the Caucasian population. Of note, MAFs of the previously reported eight GWAS SNPs were significantly lower in both Samoan groups (0.161–0.239) than the CEU (0.292–0.478).

We tested associations of 51 SNPs with the anthropometric traits adjusted for age and gender. The analysis was performed

separately for American Samoan and Samoan samples due to significant differences in phenotypic traits between the two polities (see Table 1). Thirty-six out of 1224 P-values were nominally significant, though none were previous GWAS SNPs (Table 3; all data with the nominal P-values are presented in Supplementary Tables S1 and S2). Thirty-two of the 36 nominal associations were observed in the Samoan sample. Of these, 26 were associated with measures of skeletal robustness (height and knee, wrist, and elbow breadth). No significant association, however, was found with any SNP after correction for multiple testing. A combined analysis and gender-specific analysis of the FTO SNPs in the American Samoan and Samoan samples did not uncover any further associations (data not shown). Finally, a meta-analysis was performed to uncover any consistent signals of association observed in both polities, but the results did not change (Supplementary Table S3). A second meta-analysis was performed to combine the association signals of rs9939609 in both Samoan polities and the Tongan population reported by Ohashi et al. (2007), but the signal remained insignificant (P = 0.424).

Since the majority of previous FTO reports have included BMI as the principal phenotype, we have estimated the effect sizes of nominally significant SNPs on BMI in the American Samoan and Samoan samples. There was no commonly associated SNP with BMI between the two polities; the effect size estimates for the two SNPs in Samoa (rs1861869,  $\beta = -0.347$ ; rs7186521,  $\beta = -0.586$ ) were lower than the SNP effect size estimate in American Samoa (rs1164281,  $\beta =$ -0.931). The confidence intervals of these estimates (Table 3) overlapped with reported point estimates in previous GWAS.

 Table 2 SNP ID, origin, genomic position, and minor allele frequencies.

| SNP information |         |          | Minor allele frequencies |          |       |       |       |
|-----------------|---------|----------|--------------------------|----------|-------|-------|-------|
| rs Number       | Origin  | Position | Minor allele             | Am Samoa | Samoa | CHB*  | CEU*  |
| rs7186637       | Imputed | 52337603 | Т                        | 0.466    | 0.464 | 0.177 | 0.256 |
| rs1861869       | Tagging | 52347682 | С                        | 0.268    | 0.250 | 0.533 | 0.284 |
| rs1077128       | Tagging | 52349154 | Т                        | 0.417    | 0.405 | 0.207 | 0.389 |
| rs7186521       | Tagging | 52350423 | G                        | 0.243    | 0.216 | 0.5   | 0.159 |
| rs13334933      | Imputed | 52353137 | G                        | 0.467    | 0.466 | 0.155 | 0.389 |
| rs16952517      | Imputed | 52354558 | А                        | 0.238    | 0.244 | 0.067 | 0.289 |
| rs4784323       | Imputed | 52355066 | А                        | 0.257    | 0.241 | 0.292 | 0.244 |
| rs7206790       | Tagging | 52355409 | А                        | 0.188    | 0.173 | 0.509 | 0.167 |
| rs9930333       | Imputed | 52357478 | G                        | 0.209    | 0.197 | 0.482 | 0.182 |
| rs12446228      | Imputed | 52357888 | А                        | 0.242    | 0.240 | 0.345 | 0.302 |
| rs9939973       | GWAS    | 52358069 | А                        | 0.187    | 0.173 | 0.482 | 0.186 |
| rs9940128       | Imputed | 52358255 | А                        | 0.187    | 0.173 | 0.475 | 0.189 |
| rs1421085       | GWAS    | 52358455 | С                        | 0.182    | 0.168 | 0.448 | 0.114 |
| rs16952520      | Tagging | 52360539 | G                        | 0.356    | 0.384 | 0.059 | 0.433 |
| rs10852521      | Tagging | 52362466 | Т                        | 0.440    | 0.434 | 0.417 | 0.356 |
| rs12447107      | Tagging | 52362593 | С                        | 0.005    | 0.002 | 0.025 | 0.067 |
| rs11075986      | Tagging | 52362845 | G                        | 0.373    | 0.397 | 0.102 | 0.477 |
| rs9922047       | Imputed | 52363781 | С                        | 0.436    | 0.432 | 0.415 | 0.356 |
| rs16952522      | Imputed | 52364999 | G                        | 0.070    | 0.067 | 0.022 | 0.058 |
| rs17817288      | Tagging | 52365265 | А                        | 0.441    | 0.434 | 0.441 | 0.422 |
| rs1477196       | Imputed | 52365759 | А                        | 0.238    | 0.235 | 0.341 | 0.302 |
| rs1121980       | GWAS    | 52366748 | А                        | 0.193    | 0.172 | 0.475 | 0.189 |
| rs7193144       | Imputed | 52368187 | С                        | 0.188    | 0.170 | 0.442 | 0.122 |
| rs16945088      | Tagging | 52370025 | G                        | 0.068    | 0.060 | 0.084 | 0.111 |
| rs8057044       | Imputed | 52370115 | А                        | 0.256    | 0.230 | 0.542 | 0.233 |
| rs17817449      | GWAS    | 52370868 | G                        | 0.189    | 0.170 | 0.447 | 0.125 |
| rs8063946       | Tagging | 52370999 | Т                        | 0.373    | 0.397 | 0.049 | 0.512 |
| rs8050136       | GWAS    | 52373776 | А                        | 0.188    | 0.169 | 0.45  | 0.122 |
| rs4783820       | Imputed | 52374285 | А                        | 0.306    | 0.323 | 0.017 | 0.411 |
| rs9935401       | Imputed | 52374339 | А                        | 0.182    | 0.168 | 0.45  | 0.122 |
| rs3751812       | GWAS    | 52375961 | Т                        | 0.188    | 0.168 | 0.45  | 0.122 |
| rs3751813       | Imputed | 52376209 | Т                        | 0.389    | 0.364 | 0.617 | 0.265 |
| rs9939609       | GWAS    | 52378028 | А                        | 0.191    | 0.172 | 0.45  | 0.122 |
| rs12597786      | Imputed | 52378808 | Т                        | 0.305    | 0.339 | 0.014 | 0.317 |
| rs7202116       | Imputed | 52379116 | G                        | 0.189    | 0.169 | 0.448 | 0.122 |
| rs7201850       | Imputed | 52379363 | Т                        | 0.193    | 0.172 | 0.462 | 0.212 |
| rs9931164       | Imputed | 52382739 | G                        | 0.003    | 0.002 | 0.018 | 0.07  |
| rs9941349       | Imputed | 52382989 | Т                        | 0.190    | 0.171 | 0.467 | 0.189 |
| rs7190492       | GWAS    | 52386253 | А                        | 0.242    | 0.239 | 0.351 | 0.298 |
| rs9930501       | Tagging | 52387953 | G                        | 0.190    | 0.173 | 0.483 | 0.202 |
| rs9930506       | Imputed | 52387966 | G                        | 0.190    | 0.171 | 0.475 | 0.256 |
| rs2111650       | Imputed | 52390317 | С                        | 0.307    | 0.340 | 0.017 | 0.409 |
| rs7204609       | Imputed | 52391106 | С                        | 0.307    | 0.340 | 0.018 | 0.422 |
| rs8044769       | Imputed | 52396636 | Т                        | 0.438    | 0.433 | 0.425 | 0.344 |
| rs6499646       | Imputed | 52401034 | С                        | 0.372    | 0.398 | 0.11  | 0.465 |
| rs17218700      | Tagging | 52402080 | А                        | 0.198    | 0.194 | 0.142 | 0.067 |
| rs11642841      | Tagging | 52402988 | А                        | 0.118    | 0.104 | 0.45  | 0.056 |
| rs9935403       | Imputed | 52404427 | А                        | 0.052    | 0.044 | 0.042 | 0.022 |
| rs1861867       | Tagging | 52406062 | А                        | 0.217    | 0.209 | 0.357 | 0.278 |
| rs11075994      | Tagging | 52407580 | А                        | 0.080    | 0.085 | 0.358 | 0.178 |
| rs1421090       | Tagging | 52407671 | G                        | 0.489    | 0.484 | 0.729 | 0.467 |

\*CHB = HapMap Chinese; CEU = HapMap Caucasian.

#### FTO and Obesity among Samoans

Table 3 SNPs showing nominally significant associations ( $P \le 0.05$ ) with anthropometric traits in American Samoa and Samoa samples.

| SNP         | Trait <sup>#</sup>  | Allele | Effect size | Lower CI | Upper CI | Р     | Population |
|-------------|---------------------|--------|-------------|----------|----------|-------|------------|
| rs11075986* | Height              | G      | -0.192      | -0.322   | -0.062   | 0.027 | Samoa      |
| rs16945088* | Height              | G      | -0.559      | -0.890   | -0.228   | 0.014 | Samoa      |
| rs8063946*  | Height              | Т      | -0.131      | -0.261   | -0.001   | 0.026 | Samoa      |
| rs3751813*  | Height              | Т      | 0.222       | 0.093    | 0.351    | 0.013 | Samoa      |
| rs6499646*  | Height              | С      | -0.165      | -0.296   | -0.034   | 0.045 | Samoa      |
| rs1861869   | Body mass index     | С      | -0.347      | -0.693   | -0.001   | 0.050 | Samoa      |
| rs7186521*  | Body mass index     | G      | -0.586      | -1.069   | -0.102   | 0.018 | Samoa      |
| rs1421090   | Hip circumference   | G      | -0.722      | -1.360   | -0.084   | 0.027 | Samoa      |
| rs17218700* | Waist-hip ratio     | А      | 0.043       | 0.026    | 0.057    | 0.034 | Samoa      |
| rs7186521*  | Thigh circumference | G      | -0.635      | -1.123   | -0.148   | 0.011 | Samoa      |
| rs9930333   | Thigh circumference | G      | -0.724      | -1.397   | -0.051   | 0.038 | Samoa      |
| rs16952520  | Elbow breadth       | G      | -0.056      | -0.102   | -0.011   | 0.015 | Samoa      |
| rs10852521* | Elbow breadth       | Т      | 0.048       | 0.006    | 0.090    | 0.025 | Samoa      |
| rs11075986* | Elbow breadth       | G      | -0.063      | -0.108   | -0.018   | 0.006 | Samoa      |
| rs9922047*  | Elbow breadth       | С      | 0.048       | 0.007    | 0.089    | 0.021 | Samoa      |
| rs17817288* | Elbow breadth       | А      | 0.052       | 0.013    | 0.092    | 0.020 | Samoa      |
| rs8063946*  | Elbow breadth       | Т      | -0.056      | -0.097   | -0.015   | 0.008 | Samoa      |
| rs4783820   | Elbow breadth       | А      | -0.062      | -0.112   | -0.012   | 0.016 | Samoa      |
| rs12597786  | Elbow breadth       | Т      | -0.055      | -0.104   | -0.006   | 0.029 | Samoa      |
| rs2111650   | Elbow breadth       | С      | -0.054      | -0.103   | -0.004   | 0.034 | Samoa      |
| rs7204609   | Elbow breadth       | С      | -0.054      | -0.103   | -0.004   | 0.034 | Samoa      |
| rs8044769*  | Elbow breadth       | Т      | 0.049       | 0.007    | 0.091    | 0.023 | Samoa      |
| rs6499646*  | Elbow breadth       | С      | -0.061      | -0.105   | -0.017   | 0.007 | Samoa      |
| rs11075986  | Wrist breadth       | G      | -0.060      | -0.116   | -0.004   | 0.037 | Samoa      |
| rs16945088* | Wrist breadth       | G      | -0.101      | -0.200   | -0.001   | 0.047 | Samoa      |
| rs3751813*  | Wrist breadth       | Т      | -0.068      | -0.124   | -0.013   | 0.017 | Samoa      |
| rs6499646*  | Wrist breadth       | С      | -0.063      | -0.123   | -0.003   | 0.040 | Samoa      |
| rs10852521* | Knee breadth        | Т      | 0.068       | 0.004    | 0.132    | 0.038 | Samoa      |
| rs9922047*  | Knee breadth        | С      | 0.060       | 0.001    | 0.120    | 0.050 | Samoa      |
| rs17817288* | Knee breadth        | А      | 0.067       | 0.003    | 0.131    | 0.040 | Samoa      |
| rs8044769*  | Knee breadth        | Т      | 0.069       | 0.005    | 0.133    | 0.036 | Samoa      |
| rs17218700* | Knee breadth        | А      | 0.082       | 0.002    | 0.162    | 0.045 | Samoa      |
| rs11642841* | Body mass index     | А      | -0.931      | -1.774   | -0.088   | 0.031 | Am. Samoa  |
| rs11642841* | Calf circumference  | А      | -0.904      | -1.764   | -0.044   | 0.040 | Am. Samoa  |
| rs17218700* | Elbow breadth       | А      | -0.069      | -0.137   | -0.001   | 0.050 | Am. Samoa  |
| rs17218700* | Wrist breadth       | А      | -0.101      | -0.198   | -0.017   | 0.042 | Am. Samoa  |

\*Indicates SNPs with multiple nominally significant signals.

<sup>#</sup>Height was measured in cm, body mass index in  $kg/m^2$ , hip circumference in cm, thigh circumference in cm, elbow breadth in cm, wrist breadth in cm, knee breadth in cm, and calf circumference in cm.

# Discussion

We investigated the association of 51 tagging, GWAS, and imputed SNPs with an expanded set of obesity-related anthropometric measures among Samoans and American Samoans. With respect to the phenotypic traits, there were significant differences in all measures of fatness and skeletal robustness (except elbow breadth) between the two Samoan groups, with the American Samoans showing significantly higher mean values of these traits. This likely reflects the effect of differential exposure to modernization with relatively higher affluence in American Samoa and a more neo-traditional life in Samoa (Keighley et al., 2006; McGarvey, 1991, 1994). There was, however, no difference in allele frequency distributions and LD patterns between the two groups reaffirming that the American Samoans and Samoans share a common genetic background as reported previously (Deka et al., 1994; Tsai et al., 2004).

Although *FTO* has emerged as a major gene influencing obesity particularly in populations of European descent, results from Asian populations have been less conclusive. Our study does not provide replication among the Samoans, which

can be attributed to several reasons. First, our sample size (465 American Samoans and 624 Samoans) may not have adequate power to capture the effect of the variants. For example, we have 80% power to detect a BMI effect size of 1.01 kg/m<sup>2</sup> in the American Samoan sample, 0.88 kg/m<sup>2</sup> in the Samoan sample, and  $0.664 \text{ kg/m}^2$  in the combined sample, based on the allele frequency in our study populations of the widely replicated obesity-related FTO SNP (rs9939609) at alpha equal to 0.05. We have the power to detect only effect sizes that are somewhat larger than those reported in previous studies of FTO in Asian and Oceanic populations (Ohashi et al., 2007); therefore, we cannot conclusively rule out the involvement of FTO with obesity. Although we have greater power to detect smaller effect sizes in the combined sample, there were significant differences in phenotypic measurements between the two groups, and as noted above, a meta-analysis combining the two samples did not reveal significant associations after correcting for multiple testing. Effect size confidence intervals of SNPs nominally associated with BMI in our study population include the point estimates of previous GWAS reports, which might indicate inadequate power to maintain significance following adjustment for multiple testing. The effect size of FTO SNPs on BMI was stronger in the American Samoa sample than the Samoan sample, which may reflect the decreased power to detect smaller effects due to lower sample size, or the environmental component of excess caloric intake and sedentary lifestyles may obscure the direct genetic impact. Second, Samoan allele frequencies are significantly different from those in the reported GWAS and replication studies, particularly the European populations. Corollary to this is the evolutionary history of the Polynesians, who migrated from Southeast Asia about 4000-5000 years ago (Kirch, 2000; Soares et al., 2011). This together with a likely founder effect followed by genetic drift resulting in allele frequency changes could have masked the contribution of the FTO variants on obesity-related phenotypes among the Polynesians. Third, body compositions of contemporary Samoans are different from the Europeans with higher body and subcutaneous fat mass, bone mineral density as well as a higher proportion of fat-free soft tissue (Swinburn et al., 1999). This may suggest that mechanisms underlying energy balance in Polynesians are different. This could implicate instead other genetic loci with stronger influence on obesity-related traits that may be influenced by physiological and anthropometric differences between Asian and Caucasian populations. In addition, the high BMI of the population per se may contribute to the nonreplication, which could account in part for the limited signal detection in the American Samoan sample. A study among six Oceanic populations that included 116 Tongans from Polynesia also did not replicate the association of FTO variants with BMI (Ohashi et al., 2007); though this study was somewhat underpowered, these and the

combined results from our second meta-analysis substantiate our nonreplication. Based on inconclusive studies, it could be surmised that *FTO* is not likely a major obesity locus in populations of Asian descent.

# **Authors' Contributions**

The Samoan obesity study was conceived and designed by STM. The genetic study was designed by STM, DEW, and RD. Field work, data collection, and analysis of phenotypic traits were conducted under the supervision of STM. SV and JT provided guidance in the conduct of field work in Samoa and American Samoa, respectively. DEW provided supervision in statistical analysis. RK carried out the primary statistical analysis; RK and RD wrote much of the manuscript in consultation with STM and DEW. SG and HC performed genotyping under the supervision of RD. All the authors read and approved the final manuscript.

# Acknowledgements

This study was supported by NIH grants R01-DK59642 and R01-HL093093 (STM PI). RK was supported by a training grant fellowship from the National Institutes of Environmental Health Sciences, USA (T32 ES010957).

## References

- Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005) Haploview: Analysis and visualization of LD and haplotype maps. *Bioinformatics* **21**, 263–265.
- Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L., & Nickerson, D. A. (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. *Am J Hum Genet* **74**, 106–120. S0002-9297(07)61949-1 [pii];10.1086/381000 [doi].
- Cha, S. W., Choi, S. M., Kim, K. S., Park, B. L., Kim, J. R., Kim, J. Y., & Shin, H. D. (2008) Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. *Obesity* 16, 2187–2189.
- Chambers, J. C., Elliott, P., Zabaneh, D., Zhang, W., Li, Y., Froguel, P., Balding, D., Scott, J., & Kooner, J. S. (2008) Common genetic variation near MC4R is associated with waist circumference and insulin resistance. *Nat Genet* 40, 716–718.
- Collins, V., Dowse, G., & Zimmet, P. (1990) Prevalence of obesity in Pacific and Indian Ocean populations. In: *World data book of obesity* (eds. S. Baba & P. Zimmet), pp. 29–32. Amsterdam: Elsevier Science.
- Deka, R., McGarvey, S. T., Ferrell, R. E., Kamboh, M. I., Yu, L. M., Aston, C. E., Jin, L., & Chakraborty, R. (1994) Genetic characterization of American and Western Samoans. *Hum Biol* 66, 805–822.
- Dina, C., Meyre, D., Gallina, S., Durand, E., Korner, A., Jacobson, P., Carlsson, L. M., Kiess, W., Vatin, V., Lecoeur, C., Delplanque, J., Vaillant, E., Pattou, F., Ruiz, J., Weill, J., Levy-Marchal, C., Horber, F., Potoczna, N., Hercberg, S., Le, S. C., Bougneres,

P., Kovacs, P., Marre, M., Balkau, B., Cauchi, S., Chevre, J. C., & Froguel, P. (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. *Nat Genet* **39**, 724–726. ng2048 [pii];10.1038/ng2048 [doi].

- Fang, H., Li, Y., Du, S., Hu, X., Zhang, Q., Liu, A., & Ma, G. (2010) Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children. *BMC Med Genet* 11, 136
- Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R., Elliott, K. S., Lango, H., Rayner, N. W., Shields, B., Harries, L. W., Barrett, J. C., Ellard, S., Groves, C. J., Knight, B., Patch, A. M., Ness, A. R., Ebrahim, S., Lawlor, D. A., Ring, S. M., Ben-Shlomo, Y., Jarvelin, M. R., Sovio, U., Bennett, A. J., Melzer, D., Ferrucci, L., Loos, R. J., Barroso, I., Wareham, N. J., Karpe, F., Owen, K. R., Cardon, L. R., Walker, M., Hitman, G. A., Palmer, C. N., Doney, A. S., Morris, A. D., Smith, G. D., Hattersley, A. T., & McCarthy, M. I. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. *Science* **316**, 889–894. 1141634 [pii];10.1126/science.1141634 [doi].
- Galanis, D. J., McGarvey, S. T., Quested, C., Sio, B., & Afele-Fa'amuli, S. A. (1999) Dietary intake of modernizing Samoans: Implications for risk of cardiovascular disease. *J Am Diet Assoc* 99, 184–190.
- Grant, S. F., Li, M., Bradfield, J. P., Kim, C. E., Annaiah, K., Santa, E., Glessner, J. T., Casalunovo, T., Frackelton, E. C., Otieno, F. G., Shaner, J. L., Smith, R. M., Imielinski, M., Eckert, A. W., Chiavacci, R. M., Berkowitz, R. I., & Hakonarson, H. (2008) Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. *PLoS One* **3**, e1746. 10.1371/journal.pone.0001746 [doi].
- Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., Wichmann, H. E., Meitinger, T., Hunter, D., Hu, F. B., Colditz, G., Hinney, A., Hebebrand, J., Koberwitz, K., Zhu, X., Cooper, R., Ardlie, K., Lyon, H., Hirschhorn, J. N., Laird, N. M., Lenburg, M. E., Lange, C., & Christman, M. F. (2006) A common genetic variant is associated with adult and childhood obesity. *Science* **312**, 279–283. 312/5771/279 [pii];10.1126/science.1124779 [doil.
- Keighley, E. D., McGarvey, S. T., Turituri, P., & Viali, S. (2006) Farming and adiposity in Samoan adults. *Am J Hum Biol* 18, 112– 122.
- Kirch, P. V. (2000) On the road of the winds: An archaeological history of the Pacific Islands before European Contact. Berkeley: University of California Press.
- Li, H., Wu, Y., Loos, R. J. F., Hu, F. B., Liu, Y., Wang, J., Yu, Z., & Lin, X. (2008) Variants in the fat mass- and obesity-associated (FTO) gene are not associated with obesity in a Chinese Han population. *Diabetes* 57, 264–268.
- Li, X., Song, F., Jiang, H., Zhang, M., Lin, J., Bao, W., Yao, P., Yang, X., Hao, L., & Liu, L. (2010) A genetic variation in the fat mass- and obesity-associated gene is associated with obesity and newly diagnosed type 2 diabetes in a Chinese population. *Diabet Metab Res Rev* 26, 128–132.
- Li, Y., Willer, C., Sanna, S., & Abecasis, G. (2009) Genotype imputation. Annu Rev Genomics Hum Genet 10, 387–406.
- Lohman, T. G., Roche, A. F., & Martorell, R. (1998) Anthropometric standardization reference manuals. pp. 33–38. Champaign, IL: Human Kinetics Press.
- Loos, R. J., Lindgren, C. M., Li, S., Wheeler, E., Zhao, J. H., Prokopenko, I., Inouye, M., Freathy, R. M., Attwood, A. P., Beckmann, J. S., Berndt, S. I., Jacobs, K. B., Chanock, S. J.,

- Hayes, R. B., Bergmann, S., Bennett, A. J., Bingham, S. A., Bochud, M., Brown, M., Cauchi, S., Connell, J. M., Cooper, C., Smith, G. D., Day, I., Dina, C., De, S., Dermitzakis, E. T., Doney, A. S., Elliott, K. S., Elliott, P., Evans, D. M., Sadaf, F. I., Froguel, P., Ghori, J., Groves, C. J., Gwilliam, R., Hadley, D., Hall, A. S., Hattersley, A. T., Hebebrand, J., Heid, I. M., Lamina, C., Gieger, C., Illig, T., Meitinger, T., Wichmann, H. E., Herrera, B., Hinney, A., Hunt, S. E., Jarvelin, M. R., Johnson, T., Jolley, J. D., Karpe, F., Keniry, A., Khaw, K. T., Luben, R. N., Mangino, M., Marchini, J., McArdle, W. L., McGinnis, R., Meyre, D., Munroe, P. B., Morris, A. D., Ness, A. R., Neville, M. J., Nica, A. C., Ong, K. K., O'Rahilly, S., Owen, K. R., Palmer, C. N., Papadakis, K., Potter, S., Pouta, A., Qi, L., Randall, J. C., Rayner, N. W., Ring, S. M., Sandhu, M. S., Scherag, A., Sims, M. A., Song, K., Soranzo, N., Speliotes, E. K., Syddall, H. E., Teichmann, S. A., Timpson, N. J., Tobias, J. H., Uda, M., Vogel, C. I., Wallace, C., Waterworth, D. M., Weedon, M. N., Willer, C. J., Wraight, Yuan, X., Zeggini, E., Hirschhorn, J. N., Strachan, D. P., Ouwehand, W. H., Caulfield, M. J., Samani, N. J., Frayling, T. M., Vollenweider, P., Waeber, G., Mooser, V., Deloukas, P., McCarthy, M. I., Wareham, N. J., Barroso, I., Jacobs, K. B., Chanock, S. J., Hayes, R. B., Lamina, C., Gieger, C., Illig, T., Meitinger, T., Wichmann, H. E., Kraft, P., Hankinson, S. E., Hunter, D. J., Hu, F. B., Lyon, H. N., Voight, B. F., Ridderstrale, M., Groop, L., Scheet, P., Sanna, S., Abecasis G. R., Albai, G., Nagaraja, R., Schlessinger, D., Jackson, A. U., Tuomilehto, J., Collins, F. S., Boehnke, M., & Mohlke, K. L. (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40, 768-775. ng.140 [pii];10.1038/ng.140 [doi].
- Marchini, J. & Howie, B. (2010) Genotype imputation for genomewide association studies. *Nat Rev Genet* **11**, 499–511.
- McGarvey, S. (1991) Obesity in Samoans and a perspective on its etiology in Polynesians. *Am J Clin Nutr* **53**, 1586S–1594S.
- McGarvey, S. T. (1994) The thrifty gene concept and adiposity studies in biological anthropology. *J Polyn Soc* **103**, 1586–1594.
- McGarvey, S. T. (2001) Cardiovascular disease (CVD) risk factors in Samoa and American Samoa, 1990–95. *Pac Health Dialog* 8, 157–162.
- Ng, M. C. Y., Park, K. S., Oh, B., Tam, C. H. T., Cho, Y. M., Shin, H. D., Lam, V. K. L., Ma, R. C. W., So, W. Y., Cho, Y. S., Kim, H.-L., Lee, H. K., Chan, J. C. N., & Cho, N. H. (2008) Implication of genetic variants near TCF&L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. *Diabetes* 57, 2226–2233.
- Ohashi, J., Naka, I., Kimura, R., Natsuhara, K., Yamauchi, T., Furusawa, T., Nakazawa, M., Ataka, Y., Patarapotikul, J., Nuchnoi, P., Tokunaga, K., Ishida, T., Inaoka, T., Matsumura, Y., & Ohtsuka, R. (2007) FTO polymorphisms in Oceanic populations. *J Hum Genet* 52, 1031–1035.
- Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferriera, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Dally, M. J., & Sham, P. C. (2007) PLINK: A toolset for whole-genome association and population-based linkage analysis. *Am J Hum Genet* 81, 559–575.
- Scuteri, A., Sanna, S., Chen, W. M., Uda, M., Albai, G., Strait, J., Najjar, S., Nagaraja, R., Orru, M., Usala, G., Dei, M., Lai, S., Maschio, A., Busonero, F., Mulas, A., Ehret, G. B., Fink, A. A., Weder, A. B., Cooper, R. S., Galan, P., Chakravarti, A., Schlessinger, D., Cao, A., Lakatta, E., & Abecasis, G. R. (2007) Genome-wide association scan shows genetic variants in the FTO

gene are associated with obesity-related traits. *PLoS Genet* **3**, e115. 07-PLGE-RA-0253 [pii];10.1371/journal.pgen.0030115 [doi].

- Soares, P., Rito, T., Trejaut, J., Mormina, M., Hill, C., Tinkler-Hundal, E., Braid, M., Clarke, D. J., Loo, D. H., Thomson, N., Denham, T., Donohue, M., Macaulay, V., Lin, M., Oppenheimer, S., & Richards, M. B. (2011) Ancient voyaging and Polynesian origins. *Am J Hum Genet* 88, 239–247.
- Swinburn, B. A., Ley, S. J., Carmichael, H. E., & Plank, L. D. (1999) Body size and composition in Polynesians. *Int J Obes Relat Metab Disord* 23, 1178–1183.
- Tan, J. T., Dorajoo, R., Seielstad, M., Sim, X. L., Ong, R. T.-H., Chia, K. S., Wong, T. Y., Saw, S. M., Chew, S. K., Aung, T., & Tai, E.-S. (2008) FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. *Diabetes* 57, 2851–2857.
- Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., Steinthorsdottir, V., Sulem, P., Helgadottir, A., Styrkarsdottir, U., Gretarsdottir, S., Thorlacius, S., Jonsdottir, I., Jonsdottir, T., Olafsdottir, E. J., Olafsdottir, G. H., Jonsson, T., Jonsson, F., Borch-Johnsen, K., Hansen, T., Andersen, G., Jorgensen, T., Lauritzen, T., Aben, K. K., Verbeek, A. L., Roeleveld, N., Kampman, E., Yanek, L. R., Becker, L. C., Tryggvadottir, L., Rafnar, T., Becker, D. M., Gulcher, J., Kiemeney, L. A., Pedersen, O., Kong, A., Thorsteinsdottir, U., & Stefansson, K. (2009) Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. *Nat Genet* 41, 18–24. ng.274 [pii];10.1038/ng.274 [doi].
- Tsai, H.-J., Sun, G., Smelser, D., Viali, S., Tufa, J., Jin, L., Weeks, D. E., McGarvey, S. T., & Deka, R. (2004) Distribution of genomewide linkage disequilibrium based on microsatellite loci in the Samoan population. *Hum Genomics* 1, 327–334.

- Wiggington, J. E., Cutler, D. J., & Abecasis, G. R. (2005) A note on exact tests of Hardy-Weinberg equilibrium. *Am J Hum Genet* 76, 887–893.
- Yajnik, C. S., Janipalli, C. S., Bhaskar, S., Kulkarni, S. R., Freathy, R. M., Prakash, S., Mani, K. R., Weedon, M. N., Kale, S. D., Deshpande, J., Krishnaveni, G. V., Veena, S. R., Fall, C. H. D. McCarthy, M. I., Frayling, T. M., Hattersley, A. T., & Chandak, G. R. (2009) FTO gene variants are strongly associated with type 2 diabetes but only weakly with obesity in South Asian Indians. *Diabetologia* 52, 247–252.

# **Supporting Information**

Additional supporting information may be found in the online version of this article:

Table S1 American Samoa nominal *P*-values.Table S2 Samoan nominal *P*-values.Table S3 Meta-analysis nominal *P*-values.

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organised for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Received: 24 June 2011 Accepted: 5 October 2011 Copyright of Annals of Human Genetics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.