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Software failures are now known to be a
dominant source of system outages. Several
studies and much anecdotal evidence point to
“software aging” as a common phenomenon,
in which the state of a software system
degrades with time. Exhaustion of system
resources, data corruption, and numerical
error accumulation are the primary symptoms
of this degradation, which may eventually lead
to performance degradation of the software,
crash/hang failure, or other undesirable
effects. “Software rejuvenation” is a proactive
technique intended to reduce the probability
of future unplanned outages due to aging.
The basic idea is to pause or halt the running
software, refresh its internal state, and resume
or restart it. Software rejuvenation can be
performed by relying on a variety of indicators
of aging, or on the time elapsed since the last
rejuvenation. In response to the strong desire
of customers to be provided with advance
notice of unplanned outages, our group
has developed techniques that detect the
occurrence of software aging due to resource
exhaustion, estimate the time remaining until
the exhaustion reaches a critical level, and
automatically perform proactive software
rejuvenation of an application, process group,
or entire operating system, depending on the

pervasiveness of the resource exhaustion
and our ability to pinpoint the source. This
technology has been incorporated into the IBM
Director for xSeries servers. To quantitatively
evaluate the impact of different rejuvenation
policies on the availability of cluster systems,
we have developed analytical models based
on stochastic reward nets (SRNs). For time-
based rejuvenation policies, we determined the
optimal rejuvenation interval based on system
availability and cost. We also analyzed a
rejuvenation policy based on prediction, and
showed that it can further increase system
availability and reduce downtime cost. These
models are very general and can capture a
multitude of cluster system characteristics,
failure behavior, and performability measures,
which we are just beginning to explore.

1. Introduction

Software aging
Unplanned computer system outages are more likely to be
the result of software failures than of hardware failures
[1, 2]. Moreover, software often exhibits an increasing
failure rate over time, typically because of increasing and
unbounded resource consumption, data corruption, and
numerical error accumulation. This constitutes a
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phenomenon called software aging [3], and may be caused
by errors in the application, middleware, or operating
system. Under aging conditions, the state of the software
degrades gradually with time, inevitably resulting in
undesirable consequences. Some typical causes of
this degradation are memory bloating and leaking,
unterminated threads, unreleased file-locks, data
corruption, storage-space fragmentation, and accumulation
of round-off errors. This phenomenon has been reported
by Huang et al. [3] in telecommunications billing
applications, where over time the application experiences
a crash or a hang failure. Avritzer and Weyuker discuss
aging in telecommunication switching software, in which
the effect manifests itself as gradual performance
degradation [4]. Software aging has been observed not
only in specialized software, but also in widely used
software, where rebooting to clear a problem is a
common practice.

Aging occurs because software is extremely complex and
never wholly free of errors. It is almost impossible to fully
test and verify that a piece of software is bug-free. This
situation is further exacerbated by the fact that software
development tends to be extremely time-to-market-driven,
which results in applications which meet the short-term
market needs, yet do not account very well for long-term
ramifications such as reliability. Hence, residual faults
have to be tolerated in the operational phase. These
residual faults can take various forms, but the ones that
we are concerned with cause long-term depletion of
system resources such as memory, threads, and kernel
tables. The essentially economic problem of developing
and producing bug-free code is not the problem at hand;
instead we address one of the problems that arises from
the prevailing approach to developing software, and one
approach to attacking that problem is software
rejuvenation.

Software rejuvenation
To counteract software aging, a proactive technique called
software rejuvenation has been devised [3]. It involves
stopping the running software occasionally, “cleaning” its
internal state (e.g., garbage collection, flushing operating
system kernel tables, and reinitializing internal data
structures) and restarting it. An extreme but well-known
example of rejuvenation is a system reboot. There are
numerous examples in real-life systems where software
rejuvenation is being used. For example, it has been
implemented in the real-time system collecting billing
data for most telephone exchanges in the United States
[5]. Software capacity restoration, a technique similar to
rejuvenation, has been used by Avritzer and Weyuker in a
large telecommunications-switching software application
[4]. In this case, the switching computer is rebooted
occasionally, which restores its service rate to the peak

value. Grey [6] proposed performing operations solely for
fault management in Strategic Defense Initiative (SDI)
software which are invoked whether or not the fault exists,
and called it operational redundancy. Tai et al. [7] have
proposed and analyzed the use of onboard preventive
maintenance for maximizing the probability of successful
mission completion for spacecraft with very long mission
times. The necessity of performing preventive maintenance
in a safety-critical environment is evident from the
example of aging in Patriot missile software [8]. The
failure, which resulted in loss of human lives, might have
been prevented had the operators heeded the advice that
the system had to be restarted after every eight hours of
running time. The Apache Web Server1 (from The Apache
Software Foundation) provides a means to prevent itself
from becoming too much of a resource burden on a
system. Apache has a controlling process and a handler
process. The controlling process watches the handler
process to ensure that it is running up to standard. The
handler process, on the other hand, handles requests from
the clients. When the handler process is deemed to be
in a bad state, the controlling process stops it and starts
another process.

Most current fault-tolerance techniques are reactive in
nature. Proactive fault management, on the other hand,
takes suitable corrective action to prevent a failure before
the system experiences a fault. Although this technique
has long been used on an ad hoc basis in physical systems,
it has only recently gained recognition and importance for
computer systems. Software rejuvenation is a specific form
of proactive fault management which can be performed
at suitable times, such as when there is no load on the
system, and thus typically results in less downtime and
cost than the reactive approach. Since proactive fault
management incurs some overhead, an important research
issue is to determine the optimal times to invoke it in
operational software systems. Proactive fault management
can be greatly enhanced by the ability to predict the fault
far enough in advance that one can take action to avoid or
mitigate its effects. Resource exhaustion by its very nature
offers clues that failure is imminent, in the form of
parameters that can be monitored, extrapolated, and
compared to thresholds via suitable algorithms.

Software failure prediction and rejuvenation in a
cluster environment
A cluster is a collection of independent, self-contained
computer systems working together to provide a more
reliable and powerful system than a single node by itself
[9]. Clustering has proven to be an effective method of
scaling to larger systems for added performance, more
users, or other attributes [10], as well as providing higher

1 The Apache Group, Apache http Server Project, http://www.apache.org.
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levels of availability and lower management costs. One
of the benefits of clustering is its natural redundancy of
hardware and software components. A number of single
points of failure can be removed by cluster systems. As
part of a clustered system, a “failover” process is usually
employed, which transfers workload to another portion of
the clustered system when a hardware or software failure
occurs. An objective of the failover process is for it to
occur gracefully, without an end user knowing that a
failure has occurred. In practice, the successful
achievement of this objective is highly application-
dependent. Also, in order to ensure the ability to perform
a failover, sufficient spare resources must be available to
accommodate the migrated workload. Another advantage
of a clustered system is its ability to improve system
maintenance. For example, if a specific resource of a
cluster is in need of repair and a spare resource is
available, it is possible, in a planned manner, to move
the load from the resource being repaired, perform a
shutdown, and remove and replace the resource, if
necessary.

Software rejuvenation technology is a natural fit with
clustered systems. Within a clustered environment,
rejuvenation can be performed by invoking the cluster’s
failover mechanisms, either on a periodic basis based on
prior experience of the time to resource exhaustion, or
extemporaneously, upon prediction of an impending
resource exhaustion. Our analyses (discussed in the
following sections) show that combining software
rejuvenation with clustering significantly increases system
availability. Using the node failover mechanisms in a high-
availability cluster, one can maintain operation (though
possibly at a degraded level) while rejuvenating one node
at a time, assuming that a node rejuvenation takes less
time to perform and is far less disruptive than recovering
from an unplanned node failure. Because the user’s
application has presumably been written to survive
node failovers anyway, this environment has the added
advantage of allowing rejuvenation to be transparent to
the application. Simple time-based rejuvenation policies,
in which the nodes are rejuvenated at regular intervals,
can be implemented easily, using the existing cluster-
management infrastructure. System availability can be
further enhanced by taking a proactive approach to detect
and predict an impending outage of a specific server in
order to initiate planned failover in a more orderly
fashion. This approach not only improves the end user’s
perception of service provided by the system, but also
gives the system administrator additional time to work
around any system capacity issues that may arise.

Because of these attractive possibilities, we have
implemented the first commercial version of the xSeries*
Software Rejuvenation Agent (SRA) within a high-
availability clustered environment, which is being managed

by the IBM Director system management tool. We are
also in the process of analyzing and implementing the use
of software rejuvenation within other applications such as
large web-server pools, but results are not yet available.

Main contribution and outline
The main contribution of this paper is the development
of a methodology for proactive management of software
systems which are prone to aging, and specifically to
resource exhaustion. The application of software
rejuvenation for cluster systems is by itself a novel
contribution. We have designed and developed a
rejuvenation agent for IBM Director which manages a
highly available clustered environment. Several algorithms
for prediction of resource exhaustion, which is an
important component of this methodology, are discussed.
Rejuvenation incurs some overhead in terms of both
downtime and cost, and if done more often than necessary
will result in higher downtime and/or cost. Hence,
stochastic models of the cluster system are developed
and analyzed for some rejuvenation policies. For the
time-based policies, we demonstrate the effect of the
rejuvenation interval (defined as the time between
successive rejuvenations) on the steady-state expected
downtime and cost. We then obtain the optimal value of
this interval, which minimizes the downtime and cost for
an assumed set of parameter values. These models are
very general and can capture a multitude of cluster system
characteristics, failure behavior, and performability
measures.

The remainder of this paper is organized as follows.
Section 2 discusses previous related work and outlines
the novel aspects of our work. The xSeries Software
Rejuvenation Agent, the architecture of IBM Director,
and how rejuvenation is performed in this framework, are
described in Section 3. The various statistical algorithms
used for prediction are also discussed in this section.
Section 4 deals with stochastic models for cluster systems
and analysis of some rejuvenation policies. The models
capture several cluster system characteristics, and
rejuvenation is performed in a cluster environment.
Since rejuvenation incurs an overhead, these models are
helpful in comparing several rejuvenation policies and
optimizing them for maximum benefit in terms of cost
and availability. Section 5 discusses experimental studies
of software aging for some common applications.
Empirical data on their aging characteristics are obtained
and studied. These studies are essential in understanding
important parameters to monitor and in developing
application-specific rejuvenation strategies. Conclusions
and possible extensions to our work are discussed in
Section 6.
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2. Related work
Garg et al. [11] present a general methodology for
detecting and estimating trends and times to exhaustion of
operating system resources due to software aging. In their
work, data on system activity and resource usage was
collected at regular intervals using a simple network
management protocol (SNMP)-based tool. Whereas
in [11] only time-based trend detection and estimation of
resource exhaustion are considered, [12] takes the system
workload into account for building a model. Other work in
measurement-based dependability evaluation is based on
measurements made either at failure times [13–15] or at
error observation times [16 –18]. In [11] and [12], the
system parameters are monitored continuously, since the
evaluation is interested in trend estimation and not in
interfailure times or identifying error patterns. Some of
the above papers deal with hardware failures, while [11]
and [12] are concerned solely with software failures—
in particular, failures due to resource exhaustion.

Iyer and Rossetti [14] study the effect of system
workload on failures through a measurement-based
analysis and report significant correlations between
permanent failures and increased system activity. A
methodology for recognizing the symptoms of persistent
problems is proposed in [16], which identifies and
statistically validates recurring patterns among error
records produced in the system. In [19], system
parameters are constantly monitored to detect anomalies
automatically. This procedure is based on the premise
that an anomaly or a deviation from “normal” behavior is
usually a symptom of error. This study focuses on network
failures, and smoothing techniques are applied to build a
normal behavior profile.

Several analytical studies have assessed the effectiveness
of software rejuvenation. In [3, 7, 20 –22] only failures
causing unavailability of the software are considered,
while in [23] only a gradually decreasing service rate
of a software application which serves transactions is
assumed. In [24], however, both these effects of aging are
considered together in a single model. Models proposed in
[3, 20, 21] are restricted to hypoexponentially distributed
time to failure. Our analysis is very similar in that it uses
hypoexponentially distributed time to failure for the
software; however, in [20], Markov regenerative theory
is used to solve the model, whereas we use an Erlang
approximation. The models proposed in [7, 22, 23] can
accommodate general distributions, but only for the
specific aging effect they capture. Generally distributed
time to failure, and the service rate being an arbitrary
function of time, are allowed in [24]. It has been
noted [2] that transient failures are partly caused by
overload conditions, but only the model presented in [24]
captures the effect of load on aging. In [25], an availability

model of a two-node cluster is described. Different failure
scenarios are modeled, and the availability is analyzed.
While that paper concentrates on hardware failures,
and software rejuvenation is not considered, this paper
considers rejuvenation with software failures only. Existing
models also differ in the measures being evaluated and
the assumptions underlying the analysis. For example, in
[7, 22], software with a finite mission time is considered,
whereas we consider continuously running systems. In
[3, 20, 21, 24], measures of interest in transaction-based
software intended to run forever are evaluated; we analyze
availability and cost. All previous models except [7] and
[22] are just special cases of the model presented in [24].

In [25], an availability model of a two-node
management scheduling and control system (MSCS) is
described. Different failure scenarios are modeled, and
availability is analyzed. A cluster system modeled with
working, failed, and intermediate states is described
in [26]. Reliability analysis is carried out for a
telecommunication system application for a range of
failure-rate and fault-coverage values. In [27], hardware,
operating system, and application software reliability
techniques are discussed for the modeled cluster systems.
Reliability levels in terms of fault detection, fault
recovery, volatile data consistency, and persistent data
consistency are described. While the above papers model
hardware and software failures, and software rejuvenation
is not considered, our modeling and analysis consider
rejuvenation with software failures only.

3. The xSeries Software Rejuvenation Agent
The xSeries Software Rejuvenation Agent (SRA) was
designed to monitor consumable resources, estimate
the time to exhaustion of those resources, and generate
alerts to the management infrastructure when the time to
exhaustion is less than a user-defined notification horizon.
The management infrastructure provides a graphical user
interface for the user to configure the SRA, and accepts
and acts upon the alerts as described below.

The SRA was designed according to a number of
ground rules, with the prime objective of maximizing
flexibility, portability, and customer acceptance. For
maximum generality and user acceptance, no modification
to the application is allowed, to support either failure
prediction or rejuvenation. Similarly, no access to the
kernel is allowed, in order to facilitate error containment,
cross-OS portability, and customer acceptance. The agent
must use published and architected interfaces for data
acquisition, alerting, and rejuvenation in order to
minimize sensitivity to gratuitous interface churn and
provide a product that is relatively stable across multiple
generations of operating systems and applications. The
agent must be relatively portable across operating systems
to allow us to economically attack the different markets of
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commercial interest to IBM. A simple user interface is
required which contains a minimum number of tunable
parameters and is easy to set up and understand. Finally,
because in many cases we do not know in advance which
resources will be exhausted in the myriad environments
in which we will be using SRA, the agent must be able to
adapt to monitor new exhaustible parameters and execute
new algorithms to predict exhaustion of those resources.
These considerations caused us to partition the design into
an OS-dependent data acquisition subsystem, a portable
analytical subsystem with highly configurable input
parameters, an architected management interface, and
a management infrastructure that spans multiple IBM-
supported operating systems. The SRA is incorporated
as a component of IBM Director, which is discussed
next.

Architecture and framework of IBM Director
Tivoli provides various systems management options
for large-size as well as medium-size companies. Their
technology is leveraged by xSeries for IBM Director and
provides the xSeries brand with the framework of a high-
quality systems management toolkit, while allowing us the
flexibility to develop value-add functionality such as the
SRA. IBM Director is a three-tier environment (Figure 1)
that supports this flexibility on top of a highly scalable
infrastructure. This cross-platform flexibility allows the
xSeries brand to meet customer needs, whether they are
using a Microsoft** operating system, Novell**, OS/2*,
SCO**, or Linux.

The three tiers of IBM Director are the console, server,
and agent. The console provides a Java**-based interface
for accessing the functionality (via a set of tasks) of the
IBM Director environment. The server controls access to
the function, data, and agents for a given task, and the
agent is the interface to a managed object, which in our
case is a server or cluster of xSeries servers. Events
provide a notification mechanism from an agent into the
IBM Director environment. IBM Director is designed to
operate in a client/server model and consists of the
following components:

● Management console: The IBM Director management
console is the graphical user interface (GUI) from which
administrative tasks are performed. It is the primary
interface with the administrator, and is used to configure
the SRA as described below. The management console
GUI is Java-based, with all state information stored on
the server. It runs as a locally installed Java application
in a Java Virtual Machine (JVM**).

● Management server: The management server is the
platform used for the central management server,
where management databases, the server engine, and
management application logic reside.

● IBM Director agents: The agents reside on each managed
system (such as an xSeries server) and act as passive,
nonintrusive native applications. The SRA task that
collects data, predicts resource exhaustion, and
generates events runs as an agent.

In addition to the SRA function, IBM Director supports
a comprehensive set of tasks for agent nodes. These nodes
communicate directly with the IBM Director server,
allowing numerous tasks to be performed, of which the
following short list is representative:

● Inventory: IBM Director discovers new managed systems,
collects the appropriate information about these systems,
and stores it in the inventory database. It can then be
viewed through either a default or a customized view.

● Resource monitors: Resource monitors (Figure 2) enable the
user to view statistics and usage of critical resources on the

Figure 1

IBM Director framework.
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Figure 2

Resource monitors.
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network. Information can be collected and monitored
on attributes such as CPU, disk, memory, and network.
SRA is a specialized instance of a resource monitor.

● Event management: Event management (Figure 3)
enables the user to view a log of events that have
occurred for a managed system or group of systems and
to create event action plans to associate an event with
a desired action, such as sending an e-mail, starting a
program, logging to a file, or invoking rejuvenation.
When the SRA has detected an impending resource
exhaustion, it generates events that can be viewed using
this functionality.

Software rejuvenation in the IBM Director
environment

User interface
Software rejuvenation is presented to the user as a highly
stylized means to schedule rejuvenation. The user has at

his disposal the building blocks of a schedule and a set of
resources. The resources may be scheduled for time-based
rejuvenation or configured for exhaustion forecasting.

The SRA user interface is presented to the user
in the form of a calendar (Figure 4) in which the user
conceptually can see and manipulate rejuvenations. To
schedule a rejuvenation for a certain day, the user drags
and drops a node of the cluster from the left-hand side of
the interface (e.g., “platini” and “zico” are servers within
cluster “copamundial”) onto the day of the week when
rejuvenation is desired. A follow-up dialogue (Figure 5)
then negotiates whether the user wishes the rejuvenation
to occur daily, weekly, monthly, or on some other periodic
basis, and the time at which the rejuvenation is to occur.
The user can designate certain days of the week as
invalid, when no rejuvenation can occur, and multiple
rejuvenations are prohibited from being scheduled at the
same time. Among other rejuvenation options, the user
can engage cluster-specific logic designed to ensure that a
properly planned failover can occur. As shown in the left-
hand side of Figure 6, the user can ask the rejuvenation
logic to confirm that at least one backup node exists which
can handle the failover workload prior to rejuvenating
(“check for one”), ensure that all backup nodes can
handle the workload (“check for all”), or rejuvenate
without checking (“skip check”). If one of the first two

Figure 3

Event management.

Figure 4

Software rejuvenation calendar.

Figure 5

Scheduling rejuvenation.
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options is selected and a backup node cannot be found,
rejuvenation is postponed until the next opportunity.

The proactive option of exhaustion prediction is
provided to evoke an advanced and noninteractive scheme
for scheduling resources for rejuvenation. The user can set
up a stand-alone system or a clustered system for this level
of support. In the expert mode of operation for exhaustion
prediction, the user can allow an application to schedule
rejuvenation automatically without his interaction. The
user configures a cluster or a node for prediction
capabilities by invoking a simple prediction configuration
menu (Figure 7), and selecting the notification horizon
and the type of action desired when exhaustion is
predicted to occur within that horizon. Very few
other parameters are configurable by the user.

A notification mechanism, via the built-in IBM
Director’s event mechanism, allows for notification of any
impending exhaustion through either a pop-up or ticker
tape. All notifications are done with the IBM Director event-
driven notification mechanism. These events are used to
drive the scheduling of an automatic rejuvenation, of
notifications, and of other user-defined actions (such as
running a remote program). The status is reported using
the IBM Director-provided event log mechanism.

Agent design
The xSeries Software Rejuvenation Agent is responsible
for monitoring the exhaustible parameters, predicting
their exhaustion, and providing alerts to the management
infrastructure. The data acquisition component of the
agent is specific to the operating system. For Windows**,
it reads the registry performance counters and collects
parameters such as available bytes, committed bytes,
nonpaged pool, paged pool, handles, and logical disk
utilization. (Interestingly, a memory leak in the system call
required to obtain the performance counters required us
to design the agent so that it could be rejuvenated.) For
Linux, the agent accesses the /proc directory structure and
collects equivalent parameters such as memory utilization,
file descriptors, I-nodes, and swap space. All collected
parameters are logged on disk. They are also stored in
memory in preparation for the curve-fitting and
consumption extrapolation.

Prediction algorithms
In the current version of SRA, rejuvenation can be based
on elapsed time since the last rejuvenation, or on
prediction of impending exhaustion.

When using timed rejuvenation, the user interface
of IBM Director is used to schedule and perform
rejuvenation at a period specified by the user. A calendar
interface allows the user to select when to rejuvenate
different nodes of the cluster, and to select “blackout”
times during which no rejuvenation is to be allowed.

Although this sounds rather primitive, our analysis
(presented below) shows that for typical clusters that
undergo aging, system availability can be improved
significantly via this technique.

Single-parameter predictive rejuvenation relies on
curve-fitting analysis and projection, using recently
observed data. The projected data is compared to
prespecified upper and lower exhaustion thresholds
within a notification time horizon. The user specifies the
notification horizon and the desired parameters (some
parameters believed to be highly indicative are always
monitored by default), and the agent automatically
performs the analysis.

The curve-fitting algorithm operates on a sliding window
of data spanning a temporal interval which is a fixed
fraction (say, 1/3) of the notification horizon. For example,
if the user wishes to be informed or have rejuvenation
invoked if exhaustion is projected to occur within, say,

Figure 6

Scheduling options.

Figure 7

Configuring for prediction.
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three days, the data window is set to one day, and the
analysis and extrapolation over the three-day horizon
are performed using that one day’s worth of data. The
sampling interval is selected to provide enough data points
within the fitting window to allow the prediction algorithm
to adequately smooth the data and select an appropriate
prediction function without overfitting the data.

The prediction algorithm fits several types of curves to
the data in the fitting window; these curves have been
selected for their ability to capture different types of
temporal trends. A model-selection criterion is applied
to choose the best prediction curve, which is then
extrapolated to the user-specified horizon. Several
parameters that are indicative of resource exhaustion
are monitored and extrapolated independently. If any
monitored parameter exceeds the specified minimum
or maximum value within the horizon, a request to
rejuvenate is sent to the management infrastructure. In
most cases, it is also possible to identify the process that
is consuming the preponderance of the resource being
exhausted, in order to support selective rejuvenation,
as described below.

Details of the curve fitting and model selection are
given in Appendix A.

Rejuvenation granularity
When an exhaustion has been predicted, the question
arises as to what portion of the environment should be
rejuvenated. The simple approach to rejuvenation is to
perform a node reboot. A single computer node is a
distinct and compartmentalized unit of the user’s resource
environment, and the cluster-management framework
within which we are operating should handle such node
failures quite adequately. The drawback is that an entire
node rejuvenation may be considered too broad in scope,
and the time to reboot may be significant. Perhaps only
one application on that system, only one of that
application’s services, or perhaps even a particular
subprocess of that service is the cause of the pending
exhaustion. The narrower the scope of rejuvenation,
the smaller the disruption will be to the user’s business
objective. From a functional point of view, the operating
system provides various APIs to perform rejuvenation at
all of these various levels. Whether the resource to be
rejuvenated is at the system level, the application level,
or even the service level, it is likely that the planned
downtime (i.e., the rejuvenation) is always less disruptive
than an unplanned node outage.

Because of these considerations, the Windows SRA
offers two levels of rejuvenation, depending on the scope
of the resource exhaustion (i.e., whether an operating-
system-level exhaustion or an application-level exhaustion
has been identified). The desired level can be selected

using an advanced submenu of the user interface
described above.

● Level 1 is a service-level rejuvenation. Generally, it can
be assumed that applications written as a service are
written such that a stoppage of that service will save
any necessary data (both user and application) and
the corresponding restart of that service will bring
the application to a state of usability. In such cases, a
graceful rejuvenation of that service can be performed.

● Level 2 is an operating-system-level rejuvenation (i.e.,
a reboot). The reboot performs a stop for each service
on that system and then reboots the operating system.
Application failover and recovery in this case are the
responsibility of the cluster-management software,
which is activated as part of the reboot process.

4. Modeling and analysis
We have developed several availability models to assess
the impact of time-based and predictive rejuvenation
policies on cluster system availability. These models were
developed using stochastic reward nets (SRNs) [28]. SRNs
have recently gained much importance and recognition
as a useful modeling formalism. They have been used
successfully in many applications, since they can easily
represent the concurrency, synchronization, sequencing,
and multiple resource possession that are characteristics
of current computer systems. SRNs also offer a high-
level interface for the specification of Markov models.
When the state space of Markov models is large, SRNs
can be used to generate the underlying Markov chain
automatically. SRNs are obtained by specifying reward
rates at the net level. We have used SRNs for our
modeling and analysis; an informal description of their
concepts is given in [29].

System characteristics
We consider an n-node cluster running cluster-
management software. Each node has redundant network
connections, and the entire cluster contains a redundant
storage subsystem. Both hardware and software failures
may occur in the cluster, but in this paper we consider
only software failures. Failures due to applications,
middleware, and operating system are not differentiated,
and node failures are assumed to be independent of one
another. We also allow common-mode failures which
model the failure of the cluster management software, and
nonunity failure coverage for a node failure. All failures
and repair times are assumed to be exponentially
distributed. However, the time-based policies use
rejuvenation intervals that are deterministic, and are
approximated using an Erlang distribution. Details of
these models are given in Appendix B; only the results
are presented here.
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Analysis and results
Parameter values such as failure and repair rates used
for the models are shown in Table 1 and explained in
Appendix B. Although they fall within the range of existing
systems, the values used for this paper should be considered
for illustration purposes only. To be able to detect clearly the
effect of the rejuvenation, we set the value of the common-
mode failure rate (transition Tcmode) very close to 0 and the
value of the node failure coverage (c1) very close to 1.
Future analyses will explore the effect of rejuvenation
policies on availability when these parameters are nonideal.
All of the models were solved using the stochastic Petri net
package (SPNP) tool [30, 31]. Our SRN model computes the
expected unavailability and the expected cost incurred per
unit of time. The expected unavailability is computed as the
probability that the maximum tolerable number of nodes are
inoperative, either because all have failed, or because of
some undergoing rejuvenation, with others failing in the
meantime. Cost can be incurred because of a node failure, a
node rejuvenation, or a system failure (all nodes down). For
each case, the cost per unit of time is multiplied by the
expected number of tokens in the corresponding places, and
the total cost is computed. It is assumed that the cost of
rejuvenation is much less than the cost of a node or system
failure, since rejuvenation can be done at predetermined or
scheduled times (for example, when the system load is low).

We define punav and cfail to be the steady-state expected
unavailability and the expected cost incurred per unit of
time, respectively. Over a given time interval T, the
expected downtime can be computed as T 3 punav and the
expected cost incurred during that interval as T 3 cfail .
For concreteness, we rather arbitrarily fix the value of T at
1000 hours. By using these measures, optimal rejuvenation
intervals can be obtained for different policies and
configurations. The models also help us compare one
rejuvenation policy with another. For example, we may not
obtain the same rejuvenation interval, which minimizes
both unavailability and cost. Therefore, there is a tradeoff
involved, and it is up to the user/operator to decide what
he/she considers important. One could also optimize the
rejuvenation interval based on other performability
(combined performance and availability) measures, such as
the mean number of nodes operational at a given instant.

All of the costs are formulated as costs per unit of time.
In our analysis, we fix the value for costnodefail at $5000/hr
and vary the ratio costsysfail/costrejuv. The value of costsysfail

is computed as the number of nodes, n times costnodefail

(although a total system failure can potentially cost much
more than a node failure). Unless mentioned otherwise,
we fixed the costsysfail/costrejuv ratio to be 20.

Finally, we analyze the rejuvenation policies for various
cluster configurations. A cluster configuration is denoted
by n/m, which means that the cluster has a total of n nodes
and can tolerate at most m node failures; i.e., the cluster is
considered unavailable if more than m nodes are unavailable.

Results for time-based rejuvenation
Figure 8 shows the plots for an 8/1 cluster (i.e., an eight-
node cluster that can tolerate at most one node failure)
employing simple time-based rejuvenation. The upper
and lower plots show the expected cost incurred and the
expected downtime (in hours) respectively in a given time
interval, versus rejuvenation interval in hours. When
evaluating rejuvenation, we typically see J-shaped curves,
with a region of high unavailability when the rejuvenation
interval is very small (the system is always rejuvenating,
so any other node failure while rejuvenating results in a
system outage) and another region of high unavailability
when the rejuvenation interval is very large (the system
essentially never rejuvenates, and the effects of aging
have their full impact). Between these extrema lies a
rejuvenation interval that results in the minimum

Figure 8

Simple time-based rejuvenation for 8/1 configuration. This plot shows
the expected cost and downtime incurred, over a period of 1000 hours,
for an eight-node cluster that can tolerate at most one simultaneous
node failure.
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Table 1 Parameter values.

Transition Rate

l1 1/240 /hr
l2 1/720 /hr
l3 1/30 /min
l4 1/4 /hr
l5 1/10 /min
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downtime and cost. For the 8/1 configuration, the
minimum for the cost occurs at 100 hours, and the
minimum for the downtime occurs at 180 hours. Thus, if
one wishes to invoke timed rejuvenation, a compromise
has to be made regarding the rejuvenation interval based
on whether the expected downtime or the expected cost
incurred is more important.

Figure 9 shows similar plots for an 8/2 configuration.
In this case, a shallow minimum for the cost occurs at
80 hours, and a sharp minimum for the downtime occurs

at one hour. Here we take advantage of the fact that the
system can tolerate up to two node failures at the same
time, and therefore we can afford to rejuvenate more
frequently. Hence, the optimal cost and downtime are
also substantially reduced.

A significant figure of merit for a rejuvenated system is
the unavailability improvement due to rejuvenation, which
we define to be the ratio between the expected steady-
state unavailability with rejuvenation and the unavailability
without rejuvenation. A plot of unavailability improvement
versus rejuvenation interval is shown for different
configurations in Figure 10. In general, there is a
much larger improvement in unavailability for the X/2
configurations (that is, X-node clusters that can tolerate
two failures before becoming unavailable) than that for
X/1 configurations. For the 8/2 and 16/2 configurations,
the optimal rejuvenation interval occurs very close to zero.
But as the rejuvenation interval increases, they deteriorate
rapidly, and the improvement becomes less than that for
the X/1 configuration.

Next, we studied the effect of the costsysfail/costrejuv ratio
on the rejuvenation interval. This was done for the 8/1
configuration and is shown in Figure 11. As the cost ratio
is increased (i.e., rejuvenation becomes cheaper and
cheaper relative to a system outage), the optimum value
of the rejuvenation interval d decreases and the overall
expected cost also decreases. As d 3 `, there is no
rejuvenation, so the total cost ceases to be a function of
the rejuvenation cost. In this case, all of the different
cases approach the same value.

Figure 9

Simple time-based rejuvenation for 8/2 configuration.
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Figure 10

Unavailability improvement for various configurations employing sim-
ple time-based rejuvenation.
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Figure 11

Effect of node failure/node rejuvenation cost ratio for 8/1 configuration
employing simple time-based rejuvenation.
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Results for prediction-based rejuvenation
In our model of prediction-based rejuvenation, a node
is rejuvenated as soon as it enters a state in which
it has a high failure rate, instead of after a specified inter-
rejuvenation time interval. To model imperfect prediction,
our analysis includes a “prediction coverage” factor, which
is the probability that the failure predictor successfully
detects that a node is likely to fail, given that it has just
entered the high-failure-rate state. (We do not model the
case in which the failure predictor emits a false alarm
and triggers an unneeded rejuvenation, although this is
straightforward. We think that this phenomenon has a
minor effect on unavailability for reasonable false-alarm
probabilities.) The plot in Figure 12 shows the transient
values of expected downtime over a 5000-hour operational
interval, for the 8/1 configuration. The steady-state values,
achieved after approximately 2000 hours of operation, are
found toward the right of the chart. The graphs show the
values for different values of prediction coverages. As
we would expect, the higher the prediction coverage,
the lower the expected downtime. At 100% prediction
coverage, the data lies along the x-axis and is practically
invisible. We compare these steady-state values with the
time-based policy in the following section.

Summary of analytical results
The data in Table 2 shows the ratio of downtime with
rejuvenation to downtime without rejuvenation, for
time-based and predictive rejuvenation. For time-
based rejuvenation, a rejuvenation interval is used which
minimizes downtime, which was approximately 100 hours
for the one-spare clusters, and approximately one hour for
the two-spare clusters. For predictive rejuvenation, it is
assumed that aging can be successfully predicted 90% of
the time. If we assume that aging can be predicted 100%
of the time, downtime drops to practically zero, but we
do not feel that perfect predictive coverage is achievable
in practice.

The analysis results lead to some interesting
conclusions. First, for systems that have one spare, and
regardless of the number of nodes in the cluster, time-
based rejuvenation can reduce downtime by about 25%
compared with no rejuvenation. Predictive rejuvenation
does somewhat better, reducing downtime by about 60%
compared with no rejuvenation. However, when the system

can tolerate more than one failure at a time, downtime
is reduced by 98% to 95% via frequent time-based
rejuvenation, compared to a mere 85% for predictive
rejuvenation. We believe that this is because, with high-
frequency time-based rejuvenation, a node spends very
little time in the “failure-prone” state before it is
rejuvenated back to the low-failure-rate state. For
predictive rejuvenation with only 90% coverage, a node
whose aging has gone undetected remains in the “failure-
prone” state until it actually fails; as we currently model
it, there is no second chance to be rejuvenated. Therefore,
there is a higher probability that one node can have failed
(or is being rejuvenated), a second is being rejuvenated
(or has failed), and a third node fails, having escaped
aging detection. We point out that, at the high levels of
availability predicted by our model for the two-spare
clusters, it is likely that nonideal effects such as single
points of hardware and software failure and nonunity
failover coverage would dominate the effects of
rejuvenation we are predicting here. However, this is
probably not the case for the one-spare configurations.

Figure 12

Prediction-based rejuvenation for 8/1 configuration for different pre-
diction coverage values.
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Table 2 Ratio of downtime with rejuvenation to downtime without rejuvenation.

Rejuvenation
policy

Configuration

2/1 8/1 16/1 8/2 16/2

Time-based (optimal rejuvenation interval) 0.74 0.74 0.76 0.02 0.05
Prediction-based (90% prediction coverage) 0.38 0.38 0.39 0.15 0.15
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5. Experimental results

Empirical measurement of resource exhaustion
In the process of developing and testing the SRA, it was
necessary to confirm the existence of aging, understand
which parameters were most likely to age, and learn how
to measure and predict resource exhaustion for certain
applications of commercial interest to IBM. For this
reason, several important applications were put under high
workload and their aging characteristics were measured.
The chart in Figure 13 shows typical results, in which one
such large-database application running on the Windows

operating system consumed 100% of the committed bytes
(e.g., page-file bytes plus physical memory) over a ten-
hour interval, beginning at an initial utilization level of
45%. Other resources were consumed, but the committed
bytes resource was finished off first. (In the interest
of accelerating the test, the database was presented
with a workload that was much higher than would be
encountered in a well-run production environment.
Anecdotal data indicates that in a real-world environment,
exhaustion for this application requires more than a
week.) For this particular application, once the committed
bytes resource was consumed, the database was unable to
proceed, and usually panicked or hung. Once the resource
was consumed and the panic had occurred, a full system
reboot and database reconstruction was required to bring
this particular database back on line. An interesting
result of our testing regime was the discovery that of the
applications that did show aging, the same kinds of resources
were usually consumed. This implies that the ability to
predict or detect a relatively small set of failure signatures
is probably sufficient to cover an adequately large set of
applications, for practical purposes.

“Bad boys”
Large applications are difficult and time-consuming to set
up and test. In the interest of accelerating the test process
and fine-tuning and testing our algorithms, we also
generated several applications that were prodigious
consumers of disparate resources. Figure 14 shows
how one such “bad boy” application, again running
on Windows, consumes committed bytes, starting at
800 seconds into the experiment. (We have other bad
boys that consume processes, threads, nonpaged and
paged pool memory, semaphores, handles, etc.) For
purposes of testing, the notification horizon was set
to 7200 seconds, and the sampling rate and resource
consumption rates were scaled appropriately. In practice,
much larger time frames would be used. This particular
figure also shows how the piecewise regression of the SRA
predictive agent compensates for the startup transient resource
consumption, and predicts the time to exhaustion for this
scenario. The resource-exhaustion upper limit of about
400 MB is shown as a dashed line at the top of the plot.
Figure 15 shows how another bad boy application that
continually opens files but forgets to close them consumes
I-nodes on the Linux operating system. Again, testing
is accelerated, and the notification horizon is set to
3600 seconds; the lower limit is somewhat arbitrarily
set to 500 I-nodes.

6. Conclusions and extensions
We have developed, analyzed, and implemented a
framework for detection, prediction, and proactive
management of software aging. This technology is

Figure 13

Committed bytes versus time (in hours) for a large database application.
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Figure 14

Committed byte consumption versus time (in seconds) for a leaky
application in Windows, with exhaustion prediction.
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applicable to a wide range of operating environments,
and has been implemented in the xSeries Software
Rejuvenation Agent. It has been commercially available
on xSeries servers since the end of 2000. Our cost and
availability models indicate that rejuvenation significantly
improves cluster system availability and reduces downtime
cost.

We have considered several extensions and other
applications of software failure prediction and state
rejuvenation. This section outlines a few of our thoughts
in this area.

IP dispatching
As part of a web-hosting framework, an IP-dispatching
or load-balancing component is often present to provide
scalability, availability, and load-balancing capabilities for
TCP/IP applications. Early implementations consisted of
a domain name server (DNS) that would translate host
names into IP addresses for corresponding servers, so that
IP requests are routed in a round-robin fashion to a pool
of servers. This approach is often called round-robin DNS;
an example configuration is shown in Figure 16. Note that
IP dispatching can be considered a specialized form of
clustering, such that one or more nodes execute the
dispatching components and the remaining nodes
execute web-serving applications.

More advanced approaches are now available, such as the
IBM Secureway Network Dispatcher [32]. This product
provides enhanced IP-level load-balancing mechanisms
and content-based routing, as well as improved
management and availability functions. Figure 17

illustrates the network dispatcher operations for a
LAN implementation. As part of load balancing, the
dispatcher’s scheduling policy is dynamically based
on each server’s load and availability. This is partly
accomplished by having each server send periodic
utilization information to the dispatcher. This utilization
information can easily be augmented by health
information in the form of time until resource exhaustion,
degree of resource exhaustion or, in its simplest form,
time remaining until a timed rejuvenation. This health
information can be sent to the dispatcher in order to
schedule actions for individual servers. The scheduling of
these actions can also take into account aggregate loading
of the web host.

Figure 15

I-node consumption versus time (in seconds) for a leaky application in
Linux, with exhaustion prediction.
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Figure 16

Example configuration of round-robin DNS.
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Figure 17

Network dispatcher for a LAN implementation.
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Solution center
One of the core pieces of the software rejuvenation
technology is a monitoring tool that has the ability to
detect and identify misbehaving software components.
In addition to this technology’s application in production
clustering applications, it also has use as a test tool to
help make software more reliable. This type of tool could
be useful in a system integration facility such as an IBM
solution center, where software of disparate quality is
integrated onto a common platform. (We have first-hand
experience of this. The ability of the agent to detect and
pinpoint resource consumption was useful in developing
and testing the agent itself, when some of the system calls
used to monitor resource consumption caused resource
leaks themselves.)

Discrimination between hardware and software
faults
When a system crashes, it can be difficult to determine
whether the crash was due to hardware or software,
especially if a subsequent system reboot is successful.
Frequently, hardware is identified as the culprit when it
is associated with a certain number of outages, perhaps
because the service technician has to do something
that is perceived as solving the customer’s problem.
Consequently, nonfaulty hardware is often returned to
IBM under a service contract, at a significant cost to the
corporation. We think that a variant of the software-
monitoring agent we have developed can provide valuable
clues to the user or technician as to whether the crash
was due to a software problem it is capable of detecting,
possibly reducing the number of no-fault-found hardware
returns and IBM service costs. It could also be expanded
to monitor hardware errors to improve its diagnostic
resolution, since it is fairly well known that permanent
hardware failures are often preceded by an increasing
rate of occurrence of transient hardware failures.

Adaptive and multiparameter predictive capabilities
The current version of SRA was developed on the basis of
a preconceived notion of the types of resources that can
be exhausted and their exhaustion thresholds, for a given
set of operating systems. During development, this
hypothesis was supported by a testing and validation effort
for several applications of importance to IBM, and was
deemed valid. Consequently, the SRA is capable of
monitoring and predicting the exhaustion of any single
parameter that is on a fairly static initialization list,
using a flexible curve-fitting methodology. We think this
capability is adequate for a sufficiently large number of
applications to make the product useful. However, it is not
known in general which parameters may be exhausted or
enter critical regions in all scenarios, nor what their
exhaustion thresholds are. An outage may occur only when

a combination of parameters reaches critical regions, or it
may be the case that a given parameter or combination of
parameters does not have to be at extrema to constitute a
hazardous situation. For example, we noticed during our
testing of a web-serving application that just prior to the
outage, the committed bytes, nonpaged-pool bytes, and
available memory approached known exhaustion limits,
as expected. However, other parameters also repeatedly
exhibited unusual and indicative behavior just prior to the
outage: For example, the variance of the paging rate and
the number of nonpaged-pool allocations skyrocketed,
although these do not seem to be outage precursors on
their own. Therefore, we think that a truly general outage
predictor must have the capability to characterize possibly
complex multiparametric conditions prevalent just prior
to outages that occur in a given application, store this
characterization in an analytically tractable form, and
develop the ability to predict a system’s subsequent
approach to that region in multiparameter space.

Availability modeling and analysis
As part of the future work in modeling and analysis,
we could introduce new cluster-system characteristics
and failure behavior and improve the models. We
could analyze these models for many more different
configurations than have been explored in this paper.
Other new and interesting performability measures could
be introduced for the analyses. To obtain more accurate
results using the SRN models, we could use the theory of
Markov regenerative processes (MRGP). Another possible
solution method for general non-Markovian models is
discrete-event simulation. The models could be improved
to consider hardware components and failures and discuss
their impact on system availability and performance. New
rejuvenation policies could be formulated based not just
on time, but also on the load of the system (instantaneous
or cumulative) [24].

Appendix A: Exhaustion-prediction algorithms
This appendix is devoted to the description of the
extrapolation and model-selection algorithms for
predictive rejuvenation. The steps of the prediction
procedure are as follows:

● Preprocessing the data.
● Fitting several models to the preprocessed data.
● Selecting the best model.
● Forecasting the data behavior with the selected model.

Let X1 , . . . , Xm denote the observations in the training
(fitting) window, and let T1 , . . . , Tm be the corresponding
sampling times. Using a median filter, the data is
preprocessed to produce n medians Y1 , . . . , Yn , which we
associate with “sampling times” t1 , . . . , tn . In particular,
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let the median filter operate on k samples (say k 5 5);
then, assuming m 5 n 3 k, Y1 5 median(X1 , . . . , Xk),
Y2 5 median(Xk11 , . . . , X2k), etc., and the sampling times
of the medians are defined as t1 5 median(T1 , . . . , Tk),
t2 5 median(Tk11, . . . , T2k), etc. Median filtering produces
a smoothed version of the signal and is quite robust with
respect to the presence of spikes in the time series.

Our goal is to select a parsimonious model that
adequately describes the data. To that end, we consider
a relatively small number of model classes, pick the best
model from each class (i.e., fit the model to the data), and
then, from among those, select the “best” overall model.

To pick the best model from a parametric class M
(for example, M could be the set of linear models
Yi 5 ati 1 b 1 e i , where the parameters are a and b),
we select the parameter values that optimize a goodness-
of-fit criterion. In particular, we minimize the residual sum
of squares

RSSM 5 O
i51

m

~Ŷi 2 Yi!
2,

where Ŷi is the value produced by the model at time ti .
Minimizing the residual sum of squares for the classes of
models used in the system is computationally efficient.

To ensure a rich enough selection, we use the following
classes of fitting models:

● Simple linear regression: Yk 5 atk 1 b 1 ek . The number
of parameters is p 5 2.

● Linear regression with h breakpoints (where we use h 5 1,
as in Figure 18, or h 5 2, as in Figure 19): Given a set of
h 1 2 time instants t1 5 c0 , c1 , . . . , ch , ch11 5 tm

(i.e., the k breakpoints and the endpoints of the analysis
window), Yk 5 ajtk 1 bj 1 ek if cj21 # tk # cj , where
we constrain the coefficients aj and bj so that the
overall fitted piecewise-linear curve is continuous.
Given the time instants {ci}, the fitting problem can be
formulated as a linear regression and is easily solved.
The problem, however, is not convex in the selection of
the breakpoints c1 , . . . , ck . To keep the model-fitting
problem computationally efficient, we constrain the
times of the breakpoints to occur at a small number B
of possible locations (say, B 5 10) through the fitting
window. To avoid overfitting of the data when a spike
or a jump occurs right at the end of the fitting window,
making the extrapolation unreliable, we also do not
allow breakpoints near the end of the window. The
selection algorithm operates by fitting a model to
the data for each valid selection of breakpoints, and
choosing the model with the minimum RSS. Note that
if h 5 1, the number of parameters p equals 4 (for
a given breakpoint, the piecewise-linear curve is defined

by three points, so add one more parameter for the
location of the breakpoint). Similarly, if h 5 2, p 5 6.

● Linear regression on the logarithm of the data: log(Yk) 5

atk 1 b 1 ek . The number of parameters is p 5 2.

Figure 19

Result of fitting the smoothed data (solid curves connecting � marks)
with a piecewise linear regression with two hinge points. The vertical
lines denote the limits of the fitting window. The regression fit, within
the fitting window, is denoted by a solid curve, and the prediction is
its dash–dot right continuation. The original unsmoothed data is also
shown as a dash–dot curve.
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Figure 18

Result of fitting the smoothed data (solid curves connecting � marks)
with a piecewise linear regression with a single split. The vertical
lines denote the limits of the fitting window. The regression fit, within
the fitting window, is denoted by a solid curve, and the prediction is
its dash–dot right continuation. The original unsmoothed data is also
shown as a dash–dot curve.
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● Piecewise-linear regression with k breakpoints on the
logarithm of the data: log(Yk) 5 ajtk 1 bj 1 ek if
cj21 # tk # cj . If h 5 1, as in Figure 20, p 5 4,
and if h 5 2, p 5 6.

In choosing the “best” overall model, we wish to avoid
overfitting the data. In classical statistics, model selection
methods, such as Akaike’s information criterion (AIC)
[33] or Mallows’ Cp index [34], combine a goodness-of-fit
measure with a penalty that grows with the order (number
of parameters) of the model. Mallows’ Cp method is
particularly simple to apply. Compute

Cp 5 RSSM/s 2
2 ~m 2 2p!,

where p is the number of parameters in the model, s 2 is
the residual mean-square error from the largest model
(which is assumed to be a good estimate for Var[e i]),
and m is the number of samples in the smoothed signal.
The model with the smallest value of Cp is chosen.

In addition to Mallows’ Cp , we use a similar heuristic
approach, which is less dependent on distributional
assumptions and has several characteristics tailored to
the situation at hand. The idea is that, while models are
trained on the entire data in the window, the selection
criterion should give greater weight to how well each
model fits the most recent data. Then define the weighted
residual sum of squares as follows:

WRSSM 5 O
i51

m

wi~Ŷi 2 Yi!
2,

where wi is the weight assigned to the fit of sample i; for
example, wi 5 rm2i gives decreasing weight to observations
further in the past. If r 5 0.95, the error in fitting the
most recent observation is roughly three times more
important than the error in fitting the 20th more recent
observation. Computing the appropriate exact modification
to the Cp index is difficult in this situation, so we adopt
an intuitive heuristic which does not consider a class of
models with an additional parameter unless it reduces the
WRSSM by at least a certain percentage. Specifically, if p0

is the minimum number of parameters used (with linear
regression, two parameters are estimated, hence p0 5 2)
and if WRSSM( p) is the weighted residual sum of squares,
the selection criterion picks the model with the minimum
Wp , where

Wp 5 WRSSM~ p! 3 ~1 1 d! p2p0.

We heuristically select d to be 0.10. Then, each added
model parameter must decrease WRSSM( p) by at least
10%.

Thus, in each window, six possible model families are
considered (linear, linear with one breakpoint, linear with

Figure 20

Result of fitting the logarithm of the smoothed data (solid curves
connecting � marks) with a piecewise linear regression with a single
hinge point. The vertical lines denote the limits of the fitting window.
The regression fit, within the fitting window, is denoted by a solid
curve, and the prediction is its dash–dot right continuation. The original
unsmoothed data is also shown as a dash–dot curve.
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Figure 21

Instance in which the selection criteria pick different models. The cri-
terion based on Mallows statistics selects a simple linear regression,
while the criterion based on multiplicative penalty (1 � � per degree of
freedom) fits piecewise regression with two breakpoints to the log of
the data.
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two breakpoints, log linear, log linear with one breakpoint,
and log linear with two breakpoints), and either the model
with minimum Cp or that with minimum Wp is chosen.
Experiments show that when no breakpoints are allowed
in the most recent part of the fitting window, the Cp and
Wp criteria usually yield the same results. Only rarely are
different models selected: In particular, the criteria tend
to disagree when no trend is clearly discernible, and the
data looks very noisy (Figure 21).

Prediction of the future behavior of the data is then
performed by extrapolating the selected model. Note
that each of the six model classes can be cast as a linear
regression. Therefore, it is also possible to project
approximate confidence limits out into the future. These
intervals have the following desirable properties:

● They get wider the further into the future the projection
extends.

● Noisier data results in wider intervals.
● The piecewise-linear or piecewise-log-linear models become

wider the closer the last breakpoint is to the present.
● The predicted curve is monotone into the future.

Roughly speaking, the computational requirement per
monitored quantity is proportional to m 3 6 3 B 2/ 2,
where m is the number of medians, B is the number of
allowed breakpoint locations, and the factor 6 comes
from the six model classes.

Appendix B: Analysis using stochastic reward
nets
This appendix details our approach of calculating cluster
system unavailability and cost using stochastic reward nets.

Analysis parameters
Table B1 shows the main parameter values that are used
in the models. l1 is the rate at which a node transitions
from a nonfailure-prone state to the failure-prone state,
and l2 is the rate at which a node fails once it has entered
the failure-prone state. l3 is the rate at which a node is
repaired when it has suffered an unplanned node failure,
l4 is the rate at which a system is repaired after it has

suffered an unplanned system outage, and l5 is the rate at
which a node is rejuvenated once the need to rejuvenate
has been established.

Basic cluster system
Figure 22 shows the basic model of our cluster system.
The cluster consists of n nodes. Initially, all of the
nodes are in a “robust” working state, indicated by tokens
in place Pup, in which the probability of node failure is
zero. As time progresses, each node eventually transits
to a “failure-probable” state (place Pfprob) through the
transition Tfprob. The nodes are still operational in this
state but can fail (transit to place Pnodefail1 with a nonzero
probability). If a node crashes, it can recover with a
probability c through the transition Tnoderepair. In this case,
the node goes back to the place Pup which represents the
clean state of the node. The node recovery can fail with
a probability (1 2 c), leading to a system failure (all n
nodes are down). Place Psysfail represents this system-level
failure state.

Thus, the time to failure for the node starting in the
robust state Pup has a hypoexponential distribution [35].
Since this is an increasing-failure-rate distribution, it
models software aging. From a full system outage, the
system can be repaired through the transition Tsysrepair and
all the n nodes return to place Pup. Many applications
may require a minimum number of cluster nodes to be up

Figure 22

Basic cluster system.
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Table B1 Parameter values.

Transition Rate

l1 1/240 /hr
l2 1/720 /hr
l3 1/30 /min
l4 1/4 /hr
l5 1/10 /min
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for the service to be available. In these cases, the system
is considered down when there are a (a # n) individual
node failures. This is modeled by using the guard
function g3 , which checks for this condition. In addition
to individual node failures, there is also a common-mode
failure, which takes place when transition Tcmode fires.
The common-mode failure causes all nodes that are
operational at that instant to be down. The transition
representing this failure is enabled at all times the system
is in the up state (guard function g2). When there is a
system crash (i.e., there is a token in place Psysfail), all of
the remaining tokens in places Pup, Pfprob, and Pnodefail2 are
drained. This is accomplished by defining a guard function
g1 which enables the immediate transitions T immd4, T immd5,
and T immd6 if there is a token in place Psysfail.

Simple time-based rejuvenation
The SRN model for a simple time-based rejuvenation
policy for a cluster system is shown in Figure 23. In this
policy, rejuvenation is done simultaneously for all of the
operational nodes in the cluster, at periodic deterministic
intervals. The rejuvenation interval is determined by using
a clock. Initially, there is a token in the place Pclock. The
deterministic transition Trejuvinterval fires every d time units
and deposits a token in place Pstartrejuv. Rejuvenation begins

only when there is a token in this place. If there is a token
in place Pstartrejuv and there are nodes to be rejuvenated
(i.e., there are tokens in places Pup or Pfprob), immediate
transitions T immd8 and T immd9 are respectively enabled. Only
one node can be rejuvenated at a time, and nodes are
allowed to fail when another node is being rejuvenated.
To model this, only one token is transferred from places
Pup and Pfprob. The probability of selecting a token from
them is directly proportional to the number of tokens in
each. Weight functions n1 (the number of tokens in Pup)
and n2 (the number of tokens in Pfprob) ensure this. Since
only one node can be rejuvenated at a time, a token is
deposited either in place Prejuv1 (from place Pup) or in
place Prejuv2 (from place Pfprob). Inhibitor arcs from these
places to transitions T immd8 and T immd9 prevent more than
one token from coming in. Transitions Trejuv1 and Trejuv2 are
the transitions for rejuvenation from places Prejuv1 and
Prejuv2, respectively. After a node has been rejuvenated, it
goes back to the “robust” working state, represented by
place Prejuved. This is a duplicate place for Pup in order to
distinguish the nodes which are waiting to be rejuvenated
from the nodes which have already been rejuvenated. A
node, after rejuvenation, is then allowed to fail with the
same rates as before rejuvenation, even when another node
is being rejuvenated. Hence, duplicate temporary places

Figure 23

Cluster system employing simple time-based rejuvenation.
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for Pup and Pfprob are needed. The transitions Tfprobrejuv and
Tnodefailrejuv have the same rates as transitions Tfprob and
Tnodefail. Node repair (transition Tnoderepair) is disabled
during rejuvenation. Rejuvenation is complete when the
sum of nodes in places Prejuved, Pfprobrejuv, and Pnodefail2 is
equal to the total number of nodes, n, in the cluster
system. The immediate transition T immd10 is fired when
rejuvenation is complete or when the entire system fails
during rejuvenation. When the entire system fails during
rejuvenation, tokens are drained from all places in which
it is possible to have tokens. Transition T immd10 also fires
when, just before rejuvenation starts, there are a 2 1
tokens in place Pnodefail2. Since a individual node failures
leads to a system crash, and rejuvenation is considered a
“down” state, rejuvenation does not take place if there are
a 2 1 individual node failures in the system. In this case,
the clock simply begins the countdown again. The guard
function g6 checks for these three conditions. The clock
is disabled when the system is undergoing repair (when
there is a token in place Psysfail).

We have approximated the deterministic clock using
an r-stage Erlang distribution [36]. If the rejuvenation
interval is d time units, each of the r Erlang stages is
exponentially distributed with mean d/r. The mean of this
Erlang distribution is thus d.

Prediction-based rejuvenation
The SRN model for a prediction-based rejuvenation policy
for a cluster system is shown in Figure 24. The failure-
repair characteristics of the system are the same as
before. There is no clock in this case, and rejuvenation is
attempted only when a node transits into the “degraded”
state. In practice, this degraded state could be predicted
in advance by means of analyses of observable system
parameters as described above and in [11, 12]. Assume
that prediction succeeds with probability c2 . If a prediction
is successful, a token is deposited in place Pdetect. If no other
node is being rejuvenated at that time, the newly detected
node can be rejuvenated. Once rejuvenation is completed,
the token is put back in place Pup. Note that a node is
allowed to fail even while waiting for rejuvenation. If
the prediction is unsuccessful, a token is deposited in
place Pdetectfail and then transits to the degraded state
unchecked. Transitions Tnodefail1 and Tnodefail2 have the
same rates.
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Cluster system employing prediction-based rejuvenation.
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