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Abstract 
Wind energy prediction represents an important and active field in the re-
newable energy sector. Since renewable energy sources are integrated into ex-
isting grids and combined with traditional sources, knowing the amount of 
energy that will be produced is key in minimizing the operational cost of the 
wind farm and safe operation of the power grid. In this context, we propose a 
comparative and comprehensive study of artificial neural networks, support 
vector regression, random trees, and random forest, and present the pros and 
cons of implementing the aforementioned techniques. A step-by-step ap-
proach based on the CRISP-DM data mining framework reveals the thought 
process end-to-end, including feature engineering, metrics selection, model 
selection, or hyperparameter tuning. Using the selected metrics for model 
evaluation, we provide a summary highlighting the optimal results and the 
trade-off between performance and the resources expended to achieve these 
results. This research is also intended to provide guidance for wind energy pro-
fessionals, filling the gap between purely academic research and real-world 
business use cases, providing the exact architectures and selected hyperpara-
meters. 
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1. Introduction

Since the end of the 20th century and during the early 21st century, topics related 
to renewable energy have increasingly come to the fore. Indeed, it is necessary to 
develop complementary mechanisms to those that already exist in the energy 
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field. The need is to satisfy electricity demands (International Energy Agency, 
2018), followed by the secondary need to replace fossil fuels that contribute to 
increased pollution levels and whose future existence is questionable (Ritchie & 
Roser, 2017). The sun, wind, and surface or underground water all represent 
energy sources that can be captured using various technologies that are under 
continuous development (Marsh, 2019). Besides the known uses of energy, a 
new use has arisen owing to technological leaps in electric-powered transporta-
tion. The demand for electricity generated by applications in electric transporta-
tion will not have a significant impact on total global electricity demand: expec-
tations for growth are 1% by 2030 and 5% by 2050 (Engel, Hensley, Knupfer, & 
Sahdev, 2018). However, the peak in demand for electricity associated with elec-
trical vehicles recharging routines is expected to have an impact. Accurate pre-
dictions of the amount of renewable energy that can be produced are necessary 
since these installations are becoming integrated into the existing power genera-
tion and distribution infrastructure. One of the major challenges for transmis-
sion system operators and electricity distribution operators is to find the optimal 
balance between supply and demand in the market. Moreover, the results of 
these predictions will represent the basis for future operational and strategic de-
cisions with local and regional impact. 

Investments in renewable energy are expected to reach $ 230 billion in the 
next five years (Willuhn, 2019). Over time, global electricity consumption has 
increased steadily. Studies of energy consumption per sector of activity revealed 
that in the United States of America, energy consumption associated with resi-
dential and commercial buildings represented approximately 39% of the total 
energy consumed across the country, and this is expected to rise to 45.52% by 
2035 (U.S. Department of Energy, 2011). In the European Union, the power 
consumption of residential and commercial buildings accounts for approx-
imately 40% of the total (European Parliament, 2018b) and shows a continuous-
ly increasing trend. The European Parliament and the Council of the European 
Union have defined a legislative framework and set out a strategy that aims to 
increase the share of renewable energies. However, the transition to green energy 
is not only achieved using green and non-polluting resources but also by ensur-
ing responsible electricity consumption. DeepMind AI (Evans & Gao, 2016) has 
created a recommendation system for the use of the heating, ventilation, and air 
conditioning (HVAC) systems for several Google’s buildings. The main task of 
these HVAC systems is to cool the rooms in which the company’s servers are 
located, including servers of popular websites in Google’s portfolio, such as 
Google Search, YouTube, or Gmail. After the solution’s deployment, a 40% re-
duction was observed in the energy used for cooling. 

Of course, this is not a singular initiative, and many similar opportunities 
have arisen in this field (Kusiak & Xu, 2012; Gao, Li, & Wen, 2019; Wei, Wang, 
& Zhu, 2017). In accordance with targets set at the EU level through the Renew-
able Energy Directive (European Commission, 2020), by the end of 2020, 20% of 
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energy consumed in the European Union should be achieved using renewable 
resources. All European countries are part of this initiative, each proposing an 
action plan with specific goals for completion. These plans include intermediate 
targets for major activity sectors: transport, electricity, heating, and cooling. To 
these are added recommendations on technologies that should be used to obtain 
energy from renewable resources, suggested changes and improvements to leg-
islative frameworks to facilitate the deployment of new technologies, and coop-
eration mechanisms between participating countries (European Commission, 
2013). At the end of 2017, 17.5% of the energy consumed in the European Union 
was obtained from renewable resources, compared to 8.5% in 2004. Over the last 
12 years, an average annual growth of 8.5% has been observed in the use of 
energy from renewable resources. Moreover, in 2017, 7.6% of the energy con-
sumed during transport-related activities was obtained from renewable re-
sources (Eurostat, 2020). The amount of hydroelectricity used has increased 
slightly over the last decade, while wind power is generated in amounts that are 
3.7 times higher than those recorded in 2006 and solar energy in amounts that 
are 44.4 times higher than those from the same time. For the first time in histo-
ry, the amount of wind energy produced at the EU level in 2017 exceeded the 
amount of hydroelectric energy. 

For the period from 2021 to 2030, through the 2030 climate and energy 
framework, the European Commission is targeting at least 40% cuts in green-
house gas emissions (from 1990 levels), a renewable energy share of at least 32%, 
and an improvement of at least 32.5% in energy efficiency (European Parlia-
ment, 2018a). The amount of wind energy depends not only on the size and 
number of installed windmills, but also on their geographic locations. Before 
engaging in detailed analysis, an initial prediction of the amount of energy pro-
vided by one or more wind turbines can be obtained from a set of site-related 
attributes, such as altitude, latitude, longitude, air pressure, date, weather, and so 
on. Predictability is one of the fundamental requirements in the energy business. 
Given that wind energy is characterized by non-stationarity, correct prediction 
of energy production facilitates the adoption of wind energy on an even larger 
scale than is presently possible. This comparative study adds the right level of 
depth to fill the gap between academic research and the challenges encountered 
by professionals working in the energy industry. 

2. Literature Review 

Machine learning facilitates an alternative to existing analytical models for pre-
dicting the amount of energy generated or the performance of wind power in-
stallations. Traditional methods rely on complex differential equations systems 
(Niayifar & Porté-Agel, 2015) requiring significant computational power and are 
slow to deliver results with acceptable accuracy. The use of machine learning to 
identify patterns in multidimensional data has proven to be an inspired decision, 
with the resulting models providing robustness, tolerance to outliers and errors, 
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and success in dealing with noisy data. Therefore, support vector regression 
(SVR), regression tree (RT), random forest (RF), and artificial neural networks 
(ANNs) are selected to model this problem. Depending on the approach 
adopted, prediction methods can be physical, statistical, machine learning, or 
hybrid (i.e., a combination of the first three). Moreover, the method can be di-
rect—predicting the output power directly—or indirect—predicting wind direc-
tion and speed, which are further used to determine output power based on the 
power curves. Another classification may be made based on the time frame: 
short-, medium-, or long-term prediction. Physical modeling uses the complex 
physical properties of the environment in which the wind turbines are installed. 
These physical properties must be identified, collected, pre-processed, and fur-
ther used to make predictions. Fortunately, historical data are not required in 
such large quantities as for statistical models. However, these systems are ex-
tremely complex both in terms of development and operation (Landberg & 
Watson, 1994; Focken, Lange, & Waldl, 2001; Perez, 2002). 

In the case of statistical modeling, certain assumptions must be fulfilled before 
the actual modeling can begin, and this may contradict the non-stationarity 
character of the wind. ANN, RT, RF, and SVR can be used for non-linear mod-
eling use cases, such as wind energy prediction. Compared with other models 
that reduce the error over the training dataset, SVR aims to include as many data 
points as possible within an exact error interval, namely minimization of the 
upper bound of the expected risk. Thus, SVR is based on structural risk minimi-
zation. RT, RF, and ANN are based on empirical risk minimization. Based on 
general noise functions, a direct approach to building error intervals as functions 
of residual distributions can be created (Prada & Dorronsoro, 2015). Based on 
these error intervals, the model’s parameters can be selected and further used to 
fit the data. SVRs, similar to RT and RF, are sensitive to the selected input va-
riables. Various data preparation steps must be completed before the data are 
input into these models. Wavelet transform is used to decompose time series 
data into components that are approximately stationary (De Giorgi, Campilon-
go, Ficarella, & Congedo, 2014). Least-squares SVR is a variant of SVR that is ul-
timately reduced to a linear problem, being computationally more efficient than 
standard SVR or ANN. Combined with wavelet transformation, it can outper-
form ANN in predicting wind energy output for time frames of up to 24 hours. 
The same SVR standard approach can be used but with a Euclidian dis-
tance-based method for identifying and selecting the data segments that have 
comparable absolute values with the forecasting reference sequence (Zhu, Zhou, 
& Fan, 2016). Selected data segments are further used for model training. Com-
pared with other methods, an indirect method is used, with wind speed as the 
dependent variable. Based on the wind speed prediction and power curves, the 
actual wind energy generated is calculated. Wind energy production discontinu-
ities, such as ramps, are harmful for the grid. Preferably, predictions should be 
made in time to prepare and pursue the optimal strategy to minimize the nega-
tive impact on the grid (Liu et al., 2016). Before the entire existing data set is in-
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put into the SVR, the importance of each variable in predicting the ramps is as-
sessed to reduce the number selected. The technique deployed is called ortho-
gonal testing, and compared with Spearman correlation, Gray correlation, and 
principal components analysis, is proven to yield better results. All four techniques 
were used with an SVR model. Ensemble methods such as RF can deliver very 
good accuracy in predicting wind energy, enabling easy feature importance as-
sessment (Torres-Barrán, Alonso, & Dorronsoro, 2017). RF as a non-parametric 
model does not require parameter tuning, an area where usually has a lot of ef-
fort is spent. Quantile RF is an extension of the standard RF that is used to build 
confidence intervals for the prediction (Lahouar & Ben Hadj Slama, 2017). 

This study highlights the importance of selecting the correct input data and of 
analyzing and discussing the topic from correlation and feature importance 
perspectives. In this way, they are used to model only those features that have 
the right amount of information gain for the studied problem (Wang, Sun, Sun, 
& Wang, 2017). ANNs are suitable for many applications in the field of wind 
energy. Among the most important of these are pattern detection, forecasting, 
monitoring, and control and design optimizations. To ensure a good prediction, 
it is necessary to select the correct independent variables that will explain the 
complexity of the studied phenomena. At first glance, the more variables the 
better: hence, a series of separate problems that must be approached punctually 
and embedded in a solution that does not lead to diminished advantage caused 
by the existence of so many variables. If the number of variables considered in-
creases, the amount of data required for the analysis will increase concurrently 
(Shetty, 2019). Increasing the quantity of data may lead to a decrease in the ge-
neralization ability, increasing the likelihood of overfitting or underfitting. The 
required time for training and computing power also increases. Principal com-
ponent analysis (PCA) can help to reduce the number of variables considered 
while preserving most of the information (He, & Liu, 2012). 

A series of scientific studies shows that problems of such complexity can be 
successfully addressed using ANN (Kariniotakis, Stavrakakis, & Nogaret, 1996; 
Damousis & Dokopoulos, 2001; Barbounis, Theocharis, Alexiadis, & Dokopou-
los, 2006). A sporadic and difficult-to-anticipate event, the burst has a negative 
impact on the results of the prediction (Kolhe, Lin, & Maunuksela, 2011). The 
use of ANN has proven successful in other instances in which bursts were not 
present. Post-prediction comparison of the prediction with the actual wind 
energy production revealed a maximum difference of 6.52%. The neural network 
used was optimized using genetic algorithms, resulting in a more accurate pre-
diction than that obtained without optimization. The multi-layer perceptron 
(MLP) offers an architecture that is worth consideration for predicting the elec-
tric power produced by wind turbines (Catalao, Pousinho, & Mendes, 2011). The 
analysis was for a short-term horizon using the Levenberg-Marquardt learning 
algorithm. The mean absolute percentage error (MAPE) for the training set and 
the test set was less than 3.26%. An interesting approach is to collect and use da-
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ta from two different geographical areas (Flores, Tapia, & Tapia, 2005) that have 
different particularities—one characterized by strong winds and the other by low 
winds—in the same model. Another analysis used a feed-forward neural net-
work (FFNN), demonstrating that accuracy depends on the considered time ho-
rizon. For long-term predictions, accuracy decreases, while it increases for 
short-term predictions (Singh, 2016). 

3. Theoretical Considerations 
3.1. Artificial Neural Networks 

The ANN model is inspired by biology and represents an abstraction of the hu-
man brain (Jain, Mao, & Mohiuddin, 1996). ANNs are capable of setting the 
benchmark in various industries for applications such as computer vision, text 
processing, or speech recognition and various regression and classification use 
cases. These achievements have generated considerable excitement both inside 
and outside the machine learning community. FFNNs represent one of the sim-
plest types of ANN. Multiple neurons are organized in layers. Neurons from 
consecutive layers are connected, and each connection has its own weight. For 
this architecture, the information passes through the network in one direction 
from the input layer through the hidden layer to the output layer. The sin-
gle-layer perceptron (SLP) is the simplest type of FFNN and does not contain 
any hidden layer. If the network contains one or more hidden layers, it is catego-
rized as an MLP (Figure 1). 

In the neural network, the computation unit is called a neuron. Each neuron 
receives inputs from other neurons inside the network or from outside the net-
work through the input layer and computes an output. As in Figure 2, each in-
put has an associated weight (wi), and weight values are assigned based on the 
importance of each input. 

Function f is applied to the weighted sum of the inputs (xi). Besides, the 
weights and numerical inputs, another term—“bias”—can be added to the neu-
ron. The output of the neuron becomes 

( ) ( )1 1 2 2 3 3y f u f w x w x w x b= = + + +                (1) 

 

 
Figure 1. Multi-layer perceptron. 
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Figure 2. Neuron abstraction. 

 
The activation function introduces non-linearity into the output neuron. This 

feature of neural networks is important because many of the potential use cases 
using real-world data will be non-linear. For a step function, the output would 
be something like 

( )
1, if
0, if

wx b
y f u

wx b
τ
τ

+ ≥
= =  + ≤

                   (2) 

where τ represents the threshold. 
The learning process within the ANNs is achieved by adjusting the synaptic 

weights during the training. The model’s cost function is computed based on the 
output layer results regarding how close or far the prediction is from the actual 
values. This cost function is also known as a “loss” or “error” function, depend-
ing on the bibliographic resource consulted: 

( )2

1Mean square error
n p

i ii y y

n
=

−
=
∑

                (3) 

Mean square error or L2 loss is one of the most widely used loss functions for 
regression problems. Mean square error represents the sum of the squared dis-
tances between predicted values and target variables. When the total error ap-
proaches a reasonable value or another criterion is reached (i.e., number of 
epochs or training time), the training phase is stopped. Therefore, the model’s 
objective function is to minimize the error. During the training, a series of 
hyperparameters must be refined to achieve a performant model. First, taking 
into consideration the quantity of data that is passed through the network dur-
ing the training, the batch size must be defined. Batch size may vary from 1 to n, 
where n is the total number of samples within the training set and represents the 
number of samples propagated through the network. With respect to the cost 
function and the selected optimization function, the model’s synaptic weights 
are updated. Synaptic weights—or, in some cases, learning rates—are updated by 
the optimization algorithm in accordance with certain rules. Weights initializa-
tion represents one of the most important decisions that must be made. During 
the learning process, the model’s synaptic weights acquire knowledge. For initial 
weights, if values are too small or too large, issues may arise in relation to va-
nishing or exploding gradients. For constant values, different knowledge acqui-
sitions may appear across networks. However, both solutions negatively impact 
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the network’s convergence to the minima and how the resources, such as train-
ing time or computational power, are spent. 

To overcome these drawbacks, strategies for selecting weights from distribu-
tions are proposed. LeCun, Bottou, Orr, and Müller (2000) proposed that they be 
drawn from a distribution with a certain variance and zero mean. LeCun et al. 
normal initialization uses a truncated normal distribution centered in zero hav-
ing a standard deviation: 

1
input_dimωσ =                        (4) 

This strategy considers the number of inputs in the weight tensor, input_dim. 
LeCun uniform initialization proposes an interval from which the initial weights 
are selected. Upper and lower bounds are described as follows: 

3lower bound
input_dim

= −                    (5) 

3upper bound
input_dim

=                    (6) 

Xavier initializations, normal, and uniform, take into account both the num-
ber of inputs in the weight tensor and the number of outputs in the weight ten-
sor (Glorot & Bengio, 2010). The distribution is created in the same way as in 
LeCun et al.’s (2000) approach, but the additional variable related to the output 
is accommodated. Normal distribution is used for Xavier normal initialization: 

2
input_dim output_dimωσ =

+
                  (7) 

and uniform distribution is used for Xavier uniform initialization: 

6lower bound
input_dim output_dim

= −
+

             (8) 

6upper bound
input_dim output_dim

=
+

              (9) 

Rectified linear unit (RELU) is one of the most widely used activation func-
tions among machine learning practitioners, being less computationally expen-
sive than sigmoid or tanh functions since the mathematical operations deployed 
are simpler. Owing to its nature, only some neurons are activated. This behavior 
adds computational efficiency but simultaneously generates situations in which 
some neurons are excluded from training by no longer being activated (Krizhevsky, 
Sutskever, & Hinton, 2012). 

( ) ( )max 0,i if z z=                       (10) 

The number of hidden neurons and hidden layers is a matter of domain 
knowledge and testing. Some guidance may be found in the existing research in 
this area, but a clear answer about the best architecture will be found only 
through trial-and-error (Hunter, Yu, Pukish, Kolbusz, & Wilamowski, 2012; 
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Madhiarasan & Deepa, 2016; Panchal, Ganatra, Kosta, & Panchal, 2011). 
Adam is a method for stochastic optimization that computes for each para-

meter its own learning rate (Kingma & Ba, 2014). The name Adam is inspired by 
adaptive moment estimation and combines the advantages of both RMSProp 
(Hinton, Srivastava, & Swersky, 2020) and Adagrad (Lydia & Francis, 2019) into a 
better memory and computational solution. Adam updates the equation as follows: 





1t t t

t

m
v

ηθ θ
ε

+ = −
+

                     (11) 



11
t

t t

m
m

β
=

−
                         (12) 



21
t

t t

v
v

β
=

−
                         (13) 

where t = time step, tm  = update-biased first moment estimate, tv  = up-
date-biased second raw moment estimate, tm  = compute bias-corrected first 
moment estimate, tv  = compute bias-corrected first moment estimate, and 1

tβ  
and 2

tβ  = exponential decay rates for the moment estimates at time step t. 

3.2. Support Vector Regression 

The support vector machines (SVM) principle is sophisticated yet simple to im-
plement. SVM uses the structural risk minimization inductive principle to 
achieve a reasonable generalization on limited data (Smola & Schölkopf, 2004). 
SVM can solve both classification and regression problems, the theoretical 
foundations being common up to a point. SVR is an instance of SVM that deals 
with regressions. While linear regression or FFNN aim to minimize the error in 
the SVR, the aim is to fit the error within a fixed threshold (Basak, Pal, Ch, & 
Patranabis, 2007). In this way, SVR is associated with problems in selecting the 
right decision boundary. The best fit is achieved when the maximum number of 
data points is included between the boundaries. Effort is invested in deciding 
where the decision boundary should be placed and in setting the distances ε and 
−ε from the hyperplane in such a way that the data records closest to the hyper-
plane are inside the boundaries, visually represented in Figure 3. 

 

 
Figure 3. Support vector regression hyperplane and decision boundaries. 
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For a given data set split in training and testing sub-sets, the pairs of training 
points are ( ) ( ) ( ) ( )1 1 2 2 3 3, , , , , , , ,i ix y x y x y x y XxR  , where X is the input space 
for the instance dR  and 1,2, ,i n=   (Taylor, 2020). The function ( )f x  
must have the largest deviation ε from the hyperplane and must be as flat as 
possible. For a linear function: 

( ) ,f x w x b= +                        (14) 

where w X∈ , b R∈  and ,⋅ ⋅  represents the dot product in X. 
Seeking a flattened ( )f X  means the value of w needs to be minimized. 

Hence: 

2minimiz 1
2

e w                        (15) 

with the associated constraints 

,i i iy w x b ε− − ≤                       (16) 

,i i iy w x b ε− + ≤                       (17) 

However, this is the ideal case. For errors that exceed the boundaries—that is, 
errors larger than ε—slack variables, iξ  and *

iξ , are introduced in the optimi-
zation (15). 

( )2 *
1Min m e 1

2
i iz l

i iiw C ξ ξ
=

+ +∑                 (18) 

with the new associated constraints: 

,i i i iy w x b ε ξ− − ≤ +                     (19) 

*,i i i iy w x b ε ξ− + ≤ +                     (20) 

where * 0,i iξ ξ ≥ . 
The new hyperparameter, C, can decrease or increase the tolerance on the da-

ta points that exceed the boundaries, impacting the flatness of f. The greater the 
value of C, the greater the tolerance on deviations larger than ε. For the features 
that are linearly non-separable, one option to make them linearly separable is to 
map them to a high-dimensional feature space, moving from a linear to a 
non-linear kernel and, based on (Smola & Schölkopf, 1998) and (Gani, Taleb, & 
Limam, 2010), introducing radial basis function (RBF) kernel defined as: 

( )
2

2, exp
2

i
i

x x
K x x

σ

 −
 = −
 
 

                  (21) 

2

1
2σ

ϒ =                           (22) 

where σ, length scale, is RBF kernel’s parameter. If ϒ  is too small, the com-
plexity of the studied problem cannot be covered by the model, resulting in a 
solution similar to the linear one but including all training examples. If ϒ  is 
too large, the overfit will appear even if the regularization parameter, C, appears 
to prevent it. 
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3.3. Regression Trees 

Decision trees are part of the supervised learning branch, and based on the out-
come of the model decision trees, regression trees may result when the outcome 
is continuous while classification trees ensue when the outcome is discrete. 
Tree-based models are efficient and simple when the use case implies the in-
volvement of several variables. 

The training set is split into smaller data sub-sets as in Figure 4 using a greedy 
approach to divide the input space. This procedure is known as recursive binary 
splitting (Steorts, 2020). Beginning with all examples belonging to the same re-
gion and splitting them into multiple regions also makes this approach 
top-down. Node splitting is carried out according to feature1 ≥ threshold or fea-
ture1 < threshold. In the non-overlapping regions where leaves are placed, the 
predicted value represents the average over the training examples assigned to 
each region. In the left branch, another feature is added, again splitting the 
branch based on a threshold. In this way, regions R1, R2, and R3 are built. The 
points at which the predictor space is split are called nodes, the segments that 
are connecting the nodes are called branches, and those at the bottom end are 
called leaves. The feature where the first split is made is the most important in 
predicting the dependent variable. Further, the second feature is important for 
the examples of only one branch and less so for the examples of the other 
branch. Tree performance depends on the extent to which the residual sum of 
squares (RSS) is minimized: 

( )2

1
RSS

n
i

n

i R
n i R

y y
= ∈

= −∑∑                     (23) 

where 
nRy  corresponds to the nth region training examples mean. 

The splitting procedure must have a rule for stopping; otherwise, overfitting 
will occur (e.g., one leaf containing only one instance), leading to poor predic-
tion performance. The splitting procedure must be constrained to avoid overfit-
ting. To do this, tree parameters are set to refine the way in which splitting oc-
curs. The minimum number of samples inside a node gives the threshold above 
which a split can happen. A tree’s maximum depth need not be set if the mini-
mum number of samples inside a node is fixed and vice versa. The minimum 
number of samples inside a leaf provides a threshold below which splitting can-
not go. Node splitting decisions can be based on a selected metric or random.  

 

 
Figure 4. Decision tree logic. 
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Since the desired state implies having the simplest tree for the studied problem, 
pruning can be used to reduce the complexity, removing the branches with low 
importance. Complexity is given by the number of splits. Pruning can be per-
formed manually by removing leaves step-by-step while reassessing the error on 
testing data using cross-validation. Manual pruning is time-consuming, requir-
ing that every possible configuration be considered. Pruning can be performed 
automatically by deploying cost complexity pruning (Taylor, 2020). A learning 
parameter (α) is added, and a sequence of subtrees with the best performance is 
obtained based on it: 

( )2

1
min

n
i n

T

i R
n x R

y y Tα
∈=

− +∑ ∑                   (24) 

where T  represents the number of terminal nodes of the tree T, nR  is the 
region in which the nth terminal node is placed, and 

nRy  is the prediction 
linked with nR , constraining the value of T  and using Lagrange multipliers: 

( ) ( )
2

ng i R
i

y y T cαλ∆ = − + −∑                  (25) 

This becomes a discrete optimization problem of minimizing T and λ. When a 
final leaf node is reached, the prediction is made. Regression trees are sensitive 
to the data used for training. If training data are replaced with another sample, 
the resulting regression tree solution may be different to the first. Simultaneous-
ly showing significant risk of overfitting, predilection for finding the local opti-
ma, and cost-intensiveness in terms of computational power, regression trees 
can be used in ensemble models like RF. 

3.4. Random Forest 

RF, an ensemble model, consists of a collection of decision tree models (Figure 
5). Each tree that makes up the RF algorithm is trained on a randomly selected 
subset of data and makes its own prediction. RF prediction accuracy can be sig-
nificantly improved compared with single decision trees (Breiman, 2001). The 
prediction of the entire RF model represents the average of the predictions pro-
vided by every tree. Bootstrap refers to the simple random samples from an 
original dataset selected with replacement and provides a better understanding 
of the bias and variance in the considered use case (Kotsiantis, 2011). Bagging or 
bootstrap aggregation is an ensemble method that combines the predictions 
made by different RTs over different bootstrap samples to make a more accurate 
prediction than any individual tree. For supervised learning, an important step is 
represented by variable selection. Taking the optimal subset of variables reduces 
the model’s complexity, increases model generalization capability, and reduces 
the time and computational power needed for training (Ben Ishak, 2016). Com-
paring the parameters set for the model with those set for regression tree, a new 
one is added: the number of decision trees that constitute the RF. 

Out-of-bag error (OOBE) is similar to cross-validation and represents the av-
erage of all predictions made on unseen data (i.e., sub-sets not used during the  
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Figure 5. Random Forest logic. 
 

training). 

( )2

1

1OOBE
n

i i
i

y y
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= −∑                     (26) 

where iy  is the predicted value. 
Variable importance is calculated by making random permutations of a fea-

ture across multiple trees, calculating the difference between the OOBE obtained 
after each permutation and the original OOBE. If the error increases compared 
with the original OOBE, then the feature is relevant for the analysis. Both regres-
sion trees and RFs are sensitive to the data on which they are trained. 

To avoid overfitting and to better evaluate the models’ generalization capabili-
ties, a cross-validation technique is used (Fawcett & Provost, 2013). The first 
step is to split the entire data set into training and testing data. In this paper, the 
training data consist of 80% of the entire data set, while the remaining 20% is the 
holdout subset. The second step is to split the training data set into k-folds. For a  
given k, the training data set is split into k sub-sets. Training process is done us-

ing 1k −  folds or 1k
k
−  of the training data subset, while the evaluation is 

made on 1
k

 remaining data. For the same k, a loop of k training and testing  

sequences are completed, with each fold being 1k −  times part of the training 
set and 1-time part of the testing set. The metric computed at the end of testing 
for each k-fold combination is averaged, resulting in the model’s performance. 
The third step is to test the model against the initial holdout data set. 

4. Methodology and Use Case 

The methodology used for data mining is Cross-Industry Standard Process for 
Data Mining (CRISP-DM). The main steps used in this methodology are busi-
ness understanding, data understanding, data preparation, modeling, evaluation, 
and deployment. The first step, business understanding, involves identifying and 
understanding the project objectives and crystallizing them into a complete de-
finition of the problem under review. The details of this phase are covered in the 
Introduction. Data understanding covers the entire process of data collection 
and exploratory data analysis. At the end of this step, the researcher will know 
whether the available data are of the right quality and quantity to continue the 
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project. If necessary, multiple iterations are permitted to match the require-
ments. Data used in the analysis were made available by Open Power System 
Data (2020). Two data sources were aggregated (Table 1) to obtain the final data 
set containing information about the weather and energy output of the wind 
turbines under consideration. Open Power System Data is a portal aggregating 
multiple data sources across the European Union. The information sources in-
clude, among others, weather data and energy production and generation capac-
ity by technology and country. The data is available at three resolutions: 15 mi-
nutes, 30 minutes, and 60 minutes. 

Data preparation is the most time-consuming part of the data mining process. 
This typically represents around 80% of the effort. This step involved the trans-
formation of the initial raw data into the data used for predictive modeling. 
Among the activities associated with this step are joining data from different 
sources, identifying extreme values, identifying missing values, identifying data 
that do not have the correct format, feature engineering, and data normalization. 
Once the potentially risky data are identified, techniques are applied to limit or 
remove the effects. At the end of this step, the data are in the optimal form. On 
the feature engineering side, out-of-time stamps were created for additional va-
riables consisting of month, day of month, and hour. Once categorical encoding 
had been completed, the total number of dependent and independent variables 
became 77. One of the problems encountered was associated with multicolli-
nearity. Highly correlated independent variables were dropped. Based on the 
current approach, measuring wind speed in different places does not provide 
additional information. Moreover, air density was also dropped since it is a 
function of air pressure and air temperature. The modeling step begins with  

 
Table 1. Data set description. 

 Mean Std Min 
1st 

quartile 
Median 

3rd 
quartile 

Max 

Energy 8766.86 6846.41 135 3617 6944 11,800 33,626 

v1 2.94 1.19 0.75 2.07 2.72 3.58 7.93 

v2 4.3 1.61 1.35 3.14 3.95 5.11 11.16 

v_50m 6.06 2.09 1.96 4.63 5.72 7.1 14.92 

h1 2.69 0.13 2.46 2.58 2.73 2.81 2.83 

h2 10.69 0.13 10.46 10.58 10.73 10.81 10.83 

z0 0.2 0.03 0.14 0.17 0.21 0.23 0.24 

rho 1.21 0.03 1.13 1.18 1.21 1.24 1.31 

p 9.86E+04 8.58E+02 9.55E+04 9.81E+04 9.86E+04 9.91E+04 1.01E+05 

T 9.22 7.58 −8.55 2.91 8.09 15.52 28.7 

Notes: energy = actual wind energy production, v1 and v2 = wind speed 2 and 10 meters above displacement 
height, v_50m = wind speed 50 meters above ground, h1 and h2 = height above ground corresponding to v1 
and v2, z0 = roughness length, rho = air density at surface, p = air pressure at surface, T = temperature 2 
meters above displacement height. 
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model selection. In the case of wind energy, more methods are available to 
achieve the prediction. Considering the problem statement and the previous 
publications of researchers dealing with similar use cases, SVR, RT, RF, and 
ANNs were selected for predicting wind energy production. An optimization for 
the number of folds, k¸ used for cross-validation was performed. Considering 
the performance and the training time, the selected value for k was equal to 3. 
Model evaluation facilitates comparison of the results and selection of the tech-
nical solution best suited to the problem at hand. It assesses how well the se-
lected models succeed in generalizing using the testing data. At the end of the 
entire process, the best performing model is chosen for deployment in produc-
tion. From among those available, coefficient of determination (R2), mean abso-
lute error (MAE) and root mean squared error (RMSE) were selected for the 
evaluation step. 

( )
( )

2 1
2

1

ˆ
1

ˆ

n
i ii

n
i ii

y y
R

y y
=

=

−
= −

−

∑
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                    (27) 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                      (28) 

( )2

1

1 ˆRMSE
n

i i
i

y y
n =

= −∑                    (29) 

where y = actual value, ŷ  = predicted value, and n = number of samples. 
The deployment phase involves integrating the final solution into production 

and creating a mechanism that allows the consumption of new data generated in 
the system. In this paper, the solution will not be deployed in production, but 
theoretical considerations and the results of the study prepare the field for the 
development of a technical solution that can be deployed to support real opera-
tions in the wind turbine industry. 

5. Results 

The purpose of the study was to assess the capability of the selected models to 
predict wind energy production. First, the coefficient of determination is the 
percentage of variance in the dependent variable explained by the model. MAE 
and RMSE are scale-dependent measures of accuracy that enable comparisons 
between different models on the same data set. The fourth metric is represented 
by training time. In the overall context, delivering the prediction just-in-time is a 
desired feature. Based on the selected modeling paradigm, quantity of data, pre-
diction horizon, available hardware and its limits, training time can become a 
decisive factor in selecting the final solution. All computations were performed 
using a Dell Precision 7350 equipped with Nvidia Quadro P2000, 2.5 GHz Intel 
Core i5-8400H CPU, 32 GB RAM, Python 3.6.10, Windows 10. Table 2 indicates 
the optimized parameters and the selected values at the end of the optimization. 
Overall, ANN provides greater flexibility than the other three algorithms. How-
ever, SVR, RT, and RF parameters look like they are coming with a more com-
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mune sense than ANN. 
The flexibility in selecting the parameters has both positive and negative as-

pects. Regarding the capability of capturing the entire phenomenon under re-
view, ANN showed the best performance, closely followed by RF and SVR. The 
negative aspect shown in Figure 6 is represented by the training time and compu-
tational power invested in determining the best combination of parameters. At this 
stage, training time has no impact on whether or not the prediction is delivered in 
time, since the prediction horizon is 1 hour ahead and the maximum training time 
represents only up to 21% of this time frame. 

Beyond R2 it is important to understand the consequences of the trade-off 
between performance, complexity, and training time. Although the R2 values of 
SVR, RF, and ANN may look similar to one other, assessing MAE and RMSE, 
another perspective is revealed. ANN delivers an MAE that is 20% smaller than 
RF, 35% smaller than SVR, and 59% smaller than RT (Figure 7). If the  

 
Table 2. Parameter selection by model. 

Algorithm Optimized Parameters 
Total algorithms 

tested 
Best Parameters combination 

SVR C, ξ, ϒ 72 C = 5, ξ = 0.00001, ϒ = scale 

Regression 
Tree 

α, min samples split, min 
samples leaf, min weight 

fraction, splitter 
900 

α = 1, 
min samples leaf = 1, 
min samples split = 3, 

min weight fraction = 0, 
splitter = random 

Random 
Forest 

min samples leaf, min 
samples split, number of 

trees 
1250 

min samples leaf = 1, 
min samples split = 2, 

number of trees = 2375 

ANN 

batch size, epochs, no. of 
neurons, no. of hidden 

layers, weights 
initialization, activation, 
optimization algorithm 

40,000 

batch size = 8, 
epochs = 150, 

no. of neurons hidden layer = 141, 
no. of hidden layers = 2, 

weights initialization = Xavier Uniform, 
activation = RELU, 

optimization = Adam 

 

 
Figure 6. Comparison of R2 and training time for the selected algorithms. 
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Figure 7. Comparison of MAE and RMSE for the selected algorithms. 

 
performance is assessed considering the MW of electricity, the differences be-
tween the models will become clearer. ANNs are more complex than the SVR, 
RT, and RF, but if the requirements and limitations of the use case are unders-
tood, the model’s performance will be prioritized over training time and com-
plexity. 

Considering performance alone and removing hardware constraints, ANN 
can deliver benchmark results for these types of real-world business cases. Prac-
titioners working on these projects may encounter challenges related to data 
quality and availability. Hence, the data provided by the Open Power System 
Data is reliable. In the case of a smaller time horizon in which the prediction 
must be completed, training time may be a decisive factor in the model’s selec-
tion. However, that would be another data mining project for which this study’s 
findings could be considered but would not generally be accepted as valid. 

6. Conclusion 

This end-to-end approach based on the CRISP-DM framework offers some 
guidelines for future projects. Well-tuned ANNs can deliver accurate predictions 
for forecasting wind energy production but carry costs associated with the re-
sources, time, and computational power required to find the optimum hyperpa-
rameter combination. Tree-based models provide transparency that is lacking in 
black box algorithms such as ANN. SVR may have been the best solution pro-
posed if a single metric considering both performance and training time had 
been proposed. Wind power prediction remains an open topic despite the 
promising results. For the analyzed time frame, no special event or natural ha-
zard occurred; the wind energy production as a dependent variable was consis-
tently associated with the correct independent variables. A key feature of this re-
search is the insights it offers into how data pre-processing and the model’s op-
timization were performed. 

Wind energy production is closely related to weather conditions. Bearing in 
mind the unpredictable nature of weather, the larger prediction time horizon, 
and the greater degree of uncertainty, even the metrics seem to be good. Wind 
energy prediction errors can be assumed to be within a certain limit and can be 
overcome through the addition of installations for storing energy when the pro-
duction is greater than the demand, so that the grid does not become overloaded 
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and so the energy can be delivered when the pick-in demand is not fulfilled by 
the wind farms. A feasible solution could be to run multiple machine learning 
algorithms in parallel to short-, medium-, and long-term predictions to support 
both operational and strategic decisions. An accurate prediction of the amount 
of electricity produced from renewable resources is a step toward optimizing the 
entire ecosystem. Improvements in electricity generation capacity, stability, and 
predictability of operating mode are carefully pursued with the hope of achiev-
ing the most efficient integration and easing the transition from traditional to 
renewable energy resources. 
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