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Abstract 
In this paper, the randomised pseudolikelihood ratio change point estimator 
for GARCH models in [1] is employed and its limiting distribution is derived 
as the supremum of a standard Brownian bridge. Data analysis to validate the 
estimator is carried out using the United states dollar (USD)-Ghana cedi 
(GHS) daily exchange rate data. The randomised estimator is able to detect 
and estimate a single change in the variance structure of the data and pro-
vides a reference point for historic data analysis. 
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1. Introduction

Volatility models are becoming increasingly important due to their role in asset 
pricing and risk management. It is however, not directly observed and hence 
needs to be estimated. Since the introduction of Autoregressive conditional He-
teroscedacisity (ARCH) by [2] and its generalisation, Generalised ARCH 
(GARCH) by [3], these models have arguably been the most popular and used 
financial volatility models. It is, however, possible that structural changes such as 
“shocks” as a result of changes in institutions, financial crises, may cause the da-
ta generating parameters of these models to change. Failure to accommodate 
these parameter changes in the conditional and unconditional volatility of a se-
ries in the model may have serious impacts on the forecasting abilities of these 
models. In fact [4] and [5] showed that neglecting parameter changes in the ap-
plication of GARCH(1,1) model to long time economic processes often lead to 
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high persistence and for this reason, the IGARCH model of [6] was introduced. 
For a comprehensive study on change point problems, we refer to [7]. In 
GARCH models, the problems of change point estimation have been studied by 
various authors after the variance change test by [8] for independent observa-
tions. Some of the earliest work on GARCH change point estimation was by [9] 
based on the cumulative sum of squares of [8], and also the standardised residual 
based test of [10] with the aim of reducing large size distortions and low power 
of the CUSUM test of [9]. The authors showed that the proposed test statistic 
has a limiting distribution as the sup of a standard Brownian bridge via the inva-
riance principle for mixingale sequences whilst in [11] the point processes 
theory was utilized to obtain a weak convergence limit of a model order change 
point process for GARCH models. The authors of [12] considered the problem 
of testing for parameter change in nonlinear time series with GARCH errors and 
showed that under some regularity assumptions, the limiting null distribution is 
a supremum of a standard Brownian Bridge. The authors of [13] proposed a 
weighted CUSUM test statistic to test for mean change in an AR(p) process and 
its limiting distribution was obtained via the mixing conditions for linear 
processes. In [14] estimates-based CUSUM change point test in ARMA-GARCH 
and non linear Autoregressive Conditional Duration (ACD) models were stu-
died and the result of the quasi-maximum likelihood estimator (QMLE) from 
ACD models was used to derive the limiting null distribution of the CUSUM 
test. Later [15] considered a modified residual-based CUSUM test for loca-
tion-scale time series models with heteroscedasticity and in both studies, the au-
thors derived the limiting distribution derived as the supremum of a Brownian 
bridge.  

The change point problems for GARCH models in literature have usually 
been viewed as deterministic. However, in [1], a randomised change point test 
for GARCH models and its consistency were derived. In this paper, the limiting 
distribution of the randomised estimator of [1] is derived and validated via the 
United States dollar (USD)-Ghana cedi (GHS) exchange rate data. The idea of 
the randomised estimator is to weigh down excessively large observations and 
hence obtain test statistic values different from the described deterministic cases. 
Identifying discontinuities helps improve the forecasting abilities of GARCH 
models.  

This paper is organised into five sections. Section 1 is the Introduction, re-
search methodology is presented in Section 2. In Section 3, the limiting distribu-
tion of the estimator is derived. Section 4 presents results and discussions whilst 
Section 5 concludes the study.  

2. Methodology 

Consider the model 

( )1 2, , , ;t t t t p t tX g X X X θ ε− − −= +                 (1) 

where the errors t t tzε σ= , tz  has zero expectation and finite variance, tσ  
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follows a GARCH (p,q) model, for instance a standard GARCH model. The 
conditional mean, ( )1 2, , , ;t t t p tg X X X θ− − −  follows an autoregressive function. 
The test statistic for the change point is constructed by employing the likelihood 
ratio and derived as follows;  

( )2 2 2
*ˆ ˆ ˆ2 log log log logk n k kn k n kσ σ σ− ∆ = − − −  

consider 2 2
*ˆ ˆk kσ σ δ= +  and under the null hypothesis take 0δ →  as n →∞ , 

we have  
2 2 2

2 2 2

ˆ ˆ ˆ2 log log log 1 log 1
ˆ ˆ ˆ

n n k k
k

k k k

H
n

σ σ σ
σ σ σ
     −

− ∆ = = + = +     
     

       (2) 

where the variance estimates are given as  

( )
( )

( ) ( )( )22

11

1 ˆˆ ,
n

n t t nn
ttt

h h X X h
h X

σ θ
=

=

= −∑
∑

 

( )
( )

( ) ( )( )22
* *

11

1 ˆˆ ,
n

k t t kn
t ktt k

h h X X h
h X

σ θ
= +

= +

= −∑
∑

 

( )
( )

( ) ( )( ) ( ) ( )( )2 22
*

1 11

1 ˆ ˆˆ .
k n

k t t n t t kn
t t ktt

h h X X h h X X h
h X

σ θ θ
= = +

=

 = − + − 
 
∑ ∑

∑
 

A detailed simplification of Equation (2), and an expression for kH  can be 
found in [1]. The modified weighted test statistic is of the form;  

( )
( ) ( ) ( )

2

1 1

0
11 1 1

1max
n k

tt tt
n nk n kk n

tt t t tt t t

h h
e S k S n

n hh h h

υ

= =

< <
== = =

      = −   −    

∑ ∑
∑∑ ∑ ∑

     (3) 

with ( )1 20,υ ∈  where ( )
1

k

t t
t

S k h X
=

= ∑  and ( )
1

n

t t
t

S n h X
=

= ∑  

Finally, the test statistic as given in [1] is  

( )
( )

2

1 2 21

1 1 111 1 1

1max
n kk ntt tt

n t t t tnk n kk n t ttt t t tt t t

h h
e h h

n hh h h

υ

ε ε= =

≤ < = =
== = =

      = −   −    

∑ ∑∑ ∑
∑∑ ∑ ∑

   (4) 

with ( )1 20,υ ∈  and the estimator given as 1
ˆ arg max k n kk e≤ <=  .  

3. Limiting Distribution of the Estimator 

Here we show the limiting distribution of the randomised estimator as described 
in Equation (4). We note from [16] that the GARCH model, 2

tσ  is an α -mixing 
process, so is th  and hence 2

t thσ  by hereditary.  
Assumption 1.  The functions ( )1 2 1 2, , , , , , ,t t t t p t t t ph g X X X X X X− − − + + +=    

and ( )1 2 2, , , pg X X X  are real and positive functions on 2 p  such that  

( )( ){ }2 21 t t tX h hα α+ ++ + < ∞  for 0α > .  

We note that since 2
tε  is not directly observable we replace with 2

t̂ε  where 
2 2
t̂ t tε ε= + Λ  and ( )1t PoΛ =  has been established in [12].  
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Proposition 1. If assumption (1) holds then under the null hypothesis of no  

change in variance we have ( )
( )( )

( )
( ) ( )( )

( )
20

21 0
11 1

t tw
n

t

hB
e W

h
υ υυ

σ εσ τ
τ

τ τ τ τ+
→ −

− −





 as  

n →∞  where w→  defines the weak convergence of the process,  
( )2

1 0 0 , 0t tt Cov h hσ ε ε+∞

=−∞
= ≠∑  and ( )2

2 0 , 0tt Cov h hσ +∞

=−∞
= ≠∑ . ( )0B τ  and 

( )0W τ  denote standard brownian motions on [ ]0,1 .  
Proof. Considering Equation (4) we make the following representation;  

( )
( )
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t tt t k
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We re-write  
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We consider 2L  as follows  
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For 2L̂  we have  
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where 
k
n

τ =  hence Equation (5) becomes  
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Consequently we have  
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From Equation (4) we have  

( )
( )

( )
( )

( )( ) ( )( )

( ) ( )

1 1

11 1

2 2 2 2
1 1

1 1

2

1

1

1 1

1 1

1

1

k n k
t tt t k

n tn n
tt tt t

k k
t t t t t t t tt t

n n
t tt t

t ttt t

n
tt

h X h X
e h

nh X h X

h h h h
n n

h h
n n

h hh n

h
n

υ υ
υ

υ υ

υ

ε ε ε ε
τ

ε

τ

− −

= = +

=
= =

= =

= =

=

=

        =          
  

− − 
 × −              

−
+

 
 
 

∑ ∑ ∑
∑ ∑

∑ ∑

∑ ∑

∑



 

 ( )1 1

1

1

k n
t tt

k
tt

h h
n

h
k

τ
=

=

 − −  
 
 
  

∑ ∑

∑



 

We evaluate the limit of the function kA  as  
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Also from 1L  and 2L  we have  
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by the invariance principle for dependent variables of [17].  

( )
( ) ( )( ) ( )

( )
( ) ( )( )

2
21

1 2 11 1t t

t t

h
L L B B W W

h hυ υ

σ εσ
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Finally, we have  
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t tw
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hB
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h
υ υ

σ εσ τ
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τ τ τ τ
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− −

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
            (6) 

where ( )0B τ  and ( )0W τ  denote standard brownian motions on [ ]0,1  gen-
erated by { }2

1t t t
h ε

∞

=
 and { } 1t t

h ∞

=
 respectively.  

4. Volatility Change Point Detection for Exchange Rate Data 

We show an analysis of the United States Dollar (USD)-Ghana Cedi(GHS) daily 
exchange rate from 2008-2019 to illustrate the validity of the estimator. We con-
sider the function of Equation (7) in our study.  

( )
1 for

, 0for

t

t t
t

t

B
h X BB B

ε
θ

ε
ε

≤
→ > >


               (7) 

In this paper B is chosen to be the 90th quantile of the residual data, tε .  
The negative value of skewness and the small Jarque-Bera test value in Table 1 

indicates the return data is not symmetric. The smaller p-value of the Arch test 
also indicates the presence of Arch effect.  

Figure 1 shows the log return of the exchange rate data, the graph displays the 
typical “stylized fact” such as volatility clustering present in financial log-return 
series.  

4.1. ARMA Selection 

By observing the autocorrelation and partial autocorrelation and comparing the 
values of AIC and BIC, a more suitable order of p = 1 and q = 1 of the ARMA  
 
Table 1. Statistical properties of return data. 

Statistical Properties of Return Data 

min −1.794944e−02 

max 1.183120e−02 

median 6.214180e−05 

mean 2.545361e−04 

SE.mean 2.722980e−05 

var 2.206591e−06 

Arch Test p-value = 0.01 

Jarque-Bera test (α = 0.05) p-value = 2.2e−16 

skewness −2.189684 

kutosis 46.1361 
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Figure 1. USD-GHS log return series from 2008-2019. 

 
function was picked as shown in Equation (8):  

1 10.0000447210 0.8414551500 0.6086431547t t t tX X ε ε− −= + − +     (8) 

Table 2 shows the summary statistics from the residuals of the ARMA(1,1) 
model. The table shows a negatively skewed and highly heteroscedastic data.  

4.2. GARCH Results 

Based on the assumption of 5% significance level, for the GARCH (1,1) model, 
when the error term is skewed student-t distribuion, the parameters for the 
GARCH(1,1) function is given as  

2 2 2
1 10.0000000005 0.0515904234 0.8974842734t t tσ ε σ− −= + +       (9) 

From Table 3 and based on the assumption of 5% significance level, for the 
ARMA(1,1)-GARCH (1,1) model, all of the estimated parameters except omega 
are significant.  

4.3. Application of the Randomised Estimator to the  
USD-GHS Data 

We apply the randomised change point estimator to estimate the change point 
in the USD-GHS exchange rate data under the hypotheses;  

H0: there is no change in variance. 
Ha: there is a change in variance. 
In Figure 2 it was observed that there was a change in the variance of the 

exchange rate data at the 2213th data point with a test statistic value of  
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Table 2. Statistical properties of residual data. 

Statistical Properties of Residual Data 

min −1.537934e−02 

max 1.080608e−02 

mean 8.489841e−05 

SE.mean 2.413864e−05 

var 1.734038e−06 

Arch Test p-value = 0.01 

Jarque-Bera test (α = 0.05) p-value = 2.2e−16 

skewness −0.6262043 

kurtosis 35.90743 

 
Table 3. Parameter estimation of the ARMA(1,1)-GARCH(1,1) model. 

Variable Estimate Std. Error t value Pr (>|t|) 

µ  0.0000447210 0.0000064843 6.896791809 0.0000000000 

AR(1) 0.8414551500 0.0191592710 43.918954357 0.0000000000 

MA(1) −0.6086431547 0.0359025884 −16.952626038 0.0000000000 

ω  0.0000000005 0.0000000648 0.007050212 0.9943747915 

1α  0.0515904234 0.0044876976 11.495966890 0.0000000000 

1β  0.8974842734 0.0061247224 146.534685788 0.0000000000 

 

 
Figure 2. Randomised change point plot of the USD-GHS data indicating a change at the 
2213th data point from a total of 2977 observations. 
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0.07859228e =  when 0.2υ = . Consequently Figure 3 shows the point of 
change in the evolution of the daily exchange rate of the USD-GHS data. 

4.4. Data Analysis after the Change Point Estimator 

We analyze the mean and the variance of the exchange rate data after the appli-
cation of randomised change point estimator. We present the mean and variance 
functions before and after the point of change.  

4.4.1. Before the Change Point 
The suitable mean model for the data before the change point is the ARMA(1,1)- 
GARCH(1,1) and its parameters are given in Equations (10) and (11) when the 
error term is the skewed student t-distribution.  

1 10.0000475035 0.8441708645 0.6457857840t t t tX X ε ε− −= + − +     (10) 

whilst the GARCH(1,1) model and is given as  
2 2 2

1 10.0000000004 0.0536620794 0.8958779068t t tσ ε σ− −= + +      (11) 

4.4.2. After the Change Point 
The suitable mean and variance model for the data after the point of change is 
the ARMA(1,1)-GARCH(1,1) and its parameters are given in Equations (12) and 
(13) when the error term is the skewed student t-distribution.  
 

 
Figure 3. USD-GHS daily data from 2008-2019 and a change at the 2213th data point of a 
total of 2977 observations. 
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1 10.0000418753 0.5358615364 0.2512823195t t t tX X ε ε− −= + − +     (12) 

whilst the GARCH(1,1) model is given as  
2 2 2

1 10.0000000004 0.0501059165 0.8992657247t t tσ ε σ− −= + +       (13) 

4.5. Discussion 

The standard GARCH model was used as the measure of volatility. The persis-
tence parameter ( ) 0.94907α β+ =  of the sample remains relatively stable, 
though there seems to be an indication of some shifting parameters, the standard 
GARCH(1,1) appears to support the sample over the IGARCH model of [6]. The 
proposed randomised estimator identified a single possible change point value at 

2213k =  with a test statistic value, 0.07859228e =  and a critical value of 
3.31569 at 0.05α =  obtained from Equation (6) and corollary 1.3.1 of [7]. 
Hence, the test failed to reject the null hypothesis of no change in the variance of 
the exchange rate data. The persistence parameter before and after the change 
point were 0.94954 and 0.94937 respectively. The approximately 0% change in 
the unconditional variance between the two sub samples also supports the insig-
nificant change in the variance structure of the exchange rate data. 

The mean (ARMA) function of the data, however, gave a Root Mean Square 
Error (RMSE) of 0.00007699637 for a 10-period ahead forecast of the after 
change sample (Aft-ch) as against 0.00008529915 for the full sample. The result 
illustrates that change point test can be used as a reference point for historic data 
analysis.  

5. Conclusion 

In this paper, a randomised change point estimator for GARCH Models is pre-
sented. The limiting distribution of the estimator is derived as the sup of a stan-
dard Brownian bridge. Data analysis of the estimator was carried using United 
States Dollar (USD)-Ghana Cedi (GHS) daily exchange rate data. It was ob-
served that the randomised estimator was able to detect and estimate a single 
change in variance of the data. The illustration shows that ignoring changes in 
data can lead to a false conclusion in statistical inference. For future studies we 
recommend other forms of the weight functions, th  be considered. It is worth 
mentioning that in this study a single change point test popularly referred to as 
At most one change (AMOC) was considered. We however, advocate for mul-
tiple changes (MOSUM) test via the binary segmentation technique.  
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