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Abstract 
In this paper, we examine a model that maximises dividend payments for an 
insurance company with a debt liability. We assume that the company has a 
policy to reinvest a proportion of its surplus cash before paying dividends to 
shareholders. We model the dynamics of the cash reserves as a jump-diffusion 
process. Combined optimal stopping and mixed regular-singular control of 
the jump-diffusion process is presented and investigated. In the paper, we 
show that when the premium rate µ  is less than the liability rate λ , then 
the company should not get into business and the optimal dividend policy is 
to immediately pay out the initial cash reserve as dividends to shareholders. 
For the case µ λ> , we show that the optimal risk management depends on 
the current level of the cash reserves. We demonstrate that the company’s op-
timal dividend policy is to pay out as dividends surplus cash above a prede-
termined threshold. We also present numerical examples to illustrate the re-
sults obtained. 

Keywords 
Jump-Diffusion, Brownian Motion, Solvency Region, Optimal Stopping 
Time, Mixed Regular-Singular Control, Reinsurance 

1. Introduction

Dividend decisions are mainly concerned with financial policies on the payment 
of cash dividends to shareholders in the present or at a latter date. The decision 
to issue dividends depends on the firm’s excess cash reserve or profit and its en-
visaged long term earning capacity. Management is expected to pay out some or 

How to cite this paper: Kusaya, C., Man-
diudza, M., Mwareya, N., Matete, C., Shambi-
ra, L. and Ngaza, N. (2021) Combined Optim-
al Stopping and Mixed Regular-Singular 
Control of Jump Diffusions. Journal of Ma-
thematical Finance, 11, 190-205. 
https://doi.org/10.4236/jmf.2021.112010 

Received: August 31, 2020 
Accepted: March 29, 2021 
Published: April 1, 2021 

Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2021.112010
https://www.scirp.org/
https://doi.org/10.4236/jmf.2021.112010
http://creativecommons.org/licenses/by/4.0/


C. Kusaya et al. 
 

 

DOI: 10.4236/jmf.2021.112010 191 Journal of Mathematical Finance 
 

all of the cash surplus as dividends if it is not required by the firm. In some in-
stances, excess cash is retained to support future organic growth of the company. 

In recent years, several researchers have studied extensively dividend optimi-
sation problems [1]-[10]. This has resulted in various strategies and mathemati-
cal models being developed using stochastic control theory [8]. The common 
dividend payment strategies in literature are band, barrier, threshold and im-
pulse. Scheer, [8] defines the band strategy as one that involves partitioning of 
state space of the cash reserve in three adjunct sets, A, B and C. Dividends are 
paid according to the set where the level of cash reserves at time t, and ( )X t  is 
located. For example, if ( )X t  is in A, then the income premium is paid as div-
idend. The barrier strategy is a special case of the band strategy where the set A 
consists of only one point, say * 0x ≥  and dividends are only paid to share-
holders when the amount of cash reserves exceed this point.  

Taksar and Zhou [9], examine a dividend optimisation problem of an insur-
ance company with a corporate debt liability such as a coupon bond or amorti-
sation loan. A mixed regular-singular control problem is presented and investi-
gated. The objective is to find a policy that maximises the expected total dis-
counted dividend payout until the time of bankruptcy. In the model, the dy-
namics of the corporate assets is modelled as a diffusion process with the drift 
and diffusion coefficients being affine functions of the risk control variable. 
Taksar and Zhou show that the optimal dividend pay-out policy is to keep the 
total reserve below a certain optimal level 1b , distributing the excess as cash as 
dividends. On the other hand, the qualitative behaviour of the optimal risk 
management depends on the ratio between the profit µ  and the liability rate 
δ . When 2µ δ≤ , then it is optimal not to have reinsurance at all, namely, to 
take the full risk. On the other hand, if 2µ δ> , then the optimal risk manage-
ment depends on the current amount of the reserve. There exists 0 1b b<  such 
that the optimal risk ( )a x  as a function of the reserve x is a strictly increasing 
function on [ ]00,b , and ( ) 1a x =  for all 0x b> .  

Zou, et al. [10] present a dividend optimisation problem (for an insurer) with 
a jump-diffusion risk process in the presence of fixed and proportional transac-
tion costs. Due to the presence of transaction costs, an impulse stochastic control 
problem is formulated. The stochastic control problem is transformed into a qu-
asi-variational inequality for a second-order non-linear integro-differential equ-
ation. Further, the problem is solved under the risk-neutral assumption for the 
insurer and the value function together with the optimal policy is constructed.  

He and Liang [3] investigate optimal financing and dividend control of an in-
surance company with a proportional insurance policy. The problem is formu-
lated as a mixed singular-regular control problem and solved using dynamic 
programming. The underlying cash reserve dynamics is modelled using linear 
Brownian motion [3] considering an optimal dividend and reinsurance strategy 
of a property insurance company under catastrophe risk.  

Empirical studies, however, have shown that the jump-diffusion process re-
flects better changes that can occur in the level of the liquid assets of an insur-
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ance company due to unusual events such as earthquakes and floods [3] [11]. 
Rare events usually result in huge claims which reduce significantly the amount 
of cash reserves available to the company. Abrupt changes in the level of the 
available liquid assets due to unusual events will appear as discontinuities in the 
cash reserve trajectory. In this study, we extend the problem investigated by 
Taksar and Zhou [9] by modelling the dynamics of the cash reserve process us-
ing a jump-diffusion process. Taskar and Zhou [9] consider a model to maxim-
ize the expected total discounted dividend pay-outs for a company with debt lia-
bility. In this model, the corporate assets follow diffusion process with diffusion 
and drift coefficients being affine functions of the risk control variable. Further, 
we assume that the company has a policy to reinvest a proportion of its excess 
cash before paying dividends to shareholders. This kind of model is important 
especially in the context of property insurance. It is important to highlight that 
only negative jumps are considered in the model under study. The company’s 
management is faced with a situation where they need to find an optimal busi-
ness policy that maximises the expected total discounted pay-out. Each business 
policy is associated with different levels of risk and expected profits. The most 
basic risk to the company under consideration emanates from claims made by 
clients on account of the fact that claim sizes vary and their occurrence times are 
random. This kind of risk is mitigated in the model through reinsurance.  

In this paper, we also make the assumption that the company needs positive 
reserves in order to operate and the company is considered bankrupt as soon as 
the available cash reserves become negative. Accordingly, we define the bank-
ruptcy time τ  by  

( ){ }inf 0 : 0 .t X tτ = ≥ <                       (1.1) 

This problem under investigation is unique since it is the first time when a 
combined optimal stopping and mixed regular-singular control problem in-
volving debt and reinvestment is solved assuming that the dynamics of the un-
derlying cash reserve process is modelled by a jump-diffusion process. In this 
paper, the researcher chose combined optimal stopping and mixed regu-
lar-singular control since it adequately addresses the insurance problem of divi-
dend maximisation and risk minimisation. 

The structure of the paper is organised as follows: In Section 2, we present a 
rigorous mathematical formulation of the general problem on combined optimal 
stopping and mixed regular-singular control of jump diffusions. Section 3 deals 
with the application of the general mathematical problem presented in Section 2 
to insurance. Section 4 is devoted to a detailed analysis and complete solution of 
the problem considering different cases of key parameter values such as µ δ<  
and µ δ≥ . In Section 5, we present the numerical examples to illustrate the re-
sults obtained in Section 4.  

2. Problem Formulation 

Consider four components that affect changes in the level of the cash reserves of 

https://doi.org/10.4236/jmf.2021.112010


C. Kusaya et al. 
 

 

DOI: 10.4236/jmf.2021.112010 193 Journal of Mathematical Finance 
 

an insurance company and these are premiums, debt repayments, claims and 
dividend pay-outs. The first two components namely, premiums and debt re-
payments are assumed to be deterministic and occur at a constant rate. Dividend 
payments are determined by the amount of cash reserves available at any given 
time. Claim sizes vary and occur at random times. A jump-diffusion process is 
considered in modelling the dynamics of the liquid assets since rare events 
such as earthquakes and floods can result in huge claims that reduce signifi-
cantly the amount of liquid assets available to the company. We also take into 
account the need for the company to mitigate risk arising from its core busi-
ness through reinsurance. Reinsurance means controlling revenues by diverting 
a proportion 1 a−  of all premiums to another company, in which case 1 a−  
fraction of each claim is paid by the other company (Taksar and Zhou, 1998). 
Suppose ( ) ( ) [ ], 0,X t X t ω= ∈ ∞ ×Ω  be a stochastic process on a filtered prob-
ability space ( ), , ,t PΩ    representing the amount of liquid assets at time t. In 
this section we begin by considering the general problem formulation on mixed 
regular-singular control presented by [1] [7]. Let : k p

ijκ κ × = →     and 
[ ] : k p

iθ θ= →   be given continuous functions. Assume the the dynamics of 
the state ( ) ( ) ( ), kX t X tα ζ= ∈  is described by the following equation:  

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

d , d , d

, , d ,d dl

X t b X t t t X t t B t

X t t z N t z X t t

α σ α

γ α κ ζ− − −

= +

+ +∫ 



 

and  

( )0 .kX y− = ∈  

ζ  is our singular control since ( )d tζ  may be singular with respect to the 
Lebesgue measure dt . The process ( ) ptζ ∈  is non-negative, right conti-
nuous and t  adapted. Assume also that the performance function is given as 
follows;  

( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( )

, , 2
0

T
0

, d

d

s

s

s

x
sJ x E f X t t t g X

X t t

ττ α ζ
τ

τ

α τ χ

θ ζ

<∞

−

= + ⋅
+ 

∫

∫
 

where : kg →   and : k pθ →   are given continuous functions, 
( ) ( ){ },inf 0 :s t X t Sα ζτ = > ∉ . Let also *

mτ  for 1,2,m =   be the time of 
bankruptcy, that is, ( ){ }inf 0 : 0m t X tτ = > ≤ . Let   be the set of admissible 
controls ( ),α ζ  such that the general equation above has a strong and unique 
solution. Further, suppose the following condition is satisfied:  

( ) ( )( ) ( )( ) ( )( ) ( )2
0 0

1
, d d .s s

s

p
y

s j j
j

E f X t t t g X X t t
τ τ

τα τ χ θ ζ−
<∞

=

 
+ ⋅ + < ∞ 

 
∑∫ ∫  

where yE  is expectation with respect to the probability law P given that 

( )0X y− = . The problem is to find the value function ( )yφ , the optimal mixed 
control ( ) ( )( )* *,t tα ζ ∈  and the optimal stopping time *τ  such that;  
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( )
( )

( ) ( ) ( ) ( )
* * *, ,, ,

, ,
supx J x J x

τ α ζτ α ζ

τ α ζ
φ

∈
= =


            (2.1) 

Theorem 2.1. (Integro-variational inequalities for Combined Optimal Stop-
ping and Mixed Regular-Singular Control of Jump-diffusions)  

(a) Suppose there exists a function ( ) ( )2 oC S C Sφ ∈   such that:  
(i) ( ) ( ), , 0t x f t xφ + ≤  for all controls ( ),α ζ ∈  and ( ),t x S∈ .  

(ii). ( ) ( )1 0k
ij ji

i

x x
x
φκ θ

=

∂
+ ≤

∂∑  for all ( ),t x S∈ , 1,2, ,j p=  .  

(iii). 
( ) ( )( ) ( )( ){
( )( ) ( ) ( )( ) ( )( ) ( )}

2T
0

2

1

, ,

, , , d d

sy

l k
kk R

E X t t t X t

X t X t t z t X t v z t

τ
σ α φ

φ γ α φ
=

 ∇
+ + − < ∞

∫

∑ ∫
 for 

all ( ),α ζ ∈ .  

(iv). ( )sX Sτ ∈∂  almost surely on { }sτ < ∞  and  
( )( ) ( )( ) 2lim s sst

X t g X ττ
φ τ χ <∞→

= ⋅ , ( ){ }* inf 0 : 0m t X tτ = ≥ ≤ .  
(v). ( )( ){ },

st
t X t

τ
φ −

≤
 is uniformly integrable for all ( ) ( ), , ,t xα ζ ∈ ∈   

and ( ) ( ), ,t x t xφ ≥ Φ  for all ( ),t x ∈ .  
(vi). Define the non-intervention region D by;  

( ) ( )1, : max 0k
i j p ij ji

i

D t x y
y
φκ θ< < =

 ∂
= ∈ + < 

∂ 
∑  and suppose  

( )( )
0

d 0sy
DE X t t

τ
χ∂

  =  ∫ .  
Further, assume that for all ( ),t x D∈ , there exists a mixed control 

( )* * *,π α ζ= ∈  such that ( )*
,t X Dπ ∈  for 0t >   

(vii) ( ) ( ), , 0t x f t xφ + = .  

(viii) ( )( ) ( )( ) ( )( ) ( )1 1 d cp k
ij jk i

i

X t X t X t t
y
φκ φ ζ− − −

= =

 ∂
+ 

∂ 
∑ ∑  for all t,  

t j p≤ ≤  where ( )c tζ  is the continuous part of ( )tζ .  
(ix) ( )( ) ( )( ) ( )*

*
1, 0p

n n j n j njt X t X t t
ζ
φ θ ζ−

=
∆ + ∆ =∑  for all jumping times nt  

of ( )* tζ  and  

(x) ( )( ) ( ) ( )
* ** ,

lim
s

y y
R R sE X T E g X

α ζπ
τφ τ χ→∞

    = ⋅ < ∞       
, where  

( )min ,R sT Rτ=  for R < ∞ . Then ( ) ( )y yφ = Φ  and ( )* *,α ζ  is an optimal 
mixed regular-singular control.  

For the proof of (i)-(x) of Theorem 2.1, refer to [1] and [7].  

3. Application 

We begin by considering four components that affect changes in the level of cash 
reserves of an insurance company under study and these are: premium pay-
ments, debt repayments, client claims and dividend pay-outs to shareholders. 
The first two components namely, premiums and debt repayments are determi-
nistic and occur at a constant rate. Dividend payments are determined by the 
amount of cash reserves available at any given time. We also take into account 
the need for the company to mitigate risks arising from business through rein-
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surance. Reinsurance means controlling revenues by diverting a proportion 
1 a−  of all premiums to another company, in which case 1 a−  fraction of each 
claim is paid by the other company [1].  

Let ( ) ( ) [ ], 0,X t X t ω= ∈ ∞ ×Ω  be a stochastic process on a filtered proba-
bility space ( ), , ,t PΩ    representing the amount of liquid assets at time t. We 
fix a domain S ⊂ ℜ  (our solvency region) and let the dynamics of ( )X t  be 
modelled by the the following process:  

( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d ,d dX t a t t a t B t a t zN t z L tµ δ σ γ
ℜ

= − + + −   ∫      (3.1) 

( )0X y=  

where µ  is the premium rate and is a positive constant, δ  is the liability rate, 
σ  and γ  are positive constants, 0zγ ≤ , ( )1 a t−  is the reinsurance fraction 
at time t, y is the initial value of the liquid assets of the company, ( )L t  is the 
cumulative dividends paid up to time t, ( )B t  is 1-dimensional Brownian Mo-
tion and ( )d ,dN t z  is a compensated Poisson process random measure with 
intensity λ . In our model, we assume that:  

(i) tB  and the compensated Poisson process are independent;  
(ii) the company has a policy to reinvest a proportion α  of its excess cash; 

and  

(iii) the company pays dividends when *1
1

x xβ
α

 ≥ + − 
.  

where x is the amount of liquid assets at time t, *x  is a predetermined thre-
shold, α  is a proportion of the cash to be reinvested, ( )0,1β ∈  and β α> .  

The performance functional for this problem is given by  

( ) ( ), ,
0

, e d .y s y tJ s E L t
ττ ρπ −= ∫                     (3.2) 

where ( ){ }* min : 0m X tτ τ= ≤ , that is, the first time that the state ( )X t  
reaches the value 0 or below. The problem is to find the optimal stopping time 

*τ , optimal control policy ( )* * *,a Lπ =  and value function ( )* *,φ τ π  that 
maximises the expected total discounted dividend payout. In other words we 
want *τ  and *π  such that:  

( ) ( ) ( )* * * *

,
, sup , , .y

y
J J

τ
φ τ π τ π τ π= =                 (3.3) 

In this model, we will take *τ  as the time at which the company stops pay-
ment of dividends to shareholders. The optimal stopping time is determined by 
the level of liquid assets available.  

4. Main Result 

In the model, the barrier strategy is used to payout dividends. Dividend pay-
ments are only made when the amount of liquid assets or cash reserves available 
exceed a particular pre-determined level.  

Lemma 4.1. Suppose the value of the initial liquid assets is 0, that is,  
( )0 0X = . Then ( )0 0L = , ( )* *

0 , 0J τ π = , for all Aπ ∈  and  
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( ){ }0 : 0 0inf t X tτ = ≥ ≤ = . The optimal strategy in this case is  
( )* * *0, ,0aτ π= =  where *a  is arbitrary.  

Lemma 4.2. Assume µ δ≤ , then ( )* *, yφ τ π = , ( )*L t y= , * 0τ =  and 
*a  is arbitrary.  
Proof. Suppose ( ) ( )( )* * *. , .a Lπ =  with ( )* .L y=  and ( )a t  arbitrary. If 

µ δ≤ , then it is optimal to immediately distribute the initial cash reserve 
( )0X y=  sometimes called “take the money and run away strategy”. We have  

( ) ( )* * *, andy L t yφ τ π = =  

We note that ( ){ }* inf 0 : 0 0t X tτ = ≥ ≤ = . We then want to show that 
( )yJ yπ ≤ .  

Let ( ).X  be the state trajectory corresponding to any given control 
( ) ( )( ). , .a Lπ = . From (3.1), we have  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0
d d d d ,d d

t t t t t
X s a s t a s B s a s zN s z L sµ δ σ γ= − + + −∫ ∫ ∫ ∫ ∫ ∫


 

where ( ) 0a sµ δ− ≤ . The preceding equation can be written as  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0 0 0 0 0
d d d d d ,d .

t t t t t
X s L s a s t a s B s a s zN s zµ δ σ γ+ = − + +∫ ∫ ∫ ∫ ∫ ∫ 


 

Integrating LHS gives  

( ) ( ) ( ) ( ) ( )0 0 .X t X L t L H t−− + − =                (4.1) 

where  

( ) ( )( ) ( ) ( ) ( ) ( )
0 0 0

d d d ,d .
t t t

R
H t a s t a s B s a s zN s zµ δ σ γ= − + +∫ ∫ ∫ ∫     (4.2) 

But ( ) ( ) ( ) ( ) ( )0 0H t X t X L t L −= − + −  is a supermartingale (See (4.46)). 
We have  

( ) ( ) ( ) ( ) ( ) ( )( )0 0
e d e d 0 0t t

yJ E L t E H t X t X L
τ τγ γπ − − −= = − + +∫ ∫    (4.3) 

after substituting for ( )L t . This implies that  

( ) ( ) ( )
0 0

e d e dt t
yJ E H t E X t

τ τγ γπ − −= −∫ ∫               (4.4) 

since ( )0x  and ( )0L −  are constants. We have  

( ) ( )
0

e d .t
yJ E X t

τ γπ −≤ − ∫                     (4.5) 

Integrating by parts RHS of inequality (4.5), we obtain  

( ) ( ) ( )

( ) ( )
00

0

e e d

e e d .

t t
y

t

J E X t E X t t

y x E X t t y

τ τγ γ

τγτ γ

π γ

τ γ

− −

− −

 ≤ − − 

= − − ≤

∫

∫
 

We have proved that for µ δ≤ , the optimal dividend payment is the initial 
wealth or cash reserve y, optimal stopping time * 0τ =  and the optimal policy 

( )* * ,a yπ = .  
We now consider the non-trivial case where µ δ≥  and we want to find the 

optimal stopping time and optimal policy that maximises the expected total dis-
counted dividend pay-out.  
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Lemma 4.3. Given that * 0a = , it is prudent for the insurance company not 
to do business. It should immediately distribute the initial cash reserve as div-
idends. The optimal policy in this case is * 0τ = , ( )* *, yφ τ π =  and  

( )* 0, yπ = .  
Proof. Let ( ){ }*, : 0D s x x x= ≤ ≤  where *x  is to be determined and 

( ){ }inf 0 :t X t Dτ = ≥ ∉ . Suppose * 0a = , that is, the proportion of reinsurance 
is 100%. Then the dynamics of the cash reserve is given by  

( ) ( )d d d .X t t L tδ= − −                      (4.6) 

Integrating with respect to t, we have:  

( ) ( )
0 0 0
d d d

t t t
X s s L sδ= − −∫ ∫ ∫                  (4.7) 

( ) ( ) ( ) ( )
0

0 d 0
t

X t X s L t Lδ⇒ − = − − −  ∫  

( ) ( ) ( ) ( )
0

0 d 0
t

X t X s L t Lδ⇒ = − − +∫  

( ) ( ) ( )
0

d 0
t

X t y s L L tδ⇒ = − + −∫  

( ) ( ) ( )
0

0 d .
t

X t y L s L tδ= + − −∫  

We note that ( )X t → −∞  as t →∞  since y and ( )0L  are constants. Hence, 
when 0a = , the company should not get into business.  

Lemma 4.4. Suppose ( ]* 0,1a ∈ , then the value function is given by  
( ) ( ), e ss xρφ π ψ−=  where  

( ) ( )1 2 *
1

*
3

e e , for  0

, for

r x r xA x x
x

A x x x
ψ

 − < <= 
+ >

 

where  

( )1 2*

2 1

2 ln ln
,

r r
x

r r
−

=
−

                     (4.8) 

* *
1 2

1

1 2

1 ,
e er x r x

A
r r

=
−

                     (4.9) 

( )* *
1 2

* *
1 2

*
3

1 2

1 e e ,
e e

r x r x

r x r x
A x

r r
= − −

−
             (4.10) 

{ }* inf 0 : ,t xτ χ= ≥ ≤                   (4.11) 

( )* * * ,
1

L t x xβχ
α

≥ − =
−

                 (4.12) 

where *1
1

xβχ
α

 = + − 
, χ  is the amount of cash reserves at time t,  

( )0,1β ∈ , ( )0,1α ∈  and β α>  The optimal strategy in this case is to pay 
out dividends when x χ≥ .  

Proof  
Case 1 ( * 1,a µ δ= ≥ )  
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We consider the case * 1a = , that is, the company takes maximal risk by re-
taining all the premiums. The dynamics of the cash reserve is given by  

( ) [ ] ( ) ( ) ( )d d d d ,d dX t t B t zN t z L tµ δ σ γ
ℜ

= − + + −∫          (4.13) 

( )0 .X y=  

In the absence of dividend payments, the integrodifferential operator of φ  
coincides with its generator given below  

( ) ( ) ( ) ( ) ( )
2

2
2

1Ł , , d .
2

s x z s x z v z
s x xx
φ φ φ φφ µ δ σ φ γ φ γ

ℜ

∂ ∂ ∂ ∂ = + − + + + − + ∂ ∂ ∂∂  ∫   

(4.14) 

Inside the continuation region, φ  satisfies the following  

( ) ( ) ( ) ( )
2

2
2

1max , , d 0.
2

s x z s x z v z
s x xx
φ φ φ φµ δ σ φ γ φ γ

ℜ

 ∂ ∂ ∂ ∂ + − + + + − + =  ∂ ∂ ∂∂   
∫   

(4.15) 

The non-intervention region D is described by  

( ), : 0D s x
x
φκ θ∂ = + ≤ 
∂ 

                  (4.16) 

where :κ →   and :θ →  .  

This implies that ( ), : e 0sD s x
x

ρφ −∂ = − + ≤ 
∂ 

 since 1κ = −  and e sρθ −= .  

We guess that D has the form ( ){ }*, : 0D s x x x= ≤ ≤  for some * 0x ≥ .  
Inside D, we must have ( ) ( ), , 0L s x f s xφ + = . We have  

( ), 0L s xφ =                         (4.17) 

since ( ), 0f s x = . We try a solution φ  of the form ( ) ( ), e ss x xρφ ψ−=  and 
substituting into (4.17), we obtain:  

( ) ( ) ( )

( ) ( ) ( ){ } ( )

21
2

, , d 0.

x x

s x z s x z x v z

ρψ µ δ ψ σ ψ

ψ γ ψ γ ψ

′ ′′− + − +

′+ + − − =∫
 

We consider ( ) erxxψ =  for some constant r∈ . Substituting into the 
preceding equation, we get:  

( ) ( ) { } ( )2 21 e 1 d 0.
2

r zh r r r zr v zγρ µ δ σ γ= − + − + + − − =∫    (4.18) 

We note that ( )0 0h ρ= − <  and ( )h r →∞  as r →∞ . This implies that 
the equation ( )h r  has two solutions 1 2,r r  such that 2 10r r< < .  

Outside D, we require that  

( ) 1 0.xψ ′− + =                        (4.19) 

Integrating Equation (4.19) with respect to x yields  

( ) 3.x x Aψ = +                        (4.20) 

Hence we put  
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( )
1 2 *

1 2
*

3

e e , for 0

, for

r x r xA A x x
x

A x x x
ψ

 + < <= 
+ >

 

To find 1 3,A A  and *x , we use the “high contact” principle also called the 
smooth-pasting condition of singular control which dictates that the value func-
tion should be 2C , in particular at the free boundary *x . Now ( )0 0ψ =  im-
plies that 1 2 0A A+ = . This gives 2 1A A= − . We have  

( ) ( )1 2 *
1

*
3

e e , for 0

, for

r x r xA x x
x

A x x x
ψ

 − < <= 
+ >

 

Applying the “high contact” principle we have  

( ) ( )*
1 2 * * *

1 3e e , continuity atr x r xA A x x− = +           (4.21) 

( )* *
1 21 *

1 1 2at , e e 1r x r xC x x A r rψ ′∈ = ⇒ − =           (4.22) 

( )* *
1 22 * 2 2

1 1 2at , e e 0.r x r xC x x A r rψ ′′∈ = ⇒ − =          (4.23) 

From (4.23), we have 
* *

1 22 2
1 1 1 2e er x r xA r A r= . Dividing through by 1A , we have  

* *
1 22 2

1 2e e .r x r xr r=                        (4.24) 

Taking log of both sides of (4.24), we get  
* *

1 1 2 22 ln 2ln .r r x r r x+ = +                   (4.25) 

From (4.25), we get:  

( ) ( ) *
1 2 2 12 ln ln .r r r r x− = −                   (4.26) 

Making *x  subject of the formula in (4.26), we have  

( )1 2*

2 1

2 ln ln
.

r r
x

r r
−

=
−

                     (4.27) 

Substituting for *x  in (4.22) gives  

* *
1 2

1

1 2

1

e er x r x
A

r r
=

−
                     (4.28) 

where *x  is as in (4.27). Substituting for *x  and 1A  in (4.21) yields  

( )* *
1 2

* *
1 2

*
3

1 2

1 e e .
e e

r x r x

r x r x
A x

r r
= − −

−
             (4.29) 

Since the company has an investment policy to reinvest a proportion α  of 
its surplus cash, the optimal strategy is to pay out dividends when  

( ) ( )* * *.x x x x xα β− − − ≥                 (4.30) 

Solving the inequality for x gives  

* *1 1 .
1 1

x x xα β β
α α

− +  ≥ = + − − 
              (4.31) 

We want to show that ( ) ( ), e ss x xρφ ψ−=  satisfies the conditions of the veri-
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fication theorem for all the values of 1A  and 3A .  
We have constructed φ  such that 0L fφ + =  in D. Outside D, that is for 

*x x> , we have  
( ) ( ) ( ), ,L s x f s x L xφ ψ+ = . This can be written as:  

( ) ( ) ( )
( ) ( )( ) ( ){ } ( )1 2

*

3

1 3e e dr x z r x z

x z x

L x A x

A x z A v zγ γ

γ

ψ ρ µ δ

γ+ +

+ <

= + + −

+ − − + +∫
 

since at *x x= , ( )1 2
1 3e er x r xA A x− = + .  

We have ( ) ( )3L x A xψ ρ ρ µ δ≤ − − + −  which is decreasing in x. From our 
construction, we have ( ) 0L xψ ≤  for *x x≥  and ( ) 0L xψ =  for *x x< . 
Therefore we must have ( ) 0L xψ =  at *x x= .  

Case 2 ( ( )0,1 ,a µ δ∈ ≥ )  
We assume ( )* 0,1a ∈ . Inside the continuation region D, φ  satisfies 

( ) ( ){ }max , , 0L s x f s xφ + = . That is  

( )

( ) ( ) ( )

2
2 2

2

1max
2

, , d 0.

a a
s x x

s x a z s x a z v z
x

φ φ φµ δ σ

φφ γ φ γ
ℜ

∂ ∂ ∂
+ − +

∂ ∂ ∂
∂  + + − + = ∂  

∫
 

since ( ), 0f s x = . We try a solution of the form ( ) ( ), e ss x xρφ ψ−= . Substitut-
ing it into the preceding equation, we obtain:  

( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( )

2 21max e e e
2

e e d 0

s s s

s s s

x a x a x

x az x aze x v z

ρ ρ ρ

ρ ρ ρ

ρ ψ µ δ ψ σ ψ

ψ γ ψ γ ψ

− − −

− − −

ℜ

 ′ ′′− + − +


′+ + − − =


∫
 

In particular, we try a solution of the form ( ) erxx Mψ =  and substitute it in-
to the above equation to get;  

( ) ( ) { } ( )2 2 21 e 1 d 0.
2

r azh r r a a r azr v zγρ µ δ σ γ
ℜ

= − + − + + − − =∫  (4.32) 

In the no jump case, that is, 0v = , the maximum value of a is attained at  
2

* 2
2 0.a

x x
φ φµ σ∂ ∂
+ =

∂ ∂
                     (4.33) 

Solving for *a  gives  

*
2

2
2

.xa

x

φµ

φσ

∂
−

∂=
∂
∂

                        (4.34) 

In the jump case, the value of a is attained at the critical point 
d 0
d

h
a
= .  

Differentiating with respect to a and equating to 0 yields  

{ } ( )2 2d e d 0.
d

ar zh r a r r z r z v z
a

γµ σ γ γ
ℜ

= + + − =∫  
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Dividing through by r, we obtain  

{ } ( )2d e d 0.
d

ar zh a r z z v z
a

γµ σ γ γ
ℜ

= + + − =∫  

We let:  

( ) { } ( )2 1 e d 0.ar zH a a r zv zγµ σ γ
ℜ

= + − − =∫          (4.35) 

Substituting for 0a =  in (4.35), we have ( )0 0H µ= >  We note that  

( ) { } ( )21 1 e d .r zH r zv zγµ σ γ
ℜ

= + − −∫  

( )1H  can be written as  

( ) { } ( )( )21 1 e d .r zH r zv zγµ σ γ
ℜ

= − − + −∫  

Suppose { } ( )2 1 e dr zr zv zγσ γ µ
ℜ

− + − >∫ , then there exists an optimal 
( ]* 0,1a ∈  such that  

( ) { } ( )** *2 2 2 *1 e 1 d 0.
2

zr ar a a r a zr v zγρ µ δ σ γ
ℜ

− + − + + − − =∫    (4.36) 

We take *a  as constant. For this value of *a a= , the cash dynamics of the 
company is given by  

( ) ( ) ( ) ( ) ( )* * *d d d d ,d dX t a t a B t a zN t z L tµ δ σ γ
ℜ

= − + + −∫      (4.37) 

( )0 .X x=  

We guess that the continuation region is given by ( ){ }*, : 0 <D s x x x= ≤  as in 
case 1. Inside the continuation region, we must have ( ) ( ){ }1max , 0L x f s xφ + = . 
This implies that  

( )

( ) ( ) ( )

2
* *2 2

2

* *

1max
2

, , d 0.

a a
s x x

s x a z s x a z v z
x

φ φ φµ δ σ

φφ γ φ γ

∂ ∂ ∂
+ − +

∂ ∂ ∂
∂  + + − + = ∂  

∫
 

We try a solution of the form ( ) ( )e sx xρφ ϕ−= . Substituting this last equation 
and simplifying gives  

( ) ( ) ( )

( ) ( ) ( ){ } ( )

* 2

* *

1
2

d 0.

x a x

x a z x a z x v z

ρϕ µ δ ϕ σ ϕ

ϕ γ ϕ γ ϕ
ℜ

′ ′′− + − +

′+ + − − =∫
 

Consider the function ( ) e xx λϕ =  and substitute into the last equation to get;  

( ) { } ( )** 2 2 *2 *1 e 1 d 0.
2

a za a a z v zλγρ µ δ λ σ λ γλ
ℜ

− + − + + − − =∫  

Define  

( ) ( ) { } ( )** 2 2 *2 *1 e 1 d
2

a zh a a a z v zλγλ ρ µ δ λ σ λ γλ
ℜ

= − + − + + − −∫  

( )0 0h ρ= − <  and ( )h λ →∞  as λ →∞ . Therefore, there exists  

1 2 2 1, : 0λ λ λ λ< < .  
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Outside D, we require as in case 1 that ( ) 1 0xϕ′− + = . Integrating with re-
spect to x gives ( ) 6x x Aϕ = + .  

We now determine 4 5,A A  and 6A .  
( )0 0ϕ =  gives 4 5 0A A+ =  5 4A A⇒ = − . We have  

( ) ( )1 2 *
4

*
6

e e , for 0

, for

x xA x x
x

A x x x

λ λ

ϕ
 − < <= 

+ >
 

Applying the “smooth fit” principle as in case 1, we obtain  

( ) ( )*
1 2 * * *

4 6e e , continuity atx xA A x xλ λ− = +           (4.38) 

( )* *
1 21 *

4 1 2at , e e 1x xC x x A λ λψ λ λ′∈ = ⇒ − =           (4.39) 

( )* *
1 22 * 2 2

4 1 2at , e e 0x xC x x A λ λψ λ λ′′∈ = ⇒ − =          (4.40) 

As in case 1, we have  

( )1 2*

2 1

2 ln ln
,x

λ λ
λ λ

−
=

−
                    (4.41) 

* *
1 2

4

1 2

1 ,
e ex x

A
λ λλ λ

=
−

                    (4.42) 

where *x  is as in (4.41). Substituting for *x  and 1A  in (4.38) yields  

( )* *
1 2

* *
1 2

*
6

1 2

1 e e ,
e e

x x

x x
A xλ λ

λ λλ λ
= − −

−
            (4.43) 

{ }*
0inf 0 : ,t xτ χ= ≥ <                  (4.44) 

( )* *
0L t xχ≥ −                      (4.45) 

where *
0 1

1
xβχ

α
 = + − 

. The optimal strategy in this case is to pay out dividends  

only when 0x χ≥ . We can write the optimal strategy as ( )* * * *, ,a Lφ τ=  where 
*τ  and ( )*L t  are as in (4.44) and (4).  
Theorem 4.1. Fix any initial condition 0y ≥  and consider the problem of 

maximising the performance criterion ( ); ,J y τ π  over all dividend strategies 
( ) [ ], ,τ π ∈ Π . The value function ψ  is increasing. The following cases pro-
vide the solution to the control problem:  

(i) If ( )0 0X = , then ( )* 0 0L = , ( )* *
0 , 0J τ π = , ( )* * ,0aπ = ,  

{ }* inf 0 : 0t xτ = ≥ ≤  for all π ∈Π  and τ ∈  and *a  is arbitrary.  
(ii). If µ δ≤ , then ( ) ( )* * *, ,y L t yφ τ π = =  and * 0τ = .  
(iii). If * 0,a µ δ= ≥ , then the optimal dividend strategy is to immediately 

distribute the initial cash reserve as dividends. The optimal strategy in this case 
is * 0τ = , ( )* *, yφ τ π =  and ( )* 0, yπ = .  

(iv). Suppose ( ]* 0,1a ∈  and µ δ> , then * *inf 0 : 1
1

t x xβτ
α

  = ≥ < +  −  
,  

( )* *

1
L t xβ

α
≥

−
 where ( )0,1β ∈ , ( )0,1α ∈  and β α> . The optimal strategy  
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is to pay out dividends when the available amount of cash reserves exceed  
*1

1
xβ

α
 + − 

.  

Lemma 4.5. Suppose that µ δ≤ . Then ( ) ( ) ( ) ( ) ( )0 0H t X t X L t L −= − + −  
is a super-martingale where  

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

0 0 0

0 0

d d d ,d
t t t

X t X L t L

a s t a s B s a s zN s zµ δ σ γ

−

ℜ

− + −

= − + +∫ ∫ ∫ ∫ 

    (4.46) 

Proof. Let s t≤ . We have  

( )( )
( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

|

0 0 |

| | 0 0

0 0

s

s

s s

E H t

E X t X L t L

E X t E L t X L

X s L s X L

= − + −

= + − −

≤ + − −





 
 

since from (4.46), ( ) 0a tµ δ− ≤ , 0zγ ≤  and ( )0X , ( )0L  are constants. 
We conclude that ( )H t  is a super-martingale. 

5. Numerical Analysis 

In this section, we present and analyse the results obtained in Section 4 using 
numerical examples. The four tables below illustrate the effect of changes in the 
parameters on the value function, the predetermined threshold *x  in the bar-
rier strategy, the optimal dividend policy and the reinvestment policy. 

In Table 1 consider the case when 1 20X = , * 24.8x = , 1 0.03λ = ,  

2 0.04λ = − , 5h = , 50n = , 0.01ρ = , 1s = , 
1
5

α =  and 
2
3

β = . 

In this case, dividends are only paid when the amount of liquid assets at time t 
is at least equal to 45.5.  

In Table 2 consider the case when 1 20X = , * 25x = , 1 0.001λ = ,  

2 0.02λ = − , 5h = , 20n = , 0.002ρ = , 1s = , 
1
3

α =  and 
7
8

β = . 

In the case under consideration, the company should pay dividends when the 
amount of liquid assets at time t is at least equal to 57.8.  
 
Table 1. Value function versus amount of liquid assets. 

Descriptive Statistic X U 

minimum 20 −18.2 

maximum 207.9 205.1 

mean 121.6 117.6 

median 125 123 

mode 20 −18.2 

standard deviation 55.8 57.7 

range 187.9 223.3 
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In Table 3 if 1 50X = , * 81x = , 1 0.05λ = , 2 0.003λ = − , 4h = , 100n = ,  

0ρ = , 1
4

α =  and 
2
3

β = . 

The value function attains the maximum value at 465.9 when the amount of 
the available liquid assets is at least equal to 153.  

Finally, in Table 4 consider 1 20X = , * 64.94x = , 1 0.01λ = , 2 0.04λ = − ,  

5h = , 100n = , 0.001ρ = , 1s = , 1
4

α =  and 
2
3

β =   

In view of the company’s policy, it should only pay dividends when the 
amount of liquid assets is at least equal to 122.7.  
 
Table 2. Value function versus amount of liquid assets. 

Descriptive Statistic X U 

minimum 20 234.6 

maximum 120 685.1 

mean 70 599.2 

median 70 532.9 

mode 20 234.6 

standard deviation 31 147.3 

range 100 450.5 

 
Table 3. Value function versus amount of liquid assets. 

Descriptive Statistic X U 

minimum 50 0.8868 

maximum 450 465.9 

mean 250 250.5 

median 250 265.9 

mode 50 0.8868 

standard deviation 117.2 141.9 

range 400 465.1 

 
Table 4. Value Function versus amount of liquid assets. 

Descriptive Statistic X U 

minimum 20 11 

maximum 494 509 

mean 261.1 272.5 

median 263.1 272.9 

mode 20 11 

standard deviation 138.8 144.6 

range 474 498.1 
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6. Conclusion 

The results in this study have shown that there exists an optimal dividend policy 
for an insurance company that controls risk through proportional reinsurance, 
has a debt liability. Liquid assets dynamics is represented by a jump diffusion 
process and has a policy to reinvest a predetermined proportion of its excess 
cash. The main empirical findings of the paper are that when the premium rate 
is less than the liability rate, the company should not get into business and the 
optimal dividend policy is to immediately pay out the initial cash reserve as div-
idends to shareholders. While if the premium rate is more than the liability rate, 
the optimal risk management decisions depend on the current level of the cash 
reserves. The optimal dividend policy is to pay out dividends as the level of cash 
reserves is above a predetermined threshold. Further, the use of numerical ex-
amples clearly illustrated the effect of changes in the values of the parameters on 
the value function, the cash reserve threshold and the dividend payouts. 
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