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Abstract 
It is well known that temperature acts negatively on practically all the 
parameters of photovoltaic solar cells. Also, the solar cells which are subjected 
to particularly very high temperatures are the light concentration solar cells 
and are used in light concentration photovoltaic systems (CPV). In fact, the 
significant heating of these solar cells is due to the concentration of the solar 
flux which arrives on them. Light concentration solar cells appear as solar 
cells under strong influences of heating and temperature. It is therefore 
necessary to take into account temperature effect on light concentration solar 
cells performances in order to obtain realistic results. This one-dimensional 
study of a crystalline silicon solar cell under light concentration takes into 
account electrons concentration gradient electric field in the determination of 
the continuity equation of minority carriers in the base. To determine excess 
minority carrier’s density, the effects of temperature on the diffusion and 
mobility of electrons and holes, on the intrinsic concentration of electrons, on 
carrier’s generation rate as well as on width of band gap have also been taken 
into account. The results show that an increase of temperature improves dif-
fusion parameters and leads to an increase of the short-circuit photocurrent 
density. However, an increase of temperature leads to a significant decrease in 
open-circuit photovoltage, maximum electric power and conversion efficien-
cy. The results also show that the operating point and the maximum power 
point (MPP) moves to the open circuit when the cell temperature increases. 

Keywords 
Temperature, Electric Power, Conversion Efficiency, Light Concentration, 
Maximum Power Point, Junction Dynamic Velocity 

How to cite this paper: Savadogo, M., 
Soro, B., Konate, R., Sourabié, I., Zoungra-
na, M., Zerbo, I. and Bathiebo, D.J. (2020) 
Temperature Effect on Light Concentration 
Silicon Solar Cell’s Operating Point and Con-
version Efficiency. Smart Grid and Renewa-
ble Energy, 11, 61-72. 
https://doi.org/10.4236/sgre.2020.115005 

Received: May 8, 2020 
Accepted: May 25, 2020 
Published: May 28, 2020 

Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

Open Access

https://www.scirp.org/journal/sgre
https://doi.org/10.4236/sgre.2020.115005
https://www.scirp.org/
https://doi.org/10.4236/sgre.2020.115005
http://creativecommons.org/licenses/by/4.0/


M. Savadogo et al. 
 

 

DOI: 10.4236/sgre.2020.115005 62 Smart Grid and Renewable Energy 
 

1. Introduction 

The principle of light concentration photovoltaic systems (CPV) is to concen-
trate, using parabolic mirrors or Fresnel lenses, the sunlight on a PV cell, to ob-
tain higher conversion efficiency than those classic cells. This process, which is 
more recent, uses cell technologies which are more expensive but also more effi-
cient than conventional cells [1]. These technologies used for space applications, 
must be installed in places which have a strong direct sunshine and require 
trackers to follow the course of the sun and thus collect as much direct light as 
possible [1] [2]. 

Among these light concentration solar cells, those which use multispectral 
conversion technology allow highest efficiency to be obtained [2]. Dimroth et al. 
[3] worked on four-junction solar cell of the GaInP/GaAs//GaInAsP/GaInAs 
type and showed that an increase of light concentration leads to an increase of 
open-circuit photovoltage, fill factor and conversion efficiency which reaches a 
value of 44.7% under C = 297 Suns. Schachtner et al. [4], Tibbits et al. [5] have 
also worked on multi-junction cells and have obtained similar results. 

However, the relatively high cost of these cells makes multispectral conversion 
a very expensive technology for large-scale adoption of photovoltaic energy [1] 
[2]. Pelanchon et al. [6] worked on crystalline silicon solar cell and demonstrat-
ed the need for high concentrations (C > 50 Suns) to take into account electrons 
concentration gradient electric field. 

Several studies have been carried out taking into account the electric field of 
concentration gradient [7] [8] [9] and have shown the improvement of silicon 
solar cell’s performances with increase of light concentration. 

Many authors [10]-[20] have shown that temperature has harmful effects on 
all electronic and electrical parameters of a silicon solar cell. However, these au-
thors did not work under concentrated light. Soro et al. [21] worked under con-
centrated light but did not take into account temperature effect on carrier’s in-
trinsic concentration, on the band gap width and on the diffusion coefficients of 
electrons and holes. 

Wang et al. [22] have shown that increasing the concentration of light accen-
tuates the effect of temperature on the parameters of the cell. 

In this work, we take into account temperature influence on: mobility and 
diffusion coefficients of electrons and holes, the intrinsic concentration of carri-
ers, the carrier’s generation rate and the width of band gap. We study tempera-
ture effect on diffusion parameters and electrical parameters such as photocur-
rent density, photovoltage, electrical power and conversion efficiency. We sub-
mit a crystalline silicon solar cell to concentrated light (C = 50 Suns) and we take 
into account electrons concentration gradient electric field. 

2. Theory 
2.1. Excess Minority Carriers’ Density 

Our study model is a silicon solar cell illuminated by a concentrated light under 
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temperature influence as shown in Figure 1 below. We considered a silicon solar 
cell (n+-p-p+) operating under a concentrated multispectral light (C = 50 Suns) 
in the quasi-neutral base assumption [7] [8] [9]. Because of light intensity, carri-
er concentration in the base is not uniform. So, we take into account the electric 
field due to the difference of carrier concentration E(x) which is given by Equa-
tion (1) [6] [7] [8] [9] [21]: 

 

 
Figure 1. Silicon solar cell illuminated by concentrated light and under temperature influence. 
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( )cD T  represents the expression as function of temperature T of diffusion 
coefficient in the base with the taking into account of the electric field of elec-
trons concentration gradient. The expressions as functions of temperature of the 
mobility of electrons and holes respectively ( )n Tµ  and ( )p Tµ  are given by 
following equations [10]: 
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In above equations, m is the type of dopant material (type n or type p). For 
this work the n-type dopant concentration of 18 310 cmdN −=  and p-type of 

16 310 cmaN −=  was determined. We have, for: 
• m n= : 2

,300 5300 cm V sL
nµ = ⋅ , 0, 19ny = − , min 2

,300 1520 cm V snµ = ⋅ ,

1, 2ny = − , 16 3
,300 64 10 cmref

dN −= × , 3, 37ny = , ,300 05na = , 4, 0ny = . 

• m p= : 2
,300 200 cm V sL

pµ = ⋅ , 0, 1.2py = − , min 2
,300 24 cm V spµ = ⋅ , 

1, 1.2py = , 17 3
,300 2.5 10 cmref

aN −= × , 3, 0.47py = , ,300 1pa = , 4, 0py = . 

Expressions of electrons and holes diffusion coefficient are given by the fol-
lowing equation [9]-[18]: 

( ) ( ), ,n p n p
kTD T T
q
µ=                      (9) 

with q the elementary charge, k the Boltzmann constant. The generation rate 

nG  is the sum of two contributions: 
• The carrier photo-generation rate ( )G x  at the depth x in the base [6] [7] [8] 

[9] [21] 
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C represents light concentration. 
• The carrier thermal generation rate which is given by [23]: 

2
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thC  is a proportionality coefficient and in  is the intrinsic concentration of 
minority carriers in the base which expression is given by [16] [23] [24]: 
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nA  is a specific constant of the material ( 163.87 10nA = ×  for silicon). Nb is 

the base doping concentration in impurity atoms [23] [24] and 1

th bC N
τ = . Eg  

represents the silicon band gap energy which variation with temperature is given 
for by [11] [12] [13]: 
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The excess minority carriers’ density is determined solving continuity Equation (2): 
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Coefficients A and B are determined through the following boundary conditions: 
• At the junction (x = 0) 
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The junction dynamic velocity (Sf) is the sum of two contributions: the intrinsic 
junction recombination velocity (Sf0) related to carriers losses at the junction and 
the junction dynamic velocity (Sfj) that defines the operating point of the cell be-
cause it is the carriers’ flow imposed by an external load resistance [18] [25]: 

0 jSf Sf Sf= +  
• At the rear side (x = H) 
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The back surface recombination velocity (Sb) quantifies the losses of carriers at 
the cell’s rear side [18] [25]. In this work we studied a back surface field silicon 
solar cell and this kind of solar cell present low values of recombination velocity, 
so for this work we take 210 cm sbS = . 

2.2. Photocurrent Density 

Applying Fick’s law at the junction, we obtained the photocurrent density given 
by [7] [8] [9] [15] [25] [26]: 
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2.3. Junction Photovoltage 

The photovoltage across the solar cell junction derives from the Boltzmann rela-
tion [7] [8] [9] [15] [25] [26]: 
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In this expression ( )V T  represents the thermal voltage and n0 is electrons 

density at thermodynamic equilibrium. We have ( ) kTV T
q

=  and 
2
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in  is intrinsic concentration of electrons. 

2.4. Electric Power Delivered by the Solar Cell 

The electric power delivered by the solar cell base to an external circuit expres-
sion is [8]: 

( ) ( ) ( ), , ,ph phP Sf T V Sf T J Sf T= ⋅                 (17) 
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2.5. Conversion Efficiency 

The solar cell’s conversion efficiency is given by the Equation 18 [8] 

( ) ( ),m

inc

P Sf T
T

P
η =                       (18) 

In this expression, Pinc is the power of the incident concentrated light. For a 
light concentration solar cell and under Air Mass 1.5 standard conditions (1000 
W/m2), the proportion of light, which is concentrated, is around 720 W/m2. 
Thus, for a 50 suns light concentration, Pinc is assumed to be [8] [9]: 

2 20.072 W cm 50 3.6 W cmincP = × =  

3. Results and discussion 
3.1. Temperature Effect on Diffusion Parameters 

We plotted variations of diffusion coefficient and diffusion length, versus tem-
perature as shown respectively in Figure 2 and Figure 3. 

 

 
Figure 2. Temperature effect on diffusion coefficient. 

 

 

Figure 3. Temperature effect on diffusion length. 
 

From 300 K to 314 K, Figure 2 and Figure 3 show that diffusion parameters 
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decrease. This behavior leads to a decrease of carriers flux through the junction 
and then a decrease in photocurrent density. This decrease of diffusion parameters 
with temperature leads also to the carrier’s storage near the junction and to an in-
crease of open circuit photovoltage. Carriers blocking near solar cell junction could 
also come with an increase of the recombination in volume. 

However from 314 K, the diffusion parameters increase with increasing tem-
perature. This behavior leads to an increase of carriers flow through the junction 
and therefore an increase of short circuit current density as shown in Figure 4. 
The short circuit photocurrent density increase will have as a consequence, a de-
crease of carrier’s density at the junction and therefore a decrease in photovoltage 
as shown in Figure 5. 

The solar cell being under light concentration and therefore operating under 
high temperatures, in the rest of this work we’ll only take into account the tem-
peratures T ≥ 314 K. 

3.2. Temperature Effect on Photocurrent Density 

Figure 4 illustrates the photocurrent density profile versus junction dynamic 
velocity imposed by an external load, for different values of temperature. 

 

 
Figure 4. Photocurrent density versus junction dynamic velocity for different values of 
temperature (C = 50 Suns, H = 0.03 cm, Sb = 102 cm/s). 

 
The curves in Figure 4 show that the effect of temperature on photocurrent den-

sity is noticeable only at large values of junction dynamic velocity Sf. Thus, the in-
crease of the temperature due to the solar cell illumination under intense light leads 
to an increase of short circuit photocurrent density (Jsc). This increase of short-circuit 
photocurrent density with increase of temperature is in good agreement with in-
creases of diffusion coefficient and diffusion length observed above for tempera-
tures T ≥ 314 K. This result is in good agreement with Agroui et al. [17] who worked 
under non-concentrated lighting with significantly lower temperature values. 

3.3. Temperature Effect on Photovoltage 

Figure 5 illustrates for different temperatures, photovoltage profile versus junction 
dynamic velocity (Sf). 
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Figure 5. Photovoltage versus junction dynamic velocity for different values of tempera-
ture (C = 50 Suns, H = 0.03 cm, Sb = 102 cm/s) 

 
The curves in Figure 5 show a significant decrease of open-circuit photovol-

tage with an increase of temperature. This result is in accordance with the effect 
of the temperature on the diffusion parameters observed in Figure 2 and Figure 
3: increase of diffusion parameters leading to an increase of carrier’s diffusion 
through the junction. This result is in good agreement with those of Chander et 
al. [16] and Agroui et al. [17] who however worked under non-concentrated 
lighting and under relatively lower temperature values. 

The curves also show that an increase of temperature leads to a decrease of the 
value of short circuit junction dynamic velocity Sfcc corresponding to the null 
values of the photovoltage. 

Table 1 below gives, for different temperatures, the value of short circuit 
junction dynamic velocity from which the photovoltage becomes null. 

 
Table 1. Temperature values and junction dynamic velocity from which the photovoltage 
becomes null. 

T(K) 314 348 382 416 450 

Sfcc (cm/s) 3.95 × 1013 4.22 × 1011 9.00 × 109 4.92 × 108 2.63 × 107 

 
These results confirm that the values of (Sf) from which the photovoltage be-

comes null decrease when the cell’s temperature increases. This result corresponds 
to a displacement of the solar cell operating point towards the open-circuit when 
cell’s temperature increase. 

3.4. Effect of Temperature on Electric Power 

Figure 6 show the variations in electric power versus junction dynamic velocity 
for different values of temperature. 

The curves in Figure 6 show that an increase of temperature leads to a decrease  
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Figure 6. Electric power versus junction dynamic velocity for different values of temper-
ature (C = 50 Suns, H = 0.03 cm, Sb = 102 cm/s). 

 
of the maximum power. This result is in agreement with increase of photocur-
rent density and the significant decrease of photovoltage with temperature in-
crease. This result is in agreement with those of Leye et al. [15], Chander et al. 
[16] and Agroui et al. [17]. 

The curves also show a displacement of the maximum power point towards 
low values of junction dynamic velocity (open-circuit).This displacement of the 
maximum power point towards open-circuit can be explained by the displace-
ment of the operating point towards open circuit when temperature increases 
and which was shown by the study of photovoltage. 

3.5. Temperature Effect on Conversion Efficiency 

We give in Table 2 for different temperature, the values of the maximum power, 
the junction dynamic velocity at maximum power point (SfMPP) and the solar cell 
conversion efficiency. 

 
Table 2. Maximum power, the junction dynamic velocity at MPP and conversion effi-
ciency for different temperatures. 

T (K) 314 348 382 416 450 

Pmax (mW/cm2) 734.46 598.79 464.06 331.20 206.89 

SfMPP(cm/s) 4.00 × 104 3.10 × 104 2.40 × 104 1.43 × 104 1.11 × 104 

Efficiency η(%) 20.40 16.63 12.89 9.20 5.74 

 
The results confirm a decrease of maximum power and junction dynamic ve-

locity at maximum power point (SfMPP) when temperature increases. Table 2 al-
so shows a significant decrease of conversion efficiency with increasing temper-
ature. This decrease of conversion efficiency is explained by the decrease of 
maximum power. This results trough out also the need to use a cooling system 
for solar cells under intense light concentration. 
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4. Conclusions 

A one-dimensional study of temperature effect on light-concentrating solar cell 
was carried out. This study takes into account the electric field of electrons con-
centration gradient. Temperature effects on diffusion and mobility of electrons 
and holes, on electrons intrinsic concentration, on carrier’s generation rate as 
well as on width of band gap have also been taken into account. 

Thus, under light concentration with taking into account of electrons concen-
tration gradient electric field, it makes possible to show that an increase of tem-
perature improves the diffusion parameters, thus causing a increase of short-circuit 
photocurrent density. 

However, an increase of temperature adversely affects performances of the 
solar cell. Thus, there is a significant decrease in open-circuit photovoltage, 
maximum electric power and conversion efficiency when the temperature in-
creases. These results are in agreement with several authors [15] [16] [17] de-
spite the fact that they worked under non-concentrated light and with relatively 
lower temperature values. 

It also appears that an increase of temperature causes a displacement of oper-
ating point and maximum power point towards the open circuit. These results 
confirm the need to use a cooling system for solar cells under intense light con-
centration. 

However in this article, light concentration has been set at C = 50 Suns, while 
it could vary and therefore influence the temperature values and the results of 
this work. It would therefore be interesting to vary the concentration, in order to 
show for different values of light concentration, how the temperature acts on the 
solar cell. 
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