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Abstract 
The removal of organic matter and iron oxides could increase and decrease 
soil CEC in tropical and subtropical regions, but the quantitative information 
is insufficient so far about the change of soil CEC, the influence factors and 
their contribution. In this study, the subhorizon soils of 24 soil series in the 
tropical and subtropical China were used, pH, particle size composition, or-
ganic matter, iron oxides of these samples were measured, and also CECs 
were measured and compared for the original soils and after the removal of 
organic matter and iron oxides. The results showed that, compared with CEC 
of the original soil, the eliminating organic matter increased soil CEC signifi-
cantly by 2.28% - 56.50% with a mean of 24.02%, but the further obliterating 
iron oxides decreased soil CEC significantly by 0.75% - 20.30% with a mean 
of 7.73%. CEC after the removal of organic matter and iron oxides had posi-
tive correlation with iron oxides (p < 0.01) and negative correlation with 
sand content (p < 0.01 and p < 0.05). CEC after organic matter eliminated 
was mainly decided by iron oxides (51.68%), followed by silt content 
(22.19%); while CEC after iron oxides obliterated was mainly determined by 
iron oxides (50.55%). The increase of CEC after organic matter eliminated 
was co-affected by the contents of clays, slits, iron oxides and pH (22.00% - 
27.34%), while the decrease of CEC after iron oxides obliterated further was 
dominated by the content of organic matter (66.92%). More other soil para-
meters should be considered for higher predicting accuracy in the regression 
model of soil CEC after the removal of organic matter and iron oxides, and 
the recommended optimal models obtained in this study were as follows: for 
soil CEC after organic matter eliminated, CEC = 1.665 − 0.546pH − 0.024OM 
+ 0.053FexOy − 0.001Silt + 0.007Clay + 0.972CECoriginal (R2 was 0.923, RSME
was 1.55 cmol(+)∙kg−1, p < 0.01), while for soil CEC after iron oxides further
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obliterated, CEC = 1.665 − 0.546pH − 0.024OM + 0.053FexOy − 0.001Silt + 
0.007Clay + 0.972CECoriginal (R2 was 0.923, RMSE was 1.55 cmol(+)∙kg−1, p < 
0.01). Further research is needed in the future as for exploring internal func-
tional mechanism in view of soil electrochemistry and mineralogy. 
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1. Introduction 

It was found early that CEC of the soils in tropical and subtropical regions would 
be increased after the removal of organic matter, and then decreased after the 
further removal of iron oxides [1] [2], the former could be attributed to the ad-
sorption of organic matter by clays [3] [4] [5] [6], which hinders the adsorption 
of charges, and the latter could be attributed to the characteristics that iron 
oxides also are partial clays and may dominate soil CEC [7] [8]. However, so far 
litter is known about the change degree of soil CEC after the removal of organic 
matter and iron oxides, and the influence factors and their contribution. Thus, a 
brief study was conducted with the typical subhorizon soils from soil series in 
tropical and subtropical China in order to: 1) disclose the change degree of soil 
CEC after the removal of organic matter and iron oxides, 2) clarify the influence 
factors and their contribution to the change degree of soil CEC, 3) establish the 
predicting model of soil CEC from other parameters after the removal of organic 
matter and iron oxides. 

2. Materials and Methods 
2.1. Background of Tested Soil Samples 

Figure 1 shows the spatial distribution of 24 soil series used in this study in 
tropical and subtropical China [9]-[15]. The removal of organic matter and iron 
oxide were based on the extraction method of soil clays [16] [17], which were 
mainly as follows: 1) firstly, 0.2 mol∙L−1 and 0.05 mol∙L−1 HCl were used respec-
tively to decompose calcium carbonate and wash away Ca2+ from soil samples 
sieved through 2 mm nylon mesh; 2) secondly, 1:4 H2O2 was dropped to the soil 
samples until no bubbles (CO2) are presented and the soil color becomes light, 
indicating organic matter is fully removed; 3) finally, sodium citrate-sodium bi-
carbonate-sodium disulfite (DCB) was used to dissolve iron oxides in soil sam-
ples, and then TG20G high-speed centrifuge was used to fully eliminate away the 
dissolved iron oxides. 

For the determination of soil parameters, the pipette method was used to 
measure the particle size distribution, the potentiometer method (soil:water = 
1:2.5) was used to determine pH value, the Walkley-Black wet oxidation method 
was used to decide the content of organic matter, the phenanthroline colorimetry  
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Figure 1. Spatial distribution of 24 soil series used in this study in tropical and subtropical China. 

 
method was used to obtain the content of iron oxides, the NH4OAc (pH 7.0) ex-
change method was used to measure the CEC values of original soil sample 
(CEC1) and after the removal of organic matter (CEC2) and iron oxides (CEC3) 
[16] [17]. 

2.2. Data Statistical Analysis 

Microsoft Excel 2016 and IBM Statistics SPSS 22.0 software were used for statis-
tical analysis of the data, and Duncan test method (2-tailed) were used for va-
riance analyses and multiple comparisons. 

3. Results 
3.1. Statistical Results of Soil Parameters 

Table 1 lists the measured values of soil parameters, it showed that soil CEC was 
5.12 - 19.90 cmol(+)∙kg−1 with a mean of 11.16 cmol(+)∙kg−1, after organic matter 
eliminated, soil CEC significantly increased to 7.36 - 25.71 cmol(+)∙kg−1 with a 
mean of 13.64 cmol(+)∙kg−1 (p < 0.01), increased by 2.28%∼56.50% with a mean 
of 24.02%; but after further iron oxides was obliterated, soil CEC then decreased 
to 6.97 to 23.68 cmol(+)∙kg−1 with a mean of 12.59 cmol(+)∙kg−1 (p < 0.01), de-
creased by 0.75% - 20.30% with a mean of 7.73%. 
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3.2. Parameters Influencing Soil CEC 

Table 2 lists Pearson correlation between soil CEC with other parameters, it 
could be found that CEC1 had positive correlation with iron oxides (p < 0.01) 
and silt content (p < 0.05) but negative correlation with sand content (p < 0.05). 
CEC2 and CEC3 had positive correlation with iron oxides (p < 0.01) but negative 
correlation with sand content (p < 0.01 and p < 0.05), while ΔCEC3-2 had negative  

 
Table 1. Statical descriptions of soil parameters (n = 24). 

Soil parameter Min. Max. Mean ± S.D. C.V.(%) Skewness Kurtosis 

CEC1 5.12 19.90 11.16 ± 4.06 36.36 0.64 −0.75 

CEC2 7.39 25.71 13.64 ± 4.80 35.16 0.87 0.13 

CEC3 6.97 23.68 12.59 ± 4.58 36.33 1.01 0.13 

ΔCEC2-1 2.28 56.50 24.02 ± 16.62 69.21 0.48 −0.78 

ΔCEC3-2) −0.75 −20.30 −7.73 ± −4.55 −58.89 −0.94 1.40 

pH 4.39 6.68 5.17 ± 0.62 12.07 0.96 0.46 

Organic matter 3.10 33.57 10.90 ± 8.17 74.93 1.39 1.21 

Iron oxides 19.25 80.84 41.65 ± 16.31 39.15 0.71 −0.20 

Sand 70 640 302 ± 168 55.66 0.59 −0.80 

Silt 116 517 331 ± 117 35.18 −0.37 −0.82 

Clay 173 596 366 ± 107 29.27 0.03 −0.09 

Note: 1) CEC, cmol (+)∙kg−1; sand, silt, clay, organic matter and iron oxides, g∙kg−1; 2) CEC1, original soil CEC; CEC2, soil CEC 
after organic matter eliminated; CEC3, soil CEC after organic matter and iron oxides obliterated; ΔCEC2-1 = (CEC2 − CEC1) × 
100/CEC1; ΔCEC3-2 = (CEC3 − CEC2) × 100/CEC2, The Same Below; 3) data of CEC followed by different capitals are significant-
ly different at p < 0.01 level. 
 
Table 2. Pearson correlation between soil CEC and other parameters. 

CEC Correlation pH Organic matter Iron oxides Sand Silt Clay 

CEC1 Pearson Correlation 0.116 0.117 0.574** −0.446* 0.465* 0.193 

 
Sig. (2-tailed) 0.588 0.586 0.003 0.029 0.022 0.366 

CEC2 Pearson Correlation 0.030 0.071 0.679** −0.518** 0.399 0.379 

 
Sig. (2-tailed) 0.888 0.743 0.000 0.010 0.054 0.068 

CEC3 Pearson Correlation 0.059 −0.009 0.662** −0.508* 0.362 0.403 

 Sig. (2-tailed) 0.784 0.965 0.000 0.011 0.082 0.051 

ΔCEC2-1 Pearson Correlation −0.243 −0.022 0.241 −0.072 −0.177 0.306 

 Sig. (2-tailed) 0.253 0.920 0.256 0.737 0.409 0.147 

ΔCEC3-2 Pearson Correlation 0.196 −0.548** −0.136 0.057 −0.201 0.129 

 Sig. (2-tailed) 0.359 0.006 0.526 0.790 0.346 0.548 

Note: 1) *. **, Correlation is significant at p < 0.05 or 0.01 level (2-tailed). 
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correlation with organic matter (p < 0.01). 
The contribution of one parameter to CEC was calculated as the follows: 

firstly, all parameters were normalized by the Z-score method with IBM Statis-
tics SPSS software to ensure them with the same magnitude, and then the re-
gression coefficients between each parameter with CEC was used to indicate 
their contribution to CEC [18] [19] [20]. The contribution of one parameter (Ci) 
to CEC was calculated as Ci = |Ki|/|Ksum|, in which Ki is the regression coefficient 
of the i parameter, and Ksum is the total sum of all coefficients. The obtained li-
near regression models of CEC with other parameters were listed in Table 3, and 
the calculated contribution of other parameters to CEC were listed in Table 4. 

In view of the contribution of other parameters to CEC, it could be roughly 
seen from Table 4 that CEC1 and CEC2 was mainly decided by the content of 
iron oxides (47.17% and 51.68%), followed by the content of silts (31.39% and 
22.19%); CEC3 was mainly determined by the content of iron oxides (50.55%); 
ΔCEC2-1 was mainly affected by the contents of clays (27.34%), slits (25.82%), 
iron oxides (24.73%) and pH (22.00%); ΔCEC3-2 was mainly influenced by the 
content of organic matter (66.92%). 

3.3. Correlation between Soil CEC 

Table 5 lists Pearson correlation between various soil CEC, positive correlation 
was found between CEC1, CEC2 and CEC3 (R2 was 0.918 - 0.989 with Sig. = 
0.000), but no correlation was found between ΔCEC2-1 and ΔCEC3-2 with CEC1, 
CEC2 and CEC3. 

 
Table 3. Linear regression model between normalized CEC and other soil properties. 

Liner regression model R2 RMSE F Sig. 

CEC1 = 2.031 × 10−16 − 0.004pH − 0.157OM + 0.550FexOy + 0.366Silt − 0.089Clay 0.450 0.84 2.91 0.041* 

CEC2 = −2.354 × 10−16 − 0.074pH − 0.170OM + 0.631FexOy + 0.271Silt + 0.075Clay 0.550 0.75 4.41 0.009** 

CEC3 = −6.433 × 10−16 − 0.060pH − 0.243OM + 0.640FexOy + 0.247Silt + 0.076Clay 0.543 0.76 4.28 0.010* 

ΔCEC2−1 = −6.472 × 10−16 − 0.202pH − 0.001OM + 0.227FexOy − 0.237Silt + 0.251Clay 0.223 0.10 1.03 0.429 

ΔCEC3−2 = −4.376 × 10−16 + 0.078pH − 0.532OM + 0.052FexOy − 0.095Silt − 0.038Clay 0.314 0.94 1.65 0.199 

Note: OM, organic matter; FexOy, iron oxides. 
 
Table 4. Contribution of other soil properties to CEC (%). 

Property pH Organic matter Iron oxides Sand Silt Clay Total 

CEC1 0.34 13.46 47.17 0 31.39 7.63 100 

CEC2 6.06 13.92 51.68 0 22.19 6.14 100 

CEC3 4.74 19.19 50.55 0 19.51 6.00 100 

ΔCEC2-1 22.00 0.11 24.73 0 25.82 27.34 100 

ΔCEC3-2 9.81 66.92 6.54 0 11.95 4.78 100 
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Table 5. Pearson correlation between soil CEC. 

CEC Correlation CEC2 CEC3 ΔCEC2-1 ΔCEC3-2 

CEC1 Pearson Correlation 0.927** 0.918** −0.311 0.057 

 
Sig. (2-tailed) 0.000 0.000 0.139 0.790 

CEC2 Pearson Correlation 
 

0.989** 0.051 0.033 

 
Sig. (2-tailed) 

 
0.000 0.812 0.878 

CEC3 Pearson Correlation  
 

0.036 0.177 

 
Sig. (2-tailed)  

 
0.867 0.407 

ΔCEC2-1 Pearson Correlation   
 

−0.130 

 
Sig. (2-tailed)   

 
0.544 

Note: *. **, Correlation is significant at p < 0.05 or 0.01 level (2-tailed). 
 
Table 6. Predicting models of clay CEC7. 

Predicting model R2 RMSE F Sig. 

1 CEC1 = 3.453 − 0.024pH − 0.078OM + 0.137Fe2O3 + 0.013Silt − 0.003Clay 0.450 3.60 2.94 0.041 

2 CEC2 = 5.022 − 0.569pH − 0.100OM + 0.185Fe2O3 + 0.011Silt + 0.003Clay 0.550 3.64 4.41 0.009 

3 CEC2 = 1.418 + 1.095CEC1 0.859 1.84 133.70 0.000 

4 CEC2 = 1.665 − 0.546pH − 0.024OM + 0.053Fe2O3 − 0.001Silt + 0.007Clay + 0.972CEC1 0.923 1.55 33.81 0.000 

5 CEC3 = 4.452 − 0.438pH − 0.136OM + 0.180Fe2O3 + 0.010Silt + 0.003Clay 0.543 3.49 4.27 0.010 

6 CEC3 = 1.038 + 1.035CEC1 0.843 1.85 118.46 0.000 

7 CEC3 = 1.222 − 0.415pH − 0.063OM + 0.052Fe2O3 − 0.002Silt + 0.006Clay + 0.935CEC1 0.922 1.49 33.34 0.000 

3.4. Predicting CEC2 and CEC3 Based on Other Parameters and 
CEC1 

By using IBM Statistics SPSS, the regression models of CEC2, CEC3, ΔCEC2-1 and 
ΔCEC3-2 with other parameters and CEC1 were obtained (see Table 6), and it 
could be found by comparison from Table 6 that Model 3 and Model 4 could be 
recommended were suitable for the prediction of CEC2 while Model 6 and Mod-
el 7 for the prediction of CEC3, respectively, in which Model 4 and Model 6 were 
optimal for CEC2 and CEC3 prediction, respectively. 

4. Discussions 

Our study showed (see Table 1) that, for the subhorizon soils in tropical and 
subtropical China, clay and silt contents were meanly 331 g∙kg−1 and 302 g∙kg−1 
while sand content was only meanly 41 g∙kg−1, and iron oxides content was 
meanly 41.65 g kg−1, which prove further that soils in tropical and subtropical 
China are clayey and rich in iron oxides [21]. 

It was found early that CEC of the soils in tropical and subtropical regions 
would be increased after the removal of organic matter, and then decreased after 
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the further removal of iron oxides [1] [2]. For the subhorizon soils in tropical 
and subtropical China, compared with previous studies, our study further quan-
titatively disclosed the change of soil CEC after the removal of organic matter 
and iron oxides. The results showed that soil CEC could be significantly in-
creased by 2.28% - 56.50% with a mean of 24.02% (p < 0.01) after the elimina-
tion of organic matter, and then it could be significantly decreased by 0.75% - 
20.30% with a mean of 7.73% after further obliteration of iron oxides (p < 0.01). 
Our study also found that the increased degree of soil CEC after organic matter 
had no correlation with other parameters (pH, the contents of organic matter, 
iron oxides and particle size composition (R was 0.022 - 0.306, Sig. was 0.147 - 
0.920); while the decreased degree of soil CEC after iron oxides was obliterated 
only had negative correlation with the content of organic matter (R was 0.548**, 
Sig. was 0.1006). In view of the contribution of other parameters to CEC, our 
study roughly showed that both soil original CEC and CEC after the removal of 
organic matter were mainly decided by iron oxides (47.17% and 51.68%), fol-
lowed by the content of silt content (31.39% and 22.19%), but CEC after further 
obliteration of iron oxides was mainly determined by iron oxides (50.55%); 
while the increase caused by the removal of organic matter was co-affected by 
the contents of pH, silts, clays and iron oxides (22.00% - 27.34%), and the de-
crease resulted from further obliteration of iron oxides was dominantly influ-
enced by OM content (66.92%). 

Previous studies showed that pH usually has positive correlation with soil 
CEC for acid soils [22] [23] [24] [25] [26], however, no significant positive cor-
relation was found in our study between pH and soil CEC (R was 0.116, p = 
0.588), which could be attributed to narrow range of pH of the soil samples used 
in our study (acid, 4.39 - 6.68 with a mean of 5.17 in pH). Organic matter usually 
has significant positive correlation with soil CEC [22] [24]-[34], but our results 
neither found that organic matter had significant correlation with soil CEC (R 
was 0.117, p = 0.586), which could also be related to the content of organic mat-
ter [27] [33] [34] [35] in subhorizon soils used in our study (meanly 10.90 
g∙kg−1). Clay content usually also has significant positive correlation with soil 
CEC [22] [23] [24] [25] [26] [28]-[34] [36], but our results neither found such a 
phenomenon (R was 0.193, p = 0.366), which possibly could be attributed to 
high content of clay contents in our soil samples (meanly 366 g∙kg−1). Our study 
found that iron oxides was significantly positively correlated with soil CEC (R 
was 0.574, p < 0.01), few studies analyzed the correlation between iron oxides 
and soil CEC because iron oxides in subtropical and tropical soils usually exist as 
clay fraction or strongly cemented with clays [21] [36] [37] [38]. Significant neg-
ative correlation was found between soil CEC with sand content in our study, 
which is consist with the previous studies [22] [31] [33] [34] [35], and could be 
attributed to sand fraction mainly composed of quartz and iron concretions with 
low charge density [39]. Moreover, significant positive correlation was also 
found between soil CEC with silt content in our study as in other studies [23] 
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[25], which could be attributed to that silt fraction is often composed of vermi-
culite and mica minerals which can hold negative charges [39] [40]. 

Removing organic matter and iron oxides from soils and measuring soil CEC 
are tedious and troublesome processes, so it is helpful to find the predicting 
model for soil CEC changes after the removal of organic matter and iron oxides 
if necessary. In our study, various regression models were established, and it was 
found that model with more parameters usually was higher in accuracy. By 
comparation, two optimal models are recommended as the optimal predicting 
model for soil CEC after the removal of organic matter and iron oxides respec-
tively (see Table 6, Model 4 and Model 7, with R2 of 0.923 and 0.922, RMSE of 
1.55 cmol(+)∙kg−1 and 1.49 cmol(+)∙kg−1, and p < 0.01). 

It should be pointed out that our study only focused on quantitative estimat-
ing the change degrees of soil CEC after the removal of organic matter and iron 
oxides and the influence factors and their contribution to the changes, however, 
further research is needed in the future as for exploring internal functional me-
chanism in view of soil electrochemistry and mineralogy. 

5. Conclusion 

Our study quantitatively disclosed the significant increase and decrease of soil 
CEC after the removal of organic matter and iron oxides in tropical and sub-
tropical China, and found that the increase degree of soil CEC after the elimina-
tion of organic matter was co-affected by the contents of clays, slits, iron oxides 
and pH, while the decrease degree of soil CEC after the further obliteration of 
iron oxides was dominated by OM content. More other parameters should be 
considered for higher accuracy in predicting soil CEC after the removal of or-
ganic matter and iron oxides. 
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