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Abstract 
Contamination by heavy metals is a serious threat to aquatic systems due to 
their level of toxicity at elevated levels. The pollution of urban watersheds is 
of particular concern because of its potential impact on the watershed eco-
system and the receiving larger water bodies. This study assessed the occur-
rence and distribution of cadmium, copper, nickel, lead and zinc in water and 
sediment samples collected from three urban watersheds in Lagos, Nigeria. 
The concentrations of metals were determined using atomic absorption spec-
trometry. The health risk index (HRI) of water usage was evaluated for both 
adults and children. HRI for cadmium and lead in some of the watersheds 
recorded HRI > 1 values, a cause for health concern. The pH of water ranged 
from 6.48 ± 0.28 - 6.54 ± 0.47 (2016) and 6.18 ± 0.56 - 6.53 ± 0.17 (2018) re-
spectively while, for sediments, the pH values ranged from 6.14 ± 0.48 - 6.9 ± 
0.15 and 5.38 ± 0.22 - 6.4 ± 0.38 for 2016 and 2018 respectively. The levels of 
metals in the water samples during the 2016 sampling cycle were found to be 
within the World Health Organization (WHO) guideline limits for drinking 
water. However, the 2018 cadmium, lead and zinc concentrations for 
Ira-Ipaye and Akesan watersheds exceed the WHO guideline limits. Cad-
mium was not detected in Ira-Ipaye and Akesan 2016 sediment samples. Sta-
tistical t-test and analysis of variance (ANOVA) were used to ascertain sig-
nificant differences of metals concentration in the three watersheds. The pH 
and metal concentration values obtained for water and sediment for the year 
2016 and 2018 were non-significantly different. 
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1. Introduction 

Watersheds are important in the study and management of environmental water 
resources [1] [2] [3] [4]. A water resource is of no value if the quality is degraded 
such that it prevents the desired water uses [5] [6]. 

Studies have shown that atmospheric deposition, vehicular transportation-related 
activities and metallic building envelopes resulting from agricultural, domestic 
and industrial activities are among the major pollution sources of urban water-
sheds [7] [8]. The partitioning of sources is further complicated by source inte-
ractions [9]. The fate of these metal pollutants in the biological systems is known 
to be equally influenced by dissolved organic matter [10] [11] [12]. Similarly, 
climatic conditions have been shown to affect the transport, enrichment and 
bioavailability of heavy metals in watersheds [13]. Consequently, pollution 
sources should be more closely controlled and monitored for the purposes of 
enhanced water quality and ecological conservation [7] [14] [15] [16].  

Healthy watersheds support environmental and ecological functions, includ-
ing societal services such as water availability, flood protection, healthy aquatic 
food products and recreation [17] [18] [19]. Metal pollution source control is the 
major mitigation strategy that is in vogue in decontaminating polluted water-
sheds [7] [8].  

Cadmium and lead have no known functions in plants, animals or humans 
[20] [21]. These metals have been implicated as endocrine disruptors in humans 
and other organisms amongst other adverse health effects [22] [23] [24] [25]. 
The effects of elevated levels of nickel in humans are cardiovascular diseases, 
dizziness, lung and nasal cancers among other debilitating side effects [26]. As 
important as copper and zinc are as nutrients, high doses can result in side ef-
fects like depression, gastrointestinal irritation, kidney and liver failure [24] [25] 
[26]. On the other hand, even at low concentrations, zinc is reported to be into-
lerable to aquatic organisms especially fish [27] [28].  

In the vicinity of the watersheds, land use is predominantly for residential 
purposes, small-scale farming and refined petroleum dispensing facilities. Whe-
reas, the potential pollutant sources are direct disposal of domestic and agricul-
tural wastes, runoffs and vehicular traffic emissions [29] [30] [31]. Other possi-
ble non-point pollution sources are the Agbara industrial estate [32] and acci-
dental leakages from petroleum storage facilities and pipelines [33]. 

The aim of this study was to evaluate the occurrence and distribution of cad-
mium, copper, nickel, lead and zinc in water and sediment samples of three ur-
ban watersheds; with a view to determine the extent of metal pollution exacerba-
tion over the two-year period, 2016 to 2018, the health risk indices would also be 
evaluated. The outcome of this study would assist the relevant government 
agencies to formulate an efficient monitoring strategy for watersheds in line with 
global best practices. 

2. Materials and Methods 

Study area: Ira-Ipaye and Agboroko watersheds are located along the ev-
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er-busy Isheri-LASU expressway, in the Ojo Local Government Area, of Lagos 
State, Nigeria. While the Akesan watershed is situated off the Isheri-LASU ex-
pressway but in the Alimosho Local Government Area, Lagos State. The global 
positioning system (GPS) data are indicated in Table 1 and Table 2, and shown 
in Figure 1. Increasing human settlements coupled with increased commercial 
and agricultural activities necessitated the choice of the three watersheds. The 
watersheds empty into the Obadore River enroute Ishashi/Agbara Rivers.  

Sampling: Composite replicate samples each of both water and sediment 
samples were collected randomly once a week, for the period of five weeks re-
spectively from the watersheds, between the months of September and October 
(2016); January and February (2018). 

Water and sediment samples were collected following the standard procedures 
described by America Public Health Association [34] and Department of Water 
Affairs and Forestry [35]. Sediment samples were air-dried and sieved using 0.45 
µm mesh sieve [28] [36] [37]. The pH of the water and sediment samples was 
determined using the Hanna pH meter. Plastic containers were used to collect  
 

 
Figure 1. Map of sampling locations. 
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and store water samples, with 10 ml nitric acid added immediately. The samples 
were transported from the field to the laboratory for analysis. The samples were 
kept at 5˚C in the refrigerator until they were analyzed at the laboratory [33]. 

The samples were prepared for metal analysis using acid digestion as de-
scribed earlier [27] [33]. Five heavy metals—cadmium, copper, nickel, lead and 
zinc were determined in an air-acetylene flame (Atomic Absorption Spectro-
photometer (AAS) Model: Buck 210 VGP).  

Quality control of analytical data: High purity chemicals and reagents 
(purchased from Merck and Aldrich Chemical company), together with distill-
ed—deionized water were used. Stock solutions (Merck) of 1000 mg/L of the 
different metals were used to prepare the calibration standards. Pre-digested 
water and sediment samples were spiked with metal standards in triplicate for 
metal recovery studies as reported earlier [27] [38]. The AAS setting and opera-
tional conditions were done in accordance with the manufacturer’s specifica-
tions, and were calibrated with analytical grade standard solutions (1000 mg/L) 
after appropriate dilutions. 

Statistical analysis: To estimate statistically significant differences between 
the 2016 and 2018 samples and within the respective watersheds, t-test and 
ANOVA statistical analyses at p < 0.05 levels of significance were employed [39]. 
The values are presented in Tables 5-7 respectively. 

Risk assessment: To assess the potential health risks for adults and children, 
health risk indicators, such as chronic daily intakes (CDI) and health risk index 
(HRI) were calculated for the water samples [40] [41]. 

CDI (mg∙kg−1∙day−1) = Cm∙Iw/Wb 

where Cm (mg∙L−1) = metal concentration in water; Iw (L∙day−1) = average daily 
intake of water (assumed to be 2 L∙day−1 for an adult and 1 L∙day−1 for a child); 
Wb = average body weights (assumed to be 72 kg for an adult and 32.7 kg for a 
child). The CDI data are shown in Table 8 and Table 9. 

HRI = CDI/RfD 

where the oral toxicity reference dose (RfD, mg∙kg−1), the values are: Cd, Cu, Ni, 
Pb and Zn; 1 × 10−3, 4 × 10−2, 2 × 10−2, 4 × 10−3, 3 × 10−1 respectively. The HRI 
values are listed in Table 10 and Table 11. 

3. Results and Discussion 
3.1. Results  

Table 1. Sampling locations and the result of some chemical parameters in the water 
samples of the three watersheds (2016). 

      µg/L 

Location/GPS pH Cd Cu Ni Pb Zn 

Ira-Ipaye 
6˚29'48.34788"N 
3˚11'56.55156"E 

6.48 ± 0.28 ND 8.0 ± 8.61 ND 14.0 ± 31.3 238.0 ± 209.9 
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Continued 

Agboroko 
6˚29'10.79412"N 
3˚11'56.84856"E 

6.48 ± 0.16 0.02 ± 0.04 0.46 ± 0.29 0.14 ± 0.1 0.12 ± 0.19 0.86 ± 1.12 

Akesan 
6˚32'5.57988"N 
3˚13'53.958"E 

6.54 ± 0.47 ND 54 ± 22.45 ND ND 310 ± 123.94 

WHO 
Guideline 

Limit 
6.5 - 8.5 5.0 5000.0 70.0 50.0 5000.0 

Notes: ND, not detected; WHO, World Health Organization; GPS, Global positioning system data (latitude; 
longitude). 

 
Table 2. Sampling locations and the result of some chemical parameters in the water samples of the three watersheds (2018). 

      µg/L 

Location/GPS pH Cd Cu Ni Pb Zn 

Ira-Ipaye 
6˚29'48.34788''N; 
3˚11'56.55156''E 

6.48 ± 0.19 358 ± 142.74 280 ± 49.23 76 ± 20.59 1704 ± 767.77 12,304 ± 12,551.09 

Agboroko 
6˚29'10.79412''N; 
3˚11'56.84856''E 

6.18 ± 0.56 ND 6.80 ± 13.60 ND ND 195.4 ± 165.01 

Akesan 
6˚32'5.57988''N; 
3˚13'53.958''E 

6.53 ± 0.17 254 ± 168.48 354 ± 124.68 66.00 ± 30.72 2207.8 ± 1415.88 1976 ± 383.23 

WHO 
Guideline 

Limit 
6.5 - 8.5 5 5000 70 50 5000 

 
Table 3. Sampling locations and the result of some chemical parameters in the sediment samples of the three watersheds (2016).  

      ng/g 

Location pH Cd Cu Ni Pb Zn 

Ira-Ipaye 6.14 ± 0.48 ND 6790 ± 1673.02 4016 ± 1428 11,818 ± 1050 14,890 ± 3242.92 

Agboroko 6.9 ± 0.15 1.04 ± 0.77 95 ± 48 29.38 ± 5.50 508.98 ± 248.05 691 ± 43 

Akesan 6.8 ± 0.17 ND 20,310 ± 5021 5730 ± 1562.24 24,324 ± 6832.63 169,110 ± 43,216.29 

 
Table 4. Sampling locations and the result of some chemical parameters in the sediment samples of the three watersheds (2018).  

      ng/g 

Location pH Cd Cu Ni Pb Zn 

Ira-Ipaye 5.47 ± 0.52 1662 ± 514.99 5760 ± 2900.28 640 ± 293 14,444 ± 6763 22,732 ± 23,806 

Agboroko 6.4 ± 0.38 ND 6935 ± 4584 ND 21,540 ± 8026.43 4761.8 ± 2175.6 

Akesan 5.38 ± 0.22 3388 ± 170.69 8340 ± 724.51 1500 ± 142.83 20,996 ± 3417 20,878 ± 2795 

Note: ND, not detected. 
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Table 5. t-test (95% confidence level) of pH and metals in 2016 vs 2018 water and sedi-
ments samples. 

Location pH Cd Cu Ni Pb Zn 

Ira-Ipaye 
0.49 

(0.06) 
0.004 

(0.001) 
0.0004 
(0.26) 

0.001 
(0.007) 

0.006 
(0.23) 

0.33 
(0.26) 

Agboroko 
0.20 

(0.07) 
0.19 

(0.03) 
0.20 

(0.02) 
0.03 

(0.0001) 
0.14 

(0.003) 
0.04 

(0.01) 

Akesan 
0.47 

(0.001) 
0.02 

(0.000001) 
0.006 

(0.003) 
0.006 

(0.003) 
0.02 

(0.21) 
0.001 

(0.001) 

Note: values in parentheses are for sediments; ttab = 2.31. 

 
Table 6. ANOVA of metal levels in water and sediment in the three watersheds (2016).  

 pH Cd Cu Ni Pb Zn 
F-critical 
(p < 0.05) 

Water 0.07ns 1.0 ns 15.53* 9.39* 0.99ns 4.61* 
3.89 

Sediment 5.36* 7.38* 45.39* 22.92* 35.39* 55.75* 

Notes: ns, non-significant difference at p < 0.05; *significant difference at p < 0.05. 

 
Table 7. ANOVA of metal levels in water and sediment in the three watersheds (2018). 

 pH Cd Cu Ni Pb Zn 
F-critical 
(p < 0.05) 

Water 0.15ns 0.03ns 0.03ns 0.002ns 1.76ns 81.06* 
3.89 

Sediment 0.59ns 2.01ns 11.10* 0.41ns 51.01* 258.20* 

Notes: ns, non-significant difference at p < 0.05; *significant difference at p < 0.05. 

 
Table 8. Chronic daily intakes (CDIs, mg∙kg−1∙day−1) of metals through water consumption in 2016. 

Location Cd Cu Ni Pb Zn 

Ira-Ipaye - 
22.2 × 10−5 ± 32.3 × 10−5 
(24.5 × 10−5 ± 35.7 × 10−5) 

- 
38.9 × 10−5 ± 77.8 × 10−5 

(42.9 × 10−5 ± 85.8 × 10−5) 
646 × 10−5 ± 598 × 10−5 

(728 × 10−5 ± 642 × 10−5) 

Agboroko 
0.005 × 10−5 ± 0.009 × 10−5 
(0.006 ×10−5 ± 0.001 × 10−5) 

1.28 × 10−5 ± 0.82 × 10−5 
(1.41 × 10−5 ± 0.9 × 10−5) 

0.04 ×10−5 ± 0.09 × 10−5 
(0.04 × 10−5 ± 0.03 × 10−5) 

0.04 × 10−5 ± 0.06 × 10−5 
(0.05 × 10−5 ± 0.06 × 10−5) 

2.39 × 10−5 ± 3.11 × 10−5 
(2.63 × 10−5 ± 3.43 × 10−5) 

Akesan - 
150 × 10−5 ± 62 × 10−5 

(165 × 10−5 ± 69 × 10−5) 
- - 

861 × 10−5 ± 314 × 10−5 
(948 × 10−5 ± 379 × 10−5) 

Note: values in parentheses are for children, others are for adults. 

 
Table 9. Chronic daily intakes (CDIs, mg∙kg−1∙day−1) of metals through water consumption in 2018. 

Location Cd Cu Ni Pb Zn 

Ira-Ipaye 
9.94 × 10−3 ± 3.97 × 10−3 

(10.95 × 10−3 ± 4.37 × 10−3) 
6 × 10−3 ± 1.4 × 10−3 

(6.66 ×10−3 ± 1.53 × 10−3) 
2.11 × 10−3 ± 0.57 × 10−3 

(2.32 × 10−3 ± 0.63 × 10−3) 
47.3 × 10−3 ± 21.3 × 10−3 

(52.1 × 10−3 ± 23.5 × 10−3) 
341.8 × 10−3 ± 348.6 × 10−3 
(376.3 × 10−3 ± 383.8 × 10−3) 

Agboroko - 
0.19 × 10−3 ± 0.38 × 10−3 

(0.21 × 10−3 ± 0.42 × 10−3) 
- - 

5.43 × 10−3 ± 4.58 × 10−3 
(5.98 × 10−3 ± 5.05 × 10−3) 

Akesan 
7.06 × 10−3 ± 4.68 × 10−3 

(7.77 × 10−3 ± 5.15 × 10−3) 
9.83 × 10−3 ± 3.46 × 10−3 

(10.83 × 10−3 ± 3.81 × 10−3) 
1.83 × 10−3 ± 0.85 × 10−3 

(2.02 × 10−3 ± 0.94 × 10−3) 
61.3 × 10−3 ± 39.3 × 10−3 

(67.5 × 10−3 ± 43.3 × 10−3) 
54.9 × 10−3 ± 10.6 × 10−3 

(60.4 × 10−3 ± 11.7 × 10−3) 

Note: values in parentheses are for children, others are for adults. 
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Table 10. Health risk index (HRI) of metals through water usage for 2016. 

Location Cd Cu Ni Pb Zn 

Ira-Ipaye - 
5.55E−03 

(6.13E−03) 
- 

9.72E−02 
(10.73E−02) 

2.15E−02 
(2.43E−02) 

Agboroko 
5.0E−05 

(6.0E−05) 
3.2E−04 

(3.53E−04) 
1.95E−05 

(2.15E−05) 
1.1E−04 

(1.23E−04) 
7.97E−05 

(8.77E−05) 

 
Akesan 

- 
3.75E−02 

(4.13E−02) 
- - 

2.87E−02 
(3.16E−02) 

Note: values in parentheses are for children, others are for adults. 

 
Table 11. Health risk index (HRI) of metals through water usage for 2018. 

Location Cd Cu Ni Pb Zn 

Ira-Ipaye 
9.94E+0 

(10.95E+0) 
15.0E−02 

(16.53E−02) 
10.55E−02 

(11.60E−02) 
11.83E+0 

(13.03E+0) 
1.14E+0 

(1.25E+0) 

Agboroko - 
4.75E−03 

(5.25E−03) 
- - 

1.81E−02 
(1.99E−02) 

Akesan 
7.06E+0 

(7.77E+0) 
24.58E−02 

(27.08E−02) 
10.55E−02 

(11.60E−02) 
1.53E+0 

(1.69E+0) 
18.30E−02 

(20.13E−02) 

Note: values in parentheses are for children, others are for children. 

3.2. Discussion 

The 2016 and 2018 pH values (Table 1 and Table 2), recorded for Ira-Ipaye and 
Agboroko water samples were below the limit of 6.5 - 8.5 prescribed by WHO 
for drinking water [42]. Nevertheless, Akesan’s 2016 and 2018 values of 6.54 ± 
0.47 and 6.53 ± 0.17 respectively were within the recommended WHO guideline 
limits. These observations are consistent with values reported earlier for the Rio 
Tercero reservoir, Argentina, 6.64 - 7.69 [18]. It reveals the unwholesomeness of 
the water from Ira-Ipaye and Agboroko watersheds [43]. 

The pH of the sediment samples (Table 3 and Table 4) in the three water-
sheds ranged from 6.14 ± 0.48 - 6.90 ± 0.15 (2016) and 5.38 ± 0.22 - 6.40 ± 0.38 
(2018) respectively. Earlier workers have reported that pH is an important varia-
ble that influences the behaviour of metals in the environment [28] [44]. None-
theless, the values recorded here are lower on average compared to the 6.23 ± 
0.45 - 8.73 ± 0.20 values reported for sediments harvested from the Ogun river 
catchments, Ketu, Lagos, Nigeria [28].  

Decreases in pH values have been found to aggravate toxicity in aquatic or-
ganisms [45]. Furthermore, pH is crucial to the partitioning of metals across 
components of the aquatic ecosystem, for example, it is reported that at pH > 6, 
nickel adsorbs/co-precipitates with iron and manganese (oxy) hydroxides and 
can also adsorb to suspended organic matter [46]. 

The concentration profile of metal in the water samples (Tales follows a de-
creasing concentration order: Agboroko, Zn > Cu > Ni > Pb > Cd; Akesan, Zn > 
Cu > Pb ~ Ni ~ Cd; Ira-Ipaye, Zn > Pb > Cu > Ni ~ Cd (2016). The trend for 
2018 water samples are respectively, Zn > Cu > Pb ~ Ni ~ Cd; Pb > Zn > Cu > 
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Cd > Ni; Zn > Pb > Cd > Cu > Ni for Agboroko, Akesan and Ira-Ipaye water-
sheds. As evident in Table 1 and Table 2, zinc has the highest concentration in 
the water samples across the watersheds for 2016, while in 2018 it was lead that 
the highest concentration during the sampling cycles. Nevertheless, the levels 
(µg/L) of cadmium, copper, nickel, lead and zinc for 2016 water samples were 
below the recommended guideline limits prescribed by the World Health Or-
ganization for drinking water [42].  

However, cadmium, lead and zinc for 2018 (Akesan and Ira-Ipaye) were 
above the recommended limits (µg/L) of, 5.0, 50.0 and 5000.0 respectively. This 
is an indication that the water quality of two of the three watersheds under spot-
light has deteriorated over the two-year period. This gives cause for concern and 
there is the need to ascertain the possible anthropogenic activities that could be 
responsible for the higher pollutant load. The upper Dandenong creek catch-
ment watershed in Victoria, Australia, the urban watershed in California and 
Michigan’s Southeastern watershed experienced a similar profile of heavy metal 
[14] [22] [47]. 

In terms of occurrence and distribution, the metals in the sediments (Table 3 
and Table 4) follow a decreasing concentration order, Zn > Pb > Cu > Ni > Cd 
for Ira-Ipaye, Agboroko and Akesan respectively (2016 samples). However, the 
2018 metal profile is as follows: Zn > Pb > Cu > Cd > Ni (Ira-Ipaye); Pb > Cu > 
Zn > Ni ~ Cd (Agboroko); Pb > Zn > Cu > Cd > Ni (Akesan). The values re-
ported here are found to be lower than metal concentration values (ng/g) re-
ported for the two watersheds in Abiete-Toko gold district (southern Came-
roon), Cd (20 - 231); Pb (2470 - 8220); Cu (8370 - 48,600); Ni (9150 - 686,000) 
and Zn (22,200 - 199,600) respectively [26]. Nevertheless, the concentrations of 
cadmium, copper and lead levels in Lake Greenwood (South Carolina) sedi-
ments experienced a reduction between the three intervening years of 2012 and 
2015 [37]. This observation is at variance with the findings of this study. How-
ever, the relatively higher metal levels in the sediments compared to the water 
samples are in consonance with values reported by earlier workers in the Hraz-
dan River (Armenia) and Lishui River, southern China watershed systems [36] 
[48].  

The t-test statistical analyses (Table 5) of pH and metal values obtained for 
water and sediments in the 2016 and 2018 sampling cycles revealed statistically 
non-significant differences. This is a pointer to the fact that the sources of pollu-
tion are unaltered [33]. Nevertheless, the calculated F-statistic, using analysis of 
variance (ANOVA) (Table 6 and Table 7) for the samples reveal statistically 
significant differences in the water samples for, copper, nickel and zinc (2016) 
and for zinc (2018).  

Nevertheless, in the sediment samples, Cd, Cu, Ni, Pb and Zn are significant 
across board for 2016 [39]. However, only zinc was statistically significant 
among the 2018 samples across the three watersheds of Ira-Ipaye, Agboroko and 
Akesan respectively. These observations are an indication that metal contamina-
tion has become widespread in the watersheds within the two-year period of 
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2016 to 2018. This is a cause for concern, particularly for the health of aquatic 
biota in the watersheds [49] [50]. The statistically significant values could also be 
ascribed to the fact that the three watersheds experienced varying degrees of 
metal contaminants during the intervening period [43] [51]. 

The chronic daily intakes (CDIs) and health risk index (HRI) for water usage 
in 2016 and 2018 sampling cycles are shown in Tables 8-11 respectively. The 
HRI values recorded are <1 for cadmium, copper, nickel, lead and zinc for the 
2016 water in the three locations of Ira-Ipaye, Agboroko and Akesan respective-
ly. HRI values of <1 are an indication that the health risk associated with the 
water usage is of no immediate serious health consequences [33] [41] [52] [53].  

The 2018 water samples indicate HRI values of cadmium for Ira-Ipaye, 
9.94E+0 (adult), 10.95E+0 (children); Akesan, 7.06E+0 (adult), 7.77E+0 (child-
ren) respectively. Similarly, HRI values recorded for Ira-Ipaye, are: lead, 
11.83E+0 (adult), 13.03E+0 (children); zinc 1.14E+0 (adult) and 1.25E+0 (child-
ren) respectively. Similar results for health risk for children and adults have been 
reported earlier for Lishui River and Shenjia watershed, China [15] [48]. These 
HRI values are >1.  

HRI > 1 values portends adverse health effects [31] [33] [53]. These feed into 
the narrative expressed earlier by Bornman and co-workers on the rising levels 
of endocrine-disrupting heavy metal in Africa’s water ecosystems [25]. 

Consequent upon the findings of this study, there is a need for effective man-
agement of watersheds, through pollution source control and periodic water 
quality monitoring. These measures would assist in decontamination, improve 
functionality as well as protect the watersheds from irreversible degradation. 

4. Conclusion 

The occurrence of metal (Cd, Cu, Ni, Pb and Zn) in the water and sediment 
samples at elevated levels in the 2018 cycle is of pressing concern. This is an in-
dication of the increasing trend of metal pollution of the watersheds. Health risk 
indices of cadmium and lead equally increased from HRI < 1 to HRI > 1, be-
tween 2016 and 2018. Cadmium and lead concentrations were found to be above 
the WHO guideline limits for drinking water. The most probable sources of 
metal contaminants were raw effluent discharges and municipal runoffs. The 
State and local government authorities are enjoined to protect these watersheds 
via pollution source control, by regulating the discharge of effluents into these 
water bodies. Unfortunately, some residents perceive these watersheds as “safe” 
places to empty their wastes. 
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