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Abstract 

Remediation via adsorption process has been proven to be one of the best 
water treatment technologies globally. Many adsorbents, including agricul-
tural wastes, have been considered for the removal of a variety of pollutants 
from water. However, most of the studies reported in the literature used met-
al concentrations below 1000 ppm. It is also known that initial metal concen-
trations in polluted aqueous solutions, as well as metal and adsorbent type, 
are some of the factors that affect metal removal. Therefore, this project ex-
amined the remediation of water contaminated by 1000 ppm of lead, zinc, 
copper, magnesium, and calcium ions using wood ash, sodium hydrogen 
phosphate (dibasic), and sodium carbonate (dibasic). Comparative analysis of 
the results showed the order of order of metal removal by the adsorbents as: 
dibasic phosphate (Ca > Cu > Pb > Zn > Mg); dibasic Carbonate (Pb ~ Ca > 
Zn > Cu > Mg); Wood ash (Mg > Cu > Zn > Pb > Ca). These results suggest 
that metal and adsorbent type as well as the inherent chemical properties of 
these metal cations may contribute to the varying binding affinity of the met-
als to the adsorbent ligand(s) and thus, affect the extent of metal removal. It is 
equally worthy to note that wood ash more effectively removed hardness 
metals (Mg and Ca) from water than the inorganic phosphate and carbonate 
ions.  
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1. Background 

Metals, especially heavy metals are distributed in the environment through nat-
ural, industrialization and anthropogenic activities. They are not degradable; thus, 
they persist in the environment [1]. Methods for metal removal from contami-
nated water include phytoremediation [2] [3] [4], electrodeposition and extrac-
tion [5]. However, phytoremediation has some drawbacks such as root length 
and accumulation capacity while electrodeposition is expensive and not meant 
for average citizens. Thus, researchers became interested in the use of agricul-
tural waste as a potential method to remove heavy metals from contaminated 
water [6] [7] [8] [9]. We have previously reported the use of inorganic salts to 
remove lead from contaminated water [10]. However, such salts have not been 
used for Zinc, Copper, Calcium, and Magnesium removal from contaminated 
aqueous solutions. Although zinc, copper, calcium and magnesium are micro-
nutrients required in small concentrations for human body, however, in higher 
concentrations they are toxic for living organisms and also for the environment 
[11]. The exposure to and contamination by these metals emanate from natural, 
industrial, and anthropogenic activities. Excess calcium in the body causes hyper-
calcemia, a condition in which the calcium level in the blood is above normal. 
Too much calcium in the blood can weaken the bones, create kidney stones, and 
interfere with how the heart and brain work. Hard water interferes with almost 
every cleaning task from laundering and dishwashing to bathing and personal 
grooming. Excess copper in the body can cause neurotoxicity, liver toxicity, and 
jaundice, liver failure, lung cancer and many other adverse ailments [12]-[18]. 
Excess zinc can have harmful and fatal effects on human health. [19] [20] [21]. 
Lead contamination has been a major global problem perpetuated by human ac-
tivities. Historically, lead pollution results from a variety of human activities 
such as past practices of lead-related industrial activities by battery, paint, min-
ing, ammunition, plumbing pipe, oil and petrochemical industries, agricultural 
fertilizer, insecticide, and pesticide. Lead contamination of water above per-
missible levels can cause elevated blood lead levels [22] [23] [24], spontaneous 
abortion [25], infant mortality [26], fetal death and reduction in birth rates [27]. 
The potential exposure of hazardous lead to citizens is widely exacerbated in ru-
ral areas due to the lack of water regulations and treatment [28] [29]. The lack of 
clean water for human consumption and activities will pose a major challenge 
globally if water management, pollution control, and regulations are not enacted 
and enforced. Therefore, this project reported here in this paper examines com-
paratively the removal ability of Ca, Mg, Cu, Zn, and Pb by wood ash and inor-
ganic sodium carbonate and sodium hydrogen phosphate. Additionally, the effi-
ciency of metal removal by 3

4PO −  and 2
4HPO −  was compared. 

2. Materials and Methods 

A standard solution of 1000 ppm of Ca (II), Mg (II), Cu (II), Zn (II) and Pb (II) 
ions were prepared using the corresponding salts, respectively by dissolving 
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equivalent amounts in 1000 ml of solution. Triplicate samples of 40 ml of the 
metal solutions prepared above were placed in separate centrifuge tubes. Then, 
each of the triplicate samples were treated with 5 grams of each of the adsorbent 
substrates (wood ash, Na2HPO4 and Na2CO3). Each sample was vortexed to mix, 
and agitated for 24 hours at room temperature. The samples were centrifuged, 
and the supernatant from each treated sample was analyzed for residual metal 
ion concentration.  

3. Results 

Figure 1 shows residual calcium, copper, zinc, lead, and magnesium ion concen-
trations after treatment with the adsorbents compared to the control samples. 
There is a varying amount of residual metal across all adsorbents. The results in 
Table 1 showed the effectiveness of wood ash in removing metals, especially 
magnesium from their respective contaminated water samples. Phosphate and 
carbonate adsorbents were less effective in removing magnesium from the con-
taminated water but they interestingly removed almost all the calcium, zinc, 
copper, and lead ions in the solutions. 

The results showed that on average, each of the adsorbents removed more 
than 90% of each metal from the solution except magnesium. The order of per-
cent metal removal by the adsorbents is: for phosphate (calcium > copper > 
 

 
Figure 1. Residual metal concentration after treatment with Bi-phosphate ion, Carbonate 
ions, & Wood ash. 
 
Table 1. Percent removal of Ca, Cu, Zn, Pb and Mg from contaminated water by the ad-
sorbents. 

ADSORBENTS [Ca] [Cu] [Zn] [Pb] [Mg] 

2
4HPO −  100 99.9 95 99.7 77 

2
3CO −  100 97% 98.7 90.9 47.7 

ASH 82 99.8 95 88.7 100 
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lead > zinc > magnesium); for carbonate (calcium > lead > zinc > copper > 
magnesium); for wood ash (magnesium > copper > zinc > lead > calcium). 

4. Discussion 

Figure 1 and Table 1 clearly demonstrate a variation in metal removal. This 
variation could in part be due to differences in the properties of the metals and 
adsorbents. The Carbonate adsorbent was less effective in removing magnesium 
due to moderate molar solubility of the magnesium carbonate complex formed 
(ksp 6.82 × 10−6). The complex formed by sodium hydrogen phosphate with 
magnesium undergoes hydrogen bonding with the contaminated aqueous solu-
tion, thereby increasing the solubility of the complex formed. Wood ash effec-
tively removed 100% of the magnesium in solution because the adsorbent may 
contain multiple functional groups that have strong binding affinity to the metal 
[30].  

Figure 2 below from a separate experiment illustrates the comparison of metal 
removal by agricultural waste and carbonate ion. The data showed that agricul-
tural waste (wood ash) was more efficient in removing lead, zinc and copper but 
not calcium. This may be due to the possible presence of calcium in wood ash 
[30] as reported by Risse and Gaskin [31]. It is also worthy to note that both ad-
sorbents removed at least 96% of the metal pollutants from the contaminated 
aqueous solutions.  

In another set of experiments, the efficiency of metal removal by tribasic and 
dibasic phosphate ions was compared as shown in Figure 3 below. The results 
suggest that both sodium phosphate tribasic (Na3PO4) and sodium hydrogen 
phosphate dibasic (Na2HPO4) were equally efficient in removing all the calcium  
 

 

Figure 2. Comparison of metal removal by agricultural waste and carbonate ion. 
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Figure 3. Comparison of calcium and Zinc removal by Na3PO4 and Na2HPO4. 
 
from the contaminated aqueous solution. However, the tribasic phosphate ion 
was more efficient in removing zinc than the dibasic phosphate ion. This could 
be attributed to the possibility of acidic hydrogen in hydrogen phosphate parti-
cipates in hydrogen bonding with the aqueous solution. Such hydrogen bonding 
can reduce the binding affinity of the phosphate to the zinc and increase the so-
lubility of the formed Metal-HPO4 complex. Furthermore, tribasic phosphate 
has a greater number of binding sites (ligands) than dibasic phosphate. Addi-
tionally, the ionic radius of calcium is larger than that of zinc, therefore, the zinc 
can undergo intra particular diffusion into the pores of the adsorbent but could 
be forced out into the solution during centrifugation.  

5. Conclusion 

Although there exist a variety of research studies on the use of agricultural waste 
in removing metals from contaminated aqueous solutions, many of them were 
based on very dilute metal concentrations and high adsorbent/contaminated water 
ratio [32]. The research reported in this paper examined the use of wood ash to 
remove metals from 1000 ppm contaminated aqueous solutions. Furthermore, 
very few studies have examined calcium and magnesium removal from conta-
minated water. The data on the comparison of metal removal by agricultural waste 
(wood ash) and inorganic chemical carbonate demonstrated that wood ash is 
equally if not more effective in removing metals than chemical carbonate. It is also 
worthy to note that for the metals studied, both the tribasic and dibasic phos-
phate ions remove the metals with nearly equal efficiency. Finally, the overall 
result showed that metal and adsorbent types affected the extent of metal re-
moval. The order of metal removal by the adsorbents is: dibasic phosphate (Ca > 
Cu > Pb > Zn > Mg); Dibasic Carbonate (Pb ~ Ca > Zn > Cu > Mg); Wood Ash 
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(Mg > Cu > Zn > Pb > Ca). These results suggest that the inherent chemical 
properties of these metal cations may also contribute to their varying binding af-
finity to the ligand(s) in the adsorbents. On average across all metals, the order 
of metal removal by adsorbents is dibasic phosphate > wood ash > dibasic car-
bonate. 
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