
DOI: 10.4236/ijis.2020.104006 Sep. 18, 2020 83 International Journal of Intelligence Science

Constructing a Simple Verbal Compiler

Ahmed Laarfi, Veton Kepuska

School of Electrical Engineering and Computer Science, Florida Institute of Technology, Melbourne, USA

Abstract
The paper’s purpose is to design and program the four operation-calculators
that receives voice instructions and runs them as either a voice or text phase.
The Calculator simulates the work of the Compiler. The paper is a practical
example programmed to support that it is possible to construct a verbal
Compiler.

Keywords
Speech Recognition, Artificial Intelligence, Programming Languages, Compiler
Construction, Verbal Programming

1. Introduction

“We’re not gonna reinvent what has already invented!”
In this stage, all the system is divided into phases. Some questions have to be

practically answered through preparing programs to execute the tasks that the
Compiler performs. The first question that should be asked is what this Compi-
ler looks like? In terms of programming, the question means how to design the
main menu of the Compiler and the other menus. Furthermore, the answer dec-
lares why it is called a compiler, not an application. Another question, for exam-
ple, is how this system works. The solution gives details about how to merge the
voice and text to run the procedures and classes. The third question is why it is a
new compiler? Is it needed in the presence of this crowding of programming
languages that it would not be better than them? Why confuses the programmer?
The practical answer to this question will be through programming commands,
from which it is clear that the used language is an old language with its known
commands to any programmer. It is possible to change the writing of language
commands with new commands, but this will not benefit the programmer and
cost him time and effort to learn the new language. Despite the scarcity of re-
sources on available audio programming, either in the language itself or in ex-

How to cite this paper: Laarfi, A. and
Kepuska, V. (2020) Constructing a Simple
Verbal Compiler. International Journal of
Intelligence Science, 10, 83-91.
https://doi.org/10.4236/ijis.2020.104006

Received: August 10, 2020
Accepted: September 15, 2020
Published: September 18, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ijis
https://doi.org/10.4236/ijis.2020.104006
https://www.scirp.org/
https://doi.org/10.4236/ijis.2020.104006
http://creativecommons.org/licenses/by/4.0/

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 84 International Journal of Intelligence Science

ternal libraries, only voice commands have been combined with language com-
mands. In order to avoid the ambiguity that might lead to errors, the voice com-
mands were restricted to specific words to be distinguished. These words are in-
cluded in any language by adding them either by text file or by defining them in
the main program of the Compiler.

2. The Difference between the Verbal Compiler
and the App Is a Lock of Hair!

It was also discussed in a previous paper [1] that there is no need to design a new
compiler but to use one of the available languages while integrating the audio li-
braries with it.

Here, a simple example is a simple calculator, designed and programmed to
receive verbal instructions and execute them, as will be explained later.

Simple Calculator, with basic operations, is not a comprehensive example, and
only some limited processes are exposed through which an attempt is made to
review some essential issues in the design of compilers.

For example, to show the occurrence of an error and the type of this Error,
one of the basic mathematical operations, such as division, is disrupted. Such an
error is dealt with in the basic definitions or libraries defined for each operation.
Thus the Error is seen and a letter or a voice message given.

In much larger applications such as databases, databases can be set up as
tables. These tables are loaded into records and fields, and each table has rela-
tionships with other tables. These properties are defined by voice commands and
are also filled with data. While dealing with these databases, of course, many er-
rors occur that need to be reviewed later. Here we find that there is a need to
store voice commands to enter data. These files will then assist in modifications
and cancellations. Certainly, storage is not a sound, but the voice command is
transformed to its written counterpart and stored in text files for programming.
In the case of a Simple Calculator, the storage feature is not used, although it is
taken into consideration. The non-use of this character is because there is no
need to store a single command that can be restored phonetically. As for the
many consecutive orders, they must be converted to their origin in the language
used and stored in the program’s writing file for later reference.

3. A Model of a Simple Compiler That Deals
with the Voice as an Input

Here, these figures present a simplified model for Compiler that performs ma-
thematical operations by receiving voice commands with an error rate close to
zero.

The programmer can choose the design according to his vision. This design
was chosen because the user is used to this form of Calculator, and there is no
desire to confuse the user. These forms seem to perform a mathematical opera-
tion entering their data phonetically, which means that the matter is straight-

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 85 International Journal of Intelligence Science

forward. On the surface, this simple design hides many program complications.
The choice of a calculator as an example came so that we do not expand much
by example, and such expansion has significant problems. There are many pro-
cedures and processes behind this example that will be discussed later.

Figures 1-4 represent the result of a group of programs that receive a verbal
command, save it, and give the results.

4. How the Calculator Works

A critical issue must be clarified at the beginning. In the paper [1], two design
options were given. One of the two options is to use text files to store the input
and output data and deal with them later. The most preferred choice is to cap-
ture the sound, place it in a buffer, use it directly, or it can be stored as well.

Following the second option, which is dealing directly with sound from with-
in the computer, has many advantages. First, the task can be performed very
quickly without resorting to external communications. Secondly, contacting re-
sources outside the machine, and thus outside the computer’s memory, compli-
cates the process of operations and increases slowness. If this connection is lost,
it must be returned. Third, and most importantly, voice commands are faster to
enter. For example, in this program, numbers can be entered as either a number
or a set of numbers and mathematical operations according to the pronuncia-
tion.

Figure 1. A verbal Calculator [A program Run].

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 86 International Journal of Intelligence Science

Figure 2. A verbal Calculator [A program Run].

Figure 3. The result of multiplying two numbers [A program Run].

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 87 International Journal of Intelligence Science

Figure 4. An error occurred [A program Run].

This Calculator simulates simple calculators, and many designs can be chosen.

Some of them hide numbers and operations from the end-user interface. The
user can make some adjustments to regulate the output status. The Calculator
can only write the result, pronounce it, print it out, store it, or do all together.

Such processes, which take place in seconds, have high logic and processes’
complexities hidden in the application

Also, it is possible to control the time that the microphone remains open and
receive orders. For example, it may be turned off after a second or two if it does
not capture a sound. At the same time, this short time distance can be increased
in case of entering numbers and operations verbally. The percentage of the Error
in the entry is almost non-existent unless it is a human error, such as not enter-
ing the amount that is supposed not to appear.

The graph above demonstrates a general flowchart of how the Calculator
works. Starting from capturing the voice, controlling the time, and finally, get
the results (Figure 5).

5. What Are the Processes Hidden by the Example?

The Compiler is a different programming language. One of the existing pro-
gramming languages is used for computer management, through which main-
frame systems, which represent the operating systems. Then there was a need to
find programming languages to meet the demands of users. Companies com-
peted to create new languages and develop the ones on the market. We have

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 88 International Journal of Intelligence Science

Figure 5. General Idea about how the verbal Calculator works [Flowchart designed by the
authors].

reached a point where the market has become saturated with languages capable
of programming (everything). Creating a programming language requires a great
effort and consumes time and energy and unnecessary in the presence of this
crowd of programming languages and applications that have macro features,
which makes them almost (open source). With the development of operating
systems such that sound has become an indispensable programmatic compo-
nent, many applications in the sound field have emerged, providing significant
assistance to the user. Moreover, programming languages are now opened with a
voice command, and voice commands execute all menu instructions. Further-
more, it was possible to write the code with the direct voice command and store
what was written. We have all the supportive features and keep creating a com-
piler (programming language) that we control from A to Z by sound. This model
is a simple attempt without being overwhelmed by the details of the details to
invent such languages. If a programming language that deals with databases is
chosen, the model will be very complicated as far as the programming language
focuses on the simulation. The Calculator of four basic operations is a good
model that briefly meets most of the programming levels that we will show. I de-
liberately used a well-known programming language to make a (new) program-

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 89 International Journal of Intelligence Science

ming language, and I did not change anything in the programming language
that I used to produce the programming language in order not to add anything
new with simple capabilities.

In contrast, the goal is to employ sound in programming. The same libraries
were used with the same (Token) of the language. The addition is a simple mod-
ification in the form of a sequence of steps for the Compiler so that we added in
parallel the audio libraries for the stages of the Compiler.

6. The Programming Languages from Past to Present
6.1. The Compiler, a Programming Language

At the beginning of the invention of the computer, it was the giant machine with
limited capabilities. The hardware was not fit for anyone who wanted to use it.
After several developments, the hardware became progressively irreproachable
with software and operating systems. Now the hardware and software are ad-
vancing very quickly.

One of the most important uses of computers was programming languages.
Every programming language is a compiler. Programming languages have evolved
and diversified to include all aspects. On the other hand, accompanied by signif-
icant developments in the hardware and a large number of audio applications
appeared. The emergence of these audio applications was not accompanied by
programming languages that support voice commands. An attempt was made to
find a programming language based on the voice command, not the scripture.

6.2. Why Do We Look at a Calculator as a Compiler?

The source code is entered into the programming language used, and from it, we
obtain the required program after a series of processes from the Compiler.

The Calculator is always a program. Here it was taken as a prototype for a
simplified compiler. A user interface can be designed to make the programming
easier; in this model, the user interface is the Calculator. In general, while creat-
ing a compiler, it should have a main menu that had all the operations in other
branched menus, starting from scratch when the user is asked to choose if that
program is new or saved before, passing through the programming till the run.

By compiling the program, some errors interrupt this process. They are dif-
ferent types of Errors, like miswriting, logic, enter instruction not found in the
language, and calculation errors like the division by zero. These errors should be
classified according to the type, and given numbers indicate on the Error and the
error types [1]-[10] and [11] (Figure 6).

7. Conclusion

Since the simplified Calculator operates without problems, the mainframe can be
expanded. To create a program that deals with databases with voice commands,
database tables must first be analyzed and designed. Mostly they are rows called
records, and a column called fields. Design the appropriate number of tables

https://doi.org/10.4236/ijis.2020.104006

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 90 International Journal of Intelligence Science

Figure 6. Our Calculator is a compiler [Prepared by the Authors].

with no redundancy. These tables could later and over the years, be gigantic da-
tabases. Databases are dealt with from within a group of programs that form the
whole system. This transaction is demonstrated here by the form presented. The
Calculator is a good and straightforward model for constructing a verbal Com-
piler. No need to create a new language with its complexity, but one of the availa-
ble programming languages can be used to develop the verbal Compiler. The
same reserved words and symbols, instructions, logic, syntax, and library are
used. The technic is how to enter the voice library to this language to act in pa-
rallel with the other Compiler stages.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Laarfi, A. and Kepuska, V. (2020) Implementation of a Verbal Compiler: The Need

to Develop Audio Language to Keep Pace with Rapid Development Becomes a Neces-
sity. Global Journal of Human-Social Science: G Linguistics & Education, 20.
https://www.researchgate.net/publication/339587476_Implementation_of_a_verbal
_Compiler_The_need_to_develop_audio_language_to_keep_pace_with_rapid_deve
lopment_becomes_a_necessity_Great_achievements_begin_with_small_dreams
https://doi.org/10.34257/GJHSSGVOL20IS4PG1

[2] Pirkle, W. (2019) Designing Audio Effect Plugins in C++2nd Edition. Routledge
Taylor and Friends Group. https://doi.org/10.4324/9780429490248

[3] Aho, A., Seth, R. and Ullman, J.D. (2014) Compilers: Principles, Techniques, and
Tools. Pearson Education Limited.

[4] Pirkle, W. (2013) Designing Audio Effect Plug-Ins in C++: With Digital Audio Sig-

https://doi.org/10.4236/ijis.2020.104006
https://www.researchgate.net/publication/339587476_Implementation_of_a_verbal_Compiler_The_need_to_develop_audio_language_to_keep_pace_with_rapid_development_becomes_a_necessity_Great_achievements_begin_with_small_dreams
https://www.researchgate.net/publication/339587476_Implementation_of_a_verbal_Compiler_The_need_to_develop_audio_language_to_keep_pace_with_rapid_development_becomes_a_necessity_Great_achievements_begin_with_small_dreams
https://www.researchgate.net/publication/339587476_Implementation_of_a_verbal_Compiler_The_need_to_develop_audio_language_to_keep_pace_with_rapid_development_becomes_a_necessity_Great_achievements_begin_with_small_dreams
https://doi.org/10.34257/GJHSSGVOL20IS4PG1
https://doi.org/10.4324/9780429490248

A. Laarfi, V. Kepuska

DOI: 10.4236/ijis.2020.104006 91 International Journal of Intelligence Science

nal Processing Theory. Focal Press, Taylor & Francis Groups.
https://doi.org/10.4324/9780203573310

[5] Reis, A.J.D. (2012) Compiler Construction: Using Java, JavaCC, and YaCC. IEEE.

[6] Boulanger, R. and Lazzarini, V. (2011) The Audio Programming Book (The MIT
Press). Massachusetts Institute of Technology.

[7] Mac, R. (2009) Writing Compilers and Interpreters: A Software Engineering Ap-
proach. Wiley Publishing, Inc.

[8] Wells, M.A. (2005) Algorithms, Data Structures, and Problem Solving with C++.
Ebook.

[9] Becchetti, C. and Ricotti, K. (1999) Speech Recognition: Theory and C++ Imple-
mentation. John Wiley & Sons Ltd.

[10] Fischer, C.N. and Le Blank Jr., R.J. (1991) Creating a Compiler WITH C.

[11] Holub, A.I. (1990) Compiler Design in C. Prentice Hall Englewood Cliffs, New Jer-
sey.

https://doi.org/10.4236/ijis.2020.104006
https://doi.org/10.4324/9780203573310

	Constructing a Simple Verbal Compiler
	Abstract
	Keywords
	1. Introduction
	2. The Difference between the Verbal Compiler and the App Is a Lock of Hair!
	3. A Model of a Simple Compiler That Deals with the Voice as an Input
	4. How the Calculator Works
	5. What Are the Processes Hidden by the Example?
	6. The Programming Languages from Past to Present
	6.1. The Compiler, a Programming Language
	6.2. Why Do We Look at a Calculator as a Compiler?

	7. Conclusion
	Conflicts of Interest
	References

