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Abstract 
Aimed at improving the insufficient search ability of constraint differential evo-
lution with single constraint handling technique when solving complex opti-
mization problem, this paper proposes a constraint differential evolution algo-
rithm based on ensemble of constraint handling techniques and multi-population 
framework, called ECMPDE. First, handling three improved variants of dif-
ferential evolution algorithms are dynamically matched with two constraint 
handling techniques through the constraint allocation mechanism. Each com-
bination includes three variants with corresponding constraint handling tech-
nique and these combinations are in the set. Second, the population is divided 
into three smaller subpopulations and one larger reward subpopulation. Then 
a combination with three constraint algorithms is randomly selected from the 
set, and the three constraint algorithms are run in three sub-populations re-
spectively. According to the improvement of fitness value, the optimal constraint 
algorithm is selected to run on the reward sub-population, which can share in-
formation and close cooperation among populations. In order to verify the effec-
tiveness of the proposed algorithm, 12 standard constraint optimization problems 
and 10 engineering constraint optimization problems are tested. The experi-
mental results show that ECMPDE is an effective algorithm for solving con-
straint optimization problems. 

Keywords 
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1. Introduction

Most of the decision-making, engineering application, and control problems can 
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be summed up as optimization problems, which are widely used in real life or 
production, such as engineering design [1], intelligent control [2], job scheduling 
[3], traffic optimization [4], network communication [5], financial investment 
[6], and so on. These problems can be clarified into two categories: unconstraint 
optimization problem and constraint optimization problem. In comparison, the 
constraint of the constraint optimization problem leads to the decrease of the 
feasible domain in the search space, which leads that constraint optimization prob-
lem is more complex than the unconstraint problem. Moreover, the optimal so-
lution often locates at the boundary of the feasible domain, so it is necessary to 
balance the constraints and optimization objectives, which increases the difficulty 
of finding the optimal solution. Therefore, finding solution to constraint optimiza-
tion problems, the handling of constraints is always a difficult problem. 

The commonly used constraint handling techniques include penalty function 
method [7], feasibility rule method [8], random sorting method [9], ε-constraint 
method [10] and ensemble constraint handling techniques [11]. In 2010, Malli-
peddi [11] proposed an (the ensemble of constraint handling techniques using 
the DE, ECHT-DE) algorithm based on multi-population strategy by using en-
semble of constraint handling techniques, such as feasibility rules, penalty function 
method, constraint handling technique, and random sorting method. ECHT-DE 
can deal with complex optimization problems through mutual learning among 
populations. In 2011, Elsayed [12] proposed a constraint differential evolution al-
gorithm by randomly combining four differential evolution operations with dif-
ferent mutation operations, two different recombination operations, and two con-
straint handling techniques (the feasibility rule and ε-constraint handling method), 
and then formulated 16 different strategies. In the process of evolution, each in-
dividual can choose a strategy randomly. The probability of choosing the strategy 
is determined by its ability of the individual improvement. In 2017, Wang Yong 
[13] proposed a method to integrate the objective function information into the 
feasibility rule (the feasible rule with the incorporation of objective function in-
formation, FROFI) to achieve an effective balance between the objective function 
and the constraints. In this method, all the experimental individuals with good 
objective function are archived and saved, and then the offspring in the archive 
are replaced by some of the individuals in the new population into the next gen-
eration population according to the objective function. 

Differential Evolution (DE) [14] is a stochastic global search algorithm first pro-
posed by R. Storn and K. Price. DE can effective solve nonlinear, high-dimensional 
and complex optimization problems. In 2006, Brest J. [15] proposed a jDE algo-
rithm by adjusting control parameters F and Cr, in which F and Cr mutate ran-
domly with a small probability ζ  in each generation. In 2009, J. Zhang [16] 
proposed a JADE algorithm, which uses a learning scheme to adjust the values of 
F and Cr. In 2011, Wang Yong [17] proposed a composite differential evolution 
algorithm (CoDE), for unconstraint optimization problem, which uses three mu-
tation strategies “DE/rand/1”, “DE/rand/1”, and “DE/current to rand/1” and three 
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groups of F and Cr values randomly to produce three experimental individuals, 
from which the best individual and the target individual are selected for one-to-one 
greedy selection. In 2011, Mallipeddi [18] proposed a combined experimental 
vector generation strategy and control parameter (EPSDE), EPSDE uses different 
characteristics of variation strategy pool and related parameter value pool, which 
can compete to produce offspring on the basis of the success of previous genera-
tions. In 2018, Guohua Wu [19] proposed a differential evolution algorithm (en-
semble of differential evolution variants, EDEV) based on multi-population frame-
work to solve unconstraint optimization problems. The basic idea of this algo-
rithm is to use a framework to integrate three different DE variants with their 
own characteristics. 

Many scholars introduce differential evolution algorithm into constraint han-
dling technique to solve constraint optimization problems. In 2012, Wang and 
Cai [20] proposed a hybrid framework (DyHF), which is composed of global model 
and local model dynamically. According to the proportion of feasible solutions in 
the current population, DyHF spontaneously implements the global search model 
or the local search model to solve the constraint problem. In 2018, based on CoDE, 
Wang [21] proposed a constraint differential evolution algorithm (CCoDE), which 
can deal with constraint optimization problems. 

According to the principle of free lunch [22], different constraint optimization 
problems have different characteristics. Thus, a single differential evolution strat-
egy or a single constraint handlinghandling technique is difficult to solve all con-
straint optimization problems at the same time. Therefore, in order to improve 
the performance of constraint optimization algorithm, a constraint differential 
evolution algorithm based on ensemble of constraint handling techniques and mul-
ti-population framework is proposed in this paper. The algorithm adopts three 
complementary differential evolution algorithms, JADE, jDE and EPSDE, and 
two effective constraint handlinghandling techniques. Each DE variant has a sub-
population, and two constraint handling mechanisms are assigned to each DE va-
riant through the constraint allocation mechanism. The algorithm is combined 
in three smaller subpopulations, and then the one with better performance is se-
lected to run in the larger reward subpopulation according to the fitness value. 
Finally, the population is updated by the combined constraint method. 

The structure of this paper is organized as follows. Section 2 introduces the 
preliminary knowledge. Section 3 introduces the proposed method in detail, in-
cluding its constraint allocation mechanism, adaptive value calculation and mul-
ti-population framework. Extensive experiments and discussions are carried out 
in Section 4. Section 5 concludes this paper. 

2. Preliminary Knowledge 

A) Constraint optimization problems 
Without loss of generality, a constraint optimization problems (minimization 

problem) can be defined as: 
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where ( )f x  is the objective function, ( )1, , Dx x S= ∈Ω ⊆x 
 represents the 

D-dimension decision vector . The feasible region Ω  is restricted by n linear or 
nonlinear constraints: 

( ) ( ){ }0, 1, , ; 0, 1, ,j jS g j m h j m nΩ = ∈ ≤ = = = +x x x 
       (2) 

where S is decision space with upper boundary iL  and lower boundary iU : 

,   1i i iL x U i D≤ ≤ ≤ ≤                         (3) 

( )( )1,2, ,jg X j m= 
 and ( )( )1, ,jh X j m n= + 

 are the jth inequality con-
straint and the n-jth equality constraint, respectively.  

For COPs, the total constraint violation degree of the solution x  is defined 
as: 
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where ( )jG x  is the degree of constraint violation on the jth constraint, it can 
be expressed as follows: 
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in (5), δ  is a positive tolerance value in equality constraints and usually set to 
0.0001. The solution x  is a feasible solution when ( ) 0G =x . 

B) Constraint handling techniques  
1) Feasibility rule method 
Feasibility Rule [8], first proposed by Deb, is the most common used con-

straint handling technique. For each comparison of paired individuals, it first com-
pares the merits and weaknesses of individuals based on whether the individuals 
are feasible or not. If all of them are feasible, the individuals with small objective 
function value are better; if none of them are feasible, the individuals with small 
constraint violation degree are better. For the two individuals, the feasibility rule 
is used to compare as follows: 

a) If ( ) ( )1 2G X G X< , 1X  is better than 2X . 
b) When ( ) ( )1 2 0G X G X= = , if ( ) ( )1 2f X f X< , 1X  is better than 2X . 
c) When ( )1 0G X >  and ( )2 0G X > , if ( ) ( )1 2G X G X< , 1X  is better 

than 2X . 
In the feasibility rule, in the first stage, the infeasible solution with low viola-

tion of the overall constraint is selected. In the second stage, we first select all the 
feasible solutions, and then select the infeasible solutions with low degree of overall 
constraint default. In the third stage, only the feasible scheme with the best tar-
get value is selected. The above criteria (1) and criterion (3) are for constraints, 
the two infeasible solutions push the infeasible solutions to the feasible region 
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through the comparison of the total constraint violation degree, while the crite-
rion (2) is aimed at the objective. The comparison of the two feasible solutions on 
the target value improves the global solution. 

Feasible rules were first used in genetic algorithms by Ded. Mezura-Montes 
[23] used feasible rules in an improved differential evolution algorithm. In the al-
gorithm, multiple experimental vectors can be generated from one objective vector 
at the same time, which improves the probability of generating excellent solutions. 
At the same time, when using feasible rules, certain probability is given to allow 
defaulting individuals with better objective function values to enter the population, 
which increases the diversity of the population. Huang [24] regards SaDE as the 
search algorithm and a feasible rule as the individual update condition, and uses 
the sequential quadratic programming method to enhance the local search abili-
ty of the algorithm. 

2) ε-constraint handling method 
The ε-constraint handling method [10] was first proposed by Takahama and 

Sakai, which can be regarded as an improvement of the feasible rule method. Be-
cause the feasible individual in the feasible rule is always better than the infeasi-
ble individual, it is easy to lose some excellent infeasible individuals, which makes 
the population fall into the local optimal solution. The infeasible individuals are 
relaxed by the constraint treatment method, so that the infeasible individuals with 
smaller violation of constraints and better objective function value also have a 
chance to stay in the population. The ε-constraint handling method is used in this 
paper to deal with constraints. For the solution ix  and jx , ix  is preference 
to jx  if both of them meet the following conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

,  if ;

, if ;

, otherwise

i j j j

i j i j

i j

f x f x G x G x
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ε ε <   ≤ ∧ ≤
 <    =


<    .

            (6) 

where ε  is decreaing as its iterative generation grows, and its calculation for-
mula is as follows:  

0 1 , if ;

0, otherwise.

cpt t p
T T

εε
  −     ≤  =   
                    

                 (7) 

( )
0log

log 1
cp

p
ε λ+

= −
−

                       (8) 

where ε  represents intialized as ( )0 0.2 PSV Xε ∗= , if 0ε = , ε -constraint han-
dling method is feasible rule method. 0.2*PSX  is the top 0.2 * PS th individual 
according to vilation degree, and λ  is 6. The control parameter ranges are  

[ ]max max0.1 ,0.8T T T∈ ∗ ∗  and [ ]2,10cp ∈  representive. 
Takahama [25] used the “DE/rand1/exp” strategy as the basic algorithm and 

the mutation operator based on gradient information as the local search algo-
rithm. When the newly generated experimental individual is an infeasible indi-
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vidual, the mutation based on gradient information is used to make it a feasible 
solution. The algorithm has achieved good results in the test function of CEC2006 
[26] and won the first place in the competition of CEC2006 constraint evolutio-
nary algorithm. However, the algorithm increases the computational complexity 
because of the need to calculate the gradient information. Subsequently, Taka-
hama [27] proposed an improved parameter setting method, which can effec-
tively improve the performance of the algorithm when the default value decreas-
es fast enough in evolution, which can effectively improve the performance of 
the algorithm when dealing with equality constraints. Takahama [28] proposed a 
method of decreasing probability to use the mutation operator based on gradient 
information, and cut off and map individuals outside the search space to deal with 
the case that the optimal solution is at the constraint boundary. After that, Ta-
kahama [29] proposed a mutation strategy based on archiving and gradient in-
formation. The algorithm uses archiving mechanism to enhance population di-
versity and proposes a new mechanism to control parameters. The algorithm was 
tested on the CEC2010 [30] test function and won the first place in the competi-
tion of CEC2010 constraint evolutionary algorithm. 

C) Differential evolution 
Differential evolution algorithm is a real-coded parallel search algorithm. Its 

initial iteration mainly includes four operation steps: initialization, mutation, cros-
sover and selection. After initializing the population, the algorithm generates a 
new generation of population through mutation, crossover and selection to guide 
the search process to approach the global optimal solution. 

Firstly, an initial population containing NP objective vectors (NP individuals) 
is randomly generated in the decision space. After G generation,  

, ,1 ,2 ,, , , , 1,2, ,G G G
i G i i i DX x x x i NP = =  

 is expressed as the i vector, where D re- 
presents the dimension of the optimization problem to be solved. Let V denote 
the mutant vector, and the six commonly used mutation operators are enume-
rated as follows: 

DE\rand\1 [14]: ( )1 2 3r r rV X F X X= + ∗ −                           (9) 

DE\rand\2 [29]: ( ) ( )1 2 3 4 5r r r r rV X F X X F X X= + ∗ − + ∗ −            (10) 

DE\best\1 [14]: ( )1 2best r rV X F X X= + ∗ −                          (11) 

DE\best\2 [30]: ( ) ( )1 2 3 4best r r r rV X F X X F X X= + ∗ − + ∗ −           (12) 

DE\current-to-best\1 [16]: ( ) ( )1 2 3current best r r rV X F X X F X X= + ∗ − + ∗ −  (13) 

DE\current-to-pbest\1 [31]: ( ) ( )1 2current pbest current r rV X F X X F X X= + ∗ − + ∗ −  

(14) 

where F is a scaling factor with values between 0 and 1. where 1r , 2r , 3r , 4r  
and 5r  are mutually different integers randomly chosen from [1, NP], “best” is 
the individual with the best fitness in the population, “current” represents the 
best individual in the current population, and “pbest” represents p individuals 
with the best fitness in the population. 
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In the crossover stage, a crossover operator is conducted on each pair of ,i dX  
and ,i dV  to produce a trial vector. This operation can further enhance the pop-
ulation diversity. The commonly used binomial crossover operators are defined 
as: 

( ),
,

,

,  if 0,1 or ;
, otherwise.

i d rand
i d

i d

V rand Cr j j
U

X
 < == 


            (15) 

where { }1,2,3, ,randj D∈ 
 represents a random integer uniformly generated be-

tween 1 and D, The cross strength is controlled by a parameter [ ]0,1Cr ∈ . 
When the trial vector is generated, the selection operator will select the best 

individual as t + 1 generation in the pairwise comparison between ,i dU  and 

,i dX : 

( ) ( ), , ,1
,

,

 if ;

otherwise.

t t t
i d i d i dt

i d t
i d

U f U f X
X

X
+

 ,    ≤= 
,     

               (16) 

JADE is a simple and efficient variant of DE. In JADE, a new “current-to-pbest/1” 
mutation strategy is adopted as follows: 

( ) ( )1 2 3current pbest r r rV X F X X F X X= + ∗ − + ∗ −            (17) 

JADE’s mutation strategy “current-to-pbest/1” is incorporated with an archive 
A which contains some recently declared inferior solutions. Let P denote the 
current population, and 3rX  is from the union of A and P. 

The algorithm refers to a complex parameter adaptation mechanism. The pa-
rameters F and Cr are generated by the normal distribution and Cauchy distri-
bution of each objective vector, respectively. Better control parameter values are 
passed to subsequent generation by recording promising F and Cr values and 
using them for new parameter generation. 

CoDE proposed by Wang et al. is a DE variant with compound trial vector 
generation strategy and control parameters. These strategies and parameters have 
obvious advantages, and it can be regarded as a low-level integrated DE of varia-
tion strategy and control parameters. Three kinds of trial vector generation strate-
gies namely “ rand/1/bin”, “rand/2/bin” and “current-rand/1” and three combi-
nations of control parameters are adopted in CoDE, i.e. [F = 1.0, Cr = 0.9], [F = 
1.0, Cr = 0.1] and [F = 0.8, Cr = 0.2]. In each generation, the experimental vector 
generation strategy and control parameter settings are randomly selected from 
the policy candidate pool and the parameter candidate pool, respectively. 

EPSDE, originally designed by Mallipeddi et al., is a popular DE variant that in-
tegrates mutation strategies and parameters. In EPSDE, the variation strategy pool 
and parameter pool are constructed respectively. “DE/best/2/bin”, “DE/rand/1/bin” 
and “DE/current-to-rand/1/bin” are included in the policy pool. The pool of CR 
values is taken in the range 0.1 - 0.9 in steps of 0.1, and the pool of F values is 
taken in the range 0.4 - 0.9 in steps of 0.1. Each individual in the initial popula-
tion is a signed variation strategy and parameter values randomly selected from 
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each pool. Variation strategies and parameter values that produce better offspring 
survive, while those that do not produce better offspring are reinitialized. 

Experimental research shows that JADE can effectively solve unimodal opti-
mization problems, CoDE shows good performance in solving various optimiza-
tion problems, especially in dealing with some multimodal optimization problems, 
while EPSDE is particularly effective in solving some highly complex problems. 

3. The Proposed Method 

In the process of global searching of the constraint optimization problem, the 
population is generally clarified into three cases: 1) there are infeasible solutions 
in the population, and the main purpose is to find the feasible region and increase 
the proportion of feasible solutions; 2) there are partial feasible solutions in the 
population. When solving the problem, we not only make full use of the infor-
mation of the feasible solution, but also consider the information of the infeasi-
ble solution to enhance the diversity of the solution; 3) when all the solutions are 
feasible, the optimal solution is found in the feasible region.  

Different constraint handling methods can be used handling in different situ-
ations of the search process. How to select different algorithms and handling con-
straint handling techniques according to different solving stages of constraint op-
timization problems plays an important role in the search process. Based on the 
above consideration, this paper proposes a constraint differential evolution algo-
rithm based on ensemble of constraint handling techniques and multi-population 
framework, which is denoted as ECMPDE. The algorithm uses three complemen-
tary DE variants, namely JADE, jDE and EPSDE, and combines these DE variants 
with two constraint handlinghandling techniques one-to-one. In the three com-
binations, the computing resources are allocated to the optimal collocation by im-
proving the proportion of their respective fitness values. First, the population is 
divided into three small-scale equal subpopulations and larger reward subpopula-
tions, and a subpopulation is randomly assigned to the three DE variants. Second, 
the constraint handling technique is combined with DE variant by the constraint 
allocation mechanism, and the combined constraint handling mechanism is used 
to compare the target vector with the experimental vector to generate a new popu-
lation and calculate the improved value of the fitness value. Third, the best com-
bination is determined according to the cumulative improved fitness value and 
the proportion of cumulative consumption, and then the reward subpopulation 
is assigned to the combination; finally, when running to the next generation, if 
the optimal collocation of the previous generation is smaller than the solution ob-
tained by the current optimal collocation, it will be added to the constraint me-
chanism pool to increase its selection probability. 

A) Constraint allocation mechanism 
Different problems have different characteristics. According to the theory of 

free lunch, single constraint handling technique can easily lead to weak perfor-
mance in solving some problems. In this paper, feasibility rules and constraint 
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handling methods are put into the constraint mechanism pool, and a constraint 
optimization algorithm allocation mechanism is designed. In the constraint han-
dling mechanism, there are 8 combinations according to the combination prin-
ciple. 

Suppose the feasibility rule is A, the constraint handling method is B, and the 
combined pool P is as follows: 

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( )

1 1 2 3

2 1 2 3

3 1 2 3

4 1 2 3

5 1 2 3

6 1 2

 , ,

, ,

, ,

the combined 
, ,

, ,

,

pool

JADE jDE EPSDE

JADE jDE EPSDE

JADE jDE EPSDE

JADE jDE EPSDE

JADE jDE EPSDE

JADE jD

P pop A pop A pop A

P pop A pop B pop A

P pop A pop A pop B

P pop A pop B pop B
P

P pop B pop A pop A

P pop B pop A

=

=

=

=
=

=

= ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

3

7 1 2 3

8 1 2 3

,

, ,

, ,

E EPSDE

JADE jDE EPSDE

JADE jDE EPSDE

pop B

P pop B pop B pop A

P pop B pop B pop B














 =
 =

  (18) 

When each generation triggers the constraint allocation mechanism, a collo-
cation is randomly selected from the constraint mechanism pool and assigned to 
the corresponding three DE variants, each with a population, for example, Sup-
pose 2P  is randomly selected, JADE algorithm and feasibility rules are run in 

1pop , jDE algorithm and constraint handling methods are run in 2pop , and 
EPSDE algorithm and feasibility rules are run in 3pop . 

B) Fitness calculation 
In 2009 [32], Biruk Tessema and Gary G. Yen proposed a fitness value calcu-

lation method based on standardized constraint violations and standardized ob-
jective function values. This method uses the Feasible Ratio (FR) as a penalty. 
Here, the feasibility rate is the ratio of the number of feasible individuals to the 
population size in the t-generation operation of the algorithm. The calculation 
method of its fitness value is as follows: 

( )
( )
( )

( ) ( )2 2

,                            if 1;  

,                           if 0;

, otherwise.

norm i

i norm i

norm i norm i

f RF

FF G RF

f G

 =
= =

 +

x

x x

x x

              (19) 

In the semi-feasible case, the population contains both unfeasible individuals 
and feasible individuals. For constraint optimization, how to deal with the un-
feasible individuals in the population is a very important problem. Since some 
information carried by some infeasible individuals may be very important to 
find the optimal solution, it is unreasonable to exclude all infeasible individuals 
in the semi-feasible case. 

C) Multi-population based ensemble framework 
In this paper, similar to EDEV [19], the entire population is divided into three 
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subpopulations and one reward subpopulation. Population division is triggered 
at every generation. The three subpopulations are represented by 1pop , 2pop  
and 3pop , respectively, while the reward subpopulations are represented by 

4pop . The three subpopulations have the same size, and the size of the subpo-
pulation is much smaller than that of the reward subpopulation. Let pop  be 
the overall population. We have 

1,2,3,4
i

i
pop pop

=
=                          (20) 

Suppose that NP is the size of the population and iNP  is the size of ipop . 

iλ  denotes the proportion between subpopulations and population. Thus we 
have 

i iNP NPλ= ⋅                          (21) 

1,2,3,4
1i

i
λ

=

=∑                           (22) 

Here we just let 1 2 3λ λ λ= = , Each subpopulation is randomly assigned to a 
combination of DE variants and constraint handling techniques, while the re-
warded subpopulation is assigned to the combination with the best results of the 
three populations. A population division operation is performed in each genera-
tion. With the progress of the algorithm, we determine the most effective DE va-
riant ( besti ) in the last period of time according to the ratio between the cumula-
tive fitness improvement and the function evaluation of consumption after each 
generation. 

( )1i t tf FF FF +∆ = −∑                     (23) 

1,2,3arg max i
best i

i

fi
fes=

 ∆
=  ∆ 

                  (24) 

where if∆  represents the accumulated function fitness improvements during 
the last ng generations attributed by the ith constituent DE variant and ifes∆  is 
the consumed number of function evaluations. 1,2,3arg max i=  represents the 
maximum value selected in ( ), 1,2,3i if fes i∆ ∆ = . 

The population division used in this article is different from ECHDE and EDEV. 
In ECHDE, the population is divided into four populations of the same size. The 
four constraint handling mechanisms each have a population. In EDEV, the pop-
ulation is divided into three equal subpopulations and a larger reward subpopu-
lation, which is given to the best DE variants after accumulating a certain alge-
bra. The best combination is selected directly from the three combinations and 
then given to the reward subpopulation to run. 

D) Algorithm framework 
In this paper, a new constraint differential evolution algorithm is proposed 

through the methods of multi-population, multi-DE variants and ensemble of 
constraint handling techniques. The ECMPDE framework is as follows (Algo-
rithm 1):  

The ECMPDE framework is as follows (Algorithm 1): 
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STEP 1: Initial parameters of ECMPDE including ng, NP, iλ , MaxG and MaxFes; Initialize pop; 

( ) ( ), 0,1i d d d dX L rand U L= + ∗ −  (25); 

STPE 2: Evaluate the objective function value and overall constraint violation 
value of each individual; 

STPE 3: Initial the parameters for JADE, jDE and EPSDE; Set 0if∆ =  and ( )0 1,2,3ifes i∆ = = ; 

STPE 4: Set i iNP NPλ= ⋅ , Randomly assigned based on population size 1pop , 2pop , 3pop  and 

4pop ; 

STPE 5: A combination iP  is randomly selected from the combination pool; 

STPE 6: Execute JADE on 1pop , 1pop  is selected and updated by ( ) { }1 , ,pop S S A B∈  

and calculated in (23) 1f∆ ; 

STPE 7: Execute jDE on 2pop , 2pop  is selected and updated by ( ) { }2 , ,pop S S A B∈  

and calculated in (23) 2f∆ ; 

STPE 8: Execute EPSDE on 3pop , 3pop  is selected and updated by ( ) { }3 , ,pop S S A B∈  

and calculated in (23) 3f∆ ; 

STPE 9: The best combination of the three populations is selected by (24), 
it will run to the reward population 4pop , and calculated (23) and saved 4f∆ ; 

STPE 10: By comparing the optimal solution of the optimal combination of the 
previous generation with that of the current generation, the successful 
combination will be preserved; 

STPE 11: Combine updated 1pop , 2pop , 3pop  and 4pop , i.e., 
1,2,3,4

i
i

pop pop
=

= 
; 

STPE 12: Randomly assigned based on population size 1pop , 2pop , 3pop  and 4pop ; 

STPE 13: Stop if the termination condition is met. If not, k = k + 1, proceed to step 5. 

4. Experimental Study 

In this paper, ECMPDE is compared with CCoDE [20] ECHTEP [12], FROFI 
[13], DyHF [19], jDE [15], JADE [16] and other constraint differential evolution 
algorithms on standard constraint optimization problems and engineering con-
straint optimization problems to verify the effectiveness of the algorithm. Twelve 
standard constraint optimization problems (g01 - g012) of CEC2006 [26] are se-
lected as the test problems of the algorithm. 10 engineering constraint optimization 
problems [29] included tension-compression spring design, welding beam design, 
pressure vessel design, reducer design, three-bar truss design, hydrodynamic thrust 
bearing design, conical wheel design, rolling bearing design, butterfly spring de-
sign, gear train design. 

In this paper, the population size of the ECMPDE algorithm is set as 100 for the 
experiment, and the parameters in the variant are set as shown in Table 1 below. 
For each problem, the algorithm runs 30 times independently. According to the re-
sults of 30 runs, the best value (MinBest), average (MinMean), middle value (Min-
Median), worst difference (MinWorst) and standard deviation (Std) are used to 
evaluate the performance indicators. According to the results obtained for statistical 
analysis, this paper uses three statistical analysis methods, including the Mann- 
Whitney rank-sum test, Iman-Davenport test, and Wilcoxon signed-rank test. 
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Table 1. Parameter configuration of ECMPDE. 

Algorithm parameter settings 

ECMPDE 1 2 3 40.1, 0.7, 20, 100ng NPλ λ λ λ= = = = = =  

JADE 0.05, 0.1, 100p c NP= = =  

jDE 1 2 0.1, 0.1, 0.9, 100l uF F NPτ τ= = = = =  

EPSDE [ ] [ ]0.1,0.9 , 0.4,0.9 , 100CR F NP∈ ∈ =  
 

A) Result Analysis of Standard COPs 
The MaxFEs of 12 standard test problems is set as 500,000. The population 

size of CCoDE, ECHTEP, FROFI, DyHF, jDE and JADE was set as 100. The test 
results of ECMPDE algorithm and six comparison algorithms are shown in Table 
2. Table 2 uses the mann-whitney rank sum test to compare the degree of dif-
ference between different algorithms in the same problem. The significance level 
of the mann-whitney rank sum test in the algorithm is set as 0.05, and NAN 
means that the corresponding optimal value is not found. The fonts with skewed 
and bold numerical results, conventional, bold marks, bold and gray shading 
marks in the cell represent the solution results of ECMPDE algorithm, the solu-
tion results of ECMPDE algorithm are good, similar to the results of ECMPDE, 
and the solution results of ECMPDE algorithm are poor. The comparison results 
are shown in Table 3, where “+”, “≈” and “−” respectively represent the number 
of problems whose numerical results of ECMPDE are better than those of the 
comparison algorithm, similar to those of the comparison algorithm, and worse 
than those of the comparison algorithm.  

As can be seen from Table 2, except for JADE,ECMPDE, CCoDE, ECHTDE, 
FROFI, DyHF and jDE algorithms, all the feasible solutions of all problems can 
be obtained at 100%. The numerical results of G01, G02, G04, G05, G6, G8, G9, 
G10, G11 and G12 by ECMPDE are all better or better than those of CCoDE, 
ECHTDE, FROFI, DyHF, jDE and JADE. It is worth noting that the function G02 
mainly examines the search ability of evolutionary algorithms, and the numeri-
cal results of ECMPDE are better than CCoDE, ECHTEP, FROFI, jDE and DyHF, 
indicating that the search ability of the algorithm is stronger in the framework of 
DE variants and multi-constraint mechanisms. For function g03, the numerical 
results of this algorithm are better than those of jDE and JADE, and slightly worse 
than those of CCoDE, ECHTDE, FROFI and DyHF. For the function g07, the nu-
merical results of this algorithm are better than those of ECHTDE, jDE and JADE, 
but slightly worse than those of CCoDE, FROFI and DyHF. From the compari-
son of the results of Mann-Whitney rank sum test in Table 3, we can see that com-
pared with CCoDE, ECHTDE, FROFI, DyHF and jDE algorithms, the number of 
numerical results won by ECMPDE is 3, 3, 6, 3, 6 and 9 respectively, the number 
of similar numerical results is 7, 7, 5, 7, 6 and 3, and the number of differences in 
numerical results is 3, 2, 1, 3, 0 and 0, respectively. Then the average value and the 
best value are tested by Iman-Davenport test to further compare the differences 
of all algorithms in different test problems. The significance level of the test al-
gorithm is set to 0.05, and the test results are shown in Table 3. 
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Table 2. Experimental results of standard COPs. 

Algorithm statistics G01 G02 G03 G04 G05 G06 

ECMPDE 

Minbest −15 −0.80362 −0.95559 −30665.5 5126.497 −6961.81 

Minmean −15 −0.80325 −0.77313 −30665.5 5126.497 −6961.81 

Std 0 0.000976 0.00179 1.09E−11 9.09E−13 1.82E−12 

CCoDE 

Minbest −15 −0.80362 −1.0005 −30665.5 5126.497 −6961.81 

Minmean −15 −0.80181 −1.0005 −30665.5 5126.497 −6961.81 

Std 0 0.005241 2.47E−16 1.09E−11 9.09E−13 1.82E−12 

DyHF 

Minbest −15 −0.80362 −1.0005 −30665.5 5126.497 −6961.81 

Minmean −15 −0.80314 −1.0005 −30665.5 5126.497 −6961.81 

Std 0 0.001852 5.32E−16 1.09E−11 9.09E−13 1.82E−12 

ECHTDE 

Minbest −15 −0.80362 −1.0005 −30665.5 5126.497 −6961.81 

Minmean −15 −0.80185 −1.0005 −30665.5 5126.497 −6961.81 

Std 2.47E−07 0.003963 5.75E−16 1.09E−11 9.09E−13 1.82E−12 

FROFI 

Minbest −15 −0.80362 −1.0005 −30665.5 5126.497 −6961.81 

Minmean −15 −0.8031 −1.0005 −30665.5 5126.497 −6961.81 

Std 0 0.002783 4.78E−16 1.09E−11 9.09E−13 1.82E−12 

jDE 

Minbest −15 −0.80362 −0.7137 −30665.5 5126.497 −6961.81 

Minmean −15 −0.80252 −0.51277 −30665.5 5162.889 −6961.81 

Std 0 0.003303 0.096372 1.09E−11 61.37129 1.82E−12 

JADE 

Minbest −15 −0.78594 −0.78462 −30665.5 65535 −6961.81 

Minmean −15 −0.76934 −0.49245 −30665.5 65535 −6961.81 

Std 2.59E−09 0.006689 0.106397 0.012892 NAN 1.82E−12 

 
Algorithm statistics G07 G08 G09 G10 G11 G12 

ECMPDE 

Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Std 1.23E−14 2.09E−17 3.09E−13 2.12E−14 1.11E−16 0 

CCoDE 

Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Std 6.83E−15 2.78E−17 4.06E−13 4.55E−12 1.11E−16 0 

DyHF 

Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Std 5.84E−15 2.78E−17 3.41E−13 4.49E−12 1.11E−16 0 

ECHTDE 
Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 
Std 8.45E−12 2.83E−17 3.98E−13 1.17E−11 1.11E−16 0 

FROFI 

Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Std 7.81E−15 2.78E−17 4.53E−13 4.12E−12 1.11E−16 0 

jDE 

Minbest 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Minmean 24.30621 −0.09583 680.6301 7049.248 0.7499 −1 

Std 6.14E−07 2.78E−17 4.24E−13 6.64E−06 1.11E−16 0 

JADE 

Minbest 24.44074 −0.09583 680.6731 7095.689 0.749901 −1 

Minmean 24.8193 −0.09583 680.8112 7160.225 0.749929 −1 

Std 0.256666 2.78E−17 0.082211 29.72393 3.01E−05 0 
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Table 3. Statistical test results of standard COPs. 

Statistic Test Symbol ECMPDE CCoDE DyHF ECHTDE FROFI jDE JADE 

Mann-Whitney 

Win + 3 3 6 3 6 9 

Tied ≈ 7 7 5 7 6 3 

Lose − 2 2 1 2 0 0 

Iman-Davenport 
MinMean’s Rank 2.956 3.47 3.01 3.89 3.41 4.32 4.52 

MinBest’s Rank 2.81 3.02 2.98 3.57 3.33 4.12 4.25 

 
From the Iman-Davenport test in Table 3, it can be seen that for the average 

value, ECMPDE ranks first, which is similar to that of DyHF, while DyHF ranks 
second, while for the best value, ECMPDE has the smallest rank, which is 2.81. 
In this part of the comparison, the performance of ECMPDE algorithm is rela-
tively equal to that of DyHF algorithm, and both are better than the other four 
algorithms. 

B) Comparisons of Engineering COPs 
In this paper, ECMPDE algorithm and CCoDE, ECHTEP, FROFI, DyHF, jDE 

and other five algorithms are compared and tested on 10 engineering constraint 
optimization problems to further verify the effectiveness of ECMPDE algorithm 
in practical problems. The group size setting of CCoDE, ECHTEP, FROFI, DyHF, 
jDE algorithm is the same as that of ECMPDE algorithm, which is set to 100. In 
order to facilitate the comparison of the results, the maximum evaluation times 
of all algorithms for solving engineering optimization problems MaxFEs is set to 
500,000 times, the number of runs is 30 times, and the parameter setting is the 
same as that of IV. The test results are shown in Table 4, and the marks of the 
data in the table are the same as those described in IV-A. This time, the statistic-
al test is the same as that of IV-A, and the Wilcoxon symbolic rank test is used to 
test the difference between ECMPDE and other algorithms. Table 5 shows the 
test results of engineering constraint optimization design problems. 

Similar to the previous section, the test results of the three statistical analy-
sis methods are compared in Table 5 below. It can be seen from Table 4 that 
ECMPDE, CCoDE, ECHTEP, FROFI, DyHF and jDE can find 100% feasible so-
lutions for all engineering problems. The numerical results of ECMPDE solving 
welded beam design, pressure vessel design, reducer design, three-bar truss design, 
hydrodynamic thrust bearing design, conical wheel design, rolling bearing design, 
butterfly spring design, 10-bar plane truss size, multi-disc clutch, robot grip, dis-
connected beam domain uniform design are all up to or better than the algorithms 
CCoDE, ECHTEP, FROFI, etc. The solution results of DyHF and jDE. 

From the comparison of the results of Mann-Whitney rank sum test in Table 
5, it can be seen that compared with CCoDE, ECHTEP, FROFI, DyHF and jDE, 
the number of problems won by ECMPDE algorithm is 4, 6, 2, 5, 4 respectively, 
the number of similar results is 10, 9, 11, 9, 10, and the number of differences is 
1, 0, 2, 1, 1, respectively. From the Friedman test, we can know that on Min-
Mean, the rank of ECMPDE algorithm is the first, and its value is 3; on MinBest, 
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Table 4. Experimental results of engineering COPs. 

Algorithm Statistics 
Tension 
pressure 

spring design 

Welded beam 
design 

Pressure 
vessel design 

Reducer 
design 

Design of 
three-bar 

truss 

ECMPDE 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 3.94E−18 1.11E−15 9.09E−13 1.82E−12 0 

CCoDE 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 6.43E−18 1.11E−15 9.09E−13 1.82E−12 0 

DyHF 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 2.01E−16 1.11E−15 9.09E−13 1.82E−12 4.3E−12 

ECHTDE 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 7.2E−18 1.11E−15 9.09E−13 1.82E−12 0 

FROFI 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 5.09E−18 1.11E−15 9.09E−13 1.82E−12 0 

jDE 

Minbest 0.012665 1.724852 5885.333 2994.471 263.8958 

Minmean 0.012665 1.724852 5885.333 2994.471 263.8958 

Std 1.38E−12 1.11E−15 9.09E−13 1.82E−12 0 

 

Algorithm Statistics 
Design of 

hydrodynamic 
thrust bearing 

Conical 
wheel 
design 

Rolling 
bearing 
design 

Butterfly 
spring 
design 

Design of 
gear train 

ECMPDE 

Minbest 1625.443 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1625.443 14.67253 −79216.2 1.979675 5.42E−12 

Std 4.55E−13 9.4E−15 0.00045 1.33E−15 6.93E−12 

CCoDE 

Minbest 1625.443 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1667.956 14.67253 −81845.3 1.979675 4.74E−12 

Std 228.9411 3.55E−15 0 1.33E−15 6.11E−12 

DyHF 

Minbest 1625.443 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1888.634 14.67253 −81678 1.983829 2.7E−12 

Std 181.67 1.04E−14 900.7875 0.02237 1.21E−27 

ECHTDE 

Minbest 1625.443 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1625.443 14.67253 −81844.9 1.992137 7.86E−12 

Std 4.55E−13 3.55E−15 1.357644 0.037387 2.08E−11 

FROFI 

Minbest 1654.128 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1725.325 14.67253 −81845.3 1.979675 2.7E−12 

Std 33.08269 3.55E−15 0 1.33E−15 1.21E−27 

jDE 

Minbest 1625.443 14.67253 −81845.3 1.979675 2.7E−12 

Minmean 1625.443 14.67253 −79216.2 1.979675 4.06E−12 

Std 4.55E−13 1.04E−14 9837.045 1.42E−15 5.08E−11 
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Table 5. Statistical test results of engineering COPs. 

Statistic Test Symbol ECMPDE vs CCoDE ECHTEP FROFI DyHF jDE 

Mann-Whitney 

Win + 4 6 2 5 4 

Tied ≈ 10 9 11 9 10 

Lose − 1 0 2 1 1 

Iman-Davenport 
MinMean’s Rank 3 3.36 3.76 3.23 4.03 3.6 

MinBest’s Rank 3.06 3.56 3.56 3.6 3.53 3.3 

Wilcoxon 
Signed 
Rank 

R−  59.5 59.5 58.5 59.5 56 

R+  60.5 60.5 61.5 60.5 64 

 
the rank of ECMPDE algorithm is the smallest which is 3.06. In these compari-
sons, the performance of ECMPDE algorithm is better than that of other com-
parison algorithms. In the comparison results of Wilcoxon symbolic rank test, the 
symbolic rank sum is less than that, indicating that the performance of ECMPDE 
algorithm is the best. 

Based on the analysis of the above results, we can know that the overall solu-
tion effect of ECMPDE algorithm is better than that of CCoDE, ECHTEP, FROFI, 
DyHF and jDE in 15 engineering constraint optimization problems, and the per-
formance of the algorithm is the best.  

5. Conclusion 

In this paper, we use two constraint handling mechanisms to combine multiple 
DE variants and combine multiple group frameworks to overcome the shortcom-
ings of weak constraint solving ability and low search ability. In this paper, ECMPDE 
combines DE variants such as JADE, jDE and EPSDE. The whole population of 
the algorithm is divided into two categories, namely, three subpopulations and one 
reward subpopulation. Each constituent DE variant has a subpopulation, and each 
variant is assigned a constraint handling mechanism through the constraint al-
location mechanism, while the reward subpopulation is dynamically assigned to 
the combination of the best-performing DE variants and constraint handling me-
chanisms. The improved population division occurs in each generation, and the 
redistribution of reward subpopulations is triggered by each generation. Through 
the comparison of the best collocation of the previous generation and the cur-
rent best collocation, the excellent collocation is saved in the constraint mechan-
ism pool to improve the probability of selection. According to the analysis of the 
simulation results, ECMPDE is better than DyHF, ECHTEP, FROFI, jDE and 
JADE in solving test problems, and its performance is similar to that of CCoDE. 
This algorithm can improve the searching ability of the algorithm, improve the 
ability to solve constraints, and successfully inherit the advantages of its DE va-
riant, showing strong robustness and high accuracy. In the future research, it is 
hoped that there will be excellent constraint handling mechanisms to further 
improve ECMPDE. 
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