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Abstract
Service systems often feature multiple classes of customers with different service
needs and multiple pools of servers with different skillsets. How to efficiently match
customers of different classes with servers of different skillsets is of great importance
to the management of these systems. In this survey, we review works on skill-based
routing in queues. We first summarize key insights on routing/scheduling policies
developed in the literature. We then discuss complications brought by modern service
operations management problems, particularly healthcare systems. These complica-
tions stimulate a growing body of literature on new modeling and analysis tools.
Lastly, we provide additional numerical experiments to highlight the complex nature
of a routing problem motivated from hospital patient-flow management, and provide
some useful intuition to develop good skill-based routing policies in practice. Our goal
is to provide a brief overview of the skill-based routing research landscape and to help
generate interesting research ideas.
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1 Introduction

In service systems, customers are typically grouped into different classes based on their
service needs. For example, in a call center, different customer types can represent
different service requirements, for example, individual banking, business banking,
and loans in a bank call center, or different priority levels. In a hospital inpatient
department, different customer types can correspond to different medical specialties
of patients, for example, general medicine, cardiology, and neurology, or different
severity levels, for example, general ward, intensive care unit, and step-down unit.
Correspondingly, servers (resources) are often grouped into different server pools
based on their skillset/specialization to serve different types of customers. For example,
call center staff are grouped into different pools based on their training or language
skills, for example, English, Spanish, and bilingual. Inpatient ward beds are grouped
into different specialty wards to better facilitate the coordination and standardization
of care.

There are several interesting design questions that arise in these service systems:
(i) how to define the customer/server classes and how to design the network structure;
(ii) how to size each server pool; and (iii) how to route customers to match with
servers. Note that these three design questions are often made at different timescales:
for example, in call centers or hospitals, (i) is usually planned on a yearly basis, (ii)
is on a monthly/weekly basis, while (iii) needs to be implemented in the real-time
fashion. These questions are also highly interdependent. However, tackling them all
at once is often too ambitious a goal. Most of the literature looks at one of them while
holding the others fixed. In this survey paper, we focus on studying the third design
question listed above. We refer to this problem as skill-based routing (SBR) following
[40,43].

Queueing models are commonly used modeling tools to study the dynamics of
these service systems. In this paper, we consider a multi-class multi-pool queue with
I classes of customers and J types of parallel server pools. Customer class i , i =
1, 2, . . . , I , is characterized by an arrival process with rate λi and a patience time
distribution with mean 1/θi . (The patience time of a customer is the amount of time
he/she is willing to wait for service before abandoning the queue.) We allow each
server pool to have multiple homogeneous servers. In particular, server pool j , j =
1, 2, . . . , J , has s j homogeneous servers. Focusing on service operations applications,
we assume each server can only serve one customer and each customer can only be
served by one server at a time. Note that in some applications, it is possible that a server
can serve multiple customers at a time. For example, in an online chatting system, an
agent can chat with multiple customers at a time. It can also be the case that multiple
(types of) servers are required to serve a customer. For example, in a healthcare facility,
to treat a patient with complex medical conditions, multiple resources from multiple
pools are needed simultaneously. We do not consider such models in this paper, but
refer interested readers to Gurvich and Van Meghem [47] and Luo and Zhang [64].

A customer from class i can potentially be matched with a server in more than one
server pool. If a customer from class i is served by a server from pool j , we denote the
mean of its service time distribution as 1/μi j . Note that if there is no ‘compatibility’
between customer class i and server type j , we can define μi j = 0. Figure 1 provides
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Fig. 1 A multi-class multi-pool
queue
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an illustration of such a system. Following Harrison and López [54], we call it a
parallel-server system (PSS).

In a PSS, there are two types routing decisions to be made: (1) when a server
becomes available (finishes service), which customer, if any, should the server attend
to next; (2) when a customer arrives and there aremultiple idle servers, to which server,
if any, should the customer be routed. An SBR policy specifies how these decisions are
made. The goal is to design a good policy according to some performance criteria, for
example, waiting cost, abandonment cost, matching (overflow) cost, or combinations
of these.

To facilitate subsequent discussions, we introduce some notation and terminology.
First, to describe the systemstate, at a particular time t , let Xi (t)denote the total number
of class i customers in the system, Qi (t)denote the number of class i customerswaiting
in queue, and Zi j (t) denote the number of class i customers in service in pool j . Note
that

Xi (t) = Qi (t) +
J∑

j=1

Zi j (t).

For ease of exposition and analytical tractability, we next introduce the sys-
tem dynamics for a Markovian system where interarrival times, service times, and
patience times all have exponential distributions. Let Ai , Si j , and Ri , i = 1, . . . , I ,
j = 1, . . . , J , be unit rate Poisson processes modeling the arrival processes, (non-
interrupted) service completion processes, and abandonment processes, respectively.
Then, the system dynamics can be described as

Xi (t) = Xi (0) + Ai (λi t) −
J∑

j=1

Si j

(
μi j

∫ t

0
Zi j (s) ds

)
− Ri

(
θi

∫ t

0
Qi (s) ds

)
,

where the evolution of Zi j are determined by the routing policy.
We also consider a discrete-time version of the problem, X̃ , for which, at each time

slot, arrivals followPoisson distributions and departures followBinomial distributions.
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In this case, the system dynamics can be described as

X̃i (t + 1) = X̃i (t) + Ãi (t) −
J∑

j=1

S̃i j (t) − R̃i (t).

where, given a scheduling policy Z̃i j (t), Ãi (t) is a Poisson random variable with rate
λi , S̃i j (t) conditional on Z̃i j (t) is a Binomial random variable with parameters Z̃i j (t)
andμi j , and R̃i (t) conditional on Q̃i (t) is a Binomial randomvariable with parameters
Q̃i (t) and θi .

The routing decisions are often to be made upon a customer’s arrival or upon
a service completion. We next introduce two major service disciplines: preemptive
versus non-preemptive. A policy is said to be preemptive if a customer in service can
be interrupted. Here, interruption can mean being transferred to a server in a different
pool or being put back in the queue. Non-preemption, on the other hand, means that
once a customer starts service, it stayswith the assigned server until service completion.

Preemptive policies are typically easier to analyze. In particular, under Markovian
system primitives, one can view a non-anticipatory preemptive scheduling policy as a
mapping from X(t) := (Xi (t) : i = 1, . . . , I ) to an allocation of the servers, Z(t) :=
(Zi j (t) : i = 1, . . . , I , j = 1, . . . , J ). When preemption is allowed, in general we
can focus on work-conserving policies. A policy is said to be work-conserving, or
non-idling, if a server will not idle whenever there is at least one compatible customer
waiting in the queue. On the other hand, work-conservation is in general sub-optimal
when preemption is not allowed. In particular, we can hold a server idle in anticipation
of the arrival of a more preferred customer, or we can hold a customer waiting in
anticipation of a more preferred server becoming available.

Finally, to optimize the routing policies, one needs to define a performance metric
or an objective function. The objective function is often defined as some form of
cumulative cost, and a good policy aims to minimize the cost objective. Specifically,
let C(t) denote the cost rate incurred at time t in the continuous-time setting, or the
cost incurred at epoch t in the discrete-time setting.C(t) can include holding costs, for
example, hi Qi (t), or overflow costs (for using non-preferred servers), for example,∑

j φi j Zi j (t), etc. The cumulative cost over a finite time horizon is then defined as

E

[∫ T

0
C(t) dt

]
and E

[
T∑

t=1

C(t)

]

for the continuous-time and discrete-time problem settings, respectively.Whendealing
with an infinite time horizon, we can define the objective function either as a long-run
average cost, i.e.,

lim sup
T→∞

1

T
E

[∫ T

0
C(t) dt

]
and lim sup

T→∞
1

T
E

[
T∑

t=1

C(t)

]
,
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or a cumulative discounted cost with a discount rate γ > 0, i.e.,

E

[∫ ∞

0
e−γ tC(t) dt

]
and E

[ ∞∑

t=1

e−γ tC(t)

]
.

The rest of the paper is organized as follows: Taking system stability as the first-
order goal, in Sect. 2, we review an important class of policies that achieves the
maximumstability region. InSect. 3,we reviewapowerful analytic tool—heavy-traffic
asymptotic analysis—and discuss the structural properties of optimal/asymptotically
optimal SBR policies in some special PSSs. We note that some of the results in
Sects. 2 and 3 do not rely on Markovian system primitives, i.e., they hold for more
general arrival processes and service time distributions. Next, in Sect. 4, we discuss
the challenges and opportunities when modeling healthcare applications. Lastly, we
provide a numerical study to demonstrate the effect of overflow cost in Sect. 5.

2 Stability

Before we discuss cost minimization, the first-order criterion that a good routing
policy should achieve is to stabilize the system. There are several notions of stability.
Following [5], we say that the system is stable if

lim
t→∞ Qi (t)/t = 0, for i = 1, . . . , I , almost surely.

This notion of stability is also known as rate stability as it preserves job inflow–outflow
balance. In particular, in a PSS, rate stability implies that the arrival rate of class i
customers is equal to the departure rate of class i customers in the long run.

If customers abandon after waiting for too long, the system is guaranteed to be
stable. However, when abandonment is absent, stability is not guaranteed. For a system
with given service rates, server pool sizes, and a fixed SBR policy, the set of arrival
rates for which the system is stable is referred to as the stability region. The maximum
stability region S is the union of the stability regions over all SBR policies and can be
characterized as

S =
⎧
⎨

⎩λ : λi =
J∑

j=1

μi j s jπi j , for some πi j ≥ 0 with
I∑

i=1

πi j ≤ 1,

i = 1, 2, . . . , I , j = 1, . . . J

⎫
⎬

⎭ .

In the definition of S, πi j can be interpreted as the proportion of time resources from
pool j are used to serve class i customers. For any λ ∈ S, the system can be stabilized
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under some SBR policy regardless of whether preemption is allowed [31]. However,
different scheduling policies may have very different stability regions. An SBR policy
that achieves the maximum stability region S is called throughput optimal. We next
review an important class of throughput optimal policies—the maximum pressure
policies [83].
Maximum pressure policy

For a PSS, we define the network pressure at time t as

p(t) =
I∑

i=1

αi Xi (t)

⎛

⎝
J∑

j=1

μi j Zi j (t) − λi

⎞

⎠ =
∑

i, j

αi Xi (t)μi j Zi j (t) + K ,

for some α = (α1, . . . , αI ) > 0, where K = − ∑I
i=1 αi Xi (t)λi does not depend

on the server allocation Zi j (t). The weights αi are positive and are often determined
by the holding cost of each class, as we shall explain below. When there are no
cost concerns, we can set αi = 1/I , i.e., assigning equal weights to each class. The
maximum pressure policy tries tomaximize p(t) among all feasible server allocations.
In the preemptive version, at each time t , we set

Z(t) = arg max
z

{
p(t) : zi j ∈ N0,

I∑

i=1

zi j ≤ s j ,
J∑

j=1

zi j ≤ Xi (t),

i = 1, . . . , I , j = 1, . . . , J
}
,

whereN0 denotes the set of nonnegative integers. In the non-preemptive version, when
a pool j server becomes available, the server will next serve awaiting class i∗ customer
if

i∗ ∈ arg max
i :Qi (t)>0

αi Xi (t)μi j .

Dai and Lin [29] show that maximum pressure policies are throughput optimal
for a fairly general class of queueing networks. These networks allow, for example,
customers to be sent to another queue upon service completion and include as a special
case PSSs. To see the intuition behind the throughput optimality of the maximum
pressure policy, we consider a ‘counterpart’ deterministic fluid model

dx̄i (t)

dt
= λi −

J∑

j=1

μi j z̄i j (t), i = 1, 2, . . . , I ,
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where
∑I

i=1 z̄i j (t) ≤ s j . Under the maximum pressure policy with preemption,

z̄(t) = arg max
z

⎧
⎨

⎩

I∑

i=1

αi xi (t)
J∑

j=1

μi j zi j :
I∑

i=1

zi j ≤ s j ,
J∑

j=1

zi j ≤ xi (t),

i = 1, . . . , I , j = 1, . . . , J

⎫
⎬

⎭ .

Now, consider a quadratic Lyapunov function V (t) = ∑I
i=1 αi x̄i (t)2. Under the max-

imum pressure policy, for any λ ∈ S, when xi (t) ≥ N j for any compatible (i, j)
pair,

dV (t)

dt
= 2

∑

i

αi x̄i (t)
dx̄i (t)

dt

= 2
∑

i

αi x̄i (t)

⎛

⎝λi −
∑

j

μi j z̄i j (t)

⎞

⎠

≤ 2
∑

i

αi x̄i (t)

⎛

⎝λi −
∑

j

μi j s jπi j

⎞

⎠ ,

for any πi j ≥ 0 satisfying
∑I

i=1 πi j ≤ 1. If we choose πi j such that λi ≤∑J
j=1 μi j s jπi j , which is feasible due to the definition of S, then

2
∑

i

αi x̄i (t)

⎛

⎝λi −
∑

j

μi j s jπi j

⎞

⎠ ≤ 0,

which implies that dV (t)
dt ≤ 0. The negative drift of the Lyapunov function implies the

stability of the fluid model.
One remarkable feature of the maximum pressure policy is that it is oblivious to the

arrival rates. On the other hand, we emphasize that the policy does require knowledge
of the service rates.When the service rates are not known, wemay consider algorithms
to learn them while doing the routing/scheduling [62].

In addition to being throughput optimal, themaximumpressure policy is also shown
to be asymptotically cost optimal for certain cost structures. Dai and Lin [30] prove
that for quadratic holding cost,

∑
i αi Xi (t)2, the maximum pressure policy is asymp-

totically optimal under the conventional heavy-traffic scaling (see Sect. 3.1 for details
of the asymptotic regime). Under the same scaling, Stolyar [81] studies discrete-time
generalized switch model and establishes the asymptotic optimality of a general class
of maximum pressure policies, which is also known as the Max-Weight policy. In
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particular, at each time slot t , the policy is trying to maximize

∑

i, j

αi Xi (t)
βμi j Zi j (t)

for some β > 0. Here, the holding cost takes the form
∑

i αi Xi (t)1+β .
We comment that developing throughput optimal policies can be highly nontrivial.

For example, a policy thatmaximizes the instantaneous processing rate
∑

i, j μi j Zi j (t)
is in general not throughput optimal [5]. In addition to the maximum pressure policy,
Armony and Bambos [5] study other scheduling policies that are throughput optimal.
Examples include FastEmpty and BatchAdapt. Under FastEmpty, Zi j (t) are chosen
to minimize the time until the system is empty, assuming that there are no further
arrivals. Under BatchAdapt, customers are grouped and served in batches, where each
batch comprises the customers who arrived during the processing time of the previous
batch. Within each batch, we try to maximize the processing rate. Similar batching-
and-matching ideas are also used in Gurvich and Ward [48] and Harrison [53].

There is a vast amount of literature studying stability and scaling properties (as the
traffic intensity approaches 1) of various routing/scheduling policies. An important
class of these policies are load-balancing policies [39], such as join-the-shortest-queue
[38], power-of-d [68], and join-idle-queue [63]. Even though load-balancing is impor-
tant in scheduling service systems, the above-mentioned policies and analysis aremore
relevant for computer systems (for example, cloud computing facilities), where there
is often a huge number of parallel servers, making it difficult to maintain a centralized
queue [80].

3 Asymptotic analysis: insights into special cases

The exact analysis of SBR is usually analytically intractable due to the large state
space and policy space. In addition, even if we can solve for the optimal SBR policy
numerically, the instance-by-instance solutions may not provide much insight into the
structure of a good policy. One important method to overcome the challenge is through
heavy-traffic asymptotic analysis. In essence, a sequence of queueing systems with the
same architecture is considered. The corresponding limiting processes (deterministic
dynamical systems or diffusion processes), which are justified by limit theorems such
as functional laws of large numbers or functional central limit theorems, are in some
cases much more tractable. The tractability often comes from the fact that, under the
appropriate scaling, one can leverage the ‘state-space collapse’ (SSC) property, where
a multidimensional process can be represented by a much lower-dimensional process
in the limit [75].

In what follows, we first introduce the heavy-traffic asymptotic regimes in Sect. 3.1.
We then reviewworks that apply the heavy-traffic asymptotic framework to study SBR
in Sect. 3.2. Many of these works focus on special cases of the network presented in
Fig. 1, such as the V-model and the N-model, because analyzing the full network can
be very complicated. We summarize the main insights gleaned from studying these

123



Queueing Systems (2020) 96:53–82 61

special cases. In Sect. 3.3, we discuss a few other related works/policies that enjoy
certain analytical tractability.

3.1 Heavy-traffic asymptotic regime

There are several heavy-traffic asymptotic regimes considered in the literature. Policies
that are appropriate for one regime may not be appropriate for the others. In fact, a
policy that is asymptotically optimal for one regime can cause instability in another
regime. In practice, we usually deal with only a single system rather than a sequence
of systems, and it is essential to identify the appropriate regime for analysis in order
to determine a good scheduling policy. We review two important asymptotic regimes
here: the conventional heavy traffic regime and the many-server heavy traffic regime.

Consider a sequence of systems indexed by n. We denote λn := (λni : i = 1, . . . , I )
as the arrival rates of the nth system, μn := (μn

i j : i = 1, . . . , I , j = 1, . . . , J ) as its
service rates, and sn := (snj : j = 1, . . . , J ) as the sizes of the server pools. As we
are dealing with multiple customer classes and server pools, the traffic intensity ρn is
defined through a linear program [54]:

minimize ρn

subject to
J∑

j=1

snj μ
n
i jπi j = λni for i = 1, . . . , I ,

I∑

i=1

πi j ≤ ρn for j = 1, . . . , J ,

ρn ≥ 0, πi j ≥ 0 for i = 1, . . . , I , j = 1, . . . , J . (1)

When there is no abandonment, ρn ≤ 1 is necessary for stability.
Conventional Heavy Traffic Under the conventional heavy traffic scaling, the number
of servers is held fixed, while time is scaled up by n. The arrival rates and service
rates can vary with n as long as ρn → ρ as n → ∞ [58]. To keep subsequent
discussions concise, we keep the service rates fixed, i.e., μn

i j = μi j , and assume
that each server pool only has a single server. We then impose the following complete
resource pooling (CRP) condition: for some bi ∈ R, i = 1, . . . , I ,

√
n(λni −λi ) → bi ,

where λ = (λ1, . . . , λI ) satisfies

λi =
J∑

j=1

μi jπi j for some πi j ≥ 0 and
I∑

i=1

πi j = 1.

Note that under CRP, ρ = 1. When there is customer abandonment, we scale down
the abandonment rates when scaling up time (see [74,86] for more details). In the
special case of a sequence of single class GI/GI/1 queues, the limiting diffusion
scaled queue length process is a reflected Brownian motion [58]. In this case, almost
all arriving customers have to wait for service. Thus, under the conventional heavy-
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traffic scaling, we can focus on the question: which class should be prioritized when
a server becomes available? In other words, which server an arriving customer should
be routed to is not relevant (see, for example, Mandelbaum and Stolyar [66]).
Many-server Heavy Traffic Under the many-server heavy traffic scaling, we send the
arrival rates and the number of servers to infinity while keeping the service rates and
abandonment rates fixed.We again denoteρ = limn→∞ ρn . There are three commonly
considered (sub)regimes in this setting: the Quality-Driven (QD) regime where ρ < 1,
the Efficiency-Driven (ED) regime where ρ > 1, and the Quality-and-Efficiency-
Driven (QED) regime where ρ = 1 and ρn approaches 1 at rate 1/

√
n. For what

follows, we focus on theQED regime. As its name suggests, this regime is often able to
strike a balance between the quality of service and the server utilization rate (efficiency)
[19]. We also impose the following complete resource pooling condition in this case:
For some ξi ∈ R, i = 1, . . . , I , and γ j ∈ R, j = 1, . . . , J , (λni − uin)/

√
n → ξi and

(snj − v j n)/
√
n → γ j , where ui , v j > 0 satisfy

n∑

j=1

μi jv jπi j = ui for some πi j ≥ 0 and
I∑

i=1

πi j = 1.

In the special case of a sequence of single class GI/M/sn queues, the limiting
diffusion-scaled queue length process is a piecewise-linear diffusion process [52].
(The result is extended in Garnett et al. [44] to accommodate abandonment.) In the
limit, there is a positive yet less than one probability that an arriving customer has to
wait. In this case, we need to specify both how to route customers to available servers
upon arrivals and how to prioritize different classes of customers upon service com-
pletions (see, for example, Gurvich andWhitt [50]). It is also worth noticing that in the
heavy-traffic limit, the difference between preemption and non-preemption sometimes
diminishes [9].
Other asymptotic regimes In addition to the two asymptotic regimes discussed above,
there are other asymptotic regimes studied in the literature. For example, the non-
degenerate slowdown (NDS) regime is a ‘midpoint’ between the conventional heavy-
traffic regime and the many-server QED regime [87]. Under NDS, we scale up the
arrival rate and the number of servers while scaling down the service rate. In the
case of a single-class M/M/n model, for a given α ∈ [0, 1], λ > 0, and v > 0,
we set λn = n − λ

√
n, sn = vnα and μn = v−1n1−α . The NDS regime enjoys the

property that delay and service times are of the same order under scaling [10]. Another
asymptotic regime is one where the arrival rates scale super-linearly in n while the
service rates and abandonment rates scale linearly in n. This asymptotic regime has
been applied to study systems with demand uncertainty [13,15].

3.2 Special cases

Much of the literature focuses on certain special cases of PSSs, generating interesting
insights into themanagement of such systems. Four important special cases are: (a) the
V-model, where there is a single pool of servers but two or more classes of customers

123



Queueing Systems (2020) 96:53–82 63

Fig. 2 Special cases of multi-class multi-pool queueing systems

that typically differ in their service times and/or holding cost; (b) the invertedV-model,
where there is a single class of customers but two or more pools of servers, which
typically differ in their rates of service; (c) the N-model; and (d) the X-model. In the
latter two models, there are two classes of customers, classes 1 and 2, and two pools of
servers, pools 1 and 2, which are primarily dedicated to the two classes of customers,
respectively. The N-model allows only one way of ‘helping,’ i.e., pool 2 can help
serve class 1 customers but not the other way around. The X-model, on the other hand,
allows ‘helping’ in both directions, i.e., pool 1 can help serve class 2 customers and
pool 2 can also help serve class 1 customers. However, there is often a cost for helping.
For example, customers served by servers from the non-primary pool may experience
a slower service rate (service slowdown), or there might be an overflow penalty cost
for each non-primary assignment. Figure 2 illustrates these four special cases.

We next summarize high-level insights from the special cases developed in the
literature. One aspect that we will not cover in its full complication is customer aban-
donment, especially when the patience time has a non-exponential distribution. This
is nevertheless a very important aspect in service operations. Indeed, there is a grow-
ing body of literature analyzing customer abandonment behavior from both empirical
and modeling perspectives. We refer to Puha and Ward [72] for more details on the
modeling and analysis of customer abandonment.

In what follows, our default assumption is that the system parameters (arrival rates,
service rates, abandonment rates, and the number of servers) are time-homogeneous.
We also assume there is no overflow cost for a non-primary assignment. We delay the
discussion of overflow cost to Sects. 4 and 5. We write Ci (qi ) as the holding cost rate
for class i when there are qi class i customers in the queue.
V-model In the V-model, the relevant scheduling decision is: when a server becomes
available, which customer class it should serve next?

We start with a single-server system with no abandonment and set the objective
function as the total cumulative cost over a finite time horizon. If static priority is
imposed (i.e., the relative priority of different classes is not state-dependent), the
conventional heavy-traffic asymptotic framework leads to a state-space collapse where
the scaled queue in the limit only contains customers in the lowest priority class
[75]. We also note that under any work-conserving scheduling policies, the workload-
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process is the same. Thus, if work-conservation is imposed, the holding cost rate is
approximately Cĩ (W (t)μĩ1), where ĩ is the class with the lowest priority and W (t) is
the workload process. (Note that in this model, there is one server pool (J = 1) but
each customer class can have a different service rate. Hence, we use μi1 to denote
the class-dependent service rate.) This holding cost rate suggests that we should give
lower priority to the class with a smaller holding cost rate and a smaller service rate
(longer average service time). More generally, as our goal is to minimize the holding
cost, when there is a single server and no abandonment is allowed, a good heuristic
is to maximize the cost reduction rate in a myopic way. In particular, when a server
becomes available, it should next serve class i∗ if

i∗ = arg max
i

{C ′
i (Qi (t))μi1}. (2)

This policy is known as the generalized cμ-rule. In a multi-class M/G/1 queue with
linear holding cost, i.e., Ci (q) = ciq for some ci > 0, Cox and Smith [27] establish
the optimality of the cμ-rule where one prioritizes the class with a larger ciμi1 index
(see [21] for an elegant proof of the discrete-time model). Van Mieghem [67] studies
the multi-classG/G/1 queue with convex holding cost and establishes the asymptotic
optimality of the generalized cμ rule in (conventional) heavy traffic.

For multi-class M/M/n + M queues in the QED regime, the above state-space
collapse phenomenon is absent. This can change the structure of the optimal scheduling
policy. Consider a linear holding cost with the objective of minimizing the infinite-
horizon discounted cost. When allowing preemption, Harrison and Zeevi [55] derive
a diffusion limit (approximation) for the scaled queue length process and study the
associated diffusion control problem. They find that the optimal control is extremal
in the sense that it is optimal to have strict priority. Notably, the priority is state-
dependent, i.e., not static. Thus, the optimal policy is no longer as simple as the
cμ-rule. Atar [11] takes a similar approach as [55], but considers more general cost
functions and allows non-preemption. Moreover, Atar [11] establishes the asymptotic
optimality of the scheduling policy constructed by translating the optimal diffusion
control to the pre-limit queueing systems.
Inverted V-model In this model, different server pools in general differ in the service
rates only. The relevant decision to be made is: upon a customer’s arrival, to which
available server should this customer be routed? From the perspective of maximizing
the system’s efficiency, a good heuristic is to prioritize the poolwith faster servers. This
is known as the fastest-server-first (FSF) policy. Indeed, when we allow preemption,
FSF has shown to be optimal [4]. However, when service is non-preemptive, imple-
menting FSF in a work-conserving fashion is not optimal in general. In particular, we
might want to hold the customer waiting for a faster server while keeping the slower
server idling [90]. In [4], Armony studies the Markovian inverted V-model without
abandonment and shows that FSF is asymptotically optimalwith respect tominimizing
the steady-state queue length in the QED regime. She proves this by showing that the
non-preemptive FSF is ‘close’ to the preemptive FSF in the limit. She also establishes
a state-space collapse result, which shows that, under FSF, all the faster servers are
constantly busy, and the only possible idleness is within the slowest servers.
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While FSF is optimal to minimize costs, it may be considered as ‘unfair’ to the
servers in terms of how the workload is distributed. It is of interest to determine good
policies subject to ‘fairness’ constraints (for example, idleness should be distributed
across different server pools). SBR subject to such fairness considerations is studied in
Armony and Ward [7] and Ward and Armony [85]. There, good routing policies also
take server idle times into account. One such policy is called the longest-idle-server-
first. An attractive feature of the longest-idle-server-first policy is that the stationary
distribution of systems under this policy often has a product form [1], which makes it
analytically tractable for performance analysis.
N-model In the N-model, one usually assumes that class 1 customers have a higher
holding cost, in which case pool 2 servers should be used to help class 1 customers.
We start by considering the N-model without abandonment. In this case, letting pool
2 give strict priority to class 1 can lead to system instability under non-preemption
even for ρ < 1 [43,53]. This is because pool 2 may provide too much help, leaving
pool 1 idling while there are still class 2 customers waiting. One way to overcome
the unwanted idleness is to impose a threshold. In particular, pool 2 gives priority
to class 1 only when the class 1 queue is larger than the threshold. This idea can be
viewed as having a safety stock for class 1. Bell and Williams [16] show that if the
threshold is properly chosen and preemptive priority is allowed for class 1 customers
when their queue length is larger than the threshold, the threshold-based priority rule
is asymptotically optimal in the conventional heavy-traffic regime. The cost structure
in Bell andWilliams [16] contains linear holding cost and the objective is to minimize
the infinite horizon discounted cost.

In the many-server QED regime, the idleness induced by strict priority is of less
concern. This is because each class 1 customer only takes a 1/sn2 fraction of the service
capacity from pool 2, which is almost negligible when n is large. This reflects a funda-
mental difference between the conventional heavy traffic scaling and the many-server
heavy-traffic scaling. Tezcan andDai [84] study the N-model with pool-dependent ser-
vice rates and linear holding costs in the QED regime. In particular, pool-dependent
service rates require that μ12 = μ22 = μ2. They show that a cμ-type greedy policy is
asymptotically optimal. The policy keeps servers non-idling; when a server becomes
available, it next serves the waiting customer from the more expensive queue; and
when an arriving customer (in class 1) can choose from multiple servers, it picks a
faster server. The intuition is that, in general, a good policy should aim to keep all of
the servers busy except the slowest one and all of the queues empty except the cheapest
one. Tezcan and Dai [84] also allow abandonment, assuming the abandonment rates
are smaller than the service rates.

We note that abandonment can sometimes change the structure of the optimal
policy. For example, if the more expensive class (class 1) also happens to have a
higher abandonment rate, then when there are many customers in the system, it can be
more cost-effective to give priority to class 2 jobs. In particular, by keeping a longer
class 1 queue, we can take advantage of the higher abandonment rate of class 1 to
help reduce the queue more quickly. Ghamami andWard [45] study the N-model with
abandonment and establish the asymptotic optimality of a two-threshold policy under
the conventional heavy-traffic regime. Under this policy, when the abandonment rate
of class 1 is large enough, the pool 2 server gives priority to class 1 customers when the
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class 1 queue is larger than a threshold but the total workload is smaller than another
threshold.
X-model and beyond When the holding cost is increasing and (strongly) convex, Man-
delbaum and Stolyar [66] consider a general PSS with multiple customer classes and
multiple pools of fully flexible (multi-skilled) servers. They show that the generalized
cμ-rule minimizes the instantaneous and cumulative queueing costs, asymptotically,
over essentially all scheduling disciplines, preemptive or non-preemptive, under the
conventional heavy-traffic scaling. (Each pool has only one server inMandelbaum and
Stolyar [66] and there is no abandonment.) The generalized cμ-rule says that when a
pool j server becomes available (at time t), it serves a class i∗ customer next, where

i∗ ∈ arg max
i :Qi (t)>0

C ′
i (Qi (t))μi j .

The policy essentially aims at myopically maximizing the instantaneous cost decreas-
ing rate, which agrees with the intuition developed in the V-model.

Gurvich andWhitt [50] consider a similar multi-class multi-pool system, but allow
each server pool to have multiple servers. ([50] also allows abandonment.) They pro-
pose a family of routing policies called queue-idleness-ratio (QIR) rules. Under QIR, a
newly available server next serves the customer class (among the eligible ones) whose
queue length most exceeds a state-dependent proportion of the total queue length,
and an arriving customer is routed to the server pool whose idleness exceeds a state-
dependent proportion of the total idleness the most. In the QED regime, this policy
achieves state-space collapse under certain regularity conditions (see Theorem 3.1 in
[50]). See also [32] for a similar result. In particular, the state-space collapse result
indicates that the scaled queue length of each class is a pre-specified state-dependent
ratio of the total queue length. Similarly, the scaled idleness at each pool is a pre-
specified state-dependent ratio of the aggregate idleness. Thus, in the limit, we only
need to keep track of the total queue length and the aggregated idleness processes.
Utilizing the state-space collapse result, Gurvich and Whitt [49] establish that when
costsCi are convex and the service rates are only pool-dependent, a properly specified
QIR control is asymptotically optimal in the QED regime. The objective there is to
minimize the cumulative holding cost over a finite horizon. Intuitively, the optimal
QIR control works as follows: the routing component places all the idleness to the
slowest server pool, and the scheduling component distributes the total queue length
among the individual customer classes so that the instantaneous holding cost is mini-
mized. In particular, the scheduling policy is tried to mimic/stay close to the solution
of the following:

minimize
I∑

i=1

Ci (qi )

subject to
I∑

i=1

qi = q̄,

qi ≥ 0 for i = 1, . . . , I . (3)
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This indicates that when there are q̄ customers in the queue, the queue ratio is q∗
i (q̄)/q̄ ,

where q∗
i (q̄) is the solution to (3).

The most general asymptotic optimality result for PSSs in the QED regime is
established in Atar [9]. The objective is to minimize the infinite horizon discounted
cost. It derives asymptotically optimal policies by properly ‘translating’ the optimal
policy for the associated limiting diffusion control problem to the stochastic systems.
However, it is worth pointing out that, due to the generality of the result, the Hamilton–
Jacobi–Bellman (HJB) equation associated with the diffusion control problem cannot
be solved analytically in general. Thus, it is hard to derive structural insights from
this class of HJB-derived policies. Atar [9] studies both the preemptive version and
non-preemptive version of the problem and shows that the two versions are not, in
general, asymptotically equivalent in this regime. However, he also shows that under
appropriate assumptions on the structure of the system, the two versions of the problem
are asymptotically equivalent. In particular, the structural assumption requires the
graph describing the compatibility of the network to form a tree and all the compatible
class-pool pairs to have non-negligible flow in the corresponding fluid model.

Perry and Whitt [70,71] study how to use overflow (routing class i customers to
pool j , i 
= j) to handle unexpected demand shocks (overload) in the X-model. They
assume overflow incurs an efficiency loss, i.e., μ11μ22 > μ12μ21, so that each pool
in general prefers to serve its own customer class. To handle demand shocks, they
propose a fixed-queue-ratio policy with threshold (FQR-T). The fixed-queue-ratio
policy is studied in Gurvich and Whitt [51] for PSSs with pool-dependent service
rates. The extra thresholds in FQR-T are introduced to avoid unwanted (excessive)
sharing in normal load. The thresholds are also used to automatically detect when one
class becomes overloaded.

3.3 Other related works

Our focus in this section is on asymptotically optimal scheduling policies. Most work
reviewed above relies on some heavy-traffic asymptotic mode of analysis. Beyond
these works, many other analytically tractable scheduling policies have been stud-
ied in the literature. An important class of policies are those under which the PSS
has an explicit product-form stationary distribution. One such policy is First-Come-
First-Served-and-Assign-Longest-Idle-Server [2]. Under this policy, a server always
chooses to serve the longest waiting compatible customer, and a customer is assigned
to the longest idle compatible server. Other policies that lead to closed-form stationary
distributions include queues with redundant requests in computer scheduling [42], and
store-and-forward allocation policy in processor-sharing queues [18]. See also Gard-
ner and Righter [41] for a survey on product forms for PSSs under FCFS scheduling.

For the cost objective, we only considered different forms of holding cost. We
will discuss the effect of overflow cost in Sect. 5. In addition to these costs, other
performance metrics have been considered in the literature. These include chance
constraints [46], deadline constraints [57], fairness constraints [88], etc. The optimal
routing policies with respect to these performance metrics remain largely open.
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4 Complications brought by healthcare applications

In this section,we reviewsome recent developments of SBR in the context of healthcare
applications, especially in patient-flow management.

Various specialized queueing models have been developed to study patient flow in
hospitals [6]. For example, to capture the fact that the patients may return to service
(consulting the physician) several times during their stay in the Emergency Depart-
ment, Yom-Tov and Mandelbaum propose and study a queueing model that explicitly
accommodates reentrant customers [92]. The paper [57] then studies how to prioritize
new versus reentrant patients with deadline constraints. To capture the batch departure
phenomenon in inpatient wards, models with special discharge mechanisms have been
proposed and studied in Dong and Perry [36] and Shi et al. [77].

In what follows, we focus on how routing decisions may affect patient outcomes,
and how that in turn may affect the routing decisions. The challenge of balancing the
delicate trade-off between system efficiency and quality of care in face of this interplay
stimulates a lot of interesting research opportunities.
The effect of admission delay on patient outcome.Delay arises often in various health-
care settings due to the high utilization of resources and the high variability in demand.
Delay in receiving care can lead to adverse outcomes such as a longer length of stay
[24] or even a higher mortality rate [22]. The paper [35] shows that when delay leads
to longer service requirement, even a simple single-class multi-server queue with
abandonment can exhibit bi-stability. In particular, the system can alternate randomly
between two performance regimes. The underlying mechanism can be intuitively
understood as a snowball effect where delayed patients have increased service require-
ments, causing further delays to other patients, who in turn might require even longer
service times [76].

When there are multiple classes of patients and a single pool of servers, the more
severe patients are often prioritized.However, delayed treatment of less critical patients
may cause them to deteriorate into the more severe classes. This deterioration phe-
nomenon can be captured by allowing patients to ‘transition’ from a less severe class
to a more severe one while waiting. In this case, how to prioritize different patient
classes can be highly nontrivial. On the one hand, providing care for patients when
they are less critical couldmean that fewer resources are needed. This can be beneficial
from the system throughput perspective. On the other hand, utilizing limited capacity
for less severe patients takes the resource away from other more critical patients. Hu
et al. [56] study this problem using fluid approximations and optimal control theory.
More generally, analyzing the benefit of proactive care or proactive services (pro-
viding service to less critical/urgent patients) in a limited resource environment has
attracted much attention recently; see, for example, Delana et al. [34] and Örmeci and
Güneş [69].
The effect of off-service placement on patient outcome. Inpatient ward beds are usually
grouped into different specialized units, with each unit designated to serve patients
in certain primary specialties. This focused care model is known to facilitate better
coordination of care and nurse training [17]. However, to avoid excessive admission
delay, many hospitals choose to assign patients whose designated unit (server pool)
is full to an available bed in a unit of a different specialty. This is referred to as off-
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service placement. Empirical evidence has shown that off-service placement can lead
to adverse outcomes such as a longer length of stay or a higher readmission rate [79].
This poses an interesting trade-off. On the one hand, off-service placement can help
create more resource pooling and thus reduce admission delay. On the other hand,
patients who are placed off-service may require a longer service time, which can
create more congestion in the system. This can further lead to a snowball effect as
well: Delayed patients are placed off-service, leading to increased service times that
can cause more delays for future patients. Recently, Dong et al. [37] take a data-driven
approach to study this trade-off.

From an analysis point of view, when the service rate is both class-dependent and
pool-dependent, the state space and policy space soon grow prohibitively large to
conduct any exact or even numerical analysis. Adding to the complication is the non-
preemption assumption in most healthcare settings. To optimize the routing decisions,
good approximation techniques are needed. Recent developments in solving these
constrained Markov decision processes include approximate dynamic programming
[20,28] and Lagrangian relaxation [12,33].

When patients are placed off-service, in addition to a longer length of stay, there
might be other costs incurred from the hospital’s perspective. For example, nurses in
the off-service unit may incur a heavier workload as they now have to take care of
multiple types of patients. Physicians may also incur greater workload as they now
have to travel from the primary unit to the off-service units to see the patients. These
can be modeled via an overflow cost (penalty). Adding the overflow cost to the cost
objective can change the structure of the optimal policy.We conduct detailed numerical
experiments of this setting in Sect. 5.
Readmission. A prominent feature in patient flow management and a key measure
for quality of care is patient readmission. Several operational measures are associated
with the readmission rate. We have mentioned that off-service placement can lead
to a higher readmission rate. It has also been shown that shortening service time
(service speed-up) is likely to cause a higher readmission rate [61]. This poses an
interesting tension. Hospitals tend to use early discharge (speed-up service rate) to
alleviate congestion at present [59,60], which will allow newly arrived patients to get
timely treatment. However, this may substantially increase the future workload due
to increased readmissions. If this trade-off is not managed properly, it can lead to
bi-stability due to, again, a snowball effect [25]. More generally, analyzing the trade-
off between service speed and service quality is an active area of research; see, for
example [23,93].
Routing with predictive information. In recent years, the growing availability of data
and the development of statistical learning techniques have provided us with various
accurate predictive models. For example, predictive models have been developed to
evaluate hospital-acquired infection risk, the risk of intensive care unit (ICU) admis-
sion, the risk of cardiovascular events, etc. There is a growing number of works
studying how to effectively incorporate the predictive information into operational
decisionmaking. Xu and Chan [91] study admission control in the Emergency Depart-
ment using predicted patient demand information. Bassamboo and Randhawa [14] and
Mandelbaum and Momcilovic [65] study scheduling using customers’ patience time.
Chen and Dong [26] and Wierman and Nuyens [89] study scheduling using predicted
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service times. Argon and Ziya [3] and Sun et al. [82] study patient prioritization using
predicted class information. Shi et al. [78] study patient discharge using predicted
readmission risk.

5 Patient routing with overflow cost: a numerical study

In this section, we focus on one specific example motivated by the patient routing
problem in hospital inpatient flow management. In particular, on top of the typical
SBR setting reviewed earlier, we incorporate a one-time overflow cost when a patient
is routed to a bed (server) in a non-primaryward (non-dedicated server pool). Overflow
cost has not been extensively studied in the literature, and adding it to the cost objective
can change the structure of the optimal policy from the ones discussed in Sect. 3. To
understand the complexity in this case, we first introduce theMarkov decision process
(MDP) formulation for modeling the routing problem. We then numerically solve the
MDP for some small problem instances to generate insights into the structure of the
optimal routing policy. Finally, we adapt several existing heuristics, such as the cμ-
rule and the maximum pressure policy, to incorporate the overflow cost, and compare
their performance numerically.

5.1 MDP formulation

We consider a discrete-time model where each unit of time can be thought of as a day.
For the simplicity of exposition, we assume the service rate is pool-dependent and
there is no abandonment. Motivated by the patient-flow application, we do not allow
preemption. The order of events is as follows: At the start of each day t , we observe
the queue length of each class, Qi (t), and the number of busy servers in each pool,
Z j (t). (Note that since the service rate is pool-dependent, we do not need to track
each Zi j (t); we only need to know the total number of busy servers in pool j .) After
observing the state, we make the admission decision ai j (t), which is howmany class i
patients to admit to pool j . This incurs a cost of

∑
i, j φi j ai j (t). In addition, a holding

cost of
∑

i hi (Qi (t) − ∑
j ai j (t)) is incurred. After the admission decision is made,

random departures occur, followed by random arrivals, bringing the system into new
states Qi (t + 1) and Z j (t + 1) at the start of the next day.

We consider a long-run average cost-minimization problem and focus on the class
of Markovian policies (non-anticipatory). Let

S(t) = (Q1(t), . . . , QI (t), Z1(t), . . . , Z J (t))

be the state of the system. For a given state S(t) = ζ , we denote by A(ζ ) the set of
feasible actions:

A(ζ ) =
⎧
⎨

⎩(ai j )i=1,...,I , j=1,...,J : ai j ≥ 0,
∑

i

ai j + z j ≤ s j ,
∑

j

ai j ≤ qi

⎫
⎬

⎭ .
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Recall that s j is the capacity of pool j . Under suitable regularity conditions on the
ergodicity of the Markov process, let g be the gain and V (ζ ) be the bias of the MDP;
see, for example, [73]. Then,

g + V (ζ ) = min
a∈A(ζ )

⎧
⎨

⎩
∑

i, j

φi j ai j +
∑

i

hi

⎛

⎝Qi (t) −
∑

j

ai j

⎞

⎠ +
∑

ζ ′
V (ζ ′)P(ζ ′; ζ, a)

⎫
⎬

⎭ ,

where P(ζ ′; ζ, a) denotes the transition probability from state ζ to state ζ ′ under the
policy a = {ai j }. Specifically, for q ′

i = qi − ∑
j ai j + ki and 0 ≤ z′j ≤ z j + ∑

i ai j ,

P(ζ ′; ζ, a) =
∏

i

P( Ãi = ki )
∏

j

P

(
S̃ j = z j +

∑

i

ai j − z′j

∣∣∣∣∣ z j +
∑

i

ai j

)
,

where Ãi is a Poisson random variable with rate λi and S̃ j given z j + ∑
i ai j is a

binomial random variable with parameters z j + ∑
i ai j and μ j .

5.2 Optimal solution

In this subsection, we consider two small instances of the problem and solve the cor-
responding MDPs numerically. Motivated by the patient flow application, we assume
I = J and each class i has a primary server pool j = i . When sending a customer
from class i to the dedicated server pool i , we incur no overflow cost, i.e., φi i = 0.
However, when sending a customer from class i to a non-primary server pool j , j 
= i ,
we incur some overflow cost, i.e., φi j > 0.

To enable efficient computation, we implement two simplifications. First, to handle
the infinite state space,we truncate the state space by imposing a commonpre-specified
threshold m for each class i . In particular, if so many class i customers arrive that the
queue length of class i will exceed m, the excess customers (beyond m) are rejected
from the system at no cost. Second, we enforce maximum primary assignments. In
particular, as many primary assignments aii as possible are made at each epoch and
only then are overflow decisions ai j ( j 
= i) made.

5.2.1 Two-class example

We set m = 45 and numerically solve the MDP in a two-class two-pool setting where
each pool has a capacity of 5. The arrival rates are (0.65, 0.85) and the service rates
are 0.25 for each pool. The holding costs are 1 for each class, and we try different
values of the overflow cost, i.e., (i) φi j = 0.2, (ii) φi j = 2, and (iii) φi j = 10 for
i 
= j . Note that the classes are symmetric in everything except the arrival rates, and
class 2 has a higher arrival rate than class 1.

Figures 3, 4 and 5 illustrate the optimal policy under different overflow costs. We
make a few observations from the figures. First, as the overflow cost increases, we
do less overflow. In particular, when φi j = 0.2 (Fig. 3), we do as much overflow
as possible after maximum primary assignment. When φi j = 2 (Fig. 4), we start
to reserve some pool 2 capacity even when there are class 1 customers waiting. For
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Fig. 3 Number overflowed when φ = 0.2, class i has a queue and pool j has idleness

Fig. 4 Number overflowed when φ = 2, class i has a queue and pool j has idleness

example, when pool 2 has two available servers and class 1 has one customer waiting
after its primary assignment, the optimal policy keeps the two servers in pool 2 idling
while keeping the class 1 customer waiting.When φi j = 10 (Fig. 5), we only overflow
when the queue is large enough. For example, when pool 2 has one idle server, the
optimal policy only starts overflowing class 1 customers to pool 2 when there are
more than seven class 1 customers waiting after its primary assignment. Likewise,
when pool 1 has an idle server, the optimal policy only starts overflowing class 2
customer to pool 1 when there are more than four class 2 customer waiting after its
primary assignment. Secondly, we observe from Fig. 5 that the number of customers
we overflow is increasing in the queue length and increasing in the number of idle
servers. For instance, when φi j = 10 and pool 2 has three idle servers, we overflow
one class 1 customer when there are seven class 1 customers waiting, and we overflow
three class 1 customer when there are more than nine waiting. Lastly, because class
2 is more heavily loaded than class 1, i.e., λ2 > λ1, we tend to do more overflow for
class 2. In particular, when φi j = 2, we start reserving pool 2 capacity by keeping
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Fig. 5 Number overflowed when φ = 10, class i has a queue and pool j has idleness

them idling when there are still class 1 customers waiting. In contrast, we still do the
maximum possible overflow for class 2 customers.

5.2.2 Three-class example

We next consider a three-class three-pool setting where each pool has capacity 5.
The arrival rates are (0.65, 0.75, 0.85) and the service rates are 0.25 for each pool.
The holding costs are 1 for each class, and we test two different overflow costs: (i)
φi j = 0.2 and (ii) φi j = 2 for i 
= j . We set m = 15.

Figures 6, 7, 8 and 9 illustrate the optimal policy under different overflow costs.
We make the following observations from the figures.

When deciding which pool (if any) to overflow a customer (Figs. 6, 7), we tend to
overflow the customer to the pool with more idleness. When two pools have a similar
numbers of idle servers, we tend to prioritize the pool that has a smaller primary
offered load. For example, in the first plot in Fig. 6, when there are two idle servers
in pool 3, we overflow the class 1 customer to pool 3 when pool 2 has fewer than two
idle servers, but overflow to pool 2 when it has more than two idle servers. When both
pool 2 and pool 3 have two idle servers, we overflow the class 1 customer to pool 2
as class 2 has a smaller offered load than class 3. Comparing the three cases in Fig. 6,
we also note that the larger the difference between the primary offered loads, the more
preferred the pool with a lighter load is to overflow the customer. Moreover, similar to
the two-class case, as φi j increases, we do less overflow, especially when the number
of idle servers is small. For example, when φi j = 2, we do not overflow the waiting
class 1 customer when pool 2 and pool 3 both have fewer than two idle servers.
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Fig. 6 Overflow pool when φi j = 0.2, there is one class i in queue and the other pools have different
numbers of idle servers

Fig. 7 Overflow pool when φi j = 2, there is one class i in queue and the other pools have different numbers
of idle servers

When deciding which non-primary class a newly available server should help next
(Figs. 8, 9), we tend to help the class with a larger queue. For example in the first plot
in Fig. 8, when class 3 has three customers waiting after its primary assignment, the
idling pool 1 server helps class 3 when there are less than or equal to three class 2
customers waiting, but switches to help class 2 when there are more than three class
2 customers waiting. When two queues have similar lengths, we prioritize the queue
with a larger arrival rate. For example, in the second plot in Fig. 8, when both queues
have six customers waiting, the idling pool 2 server helps serve class 3, which is the
more overloaded class. Moreover, similar to the two-class case, as φi j increases, we
do less overflow, especially when the queue lengths are small.

The above numerical results suggest that when deciding which pool to route cus-
tomers to, the system state should be taken into account. In general wewould prioritize
the pool with more idleness and a lighter primary offered load. Similarly, we should
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Fig. 8 Overflow class when φ = 0.2, there is 1 idle server in pool j and the other two queues have different
numbers of customers waiting

Fig. 9 Overflow class when φ = 2, there is 1 idle server in pool j and the other two queues have different
numbers of customers waiting

consider the system state when deciding which class to prioritize when scheduling
servers. In general we would prioritize the class with a longer queue and a larger
arrival rate.

5.3 Heuristic policies

To manage large-scale systems, numerically solving the MDP is computationally pro-
hibitive due to the large state space and action space. In such cases, it is natural to come
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up with some heuristic policies. In this section, we compare five heuristic policies: (i)
the classic cμ-rule, (ii) the classic maximum pressure policy, (iii) the modified cμ-
rule, which takes the overflow cost into account, (iv) the modified maximum pressure
policy, which takes the overflow cost into account, and (v) a policy based on estimated
waiting time. We provide more details about policies (iii)–(v) next.

For the modified cμ rule, we derive the assignment action ai j (t) according to the
following integer program:

max
I∑

i=1

J∑

j=1

(hiμi j − φi j )ai j (t)

s.t. ai j (t) ≥ 0,
I∑

i=1

ai j (t) + Zi j (t) ≤ s j and
J∑

j=1

ai j (t) ≤ Qi (t).

(4)

The optimization problem (4) suggests that we rank the patient-bed assignment pair
using the (hiμi j −φi j ) index. This index is adjusting the original cμ-index, hiμi j , by
subtracting an overflow cost φi j . Our goal here is to maximize the instantaneous cost
reduction rate.

For themodifiedmaximumpressure policy, we derive the assignment action {ai j }
from the following integer program:

max
I∑

i=1

J∑

j=1

(hi Qi (t)μi j − φi j )ai j (t)

s.t. ai j (t) ≥ 0,
I∑

i=1

ai j (t) + Zi j (t) ≤ s j and
J∑

j=1

ai j (t) ≤ Qi (t).

(5)

Compared to the original max-pressure policy, we now adjust the index hi Qi (t)μi j

with the overflow cost φi j .
The last heuristic we consider takes estimated waiting time into account. In par-

ticular, we balance the overflow cost and the waiting cost by solving the following
integer program:

max
I∑

i=1

J∑

j=1

(hiWi (t) − φi j )ai j (t)

s.t. ai j (t) ≥ 0,
I∑

i=1

ai j (t) + Zi j (t) ≤ s j and
J∑

j=1

ai j (t) ≤ Qi (t).

(6)

Here, Wi (t) represents an estimate of the waiting time for the class i customers. We
refer to this policy as the look-ahead policy.
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Table 1 Performance comparison for a small system [s j = 5, μ j = 0.25, λ = (0.65, 0.75, 0.85)]

optimal cμ max-p. mod. cμ mod. max-p. look-ahead

φi j = 0.2

Total cost 0.11 0.33 0.22 0.11 0.12 0.12

Holding 0.07 0.06 0.06 0.07 0.07 0.07

Overflow 0.04 0.26 0.15 0.05 0.05 0.05

φi j = 0.2

Total cost 0.50 2.71 1.57 1.12 0.91 0.57

Holding 0.12 0.06 0.07 1.12 0.88 0.12

Overflow 0.38 2.65 1.50 0.00 0.03 0.45

The standard error for each entry is less than 0.001

Different methods for estimating the waiting time have been developed in the lit-
erature. Here we take a conservative approach, as in [8], and set

Wi (t) = Qi (t)/(siμi i − λi ). (7)

Wi (t) as defined in (7) can be interpreted as an approximation of the time to clear the
current queue using dedicated capacity only.

We consider the same three-class three-pool model as studied in Sect. 5.2.2. We
test both a small-scale setting where exact analysis is still feasible, and a larger-scale
setting with higher arrival rates and more servers in each pool.

We start with the small system that is exactly the same as the three-pool system
studied in Sect. 5.2.2. In this setting, we are able to compare the performance of
different heuristicswith the performance under the optimal policywe have numerically
solved. Table 1 reports the corresponding long-run average cost evaluated through
simulation. We simulate 10 replications for each policy to evaluate the mean and
standard error of the average cost. Each replication contains 5 × 105 days, with the
first 104 days excluded when calculating the average to eliminate the initial transiency.
A common sequence of random numbers is used when comparing different policies.
We observe that when φi j is small, i.e., φi j = 0.2, the modified cμ rule (mod. cμ),
the modified maximum pressure policy (mod. max-p.), and the look-ahead policy all
perform very well. In this case, not incorporating the overflow cost, as in the original
cμ rule (cμ) or the original maximum pressure policy (max-p.), leads to too much
overflow. However, when φi j is large, i.e., φi j = 2, naively incorporating the overflow
cost into the cμ-index or the max-pressure index, as in the modified cμ rule or the
modified maximum pressure policy, leads to too little overflow. In this case, the look-
ahead policy works very well, while the cμ-rule and the max-pressure policy still
induce too much overflow.

We next compare the five heuristic policies for a larger-scale system. In particular,
we increase the arrival rates to (6.5, 7.5, 8.5) and the number of servers to (33, 36, 39).
This system size is more realistic for the hospital inpatient setting. In our collaborating
hospital, each inpatient ward (server pool) contains 20 to 40 beds. Solving the MDP is

123



78 Queueing Systems (2020) 96:53–82

Table 2 Performance comparison for a large system [s = (33, 36, 39), μ j = 0.25, λ = (6.5, 7.5, 8.5)]

cμ max-p. mod. cμ mod. max-p. look-ahead

φi j = 0.2

Total cost 1.70 2.02 0.34 0.40 0.40

Holding 0.19 0.18 0.19 0.19 0.19

Overflow 1.51 1.83 0.15 0.21 0.21

φi j = 2

Total cost 15.26 18.53 3.21 1.76 1.85

Holding 0.19 0.19 3.21 0.24 0.21

Overflow 15.07 18.34 0.00 1.52 1.64

The standard error for each entry is less than 0.005

computationally prohibitive in this case. Thus, Table 2 only reports the performance
(estimated long-run average cost) for the heuristic policies.We again run the simulation
experiments for 10 replications, with 5 × 105 days in each replication and the first
104 days being excluded. A common sequence of random numbers is used when
comparing different policies. We make similar observations as for the small systems.
When φi j is small, the modified cμ rule, the modified maximum pressure policy, and
the look-ahead policy all perform quitewell.Whenφi j is large, themodifiedmaximum
pressure and the look-ahead policy perform much better than the other policies.

Above all, the observations suggest that when we design heuristic algorithms in this
setting, the overflow cost plays an important role and a more dynamic priority rule in
general performs better than static priority rules. In this section,we have not considered
other complications in patient flow management, such as class-and-pool-dependent
service rates and time-varying arrival rates. How to derive good routing policies when
incorporating these realistic features is a topic for fruitful future research.

6 Conclusion

In this survey,we study skill-based routing problems inmulti-classmulti-pool parallel-
server systems. These problems arise in various service operations management
settings. We start by discussing stability and reviewing the maximum pressure policy,
which is throughput optimal in a variety of settings. We then review good policies that
can minimize different cost objectives in various special cases of PSSs. Heavy-traffic
asymptotic analysis is a powerful tool for generating structural insights into the opti-
mal policy for these systems. Lastly, we discuss complications brought by modern
healthcare applications. The goal is to help generate interesting future research direc-
tions. We also provide a numerical study on one complication raised in the hospital
inpatient flow: whether and where to overflow a waiting patient. We show that adding
an overflow penalty cost to the objective function significantly changes the optimal
policy. We compare a few heuristic policies adapted from the literature and show that
it is important to adjust for the overflow cost in these heuristics.
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