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Abstract 
Potentially harmful cyanobacterial blooms are an emerging environmental 
concern in freshwater bodies worldwide. Cyanobacterial blooms are generally 
caused by high nutrient inputs and warm, still waters and have been appear-
ing with increasing frequency in water bodies used for drinking water supply 
and recreation, a problem which will likely worsen with a warming climate. 
Cyanobacterial blooms are composed of genera with known biological pig-
ments and can be distinguished and analyzed via hyperspectral image collec-
tion technology such as remote sensing by satellites, airplanes, and drones. 
Here, we utilize hyperspectral microscopy and imaging spectroscopy to cha-
racterize and differentiate several important bloom-forming cyanobacteria 
genera obtained in the field during active research programs conducted by US 
Geological Survey and from commercial sources. Many of the cyanobacteria 
genera showed differences in their spectra that may be used to identify and 
predict their occurrence, including peaks and valleys in spectral reflectance. 
Because certain cyanobacteria, such as Cylindrospermum or Dolichospermum, 
are more prone to produce cyanotoxins than others, the ability to differen-
tiate these species may help target high priority waterbodies for sampling. 
These spectra may also be used to prioritize restoration and research efforts 
to control cyanobacterial harmful algal blooms (CyanoHABs) and improve 
water quality for aquatic life and humans alike. 

Keywords 
Cyanobacterial Harmful Algal Blooms (CyanoHABs), Cyanobacteria, 
Hyperspectral Remote Sensing, Hyperspectral Microscopy, Imaging  
Spectroscopy 

1. Introduction

Freshwater cyanobacterial harmful algal blooms, or cyanoHABs are a worldwide 
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concern. The growth and extent of potentially toxic cyanobacterial blooms are 
not immediately distinguishable from non-toxic blooms. Potentially harmful 
cyanoHABs bacterial blooms have recently been exacerbated by high nutrient 
inputs and warmer waters.  

CyanoHABs have been appearing with increasing frequency in water bodies 
used for drinking water supply and recreation, a problem which will likely wor-
sen as the climate warms [1] [2]. CyanoHAB bacterial blooms may cause un-
sightly surface scums, produce taste-and-odor causing compounds, and some 
strains of cyanobacteria produce potent cyanotoxins which are hazardous to hu-
man and animal health [3]. Species identification will give an indication of whether 
or not potentially toxic organisms are present, but the only way to definitively 
determine whether or not a bloom is toxic is to test for toxins [4]. This work 
shows that overhead imagery from satellites and aircraft have the potential to 
monitor and calibrate the level of danger to human and animal life. Further re-
search is needed. 

Remote sensing has traditionally been used to monitor the intensity and ex-
tent of CyanoHAB phenomena as the biological pigments involved lend them-
selves to detection by multispectral remote sensing systems such as the US Geo-
logical Survey’s (USGS) Landsat or the European Space Agency’s (ESA) Sentinel 
2/3 imaging satellites. However, the development of hyperspectral remote sens-
ing systems promises to move the science of monitoring CyanoHABs beyond 
algal or cyanobacterial presence, estimates of abundance, [5] and geographic ex-
tent into the realm of chemical analysis at the cellular level. With the advent of 
new satellite systems, such as the DESIS (DLR Earth Sensing Imaging Spectro-
meter), now on the International Space Station [6] and HICO (Hyperspectral 
Imager for the Coastal Ocean) [7] as well as the expansion of the Advanced Visi-
ble Infrared Imaging Spectrometer (AVIRIS) program at the National Aeronau-
tics and Space Administration (NASA), and the emergence of small hyperspec-
tral sensors for Unmanned Aerial Vehicles (UAVs), hyperspectral technology 
promises to advance earth systems monitoring to a new level [8].  

All phytoplankton are composed of mixtures of photosynthetic pigments that 
can, in many cases, be distinguished by spectroscopic techniques. Here, utilizing 
a hyperspectral microscope, we document the spectral characteristics of 13 com-
mon genera of cyanobacteria to demonstrate the potential identification capabil-
ities of hyperspectral remote sensing technology. 

CyanoHABs are one of the emerging climate change issues that are currently 
drawing interest from both the civilian and intelligence remote sensing com-
munities. Obviously related to ecosystem health and suitability of water quality 
for a range of uses, CyanoHABs also carry relevant attention to the defense and 
intelligence communities [9] [10] in that large coastal populations may suddenly 
be denied a major food source as a result of CyanoHAB contamination, poten-
tially destabilizing large populations. 

For many years, remote sensing has been used to map algal blooms. Mapping 
of chlorophyll-a is widely used as an indicator of water quality, but because both 
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eukaryotic algae and cyanobacteria contain chlorophyll-a, it can suffer from a 
lack of specificity and is most successful in blooms that are known to be domi-
nated by cyanobacteria [11]. An alternative is using the accessory pigment phy-
cocyanin, produced by cyanobacteria but not by many other phytoplankton, as a 
proxy [10] [11] However, methods that measure phycocyanin in the lab are not 
standardized, and phycocyanin is less easily detected with remote sensing [11]. 
Another approach is the Cyanobacteria Index (CI), which uses the absorption 
feature at 681 nm to distinguish cyanobacteria from eukaryotic algae [11]. Chlo-
rophyll-a in eukaryotic algae fluoresces at 681 nm, but chlorophyll-a in cyano-
bacteria is contained in Photosystem I and does not fluoresce, so the signal at 
this wavelength is dominated by chlorophyll absorption and the difference in 
spectral shape can be quantified to determine the type of algae present [11]. 

Recently, there has been an increase in the availability of hyperspectral imag-
ing sensors, which can measure more than thirty narrow bands (usually more 
than 100 bands) to produce a complete, high-resolution spectrum. These spectra 
may reveal details that were previously invisible to sensors with fewer bands, 
opening a path to the development of new models that consider the entire spec-
trum. Kudela et al. [12] made use of a spectral shape algorithm to discriminate 
Aphanizomenon, a non-toxic genus in many waterbodies, from Microcystis in 
California lakes. The Aphanizomenon-Microcystis Index uses a ratio of the width 
of the major chlorophyll a reflectance feature to the width of the phycocyanin 
absorption feature and was developed using aerial hyperspectral imagery. The 
algorithm provides an estimate of the relative abundance of Microcystis and Apha- 
nizomenon in a pixel and was calibrated with measured cell counts [10].  

The high-resolution spectra provided by hyperspectral imaging sensors also 
suggests that other analysis techniques, such as the spectral derivative, can yield 
further details. Hunter [13] used first-derivative analysis to discriminate between 
phytoplankton color groups, although the study was not particularly focused on 
separating cyanobacterial genera [13]. The spectral derivative accentuates dif-
ferences between spectra that might not otherwise be apparent, providing a use-
ful tool for the separation of spectrally similar species. 

2. Materials and Methods 

Water and CyanoHAB samples were collected by various USGS Water Science 
Centers, and extra samples were also purchased from Carolina Biological Supply, 
Burlington, NC, a commercial biological materials company. Split samples were 
shipped to the USGS water labs in Reston, Virginia, and the National Institute of 
Standards and Technology (NIST) in Gaithersburg, Maryland. At NIST, samples 
were prepared on wet slides and imaged and analyzed on a hyperspectral micro-
scope. 

The hyperspectral microscope consists of two parts: the microscope compo-
nent is an Olympus MVX-10 microscope with an MX-2X Objective and a 1 - 4× 
magnification changer, and the hyperspectral imaging component is a Surface 
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Optics SOC-710 hyperspectral camera (Surface Optics Corporation, San Diego, 
Calif)*. The SOC-710 measures 128 spectral bands, at 4.69 nm spectral sampling 
over the 400 nm to 1000 nm spectral range. The finest spatial resolution of the 
system is on the order of 0.2 µm/pixel. Illumination was provided by three 
35-watt quartz-halogen lamps set with dichroic reflectors, with a high color tem-
perature, in order to more closely match the top-of-atmosphere (TOA) solar spec-
trum. The geometry approximates a 45˚-incident and 0˚-observation arrange-
ment. This is not a strictly defined geometry due to the lamp projection angle, 
lens collection angle, and interreflections between the sample surface and the 
objective lens. 

Surface algal samples were collected by hand or by using forceps or tweezers 
and stored in 70 mm-vials for storage and transport. Samples from commercial 
labs were collected from the top of the vial or test-tube used for shipping. Both 
commercial and field samples were opened, and large clumps of algae were re-
moved, spread over a glass slide to make as uniform a surface as possible, then 
covered with a glass cover. 

Before algal sample measurement, reference data cubes were collected from 
the reference slide placed on top of a Spectralon® disk (Labsphere, Inc., North 
Sutton, N.H.), and integration times were optimized for each desired magnifica-
tion level. Data cubes were then collected from the sample slides. Depending on 
integration time, image acquisition took between 2 and 15 minutes to complete. 
Two to ten images were collected per slide, depending on algal abundance. A 
fresh reference slide was measured after data collection was finished. Slides were 
kept out of direct light when not being measured. Data cubes were normalized 
using commercial image processing software (ENVI—Environment for Visua-
lizing Images, Harris Geospatial Solutions), Boulder, Colorado, to the reference 
data cube with the corresponding magnification and integration time. Normali-
zation to the entire reference cube (dividing each image pixel by the corres-
ponding pixel of the reference cube) eliminated some detector artifacts and noise 
that occurred in the images, especially at higher magnifications [14]. Normaliza-
tion was achieved by: 

( ) ( )1 2 3 2R s s s s= − −                       (1) 

where R is the reflectance, s1 is the sample image cube signal, s2 is the dark ref-
erence cube signal, and s3 is the white reference signal. Due to interreflections 
between the coverslip and the sample, adjacency effects, and the large degree of 
variation in cell density, the resulting reflectance was normalized to one. the ab-
solute reflectance of algae is low (on the order of 10% or less). The results re-
ported are the normalized hyperspectral image cubes in relative reflectance. Pix-
els were selected manually, as regions of interest, to represent the algal cells and 
reduce the empty background space. The spectra reported are the averages of 
over 100 pixels. The measurement error is a subject for further research and will 
address the complexities of microscopic spectroscopy. We expect the relative 
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shape of the spectra to remain consistent. 
The first derivative spectra for each sample is also available in the ScienceBase 

data release for this project (available at: https://doi.org/10.5066/P9SY4PSK). De-
rivative spectra are valuable in spectrographic studies as they often highlight 
features less apparent in zero-order spectra. The first-order derivative represents 
the rate of change of reflectance with respect to wavelength. The first-order 
spectral plot also passes through zero at the same wavelength as the peak of the 
reflectance (or absorbance) band. More importantly, similar plant species that 
have nearly identical zero-order reflectance spectra, often have unique and/or 
distinctive first-order spectra. Table 1 below shows the CyanoHAB genera iden-
tified, along with their spectral reflectance features. 

Also available are flat-field corrections for each spectral graphic. Designated 
with a “FF” in the title individual files, Flat-field correction is a calibration 
process that produces relative reflectance by dividing each pixel by a “flat” spec-
trum of low-reflectance part of the image, usually designated by a small part of 
the image known as a region of interest, or ROI. The flat spectrum is usually 
something uniform and spectrally low in reflectance, like concrete or sand. One 
of the big advantages of the flat-field correction is that produces a uniform im-
age with y-axis units in percent reflectance, which is generally required for spec-
tral libraries. 

Algal genera examined in this project and their spectral reflectance features. 
Most samples were obtained from a commercial biological supply company 
(Carolina Biological Supply, Burlington, North Carolina). 
 
Table 1. Features of selected genera of cyanobacteria spectra. 

Genera Source Reflectance features (nm) (Pk: peak, Ab: absorption) 

Aphanizomenon Field Pk: 554.9, Ab: 674.8, Pk: 701.1 

Cylindrospermum Lab Pk: 534.3, Ab: 627.6, Pk: 643.2, Ab: 674.8, Pk: 706.4 

Dolichosperm Both Pk: 529.2, Ab: 627.6, Pk: 643.2, Ab: 674.8, Pk: 706.4, Ab: 743.6 

Eucapsis Lab 
Pk: 524.1, Ab: 534.3, Pk: 544.6, Ab: 617.1, Pk: 643.2, Ab: 669.5, 
Pk: 701.1 

Gloeocapsa Lab Pk: 529.2 

Gloeotrichia Lab 
Pk: 513.8, Pk: 529.2, Ab: 565.2, Pk: 585.9, Ab: 622.3, Pk: 643.2, 
Ab: 674.6, Pk: 706.4 

Lyngbya Lab Pk: 534.3, Ab: 627.6, Pk: 648.5, Ab: 674.8, Pk: 711.7 

Merismopedia Lab Pk: 529.2, Ab: 627.6, Pk: 643.2, Ab: 674.8, Pk: 690.6 

Microcystis Both Pk: 549.8, Ab: 674.8,Pk: 685.3 

Nostoc Lab Pk: 529.2, Ab: 539.5; Pk: 549.8 

Oscillatoria Lab Pk: 534.3, Ab: 627.6, Pk: 648.5, Ab: 669.5, Pk: 711.7 

Spirulina Lab 
Pk: 529.2, Ab: 539.5, Pk: 549.8, Ab: 627.6, Pk: 643.2, Ab: 674.8, 
Pk: 701.1, Ab: 738.3, Pk: 759.6 

Tolypothrix Lab Pk: 529.2, Ab: 539.5, Ab: 627.6, Pk: 643.2, Ab: 674.8, Pk; 706.4 
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3. Results 

Cyanobacteria such as those commonly known to be CyanoHABs, are a phylum 
of single-celled bacteria that produce oxygen through photosynthesis. They are 
generally characterized by blue-green pigments (phycobiliproteins) and often 
form colonies that are linear filaments, sheets, or spheres (Figure 1).  

The following (Figures 2-6) represents a collection of hyperspectral data 
cubes, displayed as RGB images and spectral plots, of some of the most common 
forms of cyanobacteria/cyanoHABs. Hyperspectral imaging in the laboratory 
permits controlled characterization of spectral reflectance at the cellular level 
without any complication from atmospheric or other water constituents, such as 
colored dissolved organic matter (CDOM and or/detritus/sediment) interfe-
rences. Only selected examples are shown here. The full dataset of 13 HAB ge-
nera is available for download in ScienceBase at: https://doi.org/10.5066/P9SY4PSK. 
 

 
Figure 1. The hyperspectral microscope consists of two parts: 1) the microscope compo-
nent is a macro-zoom microscope with a 2× objective lens, and a 1 - 4× camera-magnifi- 
cation changer coupled with, 2) a hyperspectral imager. Source: D. Allen. 
 

  

Figure 2. Hyperspectral image and spectra of the genus Lyngbya. Lyngbya is characte-
rized by a large, reflectance with a peak around 550 nm, another around 648.5 nm, and a 
third peak at 711.7 nm. 
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Figure 3. Hyperspectral image and spectra of Gloeocapsa which is characterized by a 
similar large, broad reflectance with a peak around 535 nm. 
 

  

Figure 4. Hyperspectral image and spectra of Gloeocapsa which is characterized by a 
similar large, broad reflectance with a peak around 535 nm. 
 

  

Figure 5. Hyperspectral Image and spectra of Gloeotrichia, showing three large peaks 
between 500 nm to 700 nm. 
 

  

Figure 6. Hyperspectral image and spectra of Tolypothrix, showing two dominant peaks 
around 500 and 700 nm. 
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(d) 

Figure 7. The similar spectral reflectance of Cylindrospermum and Gloeocapsa ((a) and 
(b)). The same spectra for each species transformed into the first derivative ((c) and (d)). 
The basic spectral plots are very similar while the derivative plots are unique with resp 
Figure 7. The similar spectral reflectance of Cylindrospermum and Gloeocapsa ((a) and 
(b)). The same spectra for each species transformed into the first derivative ((c) and (d)). 
The basic spectral plots are very similar while the derivative plots are unique with respect 
to dominant features. Note: the finer features are likely representations of noise. 
 

As might be expected, some of the hyperspectral signatures from CyanoHAB 
genera are very similar with only minor variations. A common HAB is Lyngbya 
which is shown in Figure 2 along with its visible, near, infrared (VNIR) hyper-
spectral plot. The spectra were taken from the hyperspectral image on a domi-
nant patch of algae near the center of the image. 

Figure 5 and Figure 6 show the VNIR reflectance profile of two unique algae 
genera, Gloeotrichia and Tolypothrix that are generally associated with harmful 
blooms and occasional toxin production. Some species have the same basic broad 
peak but have a second smaller peak around 700 nm. Some CyanoHABs present 
very unusual variations on the basic CyanoHAB spectra such as Gloeotrichia 
and Tolypothrix where dominant peaks are located at different points in the 
spectrum. See Table 1.  

The common data transformation utilized here is the spectral derivative (see 
Figure 7). The first-order derivative is a standard spectroscopic transformation 
that plots the rate of change of absorbance or reflectance with respect to the rate 
of change with respect to wavelength. Commonly known as “rise over run”, it is 
noted as dR/dλ. Calculation of the first derivative is a common, often-practiced 
method of separating noise from signal in spectroscopic applications. In applica-
tions relating to vegetation spectra, reflectance curves of different plant species 
are often very similar and difficult to differentiate in standard reflectance libra-
ries but when the first derivative transformations are employed, individual spe-
cies have much more unique and separable spectral signatures. As shown above, 
this is also the case for the samples analyzed and can potentially be used for spe-
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cies differentiation. 

4. Summary 

In this short communication, we seek to make three basic points. First, cyano-
bacteria that comprise most CyanoHABs are composed of pigments that have 
spectrally strong signatures in the visible and near infrared (VNIR) portion of 
the spectrum and generally unique spectral signatures, in the basic reflectance, 
or first derivative transformations, at the genus taxonomic level. A second point 
is that cyanobacteria generally have distinct signatures that could allow identifi-
cation of certain types, such as Lyngbya or Dolichospermum, that are likely to 
produce toxins. Third, the growing availability of hyperspectral imagery could 
create new analytical techniques that involve stand-off, overhead remote sensing, 
augmenting in-situ and laboratory chemical analysis. 

Although this work is preliminary, it demonstrates a change in remote sensing 
where information extracted from imagery is based not only morphology, but 
also on a spectral profile. The hyperspectral imagery utilized here, although from 
a microscope, is the same electromagnetic energy that is captured by orbital plat-
forms such as DESIS and PRISMA. Measuring biology from space may soon be 
part of a changing remote sensing paradigm. 
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