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Abstract 
A novel land cover classification procedure is presented utilizing the infor-
mation content of fully polarimetric SAR images. The Cameron coherent 
target decomposition (CTD) is employed to characterize land cover pixel by 
pixel. Cameron’s CTD is employed since it provides a complete set of ele-
mentary scattering mechanisms to describe the physical properties of the 
scatterer. The novelty of the proposed land classification approach lies on the 
fact that the features used for classification are not the types of the elementary 
scatterers themselves, but the way these types of scatterers alternate from pixel 
to pixel on the SAR image. Thus, transition matrices that represent local 
Markov models are used as classification features for land cover classification. 
The classification rule employs only the most important transitions for deci-
sion making. The Frobenius inner product is employed as similarity measure. 
Ten different types of land cover are used for testing the proposed method. In 
this aspect, the classification performance is significantly high. 
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1. Introduction

Land cover classification is a very interesting field of research with numerous 
applications, among them land use and land cover changes [1] [2]. Various types 
of satellite sensors provide information for Earth land cover based on all elec-
tromagnetic spectrum bands for which the atmosphere is transparent. Micro-
wave bands give the possibility of coherent and fully polarimetric views. Specifi-
cally, synthetic aperture radar (SAR) imaging possesses such capabilities and 
constitutes a cutting edge technology regarding Earth observation, since not only 
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does it make it feasible to depict large portions of Earth’s surface in high resolu-
tion images but it also provides information regarding the target scattering cha-
racteristics. Consequently, polarimetric SAR imaging constitutes an active re-
search area with applications in land cover classification, maritime security, bor-
derline security, search and rescue missions and automatic target recognition 
(ATR) [3] [4] [5] [6] [7].  

So far, various statistical models have been used to characterize microwave 
clutter, especially in sea background, such as the Weibull pdf and the K-distribution 
[8] [9]. Such statistical approaches are mainly used in detection procedures where 
Constant False Alarm Rate (CFAR) detectors constitute the dominating approach 
[9] [10] [11]. On the other hand, compared to conventional distributions, Mar-
kov chain models provide additional correlation information between pixels other 
than 1-D distribution information. In this sense, the work in [12] is based on the 
fact that representing the clutter by means of the transition matrix of a Markov 
chain is more promising in describing the underlying clutter statistics. In that 
work, however, the number of required parameters is large, and the authors have 
used fully polarimetric data to develop a Markov chain without exploiting the 
geometric properties of the scatterers.  

In [13], the reader can find a thorough analysis of polarimetry and the most 
significant target decomposition approaches. Inherent scatterer polarimetric pro- 
perties have been exploited in SAR imagery to facilitate the detection of man- 
made objects in [14]. However, information regarding the physical structure of 
the detected objects is not provided. Automatic classification of the dominant 
scattering mechanisms associated with the pixels of polarimetric SAR images is 
carried out in [15]. Two operating scenarios are investigated. Firstly, it is as-
sumed that the polarimetric image pixels locally share the same covariance (ho-
mogeneous environment), and secondly, polarimetric pixels with different power 
levels and the same covariance structure (heterogeneous environment) are ex-
amined. In [16] for each pixel of the considered scene, the polarimetric cova-
riance matrix, the coherence matrix, and the Muller matrix are exploited whe-
reas a framework for detecting covariance symmetries within polarimetric SAR 
images is proposed. In [17], a simple modification is introduced which ensures 
that all covariance matrices in the decomposition will have nonnegative eigen-
values. CTD methods for ship detection were proposed in [18] [19] [20] where 
systematic approaches for ship detection by means of the Cameron CTD [21] 
were presented describing the dominant scattering mechanisms of sea and ships 
under different sea clutter conditions and aspect angles. In [22] the co-diagona- 
lization of the Sinclair backscattering matrix is revisited to overcome the Huy-
nen decomposition issues. Consequently, scatterer polarimetric properties are 
correctly extracted leading to the proper selection of the predominant scattering 
mechanism.  

In [23], a twofold approach is presented. Firstly, elementary scattering me-
chanisms based on Cameron CTD are employed for automatic ship scatterers 
characterization. Fully polarimetric SAR images are used for this purpose. Thus, 
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as Cameron’s CTD is a well established method for analyzing a scatterer and 
featuring its predominant geometric structure, the original fully polarimetric 
image is transformed into an image consisted of the scene geometric objects. 
Secondly, in the same work, in order to incorporate information regarding the 
distribution and the mutual statistics of the scatterers the Markov property [24] 
[25] is considered for correctly assessing the alternation among the elementary 
scatterers. Markov sequences of elementary scatterers are used as feature vector 
for ship detection. The work in [25] showed that studying the alternation of the 
elementary scatterers ships can be easily and with high reliability distinguished 
from the sea background. This approach was based on an innovative CFAR de-
tection scheme.  

In the present work, the Cameron CTD is employed to characterize land cover 
types. Each separate pixel of the fully polarimetric SAR image is represented by 
one of the elementary scatterers, which arise from Cameron CTD. However, the 
novelty of the proposed land classification approach lies on the fact that the fea-
tures used for classification are not the types of the elementary scatterers but the 
way these types of scatterers alternate from pixel to pixel on the SAR image. 
Consequently, the first order transition matrices that represent local Markov 
models are used as classification features. The Markov transition matrices em-
ploy the elementary physical scatterers as Markov states. The classification rule 
which is based on the Frobenius inner product takes into consideration only the 
most important transitions for decision making. Ten different types of land cov-
er are used for testing the proposed method. The achieved classification perfor-
mance is significantly high.  

In the experimental procedure the SNAP open source architecture for ESA 
Toolboxes [26] was employed which is ideal for exploiting Earth Observation 
data. SNAP is perfect for geo-coding and rectification using ground control 
points. The geocoded SAR images are employed to create the scattering me-
chanisms map so that full correspondence with the Google Earth maps exists.  

The paper is organized as follows. In Section 2, the Cameron CTD is de-
scribed. In Section 3, the creation of the feature for land cover classification is 
discussed by employing Markov chains. The fully polarimetric data and the ex-
perimental procedure are given in detail in Section 4. The decision rule and the 
classification performance are exposed in Section 5, while the conclusions are 
drawn in Section 6. 

2. The Cameron Decomposition 

Among various decompositions that appear in the literature [13]-[22] Cameron 
proposed a coherent one giving emphasis to elementary scattering mechanisms 
with physical meaning that are predominant in the inspected position (i.e. pixel 
in a SAR image) [21]. Two basic properties of the scatterers are exploited with 
Cameron’ coherent decomposition, reciprocity and symmetry. Reciprocity ap-
plies to all monostatic SAR systems and corresponds to a scatterer for which in 
its relevant backscattering matrix S the non-diagonal elements are pair wise 
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equal. Additionally, the property of symmetry is attributed to a reciprocal scat-
terer if it presents an axis of symmetry in the plane perpendicular to the radar 
line of sight (LOS).  

The different elementary scatterers that Cameron decomposition procedure 
discriminates based on their reciprocity and symmetry are the single bounce 
scatterer (trihedral), double bounce scatterer (dihedral), dipole, cylinder, 1/4 
wave devices and narrow diplane. Moreover, two more classes corresponding to 
non-symmetric scattering mechanisms have also to be considered as elementary 
scattering mechanisms, left and right helix. Thus, a total of eight elementary 
scatterers can be recognized by means of Cameron CTD.  

As exposed analytically in [23] Cameron decomposition transforms the back-
scattering matrix S to the backscattering vector S

�
, which is further decom-

posed into a reciprocal recŜ  and a non-reciprocal component non ec rŜ . Moreo-
ver, the reciprocal part is being further decomposed into a maximum symmetric 
component max

symŜ  and a minimum symmetric component min
symŜ . In this way the 

back-scattering vector S
�

 is given by 

( ) ( ){ }{ }n
max min

rec sym sym sym sym rec on reccos cos sin sinˆ ˆ ˆg θ τ τ θ= + +S S SS
�

     (1) 

where the tone S
�

 is replaced with Ŝ  for a normalized vector and g is the to-
tal span of the S matrix, recθ  determines the degree to which the scatterer de-
viates from the reciprocal space and symτ  determines the symmetry degree of 
the scatterer. Since the reciprocity theorem always applies it is assumed that 

rec 0θ =  and consequently Equation (1) is simplified into 

{ }max min
sym sym sym symc ˆ sin ˆosg τ τ= +S SS

�
                 (2) 

The reciprocal scatterer is considered symmetric when the target has an axis 
of symmetry in the plane perpendicular to the radar LOS. The symmetry degree 
of the scatterer expresses the degree to which S

�
 deviates from max

symS
�

. More 
specifically, if sym 0τ =  ̊ then the max

symS
�

 corresponds to a fully symmetric scat-
terer and if the angle reaches its maximum of 45˚ then it corresponds to a fully 
asymmetric scatterer. The maximum symmetric component max

symŜ  can be 
transformed into a normalized complex vector ( )ˆ zΛ  with z being referred to 
as the complex parameter that eventually determines the scattering mechanism. 
The normalized complex vector ( )ˆ zΛ  is given by 

( )
2

1
01ˆ
01

z
z

z

 
 
 =
 +  
 

Λ                       (3) 

Values of z corresponding to elementary scattering mechanisms are given in 
Table 1. 

Cameron in order to determine the scattering mechanism of each target con-
sidered the following metric [27]  

( ) ( ) ( )( )1
ref ref ref, sin min , , ,d z z d z z d z z−

− ∗ =              (4) 
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Table 1. Complex parameter z corresponding to elementary scattering mechanisms. 

Complex Parameter z Normalized Complex Vector ( )ˆ zΛ  Scattering Mechanism 

1 ( )ˆ 1Λ  Trihedral 

−1 ( )ˆ 1−Λ  Diplane 

0 ( )ˆ 0Λ  Dipole 

+1/2 ( )ˆ 1 2+Λ  Cylinder 

−1/2 ( )ˆ 1 2−Λ  Narrow Diplane 

±j ( )ˆ j±Λ  1/4 wave device 

 
where 

( )
( ) ( )

2
ref

ref 22
ref

,
1 1

z z
d z z

z z
−

−
=

+ +
                 (5) 

and 

( )
( )( )

( ) ( )

2 22* *
ref ref

ref 22
ref

1 1
,

1 1

z z z z
d z z

z z
∗

− + − −
=

+ +
             (6) 

to measure the distance of the complex parameter z of the scatterer under study 
and the reference complex parameters zref as they appear in Table 1. The super-
script * stands for complex conjugation while the symbol |…| stands for mod-
ulus of a complex number. The scattering mechanism for which the distance d in 
Equation (4) was found minimum is assigned to the scatterer under study.  

In general, flat areas like open sea environments or bare land are expected to 
dominantly present plane like scatterers leading to a low entropy environment 
making coherent target decompositions ideal for pre-processing. On the other 
hand residential areas are represented as high entropy groups of pixels characte-
rized by strong echoes. Based on Cameron’s symmetric scatterers the image that 
is obtained from fully polarimetric SAR constitutes an image of the structural 
elements of the original scene. In order to deal with the stochastic nature of the 
distribution of the scene scatterers we will exploit Cameron’s symmetric scatter-
ers, as structural elements of the discrete states of the Markov chains so as to 
classify every pixel to a specific state. For demonstration purposes the mapping 
between the elementary scatterers revealed by the above procedure and a specific 
color palette (MATLAB JET color map) is shown in Table 2. Other types of land 
decomposition can be found in [28].  

The employed fully polarimetric SAR data containing the Vancouver region 
are depicted in Figure 1. In this Figure, the original fully polarimetric SAR im-
age is presented (Figure 1(a), amplitude of HV Pol.) along with the corres-
ponding geocoded area obtained by means of the SNAP software (Figure 1(b),  
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(a)                    (b)                                 (c) 

Figure 1. (a) The original SLC image with the amplitude of the HV polarization; (b) The 
corresponding geocoded data obtained by means of the SNAP software (amplitude of the 
HV polarization); (c) The JET color map of the scatterers resulted from the Cameron de-
composition based on the geocoded data. 
 
Table 2. Cameron eight elemental scatterers color-coding. JET color map is from MATLAB 
color processing. 

Symmetric Elementary Scatterer Class Cameron Color Representation 

Trihedral 1 

 

Diplane 2 

Dipole 3 

Cylinder 4 

Narrow Diplane 5 

1/4 Wave Device 6 

Left Helix 7 

Right Helix 8 

 
amplitude of HV Pol.). The JET color map in Table 2 is used for color represen-
tation of the elementary scatterers resulted from Cameron decomposition and 
the geocoded data (Figure 1(c)). It is important to mention that the geocoded 
data are used throughout the experimental procedure for land cover classifica-
tion.  

The high-resolution fully polarimetric SAR imagery (C-band, 5.6 cm) is com-
ing from RADARSAT-2 platform with primary mission the all-weather mari-
time and land observation. The used fully polarimetric SAR imagery is of the 
Wide Fine Quad-Pol, Single Look Complex, in SLC products [29]. Each pixel of 
the four polarimetric returns is of complex value having its I and Q components 
in 16 bit representation. The nominal resolution is 13.6 × 7.6 meters with no-
minal scene size 50 × 25 Km and incidence angle range 18 to 42 degrees. The 
scene from the broader area of Vancouver depicted in Figure 1(a) is of size 7863 
× 2120 pixels. The SLC data are transformed by means of the SNAP software in-
to geocoded data in the same form i.e. all kinds of polarizations having their I 
and Q components. Geo-referenced data can be easily corresponded into Google 
Earth maps for creating the truth maps for training and testing purposes in the 
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land cover classification procedure to be followed. The size of the new SNAP 
data (Figure 1(b)) is of 4163 pixels horizontally and 3278 vertically.  

3. Feature Extraction 

In this work the proposed feature vector for polarimetric SAR land cover classi-
fication should eventually contain information not only about the type of the 
scattering mechanism dominating each pixel but also about the way the elemen-
tary scattering mechanisms are alternating from pixel to pixel. In order to model 
such a stochastic change between different scattering mechanisms, First order 
Markov Chains (FMCs) [24] are employed. Such a chain is composed of a se-
quence of states (representing the elementary scattering mechanisms) with the 
strict property that the probability to have a specific state in a specific pixel de-
pends solely on the state of the neighboring pixel i.e.  

[ ] [ ] [ ] [ ]( ) [ ] [ ]( ) /Pr | 1 , 2 , , 1 Pr | 1i j m n i j i jr k r k r k r r k r k t− − = − =�       (7) 

where , , ,i j nr r r�  stand for the different states (elementary scattering mechan-
isms), which in this work are 8, taking values from 1 to 8 and k stands for the 
spatial variable which is moving along the lines or the columns of the SAR image 
(see also Figure 2).  

A matrix T that contains all possible transition probabilities tj/i is a square ma-
trix called the transition matrix. The row i of the transition matrix T designates 
the previous state while the column j designates the next state and each of the 
rows of a Markov transition matrix add up to one. A Markov transition matrix T 
is 

1/1 /1

1/ /

q

q q q

t t

t t

 
 =  
  

T
�

� � �
�

                        (8) 

 

 

Figure 2. The transition matrices are formed by moving a specific cross-kernel (center of 
the Figure) all over the region of interest and increasing that element of the 8´8 transition 
matrix T, for which the corresponding pair of scattering mechanisms exists in the 
cross-kernel. The shape of each pixel in the geocoded data is almost square (13 × 10 m) 
and consequently horizontal and vertical neighbors can be considered equivalent and 
thus k is used to represent both directions. 
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where [ ] [ ]( )/ Pr | 1j it r k j r k i= = − =  and i, j … correspond to the different 
states. In this work the transition matrix T is 8 × 8. 

If one takes higher-order transition probabilities it can be observed that they 
will eventually converge to a constant set of values. The h-th order transition 
probabilities can be obtained as Th for a sufficiently large h. All rows of Th are 
equal to each other and they can be represented by a vector π whose elements 
are the limiting-state transition probabilities of the FMC. These limiting-state 
probabilities are constant and independent of any initial condition and as such 
they are descriptive of the FMCs, since they characterize the average probability 
of each state to appear. For a specific land cover type the transition matrix T 
possesses specific values and uniquely characterizes the type of clutter. Accor-
dingly, we are employing the transition matrix T as being the feature for classi-
fying the various types of land clutter. Eventually, the matrix T contains second 
order statistics regarding the transitions among elementary scattering mechan-
isms.  

Since the matrix in Equation (8) will be the feature to be used for land clutter 
classification, its formation is carried out by moving all over the region of inter-
est the cross-kernel shown in Figure 2. The region of interest corresponds each 
time to a specific land cover of the geocoded image during the training proce-
dure. During the testing procedure the kernel runs all over the geocoded image. 
Actually, the image with the scatterers shown in Figure 1(c) is used throughout 
the experimental procedure. For each position of the kernel the transitions 
shown in Figure 2 are recorded and the relevant elements of matrix T are in-
cremented. Actually, the kernel shows which transitions of neighboring scatter-
ing mechanisms will be recorded, specifying thus first order statistical move-
ments among the scattering mechanisms which corresponds to second order 
statistics. In this sense, the transition matrix in Equation (8) is a co-occurrence 
matrix.  

4. Polarimetric Data and Experimental Procedure 

For the experiments of this work we made use of the fully polarimetric SAR 
data from the port of Vancouver City from the broader area in Canada. They 
are of the Wide Fine Quad-Pol, Single Look Complex, in SLC products (MDA, 
RADARSAT-2). The SNAP software is employed to transform the fully polari-
metric SLC data into fully polarimetric geocoded data, which are used thereafter 
for implementing the land cover classification method. Geocoded data are di-
rectly transferred to Google Earth maps for ground truth validation. It is worth 
mentioning that the Google Earth images were acquired on June 2019, while the 
SAR data were taken on May 2016. It is expected that no serious changes have 
happened during the two acquisitions with some possibility of changes in the 
cases of industrial regions.  

The experimental procedure consists of 3 discrete steps. Firstly, ten specific 
regions each one corresponding to a different type of land cover are marked on 
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the Google Earth maps. The locations marked on the Google Earth maps auto-
matically are co-registered on the SAR imagery by means of the SNAP environ-
ment (Figure 3(a)). Secondly, the feature vector for land cover classification as it 
is given by Equation (8) is estimated for each one of the ten different types of 
land cover. Finally, feature vector classification performance is evaluated em-
ploying a large variety of different regions on the fully polarimetric geocoded 
SAR imagery.  

In Figure 3(b) segments of residential regions are marked. The small white 
square corresponds to the dense residential region with high buildings and huge 
constructions while an ordinary residential region containing mainly detached 
houses corresponds to the large white square. The remaining types of land cover 
have been selected by employing a specific smaller region of the original area 
and making use of the details that Google Earth provides.  

In Figure 4(a) is shown in white rectangle frame the region selected for stud-
ying specific land cover statistics. It is a part from the wider area of Vancouver, 
from the geocoded SAR HV representation, corresponding to suburb Tilbury, 
while its Google Earth representation is depicted in Figure 4(b). Apart from the 
dense and ordinary residential regions shown in Figure 3, the region in Figure 
4(b) contains all the rest land cover types i.e. industrial buildings, industrial 
fields, clear land, grass, low vegetation, trees, water1 and water2. Two different 
types of water surfaces were selected since they presented different reflectivity in 
the visual region of electromagnetic spectrum. The various locations from the 
geocoded SAR image have been registered by the SNAP software with the cor-
responding locations on the Google Earth map. We have to mention that the 
small white rectangle frame from Figure 4(a) with Tilbury suburb is of size 0.5 
Mpixel and is used in the rest of the paper for training our classification algo-
rithm. Testing is performed on the whole broader region of Vancouver which is 
of 14 Mpixels. 
 

   
(a)                                        (b) 

Figure 3. (a) The geocoded SAR image registered using SNAP software on the Google 
Earth map of the broader area of Vancouver. The image was obtained as the amplitude of 
the I and Q components of the HV part of the fully polarimetric data; (b) The small white 
square corresponds to the dense residential region while the large white square to an or-
dinary residential region. 
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(a)                                       (b) 

Figure 4. (a) The part in the white rectangle frame from the broader area of Vancouver 
corresponds to Tilbury suburb. It has been extracted for studying specific land cover sta-
tistics; (b) Tilbury region from Google Earth. 
 

A specific land cover was determined on the Google Earth map and is shown 
in Figure 5(a) in red. It is the low vegetation land cover type. From this Figure, 
the reader can realize that the low vegetation region has been isolated and trans-
formed into the SAR coordinates so that the pixels with low vegetation on the 
SAR data can be determined exactly. This way, the transition matrices given by 
Equation (8) can be exactly evaluated on the specific regions like the one of low 
vegetation in Figure 5(b). 

In the following all ten transition matrices evaluated according to the proce-
dure described so far are given and discussed. In each one of the Tables from 3 
to 12, have been kept only the largest of the transition probabilities which cor-
respond to 50% of the normalized transition matrix. Thus, all transition proba-
bilities that appear in each matrix sum up to approximately 0.5 or more. This 
means that 50% of the transitions happen among a few (2 to 3) of the scattering 
mechanisms. The transition matrices are given so that the reader/researcher can 
compare and/or test his own results. 

Elaborating on the importance of Tables 3-12, one can distinguish the major 
transitions between the various land cover types. For example, according to Ta-
ble 3, and taking into consideration the scattering mechanisms in Table 2, in a 
normal residential area 13% of the transitions occur between cylinder and 1/4 
wave device mechanisms (4th and 6th), 10.4% between dipole and 1/4 wave de-
vice mechanisms (3rd and 6th), 9.4% between dipole and cylinder mechanisms 
(3rd and 4th), 8.3% of the transitions concern cylinder to cylinder transitions 
(4th to 4th mechanism) and another 9% corresponds to transitions from 1/4 
wave device to 1/4 wave device (6th to 6th mechanism). Finally, a 5.1% transi-
tions occur between dipole to dipole mechanisms (3rd and 3rd).  

5. Decision Rule and Classification Performance 

The rule for deciding the type of land cover on a specific location of the SAR 
image is based on the comparison of the transition matrix on this location with 
all 10 transition matrices given in Tables 3-12 corresponding to the 10 different  
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(a)                                       (b) 

Figure 5. (a) The region of Tilbury being marked with red for the land cover type with 
low vegetation; (b) Low vegetation land cover isolated on the SAR image. 

 
Table 3. Transition matrix for the normal residential area (×10−3). 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 51 47 0 52 0 0 

0 0 47 83 0 63 0 0 

0 0 0 0 0 0 0 0 

0 0 52 63 0 90 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 4. Transition matrix for the dense residential area (×10−3). 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 66 0 0 59 0 0 

0 0 0 37 0 40 0 0 

0 0 0 0 0 39 0 0 

0 0 59 40 39 96 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 5. Transition matrix for the clear land area (×10−3). 

106 0 0 110 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 35 0 0 0 0 

110 0 35 140 0 61 0 0 

0 0 0 0 0 0 0 0 

0 0 0 61 0 40 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
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Table 6. Transition matrix for the Grass area (×10−3). 

0 0 0 39 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 36 0 45 0 0 

39 0 36 96 0 60 0 0 

0 0 0 0 0 0 0 0 

0 0 45 60 0 90 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 7. Transition matrix for the industrial buildings area (×10−3). 

0 0 0 36 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 44 0 51 0 0 

36 0 44 88 0 60 0 0 

0 0 0 0 0 0 0 0 

0 0 51 60 0 90 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 8. Transition matrix for the industrial fields area (×10−3). 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 47 0 0 50 0 0 

0 0 0 81 0 55 0 0 

0 0 0 0 0 31 0 0 

0 0 50 55 31 80 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 9. Transition matrix for the low vegetation area (×10−3). 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 40 45 0 52 0 0 

0 0 45 75 0 66 0 0 

0 0 0 0 0 0 0 0 

0 0 52 66 0 96 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
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Table 10. Transition matrix for the trees area (×10−3). 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 46 38 0 64 0 0 

0 0 38 63 0 59 0 0 

0 0 0 0 0 0 0 0 

0 0 64 59 0 101 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 11. Transition matrix for the water1 area (×10−3). 

435 0 10 159 0 29 0 0 

0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 

159 0 0 88 0 20 0 0 

0 0 0 0 0 0 0 0 

29 0 0 20 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
Table 12. Transition matrix for the water2 area (×10−3). 

475 0 0 147 0 33 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

147 0 0 62 0 20 0 0 

0 0 0 0 0 0 0 0 

33 0 0 20 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
land cover types. The evaluation of the transition matrix on each location of the 
SAR image is based on the values of a sliding window all over the geocoded SAR 
image containing the elementary scatterers. Two different sizes of the sliding 
window were selected one of size 11 × 11 pixels and the other 25 × 25. The first 
one contains according to Figure 2, 324 transitions while the second one 2116, 
which gives the capability to obtain no-sparse transition matrices.  

The comparison of the transition matrix in a specific location with the rest 10 
corresponding to the different land types is carried out by point-to-point mul-
tiplication and addition of the products. This type of multiplication is actually a 
kind of 'inner product' between two transition matrices A and B or a similarity 
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measure and is met in mathematics as the Frobenius inner product , FA B . 
This similarity measure is quite robust since in the original ten transition ma-
trices in Tables 3-12, only the most important transitions have been kept, ze-
roing the rest of the elements. Accordingly, the non-important transitions do 
not affect the final “inner product” of the two matrices. We decide that in a spe-
cific location of the SAR image we have the ith land cover if the Frobenius inner 
product of the corresponding transition matrix A with the local transition ma-
trix B is maximum: 

 land cover localmax ,ith Fi
A B                      (9) 

The experimental procedure has been encoded in a block diagram shown in 
Figure 6. It starts with two sources of information i.e. the geocoded SAR data 
converted to the scatterers image as well as the corresponding optical data. The 
selection of the various types of land cover is carried out on the optical image. 
Registration follows which is a prerequisite for the training procedure i.e. the 
determination of the transition matrices corresponding to different types of land 
cover. The classification procedure based on the Frobenius norm follows. 

The decision rule in Equation (9) was applied for every pixel on the scatterers 
image (Figure 1(c)), using the sliding windows 11 × 11 and 25 × 25. The visua-
lization of the experimental results is given in color in Figure 7 and Figure 8.  
 

 

Figure 6. Block diagram of the experimental procedure. Geocoded SAR and Google map 
data have been automatically co-register by means of SNAP software. Training is based 
on selected land cover types. The classification procedure follows. 

https://doi.org/10.4236/ars.2021.103003


G. Koukiou, V. Anastassopoulos 
 

 

DOI: 10.4236/ars.2021.103003 61 Advances in Remote Sensing 
 

 

Figure 7. (a) Classification results in color with sliding window having width 11 × 11; 
(b) Classification results in color with sliding window having width 25 × 25; (c) Color 
map for pseudo color representation of the 10 land cover types (JET color map from 
MATLAB). 
 

   
(a)                                       (b) 

Figure 8. Classification results on the region of Tilbury (a); The geocoded SAR image (b) 
classification results with sliding widow 25 × 25. 
 
The JET color map from MATLAB has been employed for pseudo color repre-
sentation. In Figure 7 are given the classification results obtained from the 
whole region of Vancouver. In Figure 7(a) are presented the classification re-
sults with sliding window 11 × 11 while in Figure 7(b) are given the classifica-
tion results with sliding window 25 × 25. The color map for pseudo color repre-
sentation of the 10 land cover types is given in Figure 7(c). The water corres-
ponds to the two last matrices and consequently is represented by red. The clas-
sification success for regions covered by water approaches 100% and this is ex-
pected since the water reflectance contains a dominating transition from scat-
tering mechanism 1 to scattering mechanism 1, which exists also in clear land 
cover but in much less percentage.  

Land cover classification results are provided in Table 13. These results are 
obtained comparing the local transition matrix with the transition matrices in 
Tables 3-12. We have to mention that the two approaches (two sliding win-
dows) present each one an advantage and a disadvantage. Namely, for the large 
window the classification results are not accurate at the boundaries of different 
land cover types, while the classification success is high inside a specific land 
cover. For the small window classification success is lower inside the region of a 
specific land cover but more accurate at the boundaries between regions. The  
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Table 13. Classification success for the various types of land cover. Percentage with re-
spect to the truth land cover map. 

 Land Cover type 
Classification Success 

Sliding window 11 × 11 
Classification Success 

Sliding window 25 × 25 

1 Normal residential 83 92 

2 Dense residential 79 86 

3 Clear land 93 97 

4 Grass 83 86 

5 Industrial buildings 80 83 

6 Industrial fields 79 86 

7 Low vegetation 72 82 

8 Trees 76 80 

9 Water1 96 99 

10 Water2 96 99 

 
classification results in Table 13 refer to cases where the sliding windows lies 
totally inside a specific land cover. According to these results water and clear 
land present the maximum classification separability. This is expected due to the 
high components in the transition matrix regarding the transitions from scat-
tering mechanism 1 to scattering mechanism 1. The rest land cover types present 
very good classification separability with the lowest separability between low ve-
getation and trees areas. Accordingly, water areas in Table 11 and Table 12 dif-
fer from the rest cover types having prominent components t1/1, t4/1 and t1/4. 
Clear Land corresponding to Table 5, presents high values at t1/1, t4/1 and t1/4 but 
also in t4/4. These components are not as large as in case of water cover. Dense 
residential area presents transitions among scattering mechanisms 3, 4 and 6. 
While normal residential area presents transitions among scattering mechanisms 
3 and 6 and separately among 4 and 5. Only, grass area presents components in 
t1/4 and t4/1 and simultaneously in t6/3 and t3/6. In contrary, industrial buildings 
land cover presents transitions only in t1/4 and t4/1, while industrial fields does 
not. Finally, low vegetation and trees land cover types seem to be the same dif-
fering only slightly in the values of the diagonal elements of the matrix T.  

Classification results are also presented in Figure 8 for the region of Tilbury. 
The region of Tilbury was employed in the previous section in order to imple-
ment the training procedure by creating the 10 transition matrices in Tables 
3-12. Actually, the 10 land cover types and the corresponding transition matric-
es constitute the knowledge of our classification procedure to discriminate dif-
ferent land cover types. Consequently, the classification performance in the re-
gion of Tilbury is higher compared to the results in Table 13. 

It is worth mentioning that the sliding window is used in order to evaluate the 
transition matrix and not for segmentation purposes, i.e. the segmentation per-
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formance of the sliding window is not considered. The sliding window should be 
quite large so that the transition matrix evaluated by means of the type of scat-
terers located inside it is well populated. According to the obtained classification 
results, 25 × 25 is a minimal size for the experiments and performs with high 
accuracy in estimating the transition matrix. An automatic algorithm for select-
ing the proper size of the sliding window requires prior knowledge of the boun-
daries of the different regions.  

We have to mention that the training data were extracted from the small re-
gion of Tilbury, which was of size 0.5 Mpixel. The testing was performed using 
all the area of Vancouver region, which was much larger i.e. 14 Mpixels. Conse-
quently, the testing is carried out in a much larger area and thus the classifica-
tion results obtained are highly reliable.  

6. Conclusions 

Land cover classification was carried out in this work by mean of two powerful 
tools, namely: Cameron coherent target decomposition to represent each pixel of 
the SAR image with an elementary scattering mechanism and Markov chain 
models to record the alternation from scattering mechanism to scattering me-
chanism along the image. This combination constitutes actually the novelty of 
the proposed approach. The transition matrices corresponding to the Markov 
models constitute the feature classification tool.  

Using only the most important transitions in each matrix for decision making, 
the Frobenius inner product was employed as a similarity measure. The classifi-
cation performance was assessed using ten different land cover types extracted 
from the broader region of Vancouver. In order to perform correct registration 
with Google Earth maps the SNAP software was employed so that geocoded SAR 
data are used for carrying out the classification procedure. The experimental re-
sults demonstrate that the selected feature achieves successful classification per-
formance in all types of land cover. The transition matrices corresponding to 
these types of land cover are given in the manuscript for the reader to be able to 
test his results. The classification performance is over 80% in almost all cases of 
land cover when the sliding window with width 25 × 25 is used. Additionally, a 
file containing the scattering mechanisms for every pixel on the Vancouver area 
is provided in a specific domain in the Web with corresponding numbers those 
shown in the Table 2. 

The relevant work continues along the lines towards two different directions, 
namely: 1) the use of more complicated scattering representations for each SAR 
pixel; and 2) the employment of dynamic tools for vector formation as the Hy-
den Markov Models are.  
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