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Abstract 
Peanut oil oxidation was to monitor and quantify combining synchronous 
fluorescence spectroscopy and chemometrics. Peanut oil was subjected to an 
accelerated oxidation testing. The spectral and related chemical indicators 
were caught during oxidation induce testing. Fluorescence spectra were 
gained for each sample with simultaneous excitation from 200 to 800 nm and 
the offsets (Δλ) of 10 to 180 nm during the oxidation process. The results 
showed the induce period (IP) of the peanut oil was 16.45 h. Parallel factor 
analysis (PARAFAC) was performed to select the best Δλ interval of 70 nm, 
which spectral data was the most suitable for interval partial least square 
(iPLS) and synergy interval PLS (siPLS) modeling and forecast. The study 
presented all interval selection methods had the better results than the global 
spectrum modelling. iPLS reached the best into 10 intervals with a ratio of 
prediction to deviation (RPD) of 2.10. siPLS that separated the whole spec-
trum into 15 intervals and combined the third intervals (282 to 320 nm, 362 
to 400 nm, and 761 to 800 nm) had a ratio of RPD of 2.26. The results showed 
the optimal siPLS model performed a little better than iPLS. The established 
model lying on interval selection could improve the prediction accuracy. It 
could provide a quick, accurate method to monitor oil oxidation process. 

Keywords 
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1. Introduction

Peanut oil is one of the most sought-after edible oil in China. Oxidation of lipids 
also occurs in oil in the processing and storage [1]. However, the monitoring of 
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oil quality is a complex analytical challenge. Therefore, various detection me-
thods have been proposed to assess the oil quality [2], such as determining the 
acid and peroxide values related to the oxidation state by chromatography [3], 
sensory evaluation [4], and physicochemical method [5]. However, most of the 
methods not only require expensive instruments with tedious chemical proce-
dures but also are time-consuming and even have danger [6] [7]. Thus, a fast 
and non-destructive method is in high demand. 

With characteristics of fast, sensitivity and simplicity, synchronous fluores-
cence spectroscopy has been used successfully for detection of adulteration [8] 
[9] and is preferable for the multivariate quantitative analysis in real-time [10]. 
To increase the accuracy of prediction, different chemometrics analyses have 
been applied to choose the spectral region of the model for optimization [11]. 
Principal component analysis (PCA), a multivariate projection method is used 
for the interpretation the differences between oil samples by scores plots of prin-
cipal components [12] [13] [14]. Parallel factor analysis (PARAFAC) is a very 
widespread method to decompose multi-way data into their underlying chemical 
components [15] [16]. It had a good application in evaluating oil quality based 
on pattern recognition method [17]. Another matter deserving attention is in-
terval partial least square (iPLS) and synergy interval PLS (siPLS). As reported, 
the two methods established model optimized by selected subinterval achieved 
the best prediction effect rather than the model based on full-spectrum informa-
tion associated with chemical test value [18] [19] [20].  

Despite the helpful evaluation ability of these detection methods for oil quali-
ty, this project was to use several methods to build a robust and reliable predic-
tive model for monitoring changes occurring oxidation in time. 

2. Experimental 
2.1. Sample Preparation 

Sample peanut oil purchased from a local grain and oil shop in the study. Oil 
samples were been heated at 90˚C under oil oxidation stabilizer (VELP Oxitest, 
Italy) for testing. Each sample was examined for synchronous fluorescence spec-
troscopy and peroxide value (PV) every hour. 

2.2. Fluorescence Measurements 

Fluorescence landscapes were acquired by spectrofluorometer (Car Eclipse, Va-
rian) with a 1 cm quartz cuvette. The excitation wavelengths (Ex) was ranged 
from 200 to 800 nm with 5 nm increments. Synchronous fluorescence spectra 
for each sample were collected by simultaneously scanning the excitation and 
the emission monochromators with different offsets (Δλ) from 10 to 180 nm. 
Spectra were recorded three times every sample. 

2.3. Statistical Analysis 

The synchronous fluorescence spectrum consist of three-dimensional data, fluo-
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rescence intensity, excitation wavelength and Δλ. PARAFAC was well used to 
select the best Δλ interval by a loading score to decompose trilinear multi-way 
data arrays [21].  

iPLS and siPLS model were performed in order to relate the fluorescence in-
tensity of oils with oxidation components through interval selection. In the 
present study, the global spectrum was sectioned into non-overlapping equidis-
tant intervals of 10, 15, 20, 30 and 35, respectively. For siPLS, the PLS regression 
was applied for all possible combinations of 2, 3 and 4 subintervals, respectively. 
For the two established models, the optimal interval was evaluated by analyzing 
different factors, like the root means square error of cross-validation (RMSECV) 
and the ratio of prediction to deviation (RPD) [7] [22]. All analysis was con-
ducted using the software Matlab R 2014a. 

3. Results and Discussion 
3.1. The Landscapes of the Fluorescence Spectrum 

Figure 1 showed the effect of different oxidation time on 3D spectra of oils. The 
maps consisted of three parts, X-axis, Y-axis and Z-axis, which represented the 
excitation wavelength, the Δλ interval and the fluorescence intensity, respective-
ly. The 3D spectra often facilitated the qualitative analysis of the fluorescence 
patterns. From Figure 1(a), the fresh peanut oil had a very high-intensity peak 
in the region of 20 to 150 nm and 300 to 400 nm for Δλ and Ex, respectively. The 
peak presumably included tocopherols and phenolic antioxidants that were un-
stable during oxidation [23] [24]. In Figure 1(b), the spectra in oxidation induce 
condition at 16.34 h exhibited a high-intensity change. The significant changes 
in the fluorescence intensity were mainly due to the first oxidation products, 
such as the variety of hydro-peroxide. However, oil after oxidation induce 
showed a relatively great change in intensity. Because the AV increased significantly  
 

   
(a)                                       (b) 

   
(c)                                       (d) 

Figure 1. 3D spectra of peanut oil with different oxidation periods. (a) Fresh oil, (b) 
Oxidation induce period, (c) Oxidation for 24 h, (d) Oxidation for 36 h. 
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and formed some second-order oxidation products, e.g. ketones, aldehydes and 
carboxyl-compound [25] [26]. Then the color of the spectra did not deepen until 
stable compounds were produced by free radicals. The results showed all the 
changes of the synchronous fluorescence spectrum were highly correlated with 
the chemical parameters in the study.  

3.2. PARAFAC Analysis 

As reported, the PARAFAC method is a powerful tool for dealing with mul-
ti-way datasets in underlying structures [16]. The PARAFAC method was to se-
lect the optimal Δλ interval. At first, the appropriate number of components 
must be caught with the sum of the squared error, which was shown in Figure 2. 
As in Figure 2(a), the sum of the squared error for the sixth component was less 
than that for the fifth and seventh components. Another way, the eighth com-
ponent model is also suitable for the PARAFAC algorithm. But according to 
previous literature reports, the fewer component (i.e., 6) was much more ade-
quate [27]. Figure 2(b) showed the loading score for the Δλ interval values 
based on 6 components. The result showed the Δλ interval of 70 nm had the 
maximum loading score. 

3.3. Analysis of the Decomposed Fluorescence Spectroscopy 

As shown in Figure 3, the spectra (Δλ = 70 nm) was selected by the PARAFAC 
method and the different regions of taking particular information for each oxi-
dation period. Prior to oxidation (fresh oil, Figure 3), the excitation spectra got 
a very high-intensity peak near 350 nm. According to literature, this excitation 
band was related to tocopherol, polyphenol, which was by that detected by Gu et 
al. [1]. In oxidation induce period, the intensity of the new peak was appeared 
with excitation ranges from 350 to 450 nm. Signals were attributed to the conti-
nuous oxidation products. The other two areas centered at 400 to 550 nm may 
be produced by hydro-peroxides, which may explain the oxidation state [24]. 
The intensity changed are likely caused the same reason as reported by Gu et al. 
[17]. 
 

  
(a)                                        (b) 

Figure 2. (a) Sum of squared error at different components, (b) Excitation loadings at 
different Δλ interval. 
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Figure 3. 2D spectrum evolution during different oxidation period. 

3.4. iPLS Analysis Model 

The global spectrum with 200 to 800 nm was sectioned into 10, 15, 20, 25 and 30 
subintervals and the models were compared to select the best one through iPLS. 
Table 1 showed all the optimal iPLS models results. From Table 1, the result ve-
rified the sub interval number had an impact on the iPLS modelling and the 
iPLS model with 10 subintervals seemed more robust. The RPD of the model 
was 2.10, which indicated a good quantitative model [28] [29]. Meanwhile, mod-
els with RMSEP/RMSECV below 1.2 were generally considered much more ro-
bust [30] [31].  

Figure 4 showed the expected prediction error (RMSECV) of iPLS with the 10 
subintervals and the global model (horizontal black line) plotted together with a 
normalised mean spectrum. In the figure, the heights of the rectangles represent 
RMSECV of PLS model in each subinterval, and the horizontal line corresponds 
to RMSECV of the global model. As seen in Table 1 and Figure 4, each model 
performed better than the global model among all items. But only 4th subinter-
val with 10 sectioned was the best due to the lowest RMSECV of 0.392 and the 
selected wavelength located range 382 to 440 nm (Table 1). The variables cor-
responded well to the oxidation product, which made the result mode more in-
terpretative. 

3.5. siPLS Analysis Model 

siPLS combined the same interval division as the iPLS, and the synergy interval 
number was set to 2, 3 and 4. The prediction results of each model were given in 
Table 2. In Table 2, both divisions and synergic subintervals affected siPLS 
model. Similarly, all models had better prediction results than the global model 
(Figure 4). Particularly, among all the resultant models, the siPLS model, di-
vided into 15 subintervals with three subintervals [3] [5] [15] achieved the best 
prediction accuracy. The wavelength ranges were chosen 282 - 320 nm, 362 - 400 
nm, 761 - 800 nm, respectively. Comparing the two models, the selected siPLS 
model was better than the optimized iPLS model above, owing to its lower 
RMSEP/RMSECV of 1.05 and the higher RPD 2.26. 
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Figure 4. RMSECV for 10 interval models obtained for each local PLS model and for the 
global model (horizontal black line) using iPLS with latent variables (italic numbers in-
side rectangles). 
 
Table 1. Quantification results form iPLS model. 

Section PLS component Optimal band RMSECV RMSEP RMSEP/RMSECV RPD 

10 4 382 - 440 0.392 0.330 0.84 2.10 

15 5 362 - 400 0.460 0.486 1.05 1.57 

20 7 382 - 410 0.435 0.384 0.88 1.91 

25 8 370 - 392 0.471 0.369 0.78 2.09 

30 10 382 - 400 0.477 0.691 1.24 1.31 

 
Table 2. Optimal results of siPLS modelling. 

Section PLS component Interval number RMSECV RMSEP RMSEP/RMSECV RPD 

10 

6 [4 7] 0.401 0.435 1.08 1.65 

4 [4 7 10] 0.396 0.351 0.87 2.06 

4 [4 7 8 10] 0.401 0.346 0.86 2.18 

15 

5 [5 15] 0.352 0.377 1.07 2.18 

5 [3 5 15] 0.348 0.367 1.05 2.26 

5 [3 5 10 15] 0.352 0.365 1.04 2.18 

20 

6 [7 14] 0.371 0.365 0.98 1.79 

8 [3 7 13] 0.360 0.447 1.24 1.74 

8 [3 7 12 13] 0.362 0.449 1.24 1.49 

25 

5 [5 8] 0.377 0.461 1.22 1.48 

5 [5 8 10] 0.359 0.485 1.35 1.35 

5 [5 8 17 20] 0.355 0.484 1.36 1.34 

30 

4 [10 30] 0.360 0.399 1.11 1.76 

8 [2 10 30] 0.271 0.217 0.80 1.95 

10 [2 4 10 30] 0.226 0.275 1.21 2.04 
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(a)                                        (b) 

Figure 5. (a) Predicted vs measured plot for the selected iPLS model, (b) A corresponding 
plot from a siPLS model with 15 subdivisions optimisation. In the plot, C denotes 
cross-validated predictions, and T denotes the independent test set predictions. 
 

Figure 5 showed the scatter plot of the iPLS model with 4 components and 
the siPLS with 15 subdivisions model in the calibration and prediction sets. Ob-
viously, siPLS model had a closer cluster of samples along the reference line than 
that of iPLS model. In addition, the siPLS method was preferable when there 
were multiple characteristic bands related to components of the samples of in-
terest [7]. 

4. Conclusion 

Combined methods of fluorescence spectroscopy with chemometrics analysis 
acquired in the present study revealed it is feasible to evaluate the evolution of 
oil oxidation at any required time with fluorescence devices. Based on the syn-
chronous fluorescence spectrum, the best Δλ interval was 70 nm by PARAFAC. 
The spectral data dealing with PARAFAC for siPLS with 15 intervals and iPLS 
with 4 components achieve high prediction accuracy, respectively. The selected 
siPLS model with an RPD of 2.067, and the relevant band of 282 - 320 nm, 362 - 
400 nm, 761 - 800 nm. For iPLS model had the RPD of 2.07 and extracted the 
band of 380 - 440 nm. siPLS outperformed iPLS modelling because the former 
had a higher RPD and captured more relevant variables. The results suggest the 
proposed model is well used to monitor oil oxidation in time. Furthermore, the 
future work is the validation of the methodology with variety of oil samples to 
provide a more reliable model. 
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