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Abstract 
This paper develops a simulation-based model to derive critical maintenance 
parameters towards optimizing a deep drilling rig availability and mainten-
ance costs. Full factorial analysis is performed to derive the effects and inte-
ractions of the derived parameters, based on which ones with a significant ef-
fect on the availability and maintenance cost are selected. The case study 
based model incorporates maintenance, spares and workforce strategies for a 
geothermal drilling rig. The results offer essential maintenance decision sup-
port to both the management and maintenance team of the company and 
have the potential of further offering insights that eventually reduce the cost 
of drilling. 
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1. Introduction
1.1. Background

Drilling is a significant operation in geothermal energy production. Geothermal 
energy is realized by tapping the underground steam by employing deep drilling 
rigs. The productivity and output of the geothermal plant, therefore, depends on 
the reliability of the drilling rig equipment and related support systems. A de-
cline in the drilling rig reliability due to downtime or non-productive time can 
be attributed to two main factors: firstly, high non-productive time (NPT) can 
be occasioned by both operational and maintenance aspects. Secondly, NPT can 
be caused by external factors like the rock structure that could necessitate even 
the abandonment of a well. A critical contributor to NPT has been evidenced to 

How to cite this paper: Mburu, S. M., 
Wakiru, J. M., Muchiri, P. N., & Pintelon, 
L. (2021). Maintenance Impact on Geother-
mal Drilling Operations. A Case Study Ap-
proach. American Journal of Industrial and 
Business Management, 11, 183-201. 
https://doi.org/10.4236/ajibm.2021.112012 

Received: January 3, 2021 
Accepted: February 20, 2021 
Published: February 23, 2021 

Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ajibm
https://doi.org/10.4236/ajibm.2021.112012
https://www.scirp.org/
https://doi.org/10.4236/ajibm.2021.112012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S. M. Mburu et al. 
 

 

DOI: 10.4236/ajibm.2021.112012 184 American Journal of Industrial and Business Management 
 

retain maintenance-related downtime occasioned by both failure of the equip-
ment and subsequent maintenance interventions.  

A growing body of literature recognizes the significant adverse impact of 
maintenance-related downtime on plants or asset availability and profitability 
(Wakiru, Pintelon, Muchiri, & Chemweno, 2019b; Wakiru, Pintelon, Muchiri, 
Chemweno, & Mburu, 2020; Wakiru, Pintelon, Muchiri, & Chemweno, 2020; 
Tambe & Kulkarni, 2016). Such downtime primarily due to unforeseen failures, 
in many cases, would require additional unplanned resources like contracted 
service maintenance, which may also increase the downtime due to extended lo-
gistical requirements. An inherent characteristic of geothermal operations re-
tains the remote locations of the operational sites, which may significantly con-
tribute to extending the downtime due to logistical challenges. The remote loca-
tion also extends lead times for spares required for maintenance. Together, these 
challenges significantly impact rig availability (Ar), while affecting its profitabili-
ty and eventually increasing the steam production cost (Elevli & Elevli, 2010). 
These factors subsequently raise the cost of electricity.   

It is argued that various parameters can be optimized towards reducing the 
downtimes and operational delays termed as the non-productive activities to 
warrant high availability and utilization, and consequently higher productivities 
and subsequently lower costs (Kansake & Suglo, 2015). Maintenance has a sig-
nificant role in mitigating downtime directly caused by failure and maintenance 
related to various subsystems in a drilling rig. 

1.2. Notations 

Throughout this paper, the following notations as illustrated in Table 1 are used: 

1.3. Study Aim and Motivation for the Research 

The world is moving towards green energy, where Kenya has been increasingly 
stepping towards this direction of generation of green energy. Driven by the 
need to increase the reliance on cost-effective sources of energy, Geothermal  
 
Table 1. Notations adopted in the paper. 

Response variables Description 

rA  Rig availability (%) 

mC  Annual rig maintenance cost (€) 

Model parameters  

PMT  PM interval (Hours) 

rplη  Replace utilization (%) 

rprη  Repair utilization (%) 

dEL  Number of day shift engineers 

nEL  Number of night shift engineers 

dTL  Number of day shift technicians 

nTL  Number of night shift technicians 
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Development Company (GDC) was formed to spearhead the development of 
geothermal energy in the region. The company owns seven deep drilling rigs 
that have been commissioned to explore and drill geothermal wells for power 
generation intensively. GDC has a maintenance team that provides in-house 
maintenance while some specialized equipment where the maintenance person-
nel is inadequate to have been on contract service management. The effective 
maintenance policies employed are corrective due to unplanned failures and 
preventive block replacement. However, due to normal wear and tear, some-
times inadequate maintenance, and environmental effects, the rig equipment 
frequently fails and adversely affects the drill availability and maintenance cost. 
It is clear that according to Nyota & Murigu (2016), only 6% of the total drilling 
time was incurred as NPT for wells drilled in Olkaria, Kenya.  

However, for the well under study, 6% of all the drilling time was solely main-
tenance-related NPT. From the graph in Figure 1, the deviation from the 
planned drilling days shows that non-productive activities majorly caused the 
deviation. The NPTs that resulted in extended drilling duration as shown in  
 

 
Figure 1. Sample planned drilling duration vs actual drilling durations. 
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Figure 1 were drilling string sticking in the formation, time consuming fishing 
operation, lost time due to extended drilling materials lead time, long time taken 
to avail spares, unprecedented equipment failure, and untimely decision making. 
The flat curve between day 83 and day 212 was highly contributed by the drill 
string being stuck onto the formation as well as lead time on sourcing for fishing 
tools to work on the stuck string. 

Moreover, due to the drilling rigs 24-hour operations, the scheduling of 
maintenance personnel in the two-shift often leads to downtime primarily when 
failure requiring certain skilled personnel occurs when the resource is unavaila-
ble. This signifies that addressing failure, maintenance and workforce scheduling 
of the drilling rig equipment; significant improvement can be realized, hence the 
need for this research in drilling rig maintenance.  

Failure of the drilling rig equipment portends various risks. Among them in-
cludes increased maintenance cost due to running operational contracts, loss of 
revenue due to lack of stem for sale, long drilling duration, which inevitably 
leads to high drilling costs, drilling string sticking in the formation, expensive 
fishing operations, and loss of wells. Moreover, the primary failure of drilling rig 
equipment has the potential to propagate and lead to secondary failure on a 
piece of different equipment. For instance, when the power units fail, rotation is 
unavailable, and in this case, the outflow of drilling fluids is not right, hence 
sticking would be inevitable. Furthermore, when sticking occurs, the actions fol-
lowing might be fishing operations; these operations are expensive and would 
result in the cost of drilling shooting up. This could as well lead to sidetracking 
of the drilling, which means that the original drilled well profile necessitates be-
ing abandoned. In extreme cases that have happened is abandoning the well al-
together, which ultimately would result in lost investments and time.  

Optimizing maintenance would, therefore, assist in preventing the above from 
happening and thus improves the rig availability, while reducing the mainten-
ance cost. When optimizing maintenance, it would also be prudent to consider 
the impact of maintenance activities on the reliability of the equipment, which 
affects the availability and system performance. A recent study that included the 
case study company (Company D) while deriving critical maintenance objec-
tives, identified availability, maintenance scheduling and logistics support as 
critical (Wakiru, Pintelon, Muchiri, & Chemweno, 2019a). The identified objec-
tives signify the importance of addressing the rig availability within the premise 
of the logistical and scheduling constraints of operations. By improving reliabil-
ity, the failures would reduce, and the overall life of the equipment would be 
improved; hence a balance must be achieved on the spare replacement and other 
maintenance actions like repair. Work in this area is extensive but is primarily 
concerned with the maintenance and spares policies, and often disregard the 
impact of workforce or workforce on the system performance. 

The main objective of this study is to investigate the effectiveness of the cur-
rent maintenance policies and the workforce schedule in place. The present 
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study seeks to identify the critical maintenance and workforce scheduling para-
meters, which, when focused on, results in optimized drilling rig availability and 
reduced maintenance cost. To the best of the authors’ knowledge, this is the first 
study that optimizes maintenance, spares and workforce strategies simulta-
neously. 

The next sections of this study are as follows. In Section 2, we review relevant 
literature, while in Section 3, the methodology followed is outlined. Section 4 
presents the results, and Section 5 offers a discussion with managerial implica-
tions. Lastly, Section 5 concludes and provides future research suggestions. 

2. Relevant Literature Review 

Maintenance refers to the activities that are necessary to keep or restore equip-
ment to a specified operating condition. These activities aim to maximize 
equipment availability in a specified operating condition, which allows the reali-
zation of the desired output concerning quality and quantity. The outputs have 
to be realized cost-effectively and conform to the stipulated safety and environ-
mental regulations (Pintelon & Gelders, 1992). To achieve effective maintenance 
management towards optimizing the performance of the plant, two critical as-
pects require to be considered: maintenance planning and workforce scheduling 
also corroborated by Jia & Zhang (2020).   

Maintenance planning involves articulating the maintenance policies that are 
effective in mitigating equipment reliability and failures. It is crucial and essen-
tial for continuity of operations and a clear understanding of the maintenance 
management program (Dhillon, 2002). Relevant policies in this research are 
preventive (PM), corrective (CM) and condition-based maintenance (CBM). 
CBM is intertwined with predictive maintenance (PdM) and prognostics and 
health management (PHM). CBM is defined as a decision-making strategy that 
considers the condition of the system or the component to decide on performing 
maintenance. PM is the action performed on a time or machine run based sche-
dule that detects a defect, preclude, or mitigate degradation of a component or 
system to sustain or extend its useful life through controlling degradation to an 
acceptable level (Sullivan, Pugh, Melendez, & Hunt, 2010). Corrective mainten-
ance is the predominant naturally occurring maintenance policy, which is em-
ployed following the failure of the components in a system. Various mainten-
ance activities subsumed in the CM policy are described in detail in the ISO 
14224 (2016) and include a replacement, repair, adjustment, among others. A 
significant number of research considering corrective maintenance often relies 
on the replacement to attain the state “as good as new” or combine replacement 
and minor repair, where the state “as bad as old” is attained (Dijoux, Fouladirad, 
& Nguyen, 2016). However, in real life, other maintenance activities like adjust-
ing are often employed, hence disregarding them would lead to suboptimal 
maintenance solutions. 

Workforce or labor planning and scheduling are essential for the success of 
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maintenance management. Alfares (2003) categorizes workforce scheduling into 
three categories. The first category entails the workforce shift, time-of-day 
schedule, while the second retains a day-of-week schedule and, lastly, a tour 
schedule, a hybrid of the first two categories. An effective human resources plan 
provides various mechanisms designed to get rid of talent gaps, which may exist 
between the organization’s supply of labor and its demand for the same in the 
plant operational context. For an organization to have an adequate workforce for 
maintenance activities, there ought to be sufficient planning considering the 
various maintenance requirements, time and operational demand. The planning 
enables the organization to have the right skills as well as the right labor distri-
bution. It is therefore essential to optimize the time of the technical maintenance 
staff as it influences the overall productivity and maintenance efficiency. The 
implementation of continuous system monitoring and the analyses of planned, 
scheduled and completed maintenance tasks significantly improves equipment 
availability and cost reduction. Several studies have been done in this line of 
workforce scheduling which includes Al-Shayea (2012), Alshareef & Saber 
(2018), and Emovon, Lilly, & Ogaji (2012). As also corroborated by Alshareef & 
Saber (2018), the evaluation of the impact of the technical personnel (number 
and schedule) on the plant availability and overall cost of maintenance has sel-
dom been done. Moreover, the schedule optimized in these studies disregards 
the randomness introduced by failure and different probabilistic maintenance 
interventions demands that directly interrupt the schedules. This research, 
therefore, seeks to find out the impact of the technical personnel schedule to the 
maintenance cost and system availability, while considering the plant failure and 
maintenance demands. 

An essential aspect of maintenance management retains the identification of 
critical parameters that significantly affect the performance of a system. Engi-
neers in practice and research often perform one-factor-at-a-time (OFAT) expe-
riments, which vary only one factor or variable at a time while keeping others 
fixed to derive their impact on the performance measure (Wakiru et al., 2019b). 
However, statistically designed experiments that vary several factors simulta-
neously are more efficient when studying two or more factors because of their 
interactive nature (Czitrom, 1999). A designed experiment is a more effective 
way to determine the impact of two or more factors on response. In this case, 
both the main effects which uphold the OFAT concept and the interaction ef-
fects, which derive the impact of two or more factors can be derived. Studies like 
those of Bouslah, Gharbi, & Pellerin (2018) and Wakiru et al. (2019b) suggest 
that measurement of the sizes retained by main effects and interaction effects 
offers plausible insights and decision support.  

Considerable research in maintenance that follows the line of this research is 
by Wakiru et al. (2019b). The research modelled the operation and maintenance 
of an engine operating in a thermal power plant. In their study, they optimized 
the PM interval, spares fill-rate, and corrective maintenance utilization probabil-
ities. However, their study ignored workforce scheduling which is a vital aspect 
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of maintenance management. Moreover, the classification of corrective main-
tenance activities did not follow set maintenance standards like ISO 14224, 
where maintenance activities are categorized for ease of reference and whole-
some accountability. Lastly, the study did not use the maintenance cost (Cm) as a 
critical performance measurement which they suggested for future work; in this 
study, we employ both availability and maintenance cost. 

This research develops a framework where a simulation-based model is em-
ployed to derive critical variables for optimal drilling rig availability and main-
tenance costs. Various maintenance policies, in this case, various corrective 
maintenance, preventive maintenance actions are derived from empirical main-
tenance data and aligned with ISO 14224 standard. The model further integrates 
workforce scheduling (day and night shifts) while optimizing the drilling rig 
availability and maintenance costs.  

3. Methodology 

The methodology includes several steps. Among them is data collection, 
pre-processing, and exploration. The steps have been discussed below.   

3.1. Data Collection and Pre-Processing 

The data collected was for a well drilled in Kenya, between 2017 and 2018. The 
entire drilling days were 311 against the planned 55 days. The extended actual 
drilling days are demonstrated to be significant, and the well costs were similarly 
high compared with other wells. 

Data were extracted from reports in their raw format, which included the 
drilling logs, well completion reports, maintenance logs, and system failure data. 
The events of failure and maintenance were referenced to the date and time of 
event occurrence and finalization of the event; hence rig re-start operating. The 
raw data collected was then organized in an excel sheet in an addressable man-
ner for ease of processing and analysis. The data were further categorized ac-
cording to the subsystems and in order of occurrence. This was the final format, 
which was then ready for exploration and extracting of model parameters.  

3.2. Data Exploration 

In this phase, the pre-processed data was explored to retrieve various aspects of 
the data to inform the modelling. The drilling rig operations can be categorized 
into nine subsystems as shown in Table 2. 

3.3. Model Parameter Extraction 

For the rig subsystems, as indicated in Table 2, various parameters were ex-
tracted from the empirical data, as addressed subsequently. 

Table 3 illustrates the sample model parameter characteristics relating to the 
different subsystems extracted from the data. This includes the time to initial 
failure (TIF) which was computed with respect to the commissioning date and  
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Table 2. Rig subsystems categories. 

Subsystem Purpose 

Air drilling system 
Supply highly compressed air to the drilling string to push the  
cuttings to the surface. It comprises primary compressors  
and the secondary compressors. 

Hoisting system 
Consists of the draw works and other pulley devices used to lift  
and lower the drilling string into and out of the well. 

Power 
system 

Powers all the systems in the rig, excluding the air drilling system.  
It provides power in AC and DC. The system has for main  
generators and an auxiliary generator. 

Well control system 
This included the secondary well control systems that help to contain 
the well during incidences like kicks. It includes the Blow out  
preventer, the Koomey unit, and control boxes. 

Well monitoring 
system 

This includes the instrumentation equipment used in monitoring the 
progress of drilling. It indicates the drilled depth, rate of penetration, 
weight of the drill string, weight on bit, circulation among others. 

Mechanical  
handling system 

This is the auxiliary equipment that assists while drilling. It includes 
shovels, forklifts, power tongs, and manual tongs among others. 

Circulating system 
Employed to pump drilling fluid into the wellbore for purposes  
of cooling the drill bit, carrying the cuttings, stabilizing  
the well among others. 

Top Drive system 
A dynamic rotating system that rotates the drilling system  
while moving up and down. 

Rotary table 
A static rotating system that rotates the drilling string while  
in a stationary position. 

 
Table 3. Subsystem modelling times. 

Subsystem 
Time to initial 
failure (Hrs.) 

Time to next failure (TNF) 
(Hrs.) 

Air drilling system 255 9 + WEIB (240, 0.376) 

Hoisting system 679 4 + EXPO (606) 

Power system 1963 2 + WEIB (289, 0.339) 

Well control system 240 412 + WEIB (121, 0.235) 

Well monitoring system 2022 UNIF (122, 2.92e+003) 

Circulating system 5116 −0.001 + EXPO (77.7) 

Mechanical handling system 4836 5116 

Top drive system 413 2 + WEIB (320, 0.339) 

 
initial failure date for the respective subsystem. It also includes TNF (time to 
next failure) probability distribution for each subsystem. The failure frequency 
was the rate at which the subsystems of the systems were failing. This also gives 
the counts of the failures and thus gives the system with the highest number of 
failures, which could later be a point of interest for further research. The 
time-to-next-failure (TNF) for each subsystem was derived from the data. TNF 
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was based on the difference between the date and time of the current and pre-
vious failure of a specific subsystem. The TNF was thence fitted to a probability 
distribution thus taking different forms (WEIB, EXPO, and UNIF) depending 
on the data characteristics. The repair times for both the preventive and correc-
tive maintenance were extracted from the categorized data. This depicts the time 
spent while undertaking the repairs and or replacement during either corrective 
or preventive maintenance interventions. 

While carrying out maintenance on the rig, two main maintenance strategies 
are explored, which include corrective (CM) and preventive maintenance (PM). 
Under CM, the different maintenance actions derived from the empirical main-
tenance data were referenced to the standard maintenance actions described in 
ISO 14224 (2016). These include strategies underlying the replacement of failed 
components with newly manufactured spares, repairing the failed components, 
adjusting different aspects that cause downtime, and finally unclogging the var-
ious components such as filters and compressors. The various corrective main-
tenance actions are indicated in Table 4, together with the estimated respective 
mean time to repairs (MTTR) in hours and their respective probability of utili-
zation. These parameters are further utilized in the simulation-based model, 
which is discussed in the following sections. 

3.4. Modelling 

Simulation modelling is typically a cost-effective way of substituting physical 
experimentation and offers flexibility to incorporate uncertainties that are expe-
rienced in real life. In this case, Arena simulation was used to model and simu-
late the geothermal drilling rig, where subsystems make the whole system. Statis-
tical analysis was used to formulate the data and derive the model parameters, 
which contains all the parameters of actual drilling.  

The schematic representation of the conceptual framework of the model in 
Figure 2 mimics the running and maintenance of the rig subsystems. To model 
the subsystem degradation and reliability, we adopt the approach of Wakiru et 
al. (2019b), where we introduce an impact factor (IF) with values 0 to 1. The 
impact factor is a variable that impacts the reduction of the virtual age of the 
subsystem, in this case, the time to next failure depending on the maintenance 
intervention undertaken on the unit. On the other side, the failure severity,  
 
Table 4. Maintenance actions with respective MTTR. 

Maintenance 
action 

MTTR (hrs.) 
Probability utilization 

(All subsystems except TDS) Air & power TDS 

Replace 22.67 0.4091   

Repair 28.00 0.4772  0.2222 

Adjust 21.40 0.1136   

Unclog 22.00  0.2353 0.1111 

Reset 1.00   0.6667 
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Figure 2. Conceptual framework of the developed simulation model. 
 

which indicates the seriousness of the subsystem state, follows a semi Markov 
decision process and is influenced by the last state and the maintenance inter-
vention undertaken on the specific subsystem. As the system is operational (the 
rig is running), the initialization of all the subsystems is done. In this case, the 
respective failure severities, impact factors, and the individual subsystem time to 
next failure. As the system is operational, the simulation time is evaluated, if the 
PM interval (TPM) is reached, then PM is conducted. PM entails a block replace-
ment policy, and different subsystems retain different PM intervals. For in-
stance, the top drive has a PM interval of 500 hours, while the well handling unit 
has 1500 hours. Therefore, the PM intervals are graduated to either (500, 1500, 
4000) hour service interval, and the MTTR for PM intervention is 16.6667 hours. 

During PM, the 500 hours PM requires one engineer and two technicians, 
while for the others, requires one engineer, two technicians and a contractor 
representative. Similarly, we factor in the contracted service contracts for sub-
systems like the air compressors in the PM costs. After the PM intervention, next 
to PM interval is scheduled while the failure severity (FS) and IF of the respec-
tive subsystem is updated. Lastly, the PM costs are updated, which included la-
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bor and spare costs. If PM interval has not been reached, there are possibilities of 
unplanned failures which are addressed using various corrective maintenance 
actions. Four main CM actions are randomly prescribed using the probability 
utilizations and incur MTTR (expressed exponentially) both derived from em-
pirical data, as illustrated in Table 4. The replace action entails the replacement 
of the failed component with a new spare. After the CM interventions, the FS 
and IF of the subsystem are updated. Additionally, the CM costs, which included 
the labor and spare costs, is also updated.  

To model the workforce scheduling in the subject rig, the rig operations run 
on two shifts (day and nightshifts) running 06:00 a.m. - 06:00 p.m., and 06:00 
p.m. - 06:00 a.m., respectively. During the day shift, the critical maintenance 
personnel available that this study accounts for are one drilling engineer and two 
mechanical technicians, while during the nightshift, we have one mechanical 
technician alone. 

3.5. Performance Measures 

The simulation-based model is designed to derive two key performance meas-
ures, i.e., the rig availability (Ar) and the total annual maintenance cost (Cm). As 
shown in Equation (1), the drill availability, which is the percentage of the time 
the drill is operational, accounts for the downtime of the rig. The downtime in-
cludes the actual maintenance duration and lead times occasioned by spare 
sourcing. Equation (2) computing the annual maintenance cost for the rig, con-
siders the spare and labor costs. 

Drilling hours 100
Drilling hours DowntimerA = ∗

+
                  (1) 

PMLaborCost PMSpareCost SpareCost CMLaborCost
numberofyearsmC + + +

=       (2) 

4. Results and Discussion 

The model was set up to run for a simulation time of 43,800 hours, which signi-
fies the five years of rig operation. Since the model starts with no activity, to at-
tain steady-state, we introduced a warm-up period of 0.083 hours and to reduce 
the half-width to acceptable levels, and we employed 75 replications as computed 
herewith. Based on the Cm the half-width of ±2730 while using ten replications, we 
reduced it to a level ±1000 using the following Equation (3). 

2

2
o on h

n
h
∗

=                             (3) 

where no is the number of current replications, ho is the current half-width, h is 
required half-width, and n is the required replications. 

2

2

10 2730 75 replications
1000

n ×
= =                   (4) 

In this section, we report the model results and evaluate the impact of PM in-
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terval, repair maintenance action utilization, and nightshift technicians on the 
performance measurements of the systems in Section 4.1. In Section 4.2, we 
perform a full factorial experiment and derive the main effects and interaction 
effects. 

4.1. Model Results 

After running the simulation, the availability of 84.503% and Cm of €213,090 was 
generated. The expected rig availability was 82.02%. This is the value obtained 
from the raw data and gives a value that validated the model availability with an 
acceptable range of ±10%.   

To evaluate the impact of PM interval on the performance measures, we va-
ried the PM interval from 250 hours to 750 hours, and the results are illustrated 
in Figure 3. 

From Figure 3, the results depict that the Ar increases by 28.4% from 67% to 
86% and the Cm reduces by 32.7% from €275626 to €185540 as the TPM varies 
from 240 hours to 800 hours. This is attributed to a decrease in the number of 
PM activities. This can be assisted by the employment of predictive mainten-
ance, which at relatively low cost will ensure that the lube is within the required 
quality standard. The scenario is also attributed to reduced PM-related delays 
time. This is because as the TPM increases, the hours lost due to servicing the sys-
tem decreases. The results appear to make sense and to be compatible with our 
expectations. 

To investigate the impact of the workforce, we varied the number of techni-
cians in the nightshift, and the results are illustrated in Figure 4. The plot insi-
nuates that retaining one technician at night significantly adversely affects the 
rig availability while the Cm is not significantly affected. Increasing 

nTL  to 2, is 
shown to increase both the Ar and Cm moderately. A further increase is depicted 
to marginally lower Ar and Cm moreover, levelized from 3 nightshift technicians. 
This finding confirms the precondition for the various maintenance tasks. Each 
maintenance task had different requirements in terms of manpower resource al-
location varying from one technician to three technicians. It therefore implies  
 

 
Figure 3. Impact of varying PM interval TPM on rig performance. 
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that the optimal value for 
nTL  is 2 or 3 technicians since beyond these values, 

no significant change is noticed. Moreover these results confirm the contribu-
tion of inadequate manpower to the high NPT as illustrated earlier in Figure 1. 
To evaluate the effect of predominantly relying on repairing of the subsystems, 
we varied the repair maintenance action utilization (ηrpr). As shown in Figure 5, 
an increase in ηrpr leads to a decrease in the rig availability Ar and an increase in 
the Cm. Two vital factors can be attributed to this finding. Firstly, an increase in 
repair activities is subjected to a higher repair duration compared to the other 
maintenance actions like replace. This implies that the effect leads to an increase 
in downtime due to repair actions, hence reducing availability. Likewise, the in-
creased repair-related activities lead to a significant increase in the labor cost 
incurred, hence an increase in maintenance cost. Secondly, repair intervention 
has an adverse effect on the subsystem reliability, more so in this case, where we 
consider imperfect maintenance. The reduced reliability of the subsystem means 
that its failure frequency increases, hence increased interventions which impact 
negatively on the maintenance cost and availability hence a reduction in availa-
bility and an increase in the Cm. 

However, despite the results (Figures 3-5) meeting our expectations, the  
 

 
Figure 4. Impact of varying the number of nightshift technicians on the rig performance. 
 

 
Figure 5. Impact of varying repair maintenance action utilization (ηrpr) of rig perfor-
mance. 
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non-linearity of the relationship may infer that the variable ηrpr does not propor-
tionately impact the performance measures; hence there is a likelihood that oth-
er control variables are interacting with these variables. To investigate this phe-
nomenon, we undertake a full factorial experiment in the following section. 

4.2. Full Factorial Effects and Interactions Experiment Results 

A 2-factor complete factorial design experiment was conducted to determine the 
variables retaining a significant influence on the responses under research. The 
variables employed with their respective ranges are shown in Table 5. The re-
spective variable ranges illustrated in Table 5 were derived according to the 
procedure used by Wakiru et al. (2019b). 

4.2.1. Main Effects Results 
Table 6 shows the effects of independent variables on the two main performance 
measures Ar and Cm. 

While evaluating the main effect sizes impact on Ar, it can be seen that TPM 
had the most significant impact, with an average increase of 4.06%. 

dEL  
(0.59%), 

nEL  (0.63%) provide a marginal improvement of Ar. On the other 
hand, as expected, TPM likewise retained the most significant positive impact on 
the maintenance cost (Cm), with an average reduction of €34,255.91. The 
changes in ηrpr from a low level to a higher one demonstrate a modest reduction  
 
Table 5. Variable ranges used in the full factorial experiment. 

Notation Description Ranges 

PMT  PM interval (hrs.) 250 - 750 

rplη  Replace utilization (%) 20 - 48 

rprη  Repair utilization (%) 25 - 51 

dEL  Number of Day shift engineers 1 - 3 

nEL  Number of Nightshift engineers 1 - 3 

dTL  Number of Day shift technicians 1 - 3 

nTL  Number of Nightshift technicians 1 - 3 

 
Table 6. Main effects sizes of various control variables. 

Control variables 
Performance measures 

Availability Ar (%) Maintenance cost Cm (€) 

PMT  4.06 −34,255.91 

rplη  −0.26 22,128.69 

rprη  −0.59 −3848.3 

dEL  0.59 6087.87 

dTL  −3.5 66,914.16 

nEL  0.63 6036.48 

nTL  −3.5 66,928.38 
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of Cm by €3848.30. This can be attributed to the reduction of spare-related costs 
due to lowering the replacement utilization affected when ηrpr increases. These 
results indicate that an increase in the PM interval and repair maintenance 
action utilization, while all the other control variables are constant, would gen-
erate a positive impact on Cm.   

On the contrary, an increase in both dayshift and nightshift technicians (
dTL  

and 
nTL ) adversely affects both Ar and Cm. This may signify that the number of 

technicians is adequate to address the drilling rig maintenance. On the flip side, 
an increase in the dayshift and nightshift engineers (

dEL  and 
nEL ) is shown to 

impact the Ar positively but negatively impact the Cm. On the other hand, in-
creased reliance on spare replacements leads to a negative impact on Ar by 0.26% 
and a significant increase in the Cm by €22,128.69. This is attributable to the use 
of new parts hence the modelled Cm takes a higher value. 

4.2.2. Interaction Effects Results 
Table 7 presents a sample of two-factor interaction effect sizes incorporating the 
various control variables defined with their respective ranges in Table 5. 

To understand the interactions in Table 7, the control variables notations can 
be referred from Table 1. Further, while considering the interaction of TPM and 
ηrpr, it is shown that the effect is a marginal increase in Cm. However, while con-
sidering individual main effects shown in Table 7, both TPM and ηrpr derived sig-
nificant reduction in the Cm. The results appear to make sense and to be com-
patible with our expectations. An increase in the PM interval leads to an increase 
in corrective maintenance interventions, due to the expected surge in the failure 
of the equipment. Therefore, increasing the utilization of repair maintenance ac-
tion compromises the reliability of the equipment, especially in the situation 
where preventive renewal instances have been reduced.  

 
Table 7. A sample of interaction effects sizes of the control variables. 

Control variables 
Interaction effect sizes Control  

variables 

Interaction effect sizes 

Ar (%) Cm (€) Ar (%) Cm (€) 

dPM TT L+  1.3 −11,409.74 
nrpl ELη +  −0.03 1622.06 

nPM TT L+  1.3 −11,467.04 
nrpl ELη +  −0.06 1674.00 

drpl TLη +  −0.09 8413.27 
nrpr ELη +  −0.05 −1316.01 

nrpl TLη +  −0.08 8407.98 
drpr TLη +  −0.2 −1207.49 

n nT EL L+  0.22 5851.03 
nrpr ELη +  −0.09 −1335.45 

d nT TL L+  4.24 −59,649.77 
nrpr TLη +  −0.17 −1280.74 

n nT EL L+  0.221 2882.42 
d dE TL L+  0.26 2924.25 

PM rplτ + η  0.07 1114.04 
n nE EL L+  −0.43 −3555.09 

PM rprτ + η  0.12 21.98 
d nE TL L+  0.26 2910.50 

dPM ET L+  −0.11 79.03 
n nE TL L+  0.22 2882.43 

nPM ET L+  −0.09 15.49 rpl rprη + η  0 −1946.05 
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A significant and exciting finding of the interaction experiment retains the 
interaction effects of 

nTL  and 
dTL . As shown in Table 7, the simultaneous in-

crease in both the day and night number of technicians significantly increase the 
Ar and highly reduce the Cm. This interaction results positively improve the rig 
performance despite the individual main effect of the two variables adversely af-
fecting the rig performance. This aspect may correlate to an increase in main-
tenance requirements in both the shifts equally, hence increasing technicians in 
both the shift can address the situation adequately. 

In the light of reported main effects and interaction between the various va-
riables, it is conceivable that relying on the main effects as has been the norm in 
many maintenance optimizations, may offer adverse decision support when im-
plemented without considering the interactions. 

5. Managerial Implications 

The study has demonstrated the development of a simulation-based model that 
incorporates maintenance, spare, and workforce policies. Moreover, the model 
retains scalability and can be implemented in real life. The study is significant 
for maintenance engineers seeking to optimize maintenance by evaluating the 
various maintenance, spares and workforce variables. A significant application 
for a plant could entail studies or analysis of changing spares supplier where the 
expected cost and sourcing lead time could be incorporated in such a model to 
enable a cost-benefit analysis on the decision to make. Similarly, workforce uti-
lization and scheduling can further be enhanced using this model. The model 
possesses the capacity to evaluate alternative workforce options compared to the 
current one modelled where contract maintenance services can be compared.  

While reviewing workforce scheduling, this study demonstrates the impor-
tance of incorporating random system behavior while deriving such a schedule. 
While most research in this line of thought has independently derived the 
workforce schedule based on deterministic labor demand and models, this study 
has employed not only stochastic attributes but also included other probabilistic 
maintenance requiring staff. The use of stochastic maintenance action utilization 
and workforce schedule considering day and night shift has proven our ap-
proach as a promising alternative to statistical models conventionally utilized. 

The study has shown the importance of evaluating not only the main effects of 
variables using the one factor at a time (OFAT) rule but also the interactions 
while seeking to optimize maintenance. One of the key findings of this research 
is the significant interaction between the workforce distribution in the day on 
one side and nightshift. This information is critical to the maintenance man-
agement as it guides the management in deciding the scheduling of the engi-
neers and technicians in the drilling rigs, to attain a high scheduled utilization. 
To implement this, the maintenance manager should, for instance, introduce 
extra personnel in the subject rig. In situations where this may be impossible, an 
alternative option is to organize a workforce sharing program where technicians 
and engineers may be attached to more than one drilling rig, which is nearby. 
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The study has further demonstrated the need for spares subsumed in both 
corrective and preventive replacement. In real life, determining the stocking 
policy is not straightforward in the absence of a decision support framework, 
owing to the stochasticity of time characteristics like repair, diagnosis, and 
sourcing lead times. The maintenance manager could implement this strategy 
that considers spare part replacement (e.g., a pre-defined fill rate for the spares) 
together with other maintenance strategies like repair and adjustment, and un-
dertake a cost-benefit analysis of the strategies. Furthermore, maintenance costs 
would offer much-required insights on the trade-off between spares availability 
and reliance on corrective maintenance strategies utilization.  

6. Conclusion 

The research study has developed a simulation-based model that investigates the 
various maintenance variables that significantly impact the availability and the 
annual maintenance cost of a system, in this case, a drilling rig. A full factorial 
analysis was employed to analyze the effects and interactions of the various 
maintenance and workforce variables, hence derive the critical variables. From 
the analysis of the results, the preventive maintenance interval and workforce 
distribution were shown as the critical maintenance-related parameters signifi-
cantly influencing the optimization of the rig availability and maintenance costs. 
These findings have a significant implication in understanding the parameters 
that can further be investigated while carrying out maintenance decision mak-
ing. If enhanced, the results would significantly improve the maintenance strate-
gies, resource allocations and ensure priorities are set right to improve the 
availability of the rig and improve the Cm and eventually the drilling economics. 

However, a balance of decision variables used ought to be struck by consider-
ing their effects, interactions, experience, and expert knowledge. The research 
lays a groundwork for future studies in the geothermal field considering other 
maintenance strategies like condition-based maintenance, with their possible 
interactions towards a robust optimization model. On the other hand, the re-
search has its limitations as it considered PM and CM policies primarily, whe-
reas additional maintenance and restorative strategies identified like condition 
monitoring, and opportunity based maintenance could be incorporated in future 
research. Workforce scheduling and distribution can as well be classified ac-
cording to designation and skill to investigate the optimized distribution of me-
chanical and electrical personnel among other personnel. 
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