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ABSTRACT This paper presents MATLAB-based programs developed for power system dynamic analysis.
The programs can be used for educational purposes and research studies. With the program, time-domain
simulation, system linearization, modal analysis, participation factor analysis and visualization, optimal
placement of controller, feedback signal selection, frequency response analysis, and control design can be
obtained. In addition to solving a power system problem, the package provides a symbolic and vectorized
representation of the model in time domain and state space. The package uses the full advantages of
MATLAB’s powerful solvers for solving non-stiff and stiff problems. Both explicit and implicit techniques
are used for solving the differential algebraic equations (DAEs). The synchronousmachines are assumed to be
equippedwith exciter, turbine, and stabilizer. The loads can bemodeled as voltage-dependent and independent
loads. The test systems used in this paper are the IEEE 9-bus and 68-bus systems, and Texas’s 2007-bus
synthetic power system. Different types of disturbances are applied to the systems including generator-side
and network-side disturbances. The results demonstrate the efficiency and educational values of the package
for researchers and students.

INDEX TERMS Dynamic analysis of multi-machine power system, differential algebraic equations,
MATLAB, Simulink.

Rs Stator resistance in pu
Xd d-axis reactance in pu
X
′

d Transient d-axis reactance in pu
X
′′

d Sub-transient d-axis reactance in pu
Xq q-axis reactance in pu
X
′

q Transient q-axis reactance in pu
X
′′

q Sub-transient q-axis reactance in pu
H Shaft inertia constant in s
ws Generator synchronous speed in rad per

second
T
′

do d-axis time constant associated with E
′

q
in second

T
′′

do d-axis time constant associated with 91d
in second

T
′

qo q-axis time constant associated with E
′

d
in second

T
′′

qo q-axis time constant associated with 92q
in second

TA Amplifier time constant in s
TCH Incremental steam chest time constant in s
TSV Steam valve time constant in s

KA Amplifier gain
KE Separate or self-excited constant
E
′

q q-axis transient internal voltages in pu
E
′

d d-axis transient internal voltages in pu
E Internal voltage in pu
91d Damper winding 1d flux linkages in pu
92q Damper winding 2q flux linkages in pu
δ Rotor angle in rad
w Angular speed of generator in rad per second
V̄i Complex voltage phasor
V Magnitude of bus voltage in pu
θ Angle of bus voltage in rad
ĪGi Generator complex current phasor
IGi Generator current magnitude in pu
γi Generator current angle in rad
Id d-axis current in pu
Iq q-axis current in pu
αik Angle of admittance Yik in rad
Efd Field voltage in pu
VR Exciter input in pu
RF Rate feedback in pu
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TM Mechanical input torque in pu
PSV Steam valve position in pu
PC Control power input in pu
RD Speed regulation quantity in Hz/pu
Vref Reference voltage input in pu
SE Saturation function
TFW Frictional windage torques

I. INTRODUCTION

DYNAMIC behavior of an interconnected power
system can be studied using time-domain simulation,

modal analysis, and frequency response analysis. Mathemat-
ically, a multi-machine power system can be modeled in
time domain using a set of differential algebraic equations
(DAEs). These equations can be solved using either an
implicit or explicit method. In the implicit method, the differ-
ential equations (DEs) are converted to algebraic equations
(AEs) using a numerical approach such as Euler’s or trape-
zoidal method [1, p.165]. The new set of equations are
purely algebraic equations which can be solved simultane-
ously using a numerical technique. In the explicit method,
the DEs are solved for the state variables independently using
a numerical integration method, whereas the AEs are solved
for the algebraic variables in a separate process. The other
types of system analysis are modal analysis and frequency
response analysis used in the small-signal study. For these
techniques, the nonlinear equations representing the power
system need to be linearized around an operating point, and
the system can put in a state-space form.

Several commercial softwares have been developed for
simulating power systems including PSS\E, PowerWorld
Simulator, ATP EMTP, etc. These softwares are well-written,
fast, computationally efficient, accurate and come with a
wide range of electrical components and models. However,
commercial software has three major drawbacks [2]–[3]: (1)
it is ‘‘closed-source’’ program, that is, the user is not allowed
to modify the code sources except for some special cases (2)
it is expensive (3) it provides less educational code sources
and requires training courses. On the other hand, MATLAB
is a high-level language software, less expensive, available
at almost all universities, and students and researchers are
familiar with it. One of the recognized MATLAB-based and
open-access toolbox developed for simulating and lineariz-
ing a multi-machine power system is Power System Tool-
box (PST) [4]. It has been used by many researchers, and
most recently became the base simulation program for the
textbook [1]. Another related and widely-used package is
Power SystemAnalysis Toolbox (PSAT) [5] which provides a
Simulink-based library to build a power system. MatDyn [3]
and PowSysGUI [6] are another two software packages devel-
oped for power system dynamic analysis.

However, none of the aforementioned open-source pro-
grams considers the full advantages of MATLAB’s power-
ful solvers. Instead, they use their own coded programs for
solving the DAEs of the system. Therefore, it is not possible

to switch to some other powerful solvers available as built-
in functions in MATLAB when the adopted solver fails to
achieve the desired function evaluation. For instance, it is
found that PSAT fails when the loads are modeled as constant
power in a simple test system (9-bus system) for a spe-
cific type of disturbance, and it supports only two numerical
methods to solve the problem. In fact, PSAT extracts the
network data from a single line diagram built-in Simulink,
which means we need a huge amount of time and effort
to build and simulate such a system. Therefore, PSAT is
not used for solving large-scale power systems [5]. While
PST supports relatively faster time-domain simulation and
linearization, it uses only one numerical solver and its lin-
earization technique is based on a perturbation approximation
by calculating the Jacobians numerically. According to the
program’s manual, ‘‘there is some loss of accuracy, particu-
larly in the zero eigenvalue which is characteristic of most
inter-connected power systems’’ [7]. Further, in PST, one
cannot use the program to show the set of DEAs and its
linearized form in a symbolic and analytical way, which is
useful for education purposes. The other two open-source
programs are relatively newer than PST and PSAT but they
are used for simulating only special cases in power systems;
for instance, loads must be modeled as constant impedance to
eliminate the algebraic equations of the power flows. Further,
MatDyn solves the problem only by partition method. Similar
to PSAT, PowSysGUI uses Simulink to simulate the system in
time-domain.

In addition, these open-source programs are not aimed to
be used for some important tasks in power systems such as
residue analysis, controller feedback signal selection, opti-
mal location of controller, and tuning parameters needed
for control design. On the other hand, MATLAB offers a
set of powerful and numerically-stable solvers that can be
used for solving non-stiff and stiff DAEs including ode45,
ode113, ode15s, ode23, ode23t, ode23tb, and ode23s. Several
adjustable setting options are available for each solver to
overcome some numerical issues in solving stiff problems.
MATLAB also provides some other efficient solvers for
solving nonlinear algebraic equations including fsolve and
lsqnonlin functions which can be used for solving the prob-
lem by the explicit method. Similarly, these functions come
with several useful options that can be set for the solvers.

This paper presents a MATLAB-based program to solve a
set of DAEs representing a power system by taking the full
advantages of MATLAB solvers and settings. The program
can be used for simulating small- and large-scale power
system. Further, the program provides a generic analytical
method for linearizing the power system. A symbolic form of
DAEs and its exact linearized equations can also be generated
in a state-space form. This is useful for academic studies
and educational purposes. Moreover, several useful tasks in
power systems can be implemented using the program includ-
ing participation factor analysis and visualization, optimal
locations of controller, controller signal selection, and system
parameters tuning. Design of newly installed controllers can
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also be obtained without changing the main DAEs structure.
The developed program is simple, fast, built following a clear
mathematical description in the textbook references and can
be used to develop a customized graphical user interface.

The rest of this paper is presented as follows. In section 2,
the mathematical model of the system is described. Next,
the proposed program is presented in section 3. A time-
domain simulation example is given in section 4. Small signal
stability is studied in Section 5 including system lineariza-
tion, modal analysis frequency response analysis, and control
design. Section 6 presents the educational value of the pro-
gram. Finally, the conclusion is introduced in Section VIII.

II. SYSTEM MODELING
TheDAEs of amulti-machine power systemwithmmachines
and n buses can be written as follows [1]:

A. SYNCHRONOUS GENERATOR

T
′

doi

dE
′

qi

dt
=−E

′

qi −

(
Xdi − X

′

di

)Idi −
(
X
′

di−X
′′

di

)
(
X
′

di−Xls
)2

×

(
91di+

(
X
′

di−Xls
)
Idi − E

′

qi

)+Efd (1)

T
′′

doi
d91di

dt
=−91di + E

′

qi −

(
X
′

di − Xls
)
Idi (2)

T
′

qoi
dE
′

di

dt
=−E

′

di +

(
Xqi − X

′

qi

)Iqi −
(
X
′

qi − X
′′

qi

)
(X
′

qi − Xls)
2

×

(
92qi +

(
X
′

qi − Xls
)
Iqi + E

′

di

) (3)

T
′′

qoi
d92qi

dt
=−92qi − E

′

di −

(
X
′

qi − Xls
)
Iqi (4)

dδi
dt
=wi − ws (5)

2Hi
ws

dwi
dt
= TMi −

X
′′

di − Xls)

(X
′

di − Xls)
E
′

qiIqi−

(
X
′

di−X
′′

di

)
(X
′

di−Xls)
91diIqi

−
(X
′′

qi−Xls)

(X
′

qi−Xls)
E
′

diIdi+

(
X
′

qi − X
′′

qi

)
(X
′

qi − Xls)
92qiIdi

−

(
X
′′

qi − X
′′

di

)
IdiIqi − TFW (6)

B. EXCITATION SYSTEM (IEEE TYPE I)

TEi
dEfdi
dt
=−

(
KEi + SEi

(
Efdi

))
Efdi + VRi (7)

TFi
dRfi
dt
=−Rfi +

Kfi
Tfi
Efdi (8)

TAi
dVRi
dt
=−VRi+KAiRfi−

KAiKfi
Tfi

Efdi+KAi
(
Vrefi−Vi

)
(9)

C. TURBINE SYSTEM

TCHi
TMi

dt
=−TMi + PSVi (10)

TSVi
dPSVi
dt
=−PSVi + PCi −

1
RDi

(
wi
ws
− 1

)
(11)

D. AEs (STATOR AND POWER FLOW)

RsiIdi − X
′′

qiIqi −

(
X
′′

qi − Xls
)

(
X
′

qi − Xls
)E ′di +

(
X
′

qi − X
′′

qi

)
(
X
′

qi − Xls
)92qi

+Vi sin (δi − θi) = 0 (12)

0 = RsiIqi + X
′′

diIdi −
X
′′

di − Xls)(
X
′

di − Xls
)E ′qi −

(
X
′

di − X
′′

di

)
(
X
′

di − Xls
) 91di

+Vi cos (δi − θi) = 0 (13)

IdiV i sin (δi − θi)+ IqiV icos (δi − θi)+ PLi (Vi)

−

n∑
k=1

ViVkYik cos (θi − θk − αik) = 0 (14)

IdiV i cos (δi − θi)− IqiV isin (δi − θi)+ QLi (Vi)

−

n∑
k=1

ViVkYik sin (θi − θk − αik) = 0 (15)

PLi (Vi)−
n∑

k=1

ViVkYik cos (θi − θk − αik) = 0 (16)

QLi (Vi)−
n∑

k=1

ViVkYik sin (θi − θk − αik) = 0 (17)

where i = 1, . . . ,m for all state variables, machine inputs,
and references. The ik th entries of the admittance matrix are
used for the load flow analysis. For a given load power, there
are (n+ m) complex AEs that are used to solve for Vi, θi
(i = 1, . . . ,n), Idi, Iqi (i = 1, . . . ,m) in term of the states δi,
E
′

di, E
′

qi, 91di, 92qi (i = 1, . . . ,m). Also, the outputs from VR
and PSV should have some maximum and minimum values.

E. PSS MODEL
Power system stabilizer (PSS) is a controller used in a power
system to provide more damping torque to the machine
excitation systems in phase with rotor speed deviation [1].
A conventional PSS consists of three main components (1)

phase-lead compensator–
(
T1s+1
T2s+1

)nb
– where T1, and T2 are

the compensator time constants, and nb is the number of
compensation blocks that can have a value of 1, 2, or more (2)
washout high-pass filter–

(
Tws

Tws+1

)
– where Tw is the washout

time constant (3) gain (kpss) [1]. If T1 is greater than T2,
the compensator is called a phase-lead compensator, whereas
it is called a phase-lag compensator if T1 is smaller than T2.
Usually, the ranges of T1 and T2 are 0.1−1s and 0.01−0.1s,
respectively, but they could have some other values near these
ranges [1]. The objective of the optional washout high-pass
filter is to pass the input signal at high frequencies (the gain
of washout transfer function becomes a unity) and wash any
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small deviation in the input (the washout magnitude becomes
zero). Tuning the controller parameters will be discussed in
Section 5.6.

F. LOAD MODEL
In practice, loads are a combination of constant power, con-
stant current, and constant impedance. The following equa-
tion is used to represent the loads [8]:

PLi = PL0

(
Vi
V0

)α
QLi = QL0

(
Vi
V0

)β
(18)

where PLi, QLi, and VLi are steady-state values of active
power, reactive power, and voltage magnitude obtained from
load flow analysis prior to a disturbance, whereas α and β
refer to the active and reactive load parameters, respectively.
These parameters could have a value of 0, 1, or 2 when the
loads are modeled as constant power (voltage-independent),
constant current, and constant voltage (voltage-dependent),
respectively. For actual data of load parameters obtained from
field tests, these parameters might be slightly different as
indicated in [8, Table 2].

G. REFERENCE ANGLE
For a dynamic system, there should be a reference for the
rotational components. Without a reference, the angle vari-
ables show a continuous increase in their plots. A common
reference is the center of inertia (COI) defined as below [1]:

δCOI =

∑m
1 Miδi∑m
1 Mi

, ωCOI =

∑m
1 Miωi∑m
1 Mi

(19)

where Mi =
2∗Hi
ωs

. In (12)–(17), the angle variables always
come as difference pairs; therefore, there is no need to add
a reference for the angles since they cancel each other. A
satisfactory transformation is to replace the constant ωs in (5)
by the rotational signal ωCOI . In this paper, ωCOI is used as a
reference component for the rotational parts in the system.

H. INITIAL VALUES CALCULATION
The first step in solving a dynamic system is to compute
the steady-state values of the algebraic variables and the
initial conditions of the state variables and constant inputs.
For the algebraic variables such as bus voltage phasors
V̄i = Viejθi and generator output powers (PGi + jQGi), load
flow analysis is carried out using the open-source package
MATPOWER [9]. The package comes with several powerful
solvers and options for solving a regular and optimal power
flow. Also, the initial values of the state variables are required
to be calculated from the DAEs by setting the derivative parts
to zero. The procedure for computing the initial values can be
found in [10].

III. THE PROPOSED DAEs STRUCTURE
The developed program solves the DAEs using implicit and
explicit methods. In the implicit method, all the DAEs are
put in one file and called by the solver. The result is the time

domain data for the states and algebraic variables. However,
this method can be used for only one type of disturbance: a
step-change in the inputs (voltage reference or themechanical
input). For the network disturbance, which is more com-
mon, such as load change, line outage or a three-phase fault,
the built-in ode solver does not allow the user to change
these parameters once the solver is initiated, and hence the
simulation stops at the time of disturbance. To solve this
limitation in the implicit approach, the DAEs are separated
into two sets of equations: DEs and AEs. The AEs are put as
a nested function inside the main function used for solving
the DEs. The AEs are solved using one of the MATLAB’s
solvers (fsolve, lqsnonlin) whereas the DEs are solved using
one of the ode solvers, specifically ode15s or ode23t. All
variables and parameters inside the nested function are visible
in the main function. Another way to solve this limitation is
to separate the solution into three different parts; pre-fault,
during-fault, and post-fault. This method will be used in
large–scale power systems.

For a three-phase fault at a bus in the system, usually, a
reduced form of the admittance matrix (n − 1 by n − 1) is
constructed and used for the fault system. A new set of initial
values for the algebraic variables at the time of disturbance
in the network side are necessary for solving the algebraic
equations during the fault. The state variables do not change
incautiously with the network side disturbance, and therefore
there is no need to calculate the new initial values for the state
variables. However, the proposed method does not require
such a reduction to the system or calculation of new initial
values. Instead, the faulted system is solved by setting the
voltage phasor of the faulted bus to zero and eliminating
their corresponding algebraic equations. The original admit-
tance matrix remains unchanged. To speed up the simulation,
the initial values for the algebraic variables required by the
solver should be updated at each time step. Otherwise, it takes
a relatively long time to find a solution to the problem at each
time step. This can be achieved by letting the set of algebraic
variables global variables inside the main function.

The next two sections describe the vectorized model of
the DAEs used in this paper and the symbolic representation
adopted by the proposed program.

A. VECTORIZATION MODEL OF DAEs
It is preferred to form the DAEs in a vector form to speed
up the simulation by eliminating the for-loops in the system.
One challenge to implementing this vectorization is when
there is a summation term inside the equation, specifically the
power flow algebraic equations. To overcome this challenge,
a matrix grid solution is used in this paper which significantly
speeds the simulation time. MATLAB has a function for
this task called ‘‘ndgrid’’. An example is given below to
clarify the concept. Suppose that our system consists of nine
buses and three generators as in the IEEE 9-bus test system
which is widely used in power system dynamic analysis. The
algebraic equation (14)-(17) contains summation terms that
sum the power flows between the bus in the consideration
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and each bus in the system. To vectorize the summation parts
of (14)-(17), the following four matrices are generated using
the function ‘‘ndgrid’’:

a=

 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3

 (20)

b=

 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

 (21)

c=


4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9

 (22)

d =


1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

 (23)

The summation terms in (14) – (17) can be replaced with their
vectorized forms as follows:
n∑

k=1

ViVkYik cos (θi − θk − αik)

= sum(V (1 : m)′. ∗ V (1 : n).

∗ abs(Y (1 : m, 1 : n).

∗ cos((θ (a)− θ (b)− arg (Y (1 : m, 1 : n))), 2) (24)
n∑

k=1

ViVkYik sin (θi − θk − αik)

= sum(V (1 : m)′. ∗ V (1 : n).

∗ abs(Y (1 : m, 1 : n).

∗ sin((θ (a)− θ (b)− arg (Y (1 : m, 1 : n))), 2) (25)
n∑

k=1

ViVkYik cos (θi − θk − αik)

= sum(V (m+ 1 : n)′. ∗ V (1 : n).

∗ abs(Y (m+ 1 : n, 1 : n).

∗ cos((θ (c)−θ (d)−arg (Y (m+1 : n, 1 : n))), 2) (26)
n∑

k=1

ViVkYik sin (θi−θk−αik)

= sum(V (m+ 1 : n)′. ∗ V (1 : n).

∗ abs(Y (m+ 1 : n, 1 : n).

∗ sin((θ (c)−θ (d)−arg (Y (m+ 1 : n, 1 : n))), 2) (27)

where the MATLAB function ‘‘sum’’ with the value ‘‘2’’
refers to summation of elements in each row, the dot ‘‘.’’ refers
to an element-by-element matrix multiplication, the comma
‘‘’’’ refers to a matrix transpose, and abs and arg refer to

FIGURE 1. Test system.

the magnitudes and angles of bus voltages. The left-hand-
side of the above equations are for a standard summation
method achieved by for-loops, whereas the right-hand-side
of the equations are for the vectorized method adopted in this
paper. All other terms of (1)-(17) can be vectorized easily
using an element-by-element matrix mathematic operation.

B. SYMBOLIC EXPRESSION OF DAEs AND THE
LINEARIZED SYSTEM
The program provides also a symbolic expression of the
DAEs and its exact linearized system. This can be achieved
using some MATLAB functions from Symbolic Math Tool-
box. All system parameters and state and algebraic vari-
ables can be written as symbols. Then, one can substitute
some or all symbols with their numerical values. It can be
used for educational purposes, or to check the set of equations
before running the program.Another possible use of this sym-
bolic expression is to set some constant parameters as vari-
ables and use MATLAB optimization functions to optimize
those specific parameters based on a given pre-defined objec-
tive function. Several intelligent optimization techniques can
be employed using the program including genetic algorithm
and particle swarm optimizations. Unlike PST and Simulink
whose linearization is based on a perturbation approximation,
this method gives an exact analytical method of linearization.

IV. SIMULATION EXAMPLE
IEEE 9-bus network is used in this section as a test system.
The power flow data, transmission lines, and the dynamic
data of the generator and excitation system can be found
in [1]. The machine sub-transient and turbine parameters
for the IEEE 9-bus are estimated from [11]. The single line
diagram of the test system is shown in Fig. 1.

A. TIME DOMAIN SIMULATION
1) IMPLICIT SOLUTION OF DAEs
A step-change in the mechanical input or the voltage refer-
ence is a type of a generator side disturbance. MATLAB’s
ode solvers can efficiently solve a system with such a distur-
bance without a need of separating DAEs into DEs and AEs.
Fig. 2 shows the system response against a step-change in
the mechanical power of G1 with a 10% reduction at t=1s
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FIGURE 2. System response against generator-side disturbance.

FIGURE 3. System response against network-side disturbance
with constant power (top), constant current (middle) and
constant impedance (bottom).

and lasts for 1s. The total running time for this example on a
regular computer is 1.03s.

2) EXPLICIT SOLUTION OF DAEs
A three-phase fault at bus 5 (load bus) is applied to the
system, assuming three scenarios of load mode: constant
power, constant current, and constant impedance. The system
is simulated with these scenarios and the results are shown
in Fig. 3. Since the fault occurred at a load bus, and power
is a function of voltage and current components, load power
at this bus becomes zero (removed) during the fault. Notably,

two types of oscillations are observed as a response to the
fault: individual and group oscillation. The group solicita-
tions are noticed due to including voltage in the load model
for the cases of constant current and constant impedance.

We can solve the system using a single-run simulation
from t = 0 until the simulation time and give a conditional
statement to switch between the operation modes. We can
also separate the solution into three simulation parts (pre-
fault, during-fault, and post-fault). The result is the combina-
tion of these three parts of the simulation. Both methods are
provided in the program and give similar results. However, for
the single-run simulation method, a smaller step size (around
1e − 3) is recommended to capture the dynamic behavior of
the system around the switching time, which in turns, slows
down the simulation.

V. ANALYSIS BASED ON SYSTEM LINEARIZATION
The nonlinear DAEs are linearized around an operating point
{xo, yo, zo} and a set of linear DAEs is obtained [12]:

ẋ = f (x, z, u)

0 = g(x, z, u)

y = h(x, z, u) (28)

where f , g, and h denote the vectors of differential equations,
algebraic equations, and output equations, and x, z, u, and
y denote the vector of state variables, algebraic variables,
inputs, and outputs, respectively.

Linearizing (28) around an operating point {xo, yo, zo}
gives the following set of equations:

1ẋ =
∂f
∂x
1x +

∂f
∂z
1z+

∂f
∂u
1u (29)

0 =
∂g
∂x
1x +

∂g
∂z
1z+

∂g
∂u
1u (30)

1y =
∂h
∂x
1x +

∂h
∂z
1z+

∂h
∂u
1u (31)

By eliminating the algebraic variable vector, the linearized
DAEs can be put in the following state-space form:

1ẋ = A1x + B1u

1y = C1x + D1u (32)

where A (state matrix), B (input matrix), C (output matrix),
and D (feed-forward matrix) denote the partial derivative
matrices of the original system given in (28) and can be put
in the form:

A =

[
∂f
∂x
−
∂f
∂z

(
∂g
∂z

)−1
∂g
∂x

]

B =

[
∂f
∂u
−
∂f
∂z

(
∂g
∂z

)−1
∂g
∂u

]

C =

[
∂h
∂x
−
∂h
∂z

(
∂g
∂z

)−1
∂g
∂x

]

D =

[
∂h
∂u
−
∂h
∂z

(
∂g
∂z

)−1
∂g
∂u

]
(33)
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TABLE 1. Numerical results of modal analysis (lightly-damped
modes).

With the Symbolic Math Toolbox installed, the system is
linearized around an operating point using the above four
matrices. The result is a set of symbolic expressions of the
state-space form of the system.

A. EIGENVALUE, EIGENVECTOR, DAMPING RATIO,
AND FREQUENCY
After linearizing the system and calculating the matrices
A, B, C, and D, the function ‘‘eig’’ in MATLAB is used
to compute the eigenvalues (λ = σ ± ω) of the system and
the right-left eigenvectors from these matrices, where σ is
the real part of the eigenvalue (λ) and ω is the imaginary
part of λ. Then, the frequency (f in Hz.) and damping ratio
(ζ in %) for each oscillatory mode is computed from

the formulas
(
f = ω

2π

)
and

(
ζ = − σ√

σ 2+ω2
∗ 100%

)
,

respectively.
The lightly-damped modes in the system are listed

in Table 1. As can be observed, the system has two lightly-
damped modes with damping ratios less than 10%.

B. MODE SHAPE
Mode shape is a way to measure the relative activity between
the state variables and the modes. It provides important infor-
mation about the contribution of state variables in the exci-
tation of critical modes. Mathematically, mode shape is the
polar plot of the right eigenvector matrix of the linearized sys-
tem [12]. Fig. 4 shows the mode shapes of the lightly-damped
modes. The magnitudes of the mode shape (lengths of the
arrows) give the contribution amount of the state variables in
the modes, whereas the phase angle displacement provides
more information about the interaction of each state variable
against the others for a specific mode. The mode shape of
the critical mode (-0.65117 ∓ 9.0749i) clearly indicates that
machine–2 is the generator with the highest contribution in
exciting this mode (the evidence is the length of the arrow
colored in red).

C. PARTICIPATION FACTOR ANALYSIS
The product of right and left eigenvectors of the linearized
system gives numerical information about the role of each
state variable in the modes activity. Mathematically, the par-
tition factor of each state to each mode is calculated using the
following equation [12]:

pki =
|vki| |ωki|
n∑

k=1
|vki| |ωki|

(34)

pki_normalized =
pki

max |pki|
(35)

FIGURE 4. Mode shape plots for the lightly-damped modes.

where vki and ωki are the right and left eigenvectors of the
system matrix, respectively, and pki is the participation factor
of the k th state variable into the ith mode. The participation
factors are normalized based on the highest value as illus-
trated in (35).

The program stores the numerical results of participation
factor analysis and the corresponding names in an excel sheet.
Since for this system, there are 33 states (each machine adds
11 state variables) and 33 eigenvalues, it is useful to visualize
these numerical data in color. Fig. 5 shows the numerical
results of this analysis visualized as a three-dimensional view
using the MATLAB function ‘‘pcolor’’. The state variables
are shown on the x− axis, the modes with their specifications
are shown on the y− axis, and the results of participation
factor analysis are shown as a third dimension (color values).
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FIGURE 5. Participation factor map for the system.

We are more interested to see the damping ratios of the
modes and their frequencies sorted in descending order.
These two specifications are numerically displayed on the
y−axis of the map. We can also highlight critical modes in
the system (lightly-dampedmodes) and critical state variables
(electromechanical states of rotor angle and speed). These
are shown as horizontal and vertical lines on the map. Note
that for a complex conjugate mode, the eigenvalues pair has
the same damping ratio and frequency. Notably, the elec-
tromechanical state variables have the highest contribution
to excitation of the lightly-damped modes. Also, Genera-
tor 2 exhibits relatively more impact on the critical mode
(−0.65117 ∓ 9.0749i). It should be mentioned that since
there is no infinite bus in the system, there is a zero-
eigenvalue arisen because of redundancy in the state vari-
ables, specifically the phase angle [12].

D. MODAL CONTROLLABILITY, MODAL OBSERVABILITY,
AND MODAL RESIDUE
Participation factor approach is a powerful technique for
highlighting the mode activity in the state variables when
the inputs and outputs are considered constants. However,
the approach does not tell us how different controller’s inputs
and outputs affect the relationship between the state variables
and the modes. It cannot be used for solving problems of opti-
mal placement of controller and feedback signal selection.
Residue analysis, on the other hand, removes this drawback
of the participation factor by including the inputs and outputs.

Mathematically, modal residue (Ri) is the product of modal
observability (Cvi) and modal controllability (wiB)– that is,
Ri = CviwiB, where Ri denotes the modal residue for

FIGURE 6. Optimal location of controller.

mode i, and vi,wi denote the right and left eigenvectors of the
system, respectively. The optimal location of stabilizer can
be obtained from the residue analysis. The bus with higher
residue-magnitude is a good candidate for the controller to
be installed at. The residue phase-angle tells us the amount
of phase angle we need to compensate the phase lag [12].
Fig. 6 shows the normalized controllability, observability, and
residue of the critical mode. The transfer function is calcu-
lated between the mechanical power reference (input) and the
rotor speed (output) of machine 1. Clearly, to damp out the
system oscillations caused by the critical mode, the optimal
locations for the stabilizer to be installed are Bus 2, 3, then 1.
The time-domain simulation, mode shape plot for the critical
mode, and the participation-factor map share the same con-
clusion obtained from the residue analysis.

Residue analysis can also be used for the best input signal
for the controller. However, care must be taken since differ-
ent measurement signals do not have the same base scale

66 VOLUME 7, 2020



Abdulrahman: MATLAB-Based Programs for Power System Dynamic Analysis

FIGURE 7. Frequency response analysis using bode (top),
Nyquist (middle) and Nichols (bottom).

although most signal units are per unit. Reference [12] gives
more details about this problem.

E. FREQUENCY RESPONSE ANALYSIS
So far, we have employed two analysis techniques for study-
ing the dynamic behavior of power system: time-domain
simulation and modal analysis. The program can be used
for another analysis approach– that is, frequency response
analysis with Bode, Nyquist, and Nichols diagrams. Stability
of a system can be readily studied from these figures. For a
closed-loop system to be stable, the open-loop gain and phase
margins obtained from the Bode diagram must be positive
and relatively large. Typical design values for the gain and
phase margins are 6 dB and 30◦ − 60◦, or 45◦ as average,
respectively [13, p. 675]). Stability of the system can also
be observed from the Nyquist and Nichols diagrams. The
critical point for these methods is (−1, 0). The closed-loop
system is stable if the plot does not encircle the critical point
(Nyquist) or passes or approaches this point (Nichols). The
results displayed in Fig. 7 show that the minimum gain and
phase margins are 11.6 dB and 40.4◦ at frequency 15.2 and
9.83 rad\s, respectively. These frequencies are near the fre-

FIGURE 8. System tuning according to the pre-defined design
target (ζ > 20%).

FIGURE 9. IEEE 68-bus dynamic test system [15].

quencies of lightly-dampedmodes where a small jump occurs
in the gain and phase plots of Bode, Nichols, and Nyquist
diagrams.

F. CONTROL DESIGN AND SYSTEM TUNING
Another use of the program is to design a feedback controller
and tune its parameters according to some desired design
goals without changing the DAEs structure and dimension.
MATLAB has two powerful tools for this task namely ‘‘sys-
tune’’ and ‘‘feedback’’. Several design requirements can be
assigned to the system tuner including reference tracking,
minimumdamping ratio, overshoot constraint, gain and phase
margin, sensitivity, disturbance rejection, etc.

In this section, a PSS controller with two compensation
blocks and a gain is designed and added to machine–2 (opti-
mal location). The controller input is the rotor speed deviation
of machine–2. The design goal requirement is the minimum
damping ratio to be greater than 20%. The original DAEs
model remains unchanged and is represented as an open-loop
transfer function. Then, the function ‘‘feedback’’ is used to
connect the DAEs to the controller with a reference input
(ωs) and a negative feedback signal (ω). The error signal
is connected to the controller compensator which is in turn
connected to the excitation system of machine–2. To tune the
controller parameters, we need first to provide the minimum
and maximum values for each tunable parameter. In this
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FIGURE 10. a. Frequency plots of generators in IEEE 68–bus
system. b. Bus voltage magnitudes in IEEE 68–bus system.

design, the ranges of the time constants T1, T2, T3, T4, and the
gain are set to 0.1–1s, 0.01–0.1s, 0.1–1s, 0.01–0.1s, and 1–50,
respectively. Then, the function ‘‘systune’’ is used to tune the
parameters. The optimal tuned values for the parameters are
found to be 0.2721s, 0.0990s, 0.2891s, 0.1000s, and 1.8776,
respectively. Fig. 8 shows the positions of eigenvalues for the
new closed-loop system with the goal requirements. Clearly,
the system response is improved and the minimum damping
ratio for the systemwith the controller is increased from 7.1%
to 21%. The user can also use a different controller model,
such as a PID controller. The function ‘‘tunablePID‘‘ can be
used for this type of controller.

G. LARGE-SCALE POWER SYSTEMS
Large-scale systems such as IEEE 68-bus test system shown
in Fig. 9 can also be simulated using the developed program.
Fig. 10a shows the frequency plots of the generators follow-
ing a three-phase fault at bus 17–the bus connected to the
largest power generation. Generators within the same area
are plotted in one color to see how the generators behave
during a severe disturbance. Simulation time for this system
with the detailed model of synchronous generators and using
the implicit method is found to be 11.26s. The voltage mag-
nitudes for the 68 buses in the system are also plotted and
displayed in Fig. 10b. Note that algebraic variables such as
voltage phasors change right at the disturbance time, whereas
the state variables such as frequencies do not change suddenly
at the time of disturbance.

To verify the efficiency of the proposed program to solve
larger practical system, Texas’s 2007-bus synthetic system
is employed and simulated. This system is used only to

FIGURE 11. System response in Texas’s 2007-bus synthetic test.

FIGURE 12. Comparison between the methods.

show the capability of the proposed program to simulate
large systems. The static and dynamic data for this system
are not real values but are generated by some studies in
recent years [14]. Figure 11 shows the simulation result for
this system after applying a disturbance near Generator 1.
The required time for this 20s-period simulation is 158s
based on a regular computer and 0.01s step size assuming
detailed model of generators. This system is also added to the
package.

VI. COMPARISON OF METHODS
The proposed program is simple comparing to the other open-
source packages; it consists of three to five m–files at the
most for the time-domain simulation. Among these files,
one is dedicated for the constant parameters, another file is
specialized to compute the initial values of all algebraic and
state variables, and one or three separate files for the DAEs
before, during, and after applying a disturbance.

For the time-domain comparison, a three-phase fault is
applied at Bu–5 in the 9-bus test system for the period
t = 1 − 1.1 s and is cleared naturally at t = 1.1s. Fig-
ure 12 shows a comparison between the proposedmethod and
the ones used by PST, PSAT and Simulink program proposed
in [15]. Note that for the PSAT, the loads were converted to
constant impedances; otherwise, the simulation stops at the
time of disturbance without reaching a solution. Notably, the
results obtained from these programs are close to each other,
especially with the proposed program and Simulink.

The required time for the simulation using the proposed
program is quite faster. For instance, in [6], it is men-
tioned that the required time to simulate the 68–bus system
was 162.599s, and 65.37s for the PST, whereas it required
only 11.26s for the proposed program to solve the system
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including solving load flow analysis, initial conditions cal-
culation, and plotting the results. System model, computer
features and simulation time (20s) were all similar in this
comparison.

Comparing to the Simulink programs in [15]–[16], the pro-
posed program is much faster, completely vector-based with
exact symbolic linearization, and can be used to create GUI
programs, whereas the Simulink programs use explicit solu-
tion to solve the DAEs. However, when the loads are treated
as constant impedances, the two programs show approxi-
mately similar required time for the simulation.

VII. EDUCATIONAL VALUE OF THE PROGRAM
The programs developed in this study are useful for students
and researchers. Students can easily build andmodify amulti-
machine power system following a mathematical model of
each component in the system. Connecting theoretical back-
ground to simulation practice helps students to gain academic
experience in the field. The symbolic representation of the
system modeled as a set of DAEs and its exact linearization
provides analytic information about the problem. Students
can compare between different numerical solutions such as
implicit and explicit approaches using the program. Further,
students can learn how to make their programs more efficient
using vectorization method instead of for-loops. The control
design is another advantage of this program. People in the
field including students and researchers can design a con-
troller without changing the DAEs structure.

VIII. CONCLUSION
This paper presented a MATLAB-based program for sim-
ulating multi-machine power systems considering implicit
and explicit solutions for generator– and network–side dis-
turbances. The program uses the MATLAB’s built-in solvers
for time-domain simulation benefiting from the vectorization
method that significantly speeds up the simulation. Power
system linearization can also be obtained from the program
with a symbolic and exact representation. Modal analysis,
mode shape, participation factor analysis and visualization,
optimal location of controller, feedback signal selection, con-
trol design, and frequency response analysis are some other

tasks that can be achieved using the program. The program is
aimed to be used as teaching tools or for research studies to
simulate small and large-scale power system.
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