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ABSTRACT Fall risk is high for older adults with dementia. Gait impairment contributes to increased
fall risk, and gait changes are common in people with dementia, although the reliable assessment of gait
is challenging in this population. This study aimed to develop an automated approach to performing gait
assessments based on gait data that is collected frequently and unobtrusively, and analysed using computer
vision methods. Recent developments in computer vision have led to the availability of open source human
pose estimation algorithms, which automatically estimate the joint locations of a person in an image. In this
study, a pre-existing pose estimation model was applied to 1066 walking videos collected of 31 older adults
with dementia as they walked naturally in a corridor on a specialized dementia unit over a two week period.
Using the tracked pose information, gait features were extracted from video recordings of gait bouts and
their association with clinical mobility assessment scores and future falls data was examined. A significant
association was found between extracted gait features and a clinical mobility assessment and the number of
future falls, providing concurrent and predictive validation of this approach.

INDEX TERMS Computer vision, dementia, gait, stability, falls, pose tracking.

I. INTRODUCTION
Dementia is a neurodegenerative disorder that impairs control
of gait and increases the risk of falling [1]. In addition to
being associated with a decrease in quality of life, loss of
mobility and mortality, falls are also a large contributor to
national healthcare costs [2]. While gait assessment is an
important component of determining fall risk in older adults
with dementia [1], current methods have important limita-
tions, particularly for older adults with dementia.

Numerous technologies exist which can be used to reduce
or eliminate the subjectivity of gait assessment. The majority
of these tools, however, require expensive and difficult-to-use

hardware, e.g. motion capture systems. Technologies that
require sensors to be attached to the body or walking to be
constrained are particularly difficult to implement for the
dementia population.

In this work, we 1) apply recent advancements of human
pose estimation into a system to process videos of older
adults with dementia as they walk naturally in their place of
residence, 2) extract several gait features from extracted pose
sequences, and 3) examine the relationship between extracted
gait features and clinical mobility scores (Performance Ori-
ented Mobility Assessment (POMA)), as well as prospective
fall events.
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II. BACKGROUND AND APPROACH
A. CLINICAL GAIT ASSESSMENT
Over the past two decades, functional assessments have been
the most commonly used type of gait assessments for older
adults [3]. These tools generally test the limitations of the
patients’ gait and balance and require a trained clinician to
score aspects of a patient’s gait based on observations. Due to
the subjective nature of these test, results can vary based on
the assessor [4]. In addition, they are performed infrequently
due to lack of resources such as trained staff and specialized
equipment [4], [5]. Gait and balance are two factors that
contribute to fall risk, therefore functional assessments are
often used as part of fall risk assessment. An example of
a functional gait assessment is the Performance Oriented
Mobility Assessment (POMA). POMAwas first published as
a functional mobility assessment specifically geared towards
institutionalized older adults [6]. The test is split into two
sections, POMA-gait and POMA-balance. Each section is
comprised of specific tasks that the patient is prompted
to do. The tasks for POMA-gait include step length and
height, step symmetry, straightness of path, and sway of
the trunk. The POMA-balance tasks include balance while
standing, balance while sitting, ability to stand with eyes
closed, and ability to turn 360 degrees [6]. The execution
of each task is then assigned a score, and the task scores
are added together to make the score for that section of
test. For POMA, a high score indicates good mobility and
balance. Inversely, low scores indicate poor gait and bal-
ance. Low scores can, therefore, indicate an increased fall
risk.

POMA-balance and POMA-gait are reliable and valid for
institutionalized cognitively intact older adults with interrater
reliability scores of R = 0.80-0.95 and R = 0.72-0.86
[4], [7] for POMA-balance and gait, respectively. However
for patients with dementia, functional assessments are dif-
ficult to perform due to communication barriers and lack
of patient motivation [8]. Often, in such difficult cases,
gait assessment is foregone due to a lack of available
alternative.

Aside from the clinical use of POMA or other functional
gait assessments, research has explored the correlations
between quantitative gait variables and fall risk for older
adults with dementia. Features of gait including gait speed or
cadence, step length and width variability, and medio-lateral
margin of stability have been associated with falls in older
adults with dementia [9]–[11]. There are many studies which
propose measuring these gait variables using devices such as
inertial measurement units (IMUs) [12], mats with imbed-
ded sensors, [13] or other wearable devices [14]. While
some studies have been successful at assessing mobility
in the dementia population with wearable sensors over a
few days [15], other studies describe difficulties associated
with sensor upkeep and acceptance in this population [16].
Thus, for longitudinal data collection over weeks andmonths,
ambient collection has some important advantages over
wearables.

B. HUMAN POSE ESTIMATION
Human Pose estimation is the ability of a computer to deter-
mine the posture and limb articulation of a person from an
image or video [17]. This has historically been a difficult
computer vision problem due to the extensive number of
variables present in pose estimation including variation not
only in the subjects (people) but also the ways in which they
move [17]. In recent years, with the advances in deep learning
algorithms, however, performance of human pose estimation
algorithms has improved significantly [18]–[20].

Many of the recent publications aim to reduce the com-
plexity of the network architecture and increase analysis
speed and/or accuracy [18], [20], [21]. As these models have
become more precise and require less computing power, they
have also become viable for many applications, including
clinical applications, where human movement analysis is the
subject of interest. While 3D human pose estimation models
have been developed and published [22]–[24], 2D human
pose estimation models are more accessible both in availabil-
ity of code and support as well as being able to process large
amounts of video locally. Local processing (as opposed to
cloud computing) was required due to the identifiable nature
of the videos collected.

Thus far human pose tracking has been explored for
ivarious methods of measuring gait and mobility in the older
adult population, including automatically acquiring the clini-
cal parameters measured in the timed up-and-go (TUG) test,
which is a clinical measure of mobility [25], step monitor-
ing [26], and general gait parameter extraction [27]. Another
application which has been extensively researched is the
detection of falls [28]–[30]. While many studies have used
pose tracking to generally analyse gait or identify when a fall
occurs, there is limited research addressing ways to prospec-
tively determine when future falls are likely.

C. HUMAN POSE ESTIMATION AND GAIT ASSESSMENT
Previous studies which address mobility assessment of older
adults in assisted living homes have made use of human
pose estimation to classify of movement type such as if the
person is standing, sitting, or lying [31]. Other studies have
used specialized depth sensors such as the Microsoft Kinect
v2 sensor and its skeleton tracking capabilities to measure
spatiotemporal and kinematic variables of gait [32]–[34]. For
example, one study explored the use of Kinect for ongoing
mobility monitoring of older adults after hip replacement
surgery and confirmed the sensitivity ofmeasured gait param-
eters during the course of recovery [35].

Recently, we established the feasibility of using a Kinect
v2 sensor, in combination with radio-frequency identification
(RFID), in a dementia residential setting to longitudinally
collect parameters of gait as residents walk naturally in their
environment [36]. We further investigated the association
between baseline gait parameters, calculated from Kinect
v2 skeletal tracking, and observational performance-based
tests of gait and balance, as well as the number of future
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falls [11]. While the feasibility of the system was established,
these studies also revealed some limitations of using the
Kinect sensor for ambientmonitoring. For instance, for a vari-
ety of reasons, in approximately half of the recorded walking
bouts, skeletal tracking was not successful [36]. In addition,
the Kinect depth of field is small, limiting the number of
steps that could be captured in a walking bout. In the above
studies, an average of 3.9 seconds of walking data per walking
bout was usable for gait assessment [36]. If a regular camera
could be used to perform human pose estimation and skeletal
tracking, then a larger number of steps could potentially be
analysed. It is also desirable to perform ambient vision-based
monitoring using regular cameras, as opposed to special hard-
ware (e.g. Kinect) to avoid the risk of obsolescence.

In this work, we explore the utility of vision-based human
pose estimation, operating on regular image/video data and
without the need for special sensors, for longitudinal gait
monitoring in older adults with dementia. We compute a set
of gait features based on a sequence of tracked poses, and
examine the relationship between baseline parameters of gait
computed this way and future incidents of falls and clinical
scores of balance and mobility.

III. METHODS AND PROCEDURES
A. DATA COLLECTION
Data were collected from 31 participating inpatients in the
Specialized Dementia unit at the Toronto Rehabilitation
Institute. All patients admitted to the unit are diagnosed
with dementia. Those who were independently mobile were
recruited to the study. Patients who used walking aids, such
as walkers, were included in this study; but those with walk-
ing aids which occlude the patient’s legs, such as rollators,
were excluded. (Rollators are used similarly to walkers but
have additional wheels on the front legs and also a seat and
sometimes a basket). The study protocol was approved by the
institute’s Research Ethics Board. Written informed consent
to the study was provided by substitute decision-makers,
and each participant was only assessed or engaged in data
collection if they gave verbal assent.

Color videos of 1920 × 1080 pixel resolution were col-
lected at 30 frames per second, using an existing Microsoft
Kinect v2 sensor which had been previously mounted on the
ceiling at the end of a hallway of the inpatient dementia unit.
The Kinect sensor incorporates an RGB (i.e. colour) camera
and a depth sensor; for this study only the RGB videos were
analysed. A Radio-Frequency Identification (RFID) system
was used to identify patients and initiate recordings. Two
polarized ultra-high frequency antennas were placed on the
walls on each side of the hallway, 8 m from the camera.
The antennas were camouflaged to detract attention from
patients on the unit by covering the antennas with plywood
which matched the finishing of the section of the wall to
which they were attached. RFID tags of unique identifiers
per participant were ironed inside each leg of each pair of
trousers of the participants at the height of the antennas using

FIGURE 1. Ankle and eCOM keypoints for the participant and research
assistant of a walking bout overlaid on the first frame of the video of that
walk.

a heat press. When a participant passed by the antennas,
30 seconds of video, capturing their walk along the hallway
was automatically recorded.

Videos were collected from the time of each participant’s
enrollment until either their discharge from the unit or the
point at which they no longer met study criteria, e.g. were
no longer able to independently walk 20 m. To increase
the number of video recordings, a clinical research assistant
encouraged participants to walk by the recording system
daily. In total, 1066 standard videos were recorded. In addi-
tion to video collection, POMA-gait and POMA-balance
scores were assessed upon enrollment to the study, and falls
incidence were recorded throughout the study. For this study,
falls were documented based on chart review, incident reports
and discussion with clinical staff at daily safety huddles. Any
incident where a participant unintentionally came to rest on
the floor or any lower level was recorded as a fall.

B. APPLICATION OF HUMAN POSE ESTIMATION
In visual preprocessing, approximately 20 % of the recorded
videos, in which participants changed course (e.g. walked by
the antenna to trigger video recording, but then turned and
walked back), or in which participants did not walk indepen-
dently (e.g. held the handrail), were discarded. OpenPose,
a pre-trained deep learning-based human pose estimation
model was then used to track 13 keypoints of interest over the
remaining videos [20], [37]. In visual post-processing, any
keypoints tracked from individuals other than the study par-
ticipant, such as the clinical research assistant accompanying
the patient, were discarded (e.g. Figure 1).

C. VERIFICATION OF HUMAN POSE ESTIMATION
In order to verify the accuracy of OpenPose keypoint place-
ment on the collected videos, a standard Percent Correct
Keypoint analysis was performed [38]. First, two random
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FIGURE 2. Sample image from a participant’s recorded walk, with the 13
detected keypoints of interest plotted on the image.

frames of one video per participant were selected. Then,
the 13 keypoints of interest (see Figure 2) were blindly
hand annotated on each of the selected images. The output
keypoints from OpenPose were then compared against the
manually annotated keypoints and the Percentage of Cor-
rect Keypoints (PCK) was calculated. In the PCK analysis,
the threshold was set to half the length of the head segment
(PCK@0.5) [38]. The PCK@0.5 value was calculated three
times: over all 13 keypoints over the two ankle keypoints,
and over the two hip keypoints. A comparison between the
correctness (i.e., placement of keypoints within the threshold)
and the confidence level assigned to the keypoint placement
was also made.

D. ESTIMATION OF GAIT VARIABLES FROM KEYPOINTS
In further post-processing, using Matlab (Mathwork Inc.,
Natick, USA), the time series of keypoints’ coordinates were
first filtered using a second order lowpass butterworth filter
with a cutoff frequency of 4 Hz. This cut-off frequency was
determined through residual analysis [39]. The movements
of keypoints frame to frame were then used to estimate gait
variables for each recorded walk. In total, 7 gait variables
were extracted from each walking sequence as described
below.

Since tracked points are in 2D (pixel) coordinates, it was
not possible to calculate gait variables requiring 3D distances,
e.g. step length or velocity. However, temporal gait variables
(e.g. cadence or step time) and relative distance measures
(e.g. left/right symmetry of step width) could be measured.
All pixel distances were normalized to the mediolateral hip
span, i.e. the pixel distance between the left and right hip
keypoints.

To estimate foot strikes, the foot pixel velocity was first
calculated by differentiating the vertical position of each
ankle keypoint over time (see Figure 4). As suggested in [40]

FIGURE 3. Vertical movement of ankle keypoints over time.

FIGURE 4. Foot strike analysis performed by differentiating ankle
keypoint movement and finding 35% of maximum differential in
speed [41].

the foot strike was located where the signal velocity passed
over the 35% threshold of the maximum differential of each
step (see Figure 4).Cadence (i.e. number of steps per minute)
was then calculated by finding the number of foot strikes
divided by the total time of the walking bout in minutes. The
symmetry index (SI) of step timeswas calculated by taking the
absolute value of the difference of time spent on each foot,
divided by half of the total time as in [41]. The coefficient of
variance (CV) of the step time was calculated as the standard
deviation of the time of each step divided by the average step
time.

2100609 VOLUME 8, 2020



K.-D. Ng et al.: Measuring Gait Variables Using Computer Vision to Assess Mobility and Fall Risk in Older Adults With Dementia

FIGURE 5. Horizontal movement of the ankle keypoints and eCOM over
time for one walking bout, (top) and corresponding keypoints plotted on
the image of the first frame of the video (bottom).

Average step width was calculated as the average of the
pixel distances between ankle keypoints, divided by the pixel
distances between hips per frame (see Figure 5). The CV of
step width was calculated in the same fashion as CV of step
times. Two additional gait variables were calculated estimat-
ing a measure of margin of stability (MOS) [42]. To do so,
the estimated centre of mass (eCOM) was first determined as
the centre point between the two hip keypoints. The estimated
extrapolated centre of mass (eXCOM) was then calculated by
adding to eCOM its normalized pixel velocity divided by the
square root of gravity divided by leg length [43]. Leg length
in this instance was determined as the normalized pixel length
between the hip keypoint and ankle keypoint at heel strikes,
averaged over all heel strikes, and then averaged between left
and right legs. For each frame, the horizontal pixel difference
from the eXCOM to the right and left ankle keypoint of the
stance foot was calculated and normalized, and this measure

was averaged over each frame of the walk to get the average
estimated margin of stability (eMOS) variable [11]. The min-
imum eMOS was calculated similarly, but by averaging only
the smallest eMOS measure per step of the walk [11].

These estimated gait variables were calculated for each
video of each participant and averaged over the first two
weeks of their enrollment in the study comprising partici-
pant’s ‘‘baseline gait variables’’.

E. IMPLEMENTATION DETAILS
A Tensorflow implementation of the two dimensional human
pose estimation algorithm, OpenPose [20], [37], [44] was
used to place the keypoints used in this analysis. The model
used was pre-trained on the Max Planck Institut Infor-
matik (MPII) Dataset [38]. The camera used in data collection
was aMicrosoft Kinect forWindows v2, but only the recorded
RGB streams were used in this analysis (1080 × 1920 pixel
resolution, 30 frames per second). Calculation of the gait
features and statistical analyses were performed usingMatlab
(Mathwork Inc., Natick, USA).

F. OUTCOME MEASURE
The outcome measures were 1) POMA-gait sub-scale score
and POMA-balance sub-scale score and 2) the number of
falls that each participant experienced while participating in
the study. Falls were recorded prospectively by the clinical
research assistant who gathered details directly from unit staff
members and continuously reviewed falls documentation in
charts.

G. STATISTICAL ANALYSIS
Univariate linear regression analysis was performed to deter-
mine the correlation between the POMA-gait scores of the
participants with their estimated gait variables. This analysis
was repeated between the POMA-balance scores and esti-
mated gait variables. Similarly, univariate Poisson regression
analysis was performed to determine the correlation between
each of the estimated gait variables and the number of falls
recorded during the study for each participant. The length of
participation in the study was included in the Poisson regres-
sion as an exposure (offset) variable. Statistical significance
was set to p < 0.05 for all three regression analyses. Finally,
the gait variables which were found to have statistically sig-
nificant association to the number of falls were then used
to make a multivariate model, correlating the estimated gait
variables to number of falls.

IV. RESULTS
A. PARTICIPANTS AND VIDEO DATA
Between November 2017 to December 2018, 33 participants
were recruited to the study. One participant withdrew consent
and one was found not to meet the inclusion criteria, leaving
a total of 31 participants for analysis. In total, 1066 colour
videos (i.e. walking bouts) were collected of the remain-
ing 31 participants during their respective frist two weeks
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TABLE 1. Participant characteristics.

in the study. In post processing, 19.7% of recorded videos
were discarded and not analysed due to any of the following
factors: the participant holding the handrails while walking,
the participant turning around to walk away from the camera,
participants completing less than 3 steps in the recording
time, or the participant being significantly occulded from the
view of the camera. The average number of videos analysed
per participant was 33±24, with 6 being the lowest number
of videos and 103 being the largest. The average length of
inclusion in the study (during which falls were recorded) was
44±19 days, with an average of 1.9±1.1 walks per day per
participant. The average time of recording of each walk was
4.7 seconds. The characteristics of the participants, separated
into fallers and non-fallers, are summarized in Table 1.

B. VERIFICATION OF HUMAN POSE ESTIMATION
A PCKh@0.5 score of 87% was obtained when comparing
OpenPose keypoints to blindly hand annotated keypoints. The
PCKh@0.5 value for the hips and the ankles were 79% and
84% respectively. OpenPose outputs a confidence rating of
each keypoint ranging from 0 (no confidence) to 1 (full con-
fidence). Using these confidence scores, keypoints detected
with low confidence could be discarded, for example to be
imputed using the corresponding keypoints from temporally
adjacent frames. Table 2 reports the PCKh@0.5 values for all
13 keypoints and for the two ankle keypoints achieved after
discarding keypoints with confidence scores below 0.2, 0.4,
0.6 or 0.8. It can be seen in table 2 that at a cutoff threshold
of 0.4, less than 20% of keypoints are discarded, and the all
keypoints achieve a PCKh@0.5 score of 90%. While higher
thresholds result in higher PCKh@0.5 scores, they also result
in a high percentage of keypoints being discarded. Therefore,
the confidence score threshold of 0.4 was selected as an
appropriate trade off, and keypoints detected with confidence
scores below 0.4 were discarded and imputed (linearly) based
on coordinates from temporally adjacent frames.

C. REGRESSION TO POMA SCORES
The average POMA-gait score of the 31 participants analysed
was 8.2±2.6 with a range of 4-12 while the average POMA-
balance score was 8.8±3.4 with a range of 2-14.

TABLE 2. PCKh@0.5 for all keypoints and for the two ankle keypoints
with cut off thresholds of confidence scores at 0.2, 0.4, 0.6, and 0.8.

Table 3 shows the results of univariate linear regression
from each of the estimated gait variables to POMA-gait
scores. Only cadence was found to be significantly associated
with POMA-gait score (p = 0.00047).
Table 4 shows the results of univariate linear regression

from each of the estimated gait variables to POMA-balance
scores. Cadence and average step width were found to be
significantly associated with POMA-balance (p < 0.05).

D. POISSON REGRESSION TO NUMBER OF FALLS
Of the 31 participants whose data was used for this analysis,
there were 17 fallers and 14 non-fallers. For the fallers, the
average number of falls was 2.6±1.7, with a range of 1 to
8 falls. Table 5 shows the results of the univariate Poisson
regression to the number of falls.

It was found that cadence, average eMOS, minimum
eMOS, and average step width were significantly correlated
to the number of falls experienced (p < 0.05). For the
multivariate analysis, the significantly associated (p < 0.05)
gait variables were selected. Of the gait variables that were
highly correlated, i.e., the two measures of eMOS, the gait
variable of strongest association, determined by highest R2

value, was selected. This resulted in amultivariate model with
an R2value of 0.42, and an R2value adjusted for the number of
predictors of 0.59 with cadence and average eMOS retaining
significant association, as seen in Table 6.

Cadence was the only extracted gait variable found to
be associated to the POMA-gait scores. This may in part
be attributed to the previously reported limitations in valid-
ity of the POMA-gait specifically for the dementia popula-
tion [3], [11]. The POMA-balance scores were associated
with cadence and average step width. Participants with higher
cadence (more steps per minute) had worse POMA-balance
scores, which can, clinically, contribute to an increase in
fall risk. This finding was different to previous findings in
older adults, where a decrease in cadence was associated
with increased fall risk [32], [33]. However, in the demen-
tia population, an increase in cadence was associated with
movement disorders such as parkinsonism. Another possi-
bility was that increased cadence in those with dementia
could represent a failure to self-regulate in response to poor
balance and therefore increased fall risk [33]. Step width was
also associated with POMA-balance, with a wider step width
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TABLE 3. Linear regression to POMA-gait.

TABLE 4. Linear regression to POMA-balance.

TABLE 5. Univariate Poisson regression to number of falls.

associated with increased POMA-balance scores, indicating
better balance and therefore a decreased fall risk. This aligns
with expectations as a wider step width means an increased
base of support and therefore more stability.

Gait variables calculated from pose-tracking were also
predictive of the participants’ number of future falls which
occurred over the length of the study. Similar to the associ-
ation with POMA-balance, an increased cadence was asso-
ciated with an increase in number of falls, and a wider
step width was associated with a decrease in number
of falls.

The eMOS measures were also found to be associated to
number of falls. Lower average and minimum eMOS, were
associated with increased number of falls. A model including
cadence, average eMOS, and average step width was able to
explain 59% of the variance in number of falls experienced
by the participants. For this multivariate model, the minimum
eMOSwas excluded as it was highly correlated to the average
eMOS variable. The associations found show promise for
future work to develop a predictive model using extracted gait
variables to predict future falls.

TABLE 6. Multivariate Poisson regression, (R2 = 0.42, adjusted
R2 = 0.59).

V. DISCUSSION
In this study, we demonstrated that human pose estimation
can be used to extract clinically meaningful data from video
collected of older adults with dementia walking in envi-
ronment in which they live. This method improves upon
existing clinical gait assessment methods as we are able to
analyse natural walking in a residential environment, and do
so over time. Importantly, this study supports an ambient data
acquisition method without the need to attach any sensors
to the participants, which significantly reduces the burden of
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implementation to clinical staff compared to methods which
require continual upkeep of wearables. The use of wearable
sensors in the dementia population is particularly challenging
because of non-adherence. By contrast, ambient monitoring
systems are low effort on the part of patients and clinical
staff and are thus well suited to this population and envi-
ronment. Compared to a previous study which extracted gait
variables from videos recorded with Kinect [11], [36], our
system was able to capture videos of walking bouts which
were 20% longer per recording, on average. The ability to
analyze longer walking bouts, and therefore more steps per
bout, increases the accuracy of the gait variable extraction
by allowing for better normalization of the per step vari-
ables extracted from each walking bout. Additionally, this
study used open source algorithms to perform the human
pose estimation used for analysis, which allowed increased
automation of the data extraction and analysis. Furthermore,
pose estimation in video allows for the use of regular cameras,
as opposed to special hardware (e.g. Kinect). Video cameras
are ubiquitous and are already present in many long-term care
facilities in the form of security cameras. This study showed
that gait parameters calculated from video cameras has clini-
cal utility. Specifically, extracted gait variables were shown
to be clinically meaningful by the associations determined
through a series of regressions to POMA scores and observed
instances of future falls.

A. LIMITATIONS
Some difficulties were encountered during the data collection
and analysis for this study. The majority of these challenges
were due to the lack of infrastructure existing in clinics to
store large volumes of data paired with the cautious nature
of healthcare institutions when it comes to collecting and
storing video data. Privacy protocols required all videos to be
stored on hospital servers, which meant having to deal with
high traffic and therefore slow data transfers. Additionally,
the use of a computer cluster for processing was not possible
due to the inability to de-identify the videos, so the human
pose estimation was performed locally on a single graphics
processing unit (GPU), an Nvidia GTX 1080 which increased
the computation cost.

One limitation of this study is the limited time of participa-
tion in the study. Due to the nature of the specialized dementia
unit, patients are typically admitted for 6-8 weeks, limiting
data collection to that time, and limiting the ability to perform
longer term longitudinal analysis. An additional limitation is
that documentation of falls did not differentiate between types
of falls (e.g. from standing, from sitting, from the bed).

We also note that, with the exception of temporal measures,
the gait measures calculated in this study are not comparable
to true spatial gait variables. The gait variables measured
in this study were relative measures and unitless, e.g. step
width normalized to the mediolateral hip span. While these
unitless measures were based on clinical measures of gait,
they could not be used to compare directly to spatial gait
variables measured by traditional means, e.g. force plates

or optical motion capture. Nevertheless, we note that the
main utility of gait assessment is the relationship between
assessed gait and clinical scores or clinically relevant events
(e.g. falls). Gait parameters calculated in this study showed
associations with clinical measures (concurrent validity) and
with future falls (predictive validity) and, as such, may still be
useful for predicting which patients are at risk of falling even
though they do not directly correspond with gait parameters
measured in the laboratory.

B. FUTURE WORK
This study provides the foundation for future longitudinal
studies using video to assess gait quality in natural walking.

Once more longitudinal data becomes available, a transi-
tion from regression analyses to predictive modelling should
be explored. If validated as an effective method of predicting
short term fall risk, this method could be implemented as a
real time gait monitoring and assessment tool. This tool could
function as a warning system, pushing alerts to care staff to
intervene when a patient’s gait indicates high risk of falls.

Machine learning should also be explored as a refinement
to this method. Machine learning could lead to determin-
ing stronger associations than statistical regression analyses.
Machine learning could also be used to analyse the raw
human pose estimation data rather than first extracting gait
variables from the human pose estimation data, then drawing
conclusions directly from the human pose estimation data and
therefore streamlining the process.

An additional future research question which could be
explored is to concurrently measure gait parameters with the
methods from this study as well as with traditional motion
capture systems to compare the relative (normalized) gait
measures to their absolute (i.e. not normalized) counterparts.
While this study showed associations directly between clini-
cal outcome measures and the relative gait measures, should
this method be validated by comparison to absolute gait
measures, it may be possible to expand the use of these
methods to other applications which require absolute gait
measures. When comparing to falls incidence, future studies
should compare the measured gait features only to falls which
occurred due to loss of balance during walking rather than all
falls.

Another way to expand the scope of this study in the future
would be to move from 2D to 3D human pose estimation
algorithms. Numerous papers and algorithms have been pub-
lished, suggesting the ability to infer a 3D pose from image or
video input [22]–[24]. Should these algorithms be verified as
precise on our dataset, then the gait variable extraction could
be expanded to include variables measures not only along the
mediolateral axis, but also along the anterior-posterior axis.

VI. CONCLUSION
Using recorded videos of natural gait of people with demen-
tia, we showed concurrent and predictive validation for the
use of human pose estimation for gait assessment. Gait vari-
ables extracted from the human pose estimation data are
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associated with both clinical gait measures and with future
observed falls. This work sets the stage for future validation
studies, and for the development of real-time gait monitoring
and assessment as well as the development of a fall prediction
systems.
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