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Estimating Soil Moisture Over Winter Wheat Fields
During Growing Season Using
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Abstract—Soil moisture is vital for the crop growth and directly
affects the crop yield. The conventional synthetic aperture radar
(SAR) based soil moisture monitoring is often influenced by vegeta-
tion cover and surface roughness. The machine-learning methods
are not constrained by physical parameters and have high non-
linear fitting capabilities. In this study, machine-learning methods
were applied to estimate soil moisture over winter wheat fields dur-
ing its growing season. RADARSAT-2 data with quad polarizations
and 240 sample plots in the study area were acquired and collected,
respectively. In addition to the four linear polarization channels, po-
larimetric decomposition parameters were extracted to expand the
SAR feature space. Three advanced machine-learning models were
selected and compared, which were support vector regression, ran-
dom forests (RF), and gradient boosting regression tree. To improve
the performances of the models, three feature-selection methods
were compared, which were based on Pearson correlation, support
vector machine recursive feature elimination, and RF, respectively.
The coefficient of determination (R2) and root-mean-square error
(RMSE) were used to compare and assess the performances of those
models. The results revealed that polarimetric decomposition pa-
rameters were effective in estimating soil moisture, and RF model
obtained the highest prediction accuracy (training set: RMSE =
2.44 vol.% and R2 = 0.94; and validation set: RMSE = 4.03 vol.%,
and R2 = 0.79). This study finally concluded that using polarimetric
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decomposition parameters combined with machine-learning and
feature-selection methods could effectively estimate soil moisture
at a high accuracy, which helps monitor soil moisture across the
agricultural field during its growing season.

Index Terms—Feature selection, machine-learning technology,
polarimetric decomposition, RADARSAT-2 synthetic aperture
radar (SAR), soil moisture.

I. INTRODUCTION

IN THE earth ecosystem, soil moisture is an important part of
the land surface water cycle, which directly affects surface

runoff and water energy exchange between the atmosphere and
surface [1]–[4]. In agricultural applications, soil moisture is a
crucial part of soil fertility and an important factor affecting the
crop growth and development, and an early warning information
of crops drought disaster [5], [6]. Therefore, it is widely used in
crop growth modeling and yield forecast [7].

Traditionally, soil moisture content (SMC) measurement is
carried out through field survey, which is time-consuming and
laborious, and only limited sampling data can be obtained
[8]. More recently, compared with optical remote sensing, mi-
crowave remote sensing has stronger penetrability, which en-
ables it to penetrate vegetation, soil, and other surface covers. It is
also not disturbed by weather conditions. Therefore, microwave
remote sensing is more and more widely used in estimating SMC
[9], [10]. Due to its high sensitivity to soil moisture, synthetic
aperture radar (SAR) has been extensively used in SMC estima-
tion at a high temporal and spatial resolution [11]–[13]. More-
over, because the polarimetric SAR data can provide multiple
polarizations information, it can be used not only to estimate soil
moisture over bare soil surface but also over vegetation cover
area [14]. To analyze and understand the scattering mechanisms
of ground targets, polarimetric decomposition of original SAR
to extract hidden physical information has gradually proved to
be an effective method [15]–[17]. Huynen [18] first proposed
polarization target decomposition theorem in 1978. So far, many
researchers have developed other polarization decomposition
methods [19], [20]. In consideration of the fact that full polari-
metric SAR can provide abundant polarimetric information, and
polarimetric parameters obtained by polarimetric decomposition
models have been applied in soil moisture inversion [21]–[23].
Hajnsek et al. [8] first investigated the potential of soil moisture
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inversion under various crops cover at L-band based on model
decomposition. In their study, a three-component decomposition
method proposed by Freeman and Durden [19] and its modified
decomposition methods were used. Huang et al. [24] proposed
a self-adaptive two-component decomposition, which took into
account scattering from crop surface and canopy volume to
estimate soil moisture for C-band RADARSAT-2 SAR. Wang
et al. [7] proposed a polarimetric decomposition method based
on the C-band, which ignored the dihedral scattering component
and takes the attenuation of vegetation into account to simplify
the inversion of soil moisture.

Generally, soil moisture estimation based on the SAR data
can be realized using the following approaches [25]:

1) empirical/semiempirical models;
2) theoretical electromagnetic models; and
3) machine-learning approaches.
The empirical/semiempirical model approach are based on

the statistical laws obtained by means of abundant field exper-
iments at certain study sites [26], such as model of Oh et al.
[27] and Dubois et al. [28]. However, they are usually only
applicable to a specific range of surface roughness conditions,
SMC, radar frequency, and SAR incident angles. In addition, it
is difficult for empirical or semiempirical models to solve non-
linear problems. For the second approach, the theoretical model
simulates the backscattering coefficient through soil properties
(such as dielectric constant and surface roughness), which is
the frequently used methods for retrieving soil moisture for
known characteristic regions [26]. Fung et al. [29] proposed
the integral equation model, which is one of the most popular
theoretical models for soil moisture estimation. However, this
model is not suitable for vegetated areas and areas without prior
knowledge, such as surface roughness information. In recent
years, machine-learning method has gained popularity in soil
moisture retrieval due to its capability to avoid complex physical
relations and efficiency in solving nonlinear problems. Another
advantage of machine learning is that the number of required
parameters is not limited by the surface parameters [10], [25].

Using machine-learning models, soil moisture has been suc-
cessfully estimated over both bare land and vegetated areas. In
terms of the combination of the active and passive microwave re-
mote sensing data, Pasolli et al. [30] used two machine-learning
approaches, namely support vector regression (SVR) and mul-
tilayer perceptron neural network, to retrieve soil moisture.
Zhang et al. [31] used SVR to estimate soil moisture in bare
farmland based on multiband satellite data. Based on the soil
moisture active passive brightness temperature, Tong et al. [10]
used two machine-learning methods, namely SVR and random
forests (RFs), and statistical-based ordinary least squares model
to obtain the dynamic change of soil moisture of agricultural
land in southeast Australia from 2015 to 2019. However, there
are few research articles studying the comparison and analysis of
various machine-learning methods combined with polarimetric
parameters in estimating SMC during wheat growing season.
To fill this gap in the current literature, this study attempts to
estimate SMC within the winter wheat growing season based
on the polarimetric parameters and three advanced machine-
learning methods. The machine-learning methods used in our

Fig. 1. Location of the study area.

study include SVR, RF, and gradient boosting regression tree
(GBRT). These methods were selected because they have proven
to be effective in estimating a variety of ecological parameters,
including soil moisture [11], [32]–[35].

There are two main purposes in this study. First, investigat-
ing the potential of the multiple polarimetric parameters ob-
tained from polarimetric decomposition model combined with
backscattering coefficient for helping soil moisture retrieval in
agricultural region. Second, evaluating the performance of three
proposed machine-learning models, SVR, RF, and GBRT com-
bined with three feature-selection methods [based on Pearson
correlation coefficient, support vector machine recursive feature
elimination (SVM-RFE), and RF], in soil moisture estimation.

II. STUDY AREA AND DATA USED

A. Ground Truth Data Collection

A rain-fed agricultural site located in southwestern Ontario,
Canada, was chosen as the study area (see Fig. 1). The common
crops grown in this region are corn, soybean, and winter wheat.
In our study, only the soil moisture data of the winter wheat
field were measured. Therefore, only the winter wheat field was
selected for model construction and accuracy evaluation. The
study area selected in this study was an L-shaped region with
an area of about 27 hm2 (see Fig. 1). Winter wheat in the study
region is typically sown in October every year. With the gradual
warming of the weather in the following spring, winter wheat
starts its regrowth in April. Winter wheat harvest usually occurs
at the end of July or early August depending on the weather
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TABLE I
COLLECTED SOIL MOISTURE

TABLE II
COLLECTED RADARSAT-2 DATA

conditions. Ground measurements for this study were conducted
during the wheat growing season from May to July 2019, and a
total of eight field campaigns were carried out. The acquisition
date of ground data was coincident with that of RADARSAT-2
satellite overpass.

The soil sampling locations were designed in such an ap-
proach that the spatial distance between any two adjacent sam-
pling points was more than 50 m. Surface SMC was measured
at the depth of 0–5 cm using a theta-probe soil moisture sensor.
To avoid the accidental error in the measurement, SMC was
measured for six times for each sampling point, and the final
mean value was taken as the actual SMC of the sampling point.
At the same time, a global positioning system was used to
record the specific locations of sampling points. During the
entire growing season of wheat, a total of 240 samples were
collected in the study area (see Table I). The number of sites
surveyed on each of the sampling dates was 32, except July 10
on which only 16 sample sites were surveyed. Soil moisture
readings ranged from 4.17 to 40.20 (vol.%) among all sampling
sites throughout the field campaigns.

B. RADARSAT-2 Data Acquisition and Preprocessing

Eight full polarimetric RADARSAT-2 images covering the
study area were acquired during the wheat growing season in
2019 (see Table II). The data received from the data provider
were in single-look complex format at the fine quad polarization
mode. The nominal spatial resolution of these images is about
8 m. The RADARSAT-2 image of May 20th is acquired in
ascending path, and the rest of images were all acquired in
descending path. The SAR incidence angles ranged from 17.22°
to 50.22◦ for all the image acquisitions in our study.

RADARSAT-2 data were processed following the following
steps using SNAP 7.0.

TABLE III
COLLECTED SENTINEL-2 DATA

Fig. 2. Workflow diagram.

1) Calibrating the original images, which converted the im-
ages to backscattering coefficient (σ°).

2) Generating T3 matrix (T3).
3) Polarimetric speckle filtering using refined Lee filter with

7× 7 window size for noise reduction.

C. Sentinel-2 Data Acquisition and Preprocessing

Sentinel-2 is a high-resolution multispectral imaging satellite
with a multispectral imager. To obtain the vegetation description
parameters of the sampling sites in our study, Sentinel-2 images
as close as possible to the respective sampling date were ob-
tained. In total, six cloud-free Sentinel-2 images were obtained.
The details of Sentinel-2 data and the corresponding sampling
date are given in Table III.

Sentinel-2 data were processed using the following steps: first,
radiometric calibration and atmospheric correction: converting
the top of atmosphere apparent reflectance to surface reflectance;
second, calculating NDVI of the study area as the vegetation
description parameter.

III. METHODOLOGY

In this study, three types of machine-learning models for
estimating soil moisture in the agricultural region through in-
tegrating polarimetric decomposition parameters and backscat-
tering coefficient were used and compared. Fig. 2 illustrates the
workflow of soil moisture estimation used in this study.

1) RADARSAT-2 data were preprocessed.
2) Different polarimetric decomposition methods were ap-

plied to obtain the polarimetric parameters.
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TABLE IV
FEATURES EXTRACTED FROM RADARSAT-2 DATA

3) Feature parameters of the polarimetric decomposition pa-
rameters and four linear polarizations of each sample point
were extracted.

4) Soil moisture estimation database was constructed based
on the feature parameters and measured soil moisture.

5) Training and validation sets were generated. For the sam-
ple points of each date, 70% were randomly selected for
model training, and the remaining 30% were used for
model validation. In total, 165 training samples and 75
testing samples were obtained.

6) A model was established on the training set based on
different machine-learning models and feature-selection
methods.

7) Performance of different models was evaluated to verify
the effectiveness of feature selection.

A. Feature Extraction

A feature space for soil moisture estimation was created
according to RADARSAT-2 datasets. Initially, the available
parameters of RADARSAT-2 data for the study region were four
linear polarization channels. Then, the polarimetric decomposi-
tion parameters extracted from the original images were used to
extend the SAR feature space.

In this study, coherency matrix T3 [36] and various polari-
metric decomposition methods were applied to extracted rele-
vant polarimetric features, and the detailed description of these
polarimetric parameters refers to the article presented in [36].
The features extracted in this article are illustrated in Table IV.

B. Machine-Learning Methods

1) Support Vector Regression: Support vector machine
(SVM) is proposed for the principle of structural risk minimiza-
tion. The application of SVM to regression prediction is called
SVR [40]. Because SVR has fine generalization capability, it has
been widely used in the remote sensing inversion of ecological
parameters [41]. For solving nonlinear problems, the core idea
of SVR is to transform nonlinear problems into linear problems
in the high-dimensional space, and then use a kernel function
to replace the inner product operation in the high-dimensional
space, so as to simplify the calculation [40]. There are four kinds
of kernel functions in SVR: polynomial, linear, sigmoid, and
Gaussian. When using SVR to estimate surface parameters in
remote sensing field, Gaussian kernel function is proved to be

effective for the estimation of ecological parameters [30], [34],
[42]. Therefore, we selected Gaussian as kernel function in this
study. When constructing SVR model, some model parameters
have great influence on the estimation results, among which the
typical parameters include “gamma” (kernel parameter) and C
(penalty coefficient) [34]. Therefore, it is necessary to set the
appropriate parameter values of gamma and C.

2) RF Regression: RF is constructed on the basis of multiple
decision trees, which is a popular ensemble learning method
based on the statistical theory to solve classification and regres-
sion problems [43]. When RF is used in regression problem,
it is called random forest regression (RFR). The RF model
is established through the following steps. First, based on the
training dataset, use bagging algorithm to generate a homoge-
neous subset. Second, apply the classification and regression
tree algorithm, then basic decision tree is constructed using
each bootstrap dataset. Finally, all decision trees are combined
to generate an RF model [33], [34]. Because the result of RF
algorithm is the average of all the predicted values of decision
trees, the RF has high capability to resist over fitting [43].

3) Gradient Boosting Regression Tree: The core idea of
GBRT is gradient boosting algorithm, which was proposed by
Friedman in 1999 and is an improvement over the traditional
Adaboost algorithm [44]. Each calculation is to reduce the
residual, then a new model is built in the direction of the
gradient of residual reduction. The GBRT is also considered as a
machine-learning method based on multiple decision trees with
strong generalization ability, which is an algorithm to regress
data by the linear combination of basic functions and reducing
the residual error produced in the training process [35], [44].
The advantage of GBRT is that it can deal with many types
of data. However, due to the sequential operation mechanism
of boosting algorithm, the GBRT can hardly be parallelized.
The most important model parameters in GBRT are the number
of decision trees (“n-estimators”), the maximum depth of a
subdecision tree (“max depth”) and the learning rate.

C. Feature-Selection Algorithms

1) Pearson Correlation Coefficient: Pearson correlation co-
efficient (R) is the simplest method to judge whether there is a
linear correlation between two variables, and its value is between
−1 and 1. The closer the absolute value of R is to 1, it means
that there is a strong linear correlation between the two variables;
on the contrary, the closer the R is to 0, it means that there is
no linear relationship between the two variables. Its calculation
formula can be expressed as

r(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

(1)

where Cov(X, Y) represents the covariance of X and Y, Var(X) is
the variance of X, and Var(Y) is the variance of Y.

2) SVM Recursive Feature Elimination: The recursive fea-
ture elimination (RFE) method uses a base model to carry out
multiple rounds of training. After each round of training, some
features of weight coefficients are removed, and then the next
round of training is carried out based on the new feature set.
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When SVM is selected as the base model in RFE, it is called
SVM-RFE [45]. The core idea of SVM-RFE is to repeatedly
build SVM models. After each model construction, all features
will be assigned a weight coefficient, and the features with the
minimum weight will be eliminated. Repeat the above steps for
the remaining features until the number of remaining features
reaches the required number [46]. According to the order of
feature elimination in the iterative construction process of the
model, the feature importance ranking based on the SVM-RFE
can be obtained. The feature that is removed first has the least
importance to the model.

3) Random Forest: In addition to solving classification and
regression problems, RF is also an embedded method of feature
selection [47]. An RF algorithm is used for feature selection
because it can calculate the importance of each variable in the
process of model construction [42]. In RF, a bootstrap aggre-
gation algorithm is used to construct a bootstrap set based on
the training data. However, almost a third of the training data
are still not used. These training samples are called out of bag
(OOB) samples [42]. According to the error rate of the model on
OOB samples, the performance of the model can be evaluated.
After adding random noise to different features, the error rate
is calculated repeatedly, and the importance of the feature to
the model construction is judged according to the change of the
error rate [42], [43], [47].

D. Cross Validation (CV) and Parameter Optimization

The values of some typical parameters in the machine-
learning model will affect the performance of the model. There-
fore, it is necessary to adopt the appropriate methods to deter-
mine the values of typical parameters in different models. In this
study, CV combined with grid search (GS) was used to deter-
mine the values of some typical parameters in machine-learning
methods.

The main idea of CV is to separate the dataset into K parts
in which k-1 parts are the training set and the remaining 1
part is the validation set. In this study, K was set to 12. The
GS is a method to adjust the model parameters by exhaustive
search, which is usually combined with CV to optimize the
model parameters. In the selection of all candidate parameter
combinations, the estimation results of model CV under each
parameter combination are obtained through loop traversal, and
the parameter combination under the best estimation results
is the final selected parameters. When using GS and CV to
optimize models’ parameters, the mean square error of the
validation set is often used to assess the estimation performance
of the model. In this study, for SVR, the optimized parameters
are C and “gamma”; for RFR, the optimized parameters are
“n-estimators”; and for GBRT, the parameters to be optimized
are “n-estimators” and “learning rate.”

E. Performance Assessment

In this study, R [see (1)], R2 [see (2)], and root-mean-square
error (RMSE) [see (3)] were selected as the evaluation indices
for the accuracy of soil moisture estimation model. A higher R2

Fig. 3. Correlation coefficient between the RADARSAT-2 SAR parameters
and soil moisture.

combined with a lower RMSE indicates a better model [34]

R2 = 1−
∑n

i=1 (yi − yˆi)
2∑

i = 1n(yi − ȳ)2
(2)

RMSE =

√∑n

i=1

(ŷi − yi)
2

n
(3)

where yˆi and yi represent the predicted and measured SMC
values of the ith sample respectively; ȳ represents the mean
value of the measured soil moisture values; and n is the total
number of samples used.

IV. RESULTS

A. Feature Selection

From the original images, a total of 30 feature parameter
variables were obtained. To improve the performance of the
soil moisture estimation models, we tried to reduce redundant
features and improve the accuracy of model estimation by using
feature-selection methods [48]. Three types of feature-selection
methods (R, SVM-RFE, and RF) were compared in this study.
Different methods could get different rankings of feature impor-
tance. The R between the different feature parameters and the
measured SMC was calculated, and the results can be seen in
Fig. 3. From Fig. 3, it could be concluded that the individual
parameter is not well correlated with SMC, and the absolute R
of these parameters and soil moisture is basically below 0.5. The
importance of variables based on R was arranged according to
the absolute values of R between the individual parameter and
SMC.

The importance of the variables based on SVM-RFE was
based on the order in which the variables were eliminated when
constructing the model, and the feature importance ranking
obtained based on the SVM-RFE is given in Table V.



CHEN et al.: ESTIMATING SOIL MOISTURE OVER WINTER WHEAT FIELDS DURING GROWING SEASON 3711

TABLE V
IMPORTANCE OF THE VARIABLES BASED ON SVM-RFE

Fig. 4. Importance scores of the variables based on RF.

For the feature-selection method of RF, the importance score
that means the importance degree of different features in the
construction of RFR model of each variable can be obtained after
building the RFR model using the training set of all variables.
The higher the importance score of the feature, the greater the
impact of the feature on the prediction results. The results are
shown in Fig. 4.

B. Model Training and Performances

The importance ranking of features selected by different
methods is different. To compare the performances of various
feature-selection methods and machine-learning models, fea-
tures selected by different methods were applied to each of
the three machine-learning models. The specific method was
as follows. When constructing different regression models, the
number of features was gradually increased according to the
feature importance ranking obtained by feature-selection meth-
ods. First, only the feature with highest importance ranking was
used to construct the model, and then the top two features were
used to construct the model. Finally, the number of features was

Fig. 5. Performance of different regression models with different feature-
selection methods on the validation set. (a) SVR-M. (b) RFR-M. (3) GBRT-M.

gradually increased until all the features were used. In addition,
during the process of model construction, GS and CV were used
to determine the typical parameters of different models.

The estimation results of the three machine-learning methods
(SVR, RF, and GBRT) in combination with different feature-
selection methods using the validation set are illustrated in
Fig. 5. The horizontal axis represents the number of variables
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TABLE VI
HIGHEST FIT ON THE VALIDATION SET UNDER DIFFERENT METHODS

used, and the vertical axis represents the correlation coefficient
between the estimated SMC and the measured SMC. Fig. 5
reveals that the fitting accuracy of the three models increased
first and then plateaued, and it is especially the case for the RF
model and GBRT models. Compared with the other two models,
the fluctuation of fitting accuracy of the SVR on the validation
set is larger, but the overall trend remains the same.

For SVR-M, the best fit was obtained by using the RF-based
feature-selection method (R = 0.81), and the number of features
used was eight. The highest prediction performance based on
SVM-RFE was R=0.81 with 19 features. The highest prediction
performance based on the correlation coefficient was R = 0.80
with 23 features. It could be seen that SVR combined with the
three feature-selection methods has a small difference in the best
prediction accuracy, but the number of features used to build the
model varies largely, and SVR-M based on RF feature-selection
method used much fewer features. RF-M and GBRT-M obtained
the similar results. Table VI presents the best fit of the achieved
three models and the number of features used.

From Table VI and Fig. 5, it can be seen that when using the
RF-based feature-selection method, different machine-learning
methods could achieve a higher estimation accuracy with fewer
number of features (SVR: 8; RF: 13; and GBRT: 5). When
constructing different machine-learning models using feature-
selection method based on R or SVM-RFE, more features are
required. For the feature selection based on R, the number of
features used by machine-learning models to achieve the best
fitting was as follows: SVR: 19; RF: 27; and GBRT: 27; for the
SVM-RFE feature-selection method, the result was SVR: 19;
RF: 27; and GBRT: 27. However, comparing with the R-based
models, the models using SVM-RFE feature-selection method
achieved an acceptable performance when the number of fea-
tures was small, as shown in Fig. 5.

From the above results, it can be concluded that regression
models based on RF feature selection had the highest R and
the lowest RMSE on the validation set when a small number
of features were selected. The results of different models based
on RF feature selection are shown in Fig. 6, and it can also
be seen that when using RF feature selection, the three models
(SVR-M, RF-M, and GBRT-M) achieved the highest fit with
a fewer number of features from Fig. 6. Figs. 7 and 8 show
the scatterplots of the estimated SMC and the measured SMC
on the training set and validation set when the three machine-
learning models achieved the best estimation performance on
the validation sets.

Fig. 6. Performance of regression models with RF selection method on the
validation set.

Fig. 7. Scatterplots between the measured and predicted SMC values on the
training set under different models.

It can be seen from Fig. 7 that three proposed regression mod-
els, SVR-M, RFR-M, and GBRT-M, all had a satisfactory fitting
effect on the training set. RFR-M achieved the highest fitting
accuracy (R2 = 0.94 and RMSE= 2.44vol.%) on the training set,
then followed by SVR-M (R2 = 3.06 and RMSE = 0.86vol.%).
Comparing with the two models, GBRT-M performed worse
on the training set with R2 = 0.77 and RMSE = 4.20vol.%.
Considering the results on the validation set, as shown in Fig. 8,
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Fig. 8. Scatterplots between the measured SMC and predicted SMC values
on the validation set under different models.

Fig. 9. Dynamics of mean SMC from May 9 to July 10, 2019.

RFE-M also achieved the highest fitting accuracy (R2 = 0.79 and
RMSE = 4.03vol.%). Although the performance of GBRT-M
on the training set was worse than that of SVR-M, its fitting
performance on the validation set was better than that of SVR-M
with R2 = 0.72 and RMSE = 4.28vol.%. SVR-M had the worst
fitting performance using the validation set; R2 and RMSE are
0.66 and 4.48vol.%, respectively.

C. Soil Moisture Dynamics During Winter Wheat
Growing Period

Fig. 9 shows how the mean SMC of the sample plots changed
throughout the winter wheat growing period. Because the winter
wheat in the study area was rain fed, the dynamic change of soil
moisture was not affected by irrigation. It can be seen from Fig. 9
that the mean measured SMC reached the maximum on May 9.
This is because that it was raining in the study area during the ini-
tial hours of the field sampling on this date; therefore, the mean
SMC of the sampling points on this date was high. From May 16
to June 2, the mean SMC was approximately equal, which may
be due to a dynamic balance between the supply of soil moisture
by precipitation, the absorption of water by vegetation, and the
water content consumed by soil evapotranspiration. From June
2 to June 16, the mean SMC decreased first and then increased,
which was likely due to a large difference in precipitation before

Fig. 10. Soil moisture map for the study area on different dates based on the
RF model.

and after June 9. Compared with other dates, the SMC of July 10
was the lowest. The high temperature in the month of July had led
to strong soil evapotranspiration plus there was no appreciable
precipitation in the study area several days before July 10 soil
sampling date. By comparing the mean measured SMC with the
estimated mean SMC of different models, it can be seen that all
three models achieved a similar performance of mean SMC on
all sampling dates except the last day. Overall, all three models
were able to track the dynamic change of soil moisture well.

D. Soil Moisture Map

The three machine-learning methods used for estimating the
dynamic change of average SMC yield similar results, as de-
picted in Fig. 9. Based on the scatterplots of the training set
and the validation set when the three machine-learning methods
achieved the best estimation accuracy (see Figs. 7 and 8), RF
model yielded the highest estimation accuracy. It reveals that the
RF model combined with RF-based feature-selection method is
the best soil moisture estimation model. Then, the best SMC
estimation model was applied to all pixels in the study area
to obtain a spatial distribution of SMC on different dates (see
Fig. 10). Compared with the measured mean SMC, as shown
in Fig. 9, the SMC map in Fig. 10 is in good agreement with
the measured values. For instance, the average SMC on June 16
was significantly higher than that of the two adjacent sampling
dates, June 9 and July 10, as shown in Fig. 9. It is easy to draw
the same conclusion from Fig. 10.

E. Performance of SMC Estimation Under Different
Coverages of the Winter Wheat Plants

In this study, NDVI was used as a surrogate for winter wheat
biomass. Based on the six Sentinel-2 images of the study area,
the mean NDVI of the sampling sites on the respective sampling
dates was calculated (see Fig. 11). Fig. 12 illustrates the RMSE
between the measured and estimated SMC on each of the six
dates using different machine-learning methods.

As can be seen from Fig. 11, the NDVI shows a trend of
rapid initial increase followed by a slower increase and a rapid
decrease during the late growth stage (the last date of sampling).



3714 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 11. Dynamics of the mean NDVI of the winter wheat sampling sites from
May 16 to July 10, 2019.

Fig. 12. RMSE of the three machine-learning methods based on the validation
set on each of the soil sampling dates.

The NDVI trend was consistent with the growth process of
the winter wheat. During the month of May, winter wheat was
experiencing fast vegetative growth, and ground coverage of
the winter wheat plants also increased rapidly, corresponding to
rapid increase in NDVI. From the end of May to mid-June, the
winter wheat continued to grow and reached peak growth with
highest green cover and biomass. In July, the winter wheat plants
were nearly mature and started to yellow, causing weakened
absorption of the red band, exhibiting a rapid downward trend
of the NDVI. It can be seen from Fig. 12 that the RMSE of the
test set on five sampling dates from May 16 to June 16 was low,
less than 5.2 (vol.%). On the last sampling date, however, the
RMSE between the measured and estimated values of different
models was larger.

V. DISCUSSION

There are many cases using machine-learning models to esti-
mate SMC in the agricultural region. However, the combination
of polarization decomposition parameters and machine-learning
methods has received little attention [14]. In addition, the com-
parison and application of feature-selection methods to increase
the accuracy of SMC estimation are rarely mentioned. In this

study, SVR-M, RFR-M, and GBRT-M were constructed and op-
timized based on the multitemporal RADARSAT-2 data, GS-CV
parameter optimization algorithms, and feature-selection meth-
ods. Based on the above SMC estimation results, the following
outcomes can be observed.

A. Influence of Different Feature-Selection Methods on Model
Estimation Performance

By comparing the models constructed by different feature-
selection methods, it could be found that the method based on
R could hardly improve the performance of the model. Because
when almost all the features were used, the estimation accuracy
of the model on the validation set achieved the highest. This
may be because there is no good linear relationship between the
measured SMC and the extracted feature parameters, as shown
in Fig. 3. It could be noted that when using the feature-selection
method based on SVM-RFE and RF, different models could
achieve a better estimation effect using less features. Therefore,
these two methods can make full use of the polarization infor-
mation and reduce the redundancy of features’ parameters. The
features selected by RF based and SVM-RFE were different,
as given in Fig. 4 and Table V. This is because SVM-RFE
and RF feature selection are based on different model building
principles [43], [46]. However, feature selection based on RF
and SVM-RFE is consistent in the ranking of some features. For
example, HH, VV, and vanZyl_vol have higher ranking under the
RF-based and SVM-RFE feature-selection methods (ranking 1,
2, and 3, and 1, 2, and 4 respectively), T33 and Pauli_g have
lower ranking (ranking 28 and 29, and 27 and 29, respectively).
It indicates that some of the features are of high importance to
the soil moisture estimation, while some of them are not.

The proposed models could obtain the best estimation per-
formance on the validation set by using RF feature selection.
This was shown that the feature selected by RF to construct the
model not only performed better on RF-M but also performed
well on the other two machine-learning models. It suggested
that RF-based feature-selection method is the most effective to
improve the accuracy of SMC estimation. However, from Fig. 5,
it could also be found that when all the 30 feature parameters
are used, different machine-learning models could achieve a
satisfactory fitting performance on the validation set. Therefore,
it could be concluded that all features can be used to build
the model when the slight accuracy loss of the model on the
validation set is ignored.

B. Performance of SVR-M, RFR-M, and GBRT-M

Based on the above results, different regression models can
achieve the best estimation performance on the validation set
based on the RF feature-selection method. Therefore, the per-
formances of three machine-learning models using RF-based
feature selection were compared. Among the proposed models,
the RFR-M achieved the best estimation result for both the
training set and validation set. This was may be RF-based feature
selection is essentially calculated by using all features to con-
struct RFR model. Therefore, the features selected by RF have
better adaptability in the RF model than the other two models.
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Fig. 13. Frequency distribution of SMC at the sample plots.

In the remaining two models, the estimated effect of GBRT-M is
better than that of SVR-M, although GBRT-M performed worse
than SVR in training set, but it performed better in validation
set. It is suggested that GBRT-M had better generalization ability
than SVR-M.

Regarding the SVR-M, the performance of this model on
the validation set achieved the worst results, which mainly
manifested the lowest R2 and the highest RMSE on the validation
set. However, some studies have shown that SVR is effective
and robust when the sample size is small [49], [50], and some
articles presented in [51]–[53] on the inversion of ecological
parameters indicated that SVR was always outperformed other
machine-learning methods. This is different from the results
obtained in this study. The poor prediction on the validation
set using SVR-M may be attributed to the following. First,
the characteristics of polarization parameters are not suitable
for SMC inversion using SVR. Second, when constructing
the model, some important parameters (gamma and C) of
SVR were not set properly. Therefore, when using SVR-M to
estimate SMC, it is necessary to attempt to reset the model
parameters or introduce new characteristic variables to improve
the accuracy.

As can be seen from Fig. 8, all models have difficulties in esti-
mating high SMC or low SMC. For extremely high soil moisture
values, the prediction SMC was a little lower than the measured
SMC, while for extremely low soil moisture values, the result
was opposite. This result is consistent with the results obtained
from the inversion of surface parameters using machine-learning
method in [33], [34], and [48], and similar results were found in
their studies. The frequency distribution of SMC at the sample
plots is shown in Fig. 13. The SMC of most sample plots was
between 20 and 35% (vol.), and the number of sample plots with
extremely high or low values was relatively small, which led the
poor fitting effect of the models for soil moisture values in this
part of the range. Fig. 9 illustrates that the measured mean SMC
on July 10 was 9.0 (vol. %), which was not within the range
of effective estimation of the models. Therefore, the SMC on

the last day was obviously overestimated by different models,
as shown in Fig. 9.

C. Impact of Winter Wheat Cover on Soil Moisture Estimation

Over vegetated areas, such as agricultural fields, the presence
of vegetation can induce complex volume scattering, which in
turn will lead to the reduced sensitivity of the radar signal to
soil moisture. The traditional soil moisture estimation method
based on the radiative transfer model (RTM) must consider the
contribution of vegetation scattering. Therefore, in the inversion
method of soil moisture based on RTM, vegetation cover does
affect the estimation of soil moisture.

In this study, the performances of the proposed methods under
different winter wheat coverages were evaluated, as shown in
Figs. 11 and 12. It can be concluded that among the six dates
on which NDVI was calculated using Sentinel-2, the SMC was
well estimated except for the last sampling date in July. Varying
degrees of vegetation cover can affect the received radar signal
leading to changes of the polarization decomposition parame-
ters. Since the construction of soil moisture estimation database
in this study was based on the soil moisture collected on different
wheat growth stages, the different coverage of wheat plants was
also considered indirectly, and the estimation accuracy of SMC
at five growth dates from May 16 to June 16 was high. As for the
last sampling date, the reason for the large RMSE is due to the
overestimation of SMC on the last day that has been analyzed
in Section V-B.

In general, the SMC can be estimated satisfactorily under
varying vegetation cover. Therefore, in the case of dense wheat
cover, this method can also provide some support for the esti-
mation of soil moisture in winter wheat fields.

D. Additional Contribution of Machine-Learning Method to
Physical-Based Method for Soil Moisture Retrieval

Soil moisture retrieval methods based on the physical models
need many parameters, and the application scope of physical-
based methods is limited, so the model parameters must be
within the applicable scope. In the experimental results of this
study, for different phases and different wheat covers, there
was good estimation performance of soil moisture generally.
Although machine-learning method is intrinsically a “blackbox”
model, its contribution to physical model for soil moisture
retrieval is worth discussing.

When there is a lack of prior knowledge of surface parameters,
soil moisture can be estimated by machine-learning methods. In
addition, soil moisture retrieval based on the physical models
and their inversions are substantially ill-posed, which means that
different combinations of input parameters of the physical model
may get similar backscattering signals. If the machine-learning
method is validated to be effective in SMC estimation of the
study region, the results of the physical model can be further
screened by referring to the results of the machine-learning
method, and the soil moisture in line with the real situation of
the study area can be obtained. Moreover, the machine-learning
method has strong nonlinear fitting capability. If the sensitive
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parameters in the physical model are taken as the input parame-
ters of the machine-learning method and the output parameters
of the physical model are taken as the output parameters of the
machine-learning method, the physical model can be simplified.

VI. CONCLUSION

In this article, the potential of machine learning combined
with the polarization decomposition parameters in SMC es-
timation was evaluated. In addition, the SMC estimation re-
sults obtained by SVR, RF, and GBRT combined with three
feature-selection methods (based on R, SVM-RFE, and RF)
were investigated and compared. The following conclusions can
be drawn according to the above results and analysis.

1) The polarization decomposition parameters combined
with the backscattering coefficient have high-potential soil
moisture estimation.

2) The feature-selection method based on the RF or SVM-
RFE is effective, and the model can achieve good esti-
mation with only a few features. The proposed machine-
learning models achieved the best estimation performance
by using the RF selected features.

3) Compared with the other two models, the RFR model
achieves the best fitting accuracy both on the validation
set and the training set. Therefore, it was selected for soil
moisture mapping.

Given the encouraging results from this study, there are still
some limitations in this study, which should be addressed in fu-
ture research. For example, although our field sampling covered
a great part of the winter wheat growing season, the sampling
area was only in one wheat field and the number of samples
was small. The spatial coverage of the study area was small
and only dealt with a single crop type. For other crop types, the
effectiveness of this method for soil moisture estimation needs
to be verified in future research. In addition, if soil moisture
monitoring and mapping were carried out in a large agricultural
area, the effectiveness of this method is worth discussing in
the future. Furthermore, when the number of training samples
is enough, more advanced estimation methods, such as the
deep learning method, can be considered. Although there are
limitations, we can conclude that combining the polarimetric
decomposition parameters, the backscattering coefficient, and
machine learning is effective for SMC modeling in the wheat
growing area. To a certain extent, it can provide support for soil
moisture monitoring in agricultural areas.
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