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Abstract

In environmental epidemiology, it is often encountered that multiple time series data with a

long-term trend, including seasonality, cannot be fully adjusted by the observed covariates.

The long-term trend is difficult to separate from abnormal short-term signals of interest. This

paper addresses how to estimate the long-term trend in order to recover short-term signals.

Our case study demonstrates that the current spline smoothing methods can result in signifi-

cant positive and negative cross-correlations from the same dataset, depending on how the

smoothing parameters are chosen. To circumvent this dilemma, three classes of time series

smoothers are proposed to detrend time series data. These smoothers do not require fine

tuning of parameters and can be applied to recover short-term signals. The properties of

these smoothers are shown with both a case study using a factorial design and a simulation

study using datasets generated from the original dataset. General guidelines are provided

on how to discover short-term signals from time series with a long-term trend. The benefit

of this research is that a problem is identified and characteristics of possible solutions are

determined.

Introduction

In environmental epidemiology, how the variations in the environment affect human health is

of great interest. In particular, do daily fluctuations in air quality induce fluctuations in human

mortality? The United States Environmental Protection Agency claims that small particulate

matter, PM2.5, can cause acute death and would enforce cleaner energy production by new reg-

ulations. Although their claim should be evaluated with some caution, the air quality problem

not only affects long-term human health but also poses a major economic challenge to the

United States and many other countries.

While the air quality study is a broad question, whether a higher amount of ozone in the

ambient air would associate with higher mortality is an important concern. The mortality data

available are typically aggregated counts at different time scales. These count data display cer-

tain long-term trend including seasonality over time at any spatial location, see [1]. The long-

term trend cannot be completely adjusted by the observed weather covariates. Besides, there

are other issues discussed in [2], such as lag effects, i.e. what happens in today’s air quality can

have an impact on the mortality tomorrow or the day after tomorrow.
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To estimate the long-term trend with seasonality, smoothing methods are proposed, which

are very often embedded in a semi-parametric time series Poisson regression model. In [3], the

LOESS smooth functions of covariates including time was suggested in generalized additive

Poisson models of air quality variables and human mortality. The smooth function of time

is used to remove any long-term trend including seasonality in both the air quality and mortal-

ity time series. Thereafter, several alternative smoothing methods were proposed, such as

parametric natural splines and penalized splines in [4], [5], [6], [7], [8], [9] and [10]. The con-

clusions are drawn based on these embedded time series Poisson regression models and a sig-

nificantly positive association between the air quality variable of interest and human mortality

is often found. However, this result is subject to the degree of detrending in multiple time

series data. Therefore, we intend to conduct a comprehensive investigation of the detrending

process in order to understand and suggest how multiple time series with a long-term trend,

including seasonality, should be detrended.

Human mortality, excluding accidental deaths, can be attributed to various reasons, from

either latent variables or air quality fluctuations. It is crucial to separate the short-term signals

from the long-term trend to study any short-term effect. However, the long-term trend includ-

ing seasonality in either human mortality or an air quality variable is not precisely known.

Overly rough functions of time can be too harsh on removing trends, even local fluctuations,

and thus leave very little short-term signals in the deviations for the detection of short-term

effect; overly smooth functions of time can be too lenient on removing trends and thus leave

much long-term trend in the deviations, which overwhelms any short-term effect of human

mortality and air quality. We have found that including smoothing functions of time can pos-

sibly introduce spurious correlation. The current spline smoothing without examining the var-

iability of smooth functions can be problematic in detrending multiple time series. It will be

shown that by varying the smoothing parameters, any significant result, from negative to posi-

tive, can be obtained. This excessive modeling flexibility could undermine the plausibility of

any air quality study.

In [11], natural spline smoothing and penalized spline smoothing were studied and model-

based simulations showed that under moderate concurvity, an analog of multicollinearity,

smoother spline of air quality variable can lead to less confounding bias. In [12], an overview

of generalized additive models based on the penalized likelihood approach with regression

splines was provided. In [13], efficient smoothing parameter estimation was claimed to be

performed and reduced rank spline smoothing methods were demonstrated for large datasets.

In [14], Bayesian model averaging with generalized additive mixed models was proposed to

address the modeling uncertainty. Nonetheless, different model selection criteria can lead to

different smoothness; the smoothness of a certain spline is usually vaguely described and

hardly defined.

To circumvent this problem, we propose robust and stable nonparametric smoothing

methods that can be specified before analysis without undue experimentation and separate the

long-term trend and the local short-term signals. After smoothing, the deviations, which are

the raw time series subtracting the estimated long-term trend, are examined. These deviations

contain the local information useful for investigating the short-term association between

human mortality and air quality fluctuations, namely the acute effect.

For our case study, the illustrative data are obtained from [15]. This dataset contains

the time series of daily human mortality, air quality and weather covariates in Los Angeles Cal-

ifornia, from 2000 to 2012. The mortality data were obtained from California Department of

Public Health. The air quality data PM2.5 and ozone were downloaded from California Envi-

ronmental Protection Agency. The temperature data were downloaded from Carbon Dioxide
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Information Analysis Center of United States Historical Climatology Network and the relative

humidity data were from the United States Environmental Protection Agency. For our simula-

tion study, the synthetic datasets were generated from first decomposing the original time

series into the nominal trend and detrended time series and then recomposing with our pre-

specified correlation structure on the detrended time series, which makes that the synthetic

data are almost indistinguishable from the real data.

There are three major contributions of our research study. First, it is found that the cur-

rent spline smoothing methods can obtain different, both positive and negative, effects

depending on how the smoothing parameter is varied. Second, the proposed time series

smoothers are shown to be robust and stable by the tight confidence intervals of correlation

as well as partial correlation, and by the insensitivity of different factors via a factorial design

of scenarios. Third, the characteristics of different solutions of time series detrending and

association detection are determined by the sensitivity analysis in both our case and simula-

tion studies.

The rest of the paper is organized as follows. In Section Problem Formulation, the formula-

tion of our problem is described in detail. In Section Proposed Methodology, three classes of

time series smoothers are proposed with a discussion on their properties. In Section Case

Study, the air quality and mortality data in Los Angeles are analyzed by the proposed smooth-

ers with sensitivity analysis, compared to cubic spline smoothing as a representative of spline

smoothing methods. In Section Simulation Study, synthetic datasets are generated and the

proposed smoothers show their capability of detecting even small acute effects, compared to

cubic spline smoothing. In Section Conclusions, the overall conclusion and general recom-

mendations are made.

Problem Formulation

In air quality studies, mortality count data over time are very often encountered. The common

model formulation is a generalized linear model with log link or Poisson regression, as sug-

gested in [16].

yt � PoissonðmtÞ

logðmtÞ ¼ aþ bs1ðxtÞ þ Z0s2ðztÞ
ð1Þ

In Eq (1), yt is the mortality count variable of certain aggregation level at Time t. xt is an air

quality variable of interest at Time t. zt is a vector of measured covariates at Time t. s1(�) and

s2(�) are a spline smoothing estimator and a vector of such estimators, respectively.

Regarding the above formulation, there are two major concerns. First of all, the long-

term trend including seasonality is dominating the overall pattern of the original time

series data. Due to the common long-term trend of human mortality and air quality, no

positive association between human mortality and air quality variable of interest can be

found, even if the observed weather covariates are included for adjustment. In fact, both

Type I and Type II errors raise the concerns: claimed effects that are not real but artifacts

of the smoothing method, and real effects that fail to be detected because of inappropriate

smoothing methods. Second, Poisson regression model assumes that the observations are

independent; however, in time series data, the observations close in time are more alike

than those distant in time and therefore the autocorrelated structure violates the indepen-

dence assumption.
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To address both concerns, several spline smoothing methods were proposed for time series

Poisson regression modeling. In [11], the refined model formulation becomes the following.

yt � PoissonðmtÞ

logðmtÞ ¼ aþ s1ðt; l1Þ þ bxt þ Z0sðztÞ

xt ¼ s2ðt; l2Þ þ xt

ð2Þ

In Eq (2), ξt is the detrended air quality variable of interest at Time t. s1(�), s2(�) and s(�) are

embedded spline smoothing estimators over time. λ1 and λ2 are the parameters that control

the smoothness of each corresponding spline estimator during the model fitting process. The

choice of λ1 and λ2 can be selected via experimentation and result in rougher or smoother

splines s1(�) and s2(�). This arbitrariness makes the resulting model ambiguous for further

evaluation.

Hence, how to detrend the long-term trend including seasonality and extract these short-

term signals becomes an important issue. We intend to propose a new collection of estimators

with robustness and stability. Our model formulation is stated below.

Dy
t ¼ yt � m1ðy�t Þ

Dx
t ¼ xt � m2ðx�t Þ

ð3Þ

where y�t and x�t are sets of time series points before and after Time t excluding the points in

the neighborhood of Time t, which are used for the estimation of long-term central tendency

at Time t; m1(�) and m2(�) are robust and stable estimators of the long-term trend to be defined.

Thereafter, certain dependence measures or models are built on the detrended time series. For

instance,

EðDy
t jxt; ztÞ ¼ aþ bDx

t þ Z0zt ð4Þ

This can be viewed as a two-stage model so that a researcher can first detrend multiple time

series and then analyze the deviations. Both yt and xt are detrended respectively so the domi-

nating long-term trend including seasonality is removed without any tuning in the model

fitting. Besides, the concurvity between xt and zt, an analog of multicollinearity, are also elimi-

nated. In a two-stage model, the detrending should happen before Eq (4) is fitted so that there

is no iteration back and forth between detrending and fitting.

More precisely, our problem is formulated to find robust and stable time series smoothers

such that the long-term trend can be estimated without manipulation of tuning parameters

and other observed covariates. The mathematical statement is the first stage of our model

formulation. Note that in Eq (3), different m1(�) and m2(�) can result in different Dy
t and Dx

t .

Robustness and stability mean that no matter how the pre-selected parameters or centrality

measures change, the cross-association between human mortality and air quality under certain

dependence measure is approximately the same.

jmaxðmðDy
t ;Dx

t ÞÞ � minðmðDy
t ;Dx

t ÞÞj < c ð5Þ

where μ(�) is certain dependence measure and c is a small constant.

The remaining deviations should not display any long-term pattern except heterogeneity.

In other words, when the observations are in the non-volatile period, both Var ðDy
t Þ and

Var ðDx
t Þ are small constants; when they are in the volatile period, Var ðDy

t Þ and Var ðDx
t Þ differ

largely. The main purpose of detrending time series is that the deviations contain little infor-

mation about the long-term trend but all the information of the shock events with a low level
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of noise. After detrending, the deviations are still non-stationary, but only due to the shock of

short-term events, such as forest fires or human interventions, that cause the human mortality

or air quality to change drastically. Based on these mild assumptions, the time series decompo-

sition can be written below.

xt ¼ lt þ xt þ �t ð6Þ

where lt is the long-term trend with seasonality, ξt is the abnormal signal driven by a short-

term event and �t is the independently and normally distributed random error with mean 0

and variance σ2, where σ is assumed to be much smaller than the abnormal signals. During a

non-volatile period, ξt is close to 0; during a volatile period, ξt displays a certain short-term sig-

nal. The ultimate research aim is to discover ξt by estimating and eliminating lt.

Proposed Methodology

To solve the formulated problem in Eq (3), three classes of methods utilizing a centered mov-

ing window with a centered gap of varying width are hereby proposed.

The moving window includes the most useful information before and after the time point

of interest. The gap at the center can be helpful in retaining any local abnormality in time series

data. The width of the window and gap will be discussed later. If there is a strong signal at the

time point of interest, the gap reduces the local signal in the smoothed estimate and thus leaves

it in the deviation; if not, this window with a centered gap is approximately the same as the

ordinary moving window. The points in the gap are excluded to ensure that the short-term sig-

nals do not contaminate the trend estimate. The equal number of points inside the center-

gapped window before and after the time of interest are used to estimate the long-term trend;

this ensures that equal amount of pre and post information is taken. This type of window

includes the points on both sides of the time of interest to estimate the central tendency at the

time point of interest and the resulting estimate resembles an experimental control. After time

series smoothing, the detrended observations can behave as if independently with much less

serial correlation and little long-term trend including seasonality left.

To elaborate further, the formulation in Eqs (3) and (6) is utilized for justification. For sim-

plicity, the average with certain window and gap size is selected as the smoothing instrument.

Dx
t ¼ xt � x�t

¼ lt þ xt þ �t � ðl�t þ x
�

t þ �
�
t Þ

¼ ðlt � l�t Þ þ ðxt � x
�

t Þ þ ð�t � �
�
t Þ

ð7Þ

Here, x�t is the set of time series points outside the neighborhood of Time t, excluding Time t
and the closest points to Time t, to estimate the long-term central tendency at Time t.

For the first term in the last sum, �l�t is the interpolation of lt, instead of extrapolation. Com-

pared to the extrapolation, the interpolation should be a good estimate for the long-term

trend. Thus, the first term is close enough to 0.

For the second term, there are three cases discussed as follows. If t is the volatile time, ξt
should display a sharp spike while �x

�

t is near 0 and therefore the second term exposes the

shock signal. If t is the non-volatile time and the gapped window does not cover the volatile

time, ξt and �x
�

t are both near 0 and therefore the second term is close to 0. If t is the non-vola-

tile time and the gapped window covers the volatile time, ξt is near 0; �x
�

t slightly deviates from

0 but much smaller than the spike in absolute value. Therefore, the second term slightly devi-

ates from 0; there is a small pattern in this case that reveals a local abnormality, if moving
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average is used. However, under robust central tendency measures, for instance moving

median, this small pattern will become close to 0.

For the third term, since �t and f��t g are independent and identically normal

distributed with mean 0 and relatively small variance σ2, Eð�t � ���t Þ ¼ 0 and

Var ð�t � ���t Þ ¼ s2 þ 1

Window Size� Gap Size s2. �t � ���t should be close to 0 in most cases. Hence,

the remaining term is mainly the shock signal.

In general, x�t is a set of points in the neighborhood of Time t with a gap centered at Time t.

Dx
t ¼ xt � mðx�t Þ

� lt þ xt þ �t � mðl�t Þ � mðx�t Þ � mð��t Þ

¼ ðlt � mðl�t ÞÞ þ ðxt � mðx�t ÞÞ þ ð�t � mð��t ÞÞ

� xt

ð8Þ

since lt � mðl�t Þ � 0, xt � mðx�t Þ � xt and �t � mð��t Þ � 0. Dx
t is a robust and stable estimator

to ξt.
In summary, under the definition of time series decomposition,

xt ¼ lt þ xt þ �t ð6Þ

where xt is the original time series, lt is the long-term trend with seasonality, ξt is the abnormal

signal driven by an event and �t is the independently and normally distributed random error

with mean 0 and small variance σ2. If mðx�t Þ � lt(under certain distribution assumption on

x�t , m(�) is the optimal estimator for lt),

Dx
t ¼ xt � mðx�t Þ � xt ð9Þ

So far, the idea of defining the time series smoothers has been elaborated. These smoothers

can estimate and remove the long-term trend of multiple time series efficiently, regardless of

the window or gap size. In the following, three classes of smoothers are proposed and each has

its own merits. The first class is moving trimmed mean, where the trimmed mean is used

within each window. It can change its local robustness, controlled by the trimming percentage,

up to a researcher’s subject knowledge or preference. The second class is moving weighted

mean, where the weighting scheme can also be determined by a researcher’s subject knowledge

or preference. The third class is moving recursive weighted mean. It can re-weight the points

within each moving window recursively in order to greedily detect abnormal signals. The re-

weighting function is non-increasing and specified by a researcher, based on one’s subject

knowledge or preference.

Moving trimmed mean

A trimmed mean is a statistical measure of central tendency which equals to the mean after

discarding given parts of a sample at the upper and lower tail of the observed distribution, and

typically discarding an equal amount of both. A trimmed mean with nonzero trimming per-

centage is less sensitive to outliers and can give a reasonable estimate of central tendency. In

this regard, it is referred to as a robust estimator.

The trimming percentage, ranging from 0% to 50%, allows us to obtain a collection of esti-

mators with different robustness. When the trimming percentage is 0%, no points are trimmed

and the estimator is the arithmetic mean; when the trimming percentage is 50%, 50% of high

and low points are trimmed and this results in the median.

Time series smoother for effect detection
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Moving average is defined as the average of several days’ observations with a centered gap.

Here, we assume that the window size is 2k + 1 and the gap size is 2l + 1.

MAðx�t Þ ¼
1

2ðk � lÞ
ðxt� k þ xt� kþ1 þ � � � þ xt� l� 1 þ xtþlþ1 þ � � � þ xtþk� 1 þ xtþkÞ ð10Þ

Moving median is defined as the median of several days’ observations with a centered gap.

MMðx�t Þ ¼
1

2
ðxðk� lÞ þ xðk� lþ1ÞÞ ð11Þ

where x(k−l) and x(k−l+1) are the (k − l)th and (k − l + 1)th ordered statistics of the set

{xt−k, xt−k+1, � � �, xt−l−1, xt+l+1, � � �, xt+k−1, xt+k}; t is the time of our estimation; k is the number

of observations we use before and after the estimation time point (k� 1) hence the total

number of observations is 2k + 1 before gapping; l is the number of observations we take

away from the center before and after the estimation time point (l� 0) excluding xt. Thus,

the total number of observations taken away is 2l + 1 and the total number of observations

left is 2(k − l).

Moving weighted mean

The weighted mean assigns different weights to the data points within each window in order

to form an informed estimator. In general, it is up to a researcher to determine how to design

the weighting scheme. Two typical types of moving weighted mean are presented here, center-

weighted mean and edge-weighted mean. Center-weighted mean puts more weight on the cen-

ter outside the gap than on the edges symmetrically. It weighs more on the local fluctuation

near the time point of interest. Edge-weighted mean puts more weight on the edges than on

the center symmetrically. It weighs less on the local fluctuation but more on the long-term

trend. Moving weighted mean is defined as below.

WMðx�t Þ ¼ wt� kxt� k þ wt� kþ1xt� kþ1 þ � � � þ wt� l� 1xt� l� 1 þ wtþlþ1xtþlþ1

þ � � � þ wtþk� 1xtþk� 1 þ wtþkxtþk
ð12Þ

The sum of the normalized weight vector (wt−k, wt−k+1, � � �, wt−l−1, wt−l+1, � � �, wt+k−1, wt+k) is

equal to 1. Dividing each element of the weight vector by its sum is called normalizing the

weights.

Center-weighted moving average is defined as the center-weighted average of several days’

observations with a centered gap. The weight vector contains ^-shaped linear weights and is

normalized to 1, with more weight at the center and less weight at the edges symmetric to

Time t.
Edge-weighted moving average is defined as the edge-weighted average of several days’

observations with a centered gap. The weight vector contains _-shaped linear weights and is

normalized to 1, with less weight at the center and more weight at the edges symmetric to

Time t.

Moving recursive weighted mean

Recursiveness means that after the first set of deviations are obtained, more weight is assigned

on small deviations and less weight is assigned on large deviations to form a new weighted

mean and then we perform this procedure repeatedly until convergence. The idea is that those

abnormal signals would stand out while those around the central tendency are almost zero.

The detailed algorithm can be described as follows.

Time series smoother for effect detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0195360 April 23, 2018 7 / 22

https://doi.org/10.1371/journal.pone.0195360


Step 1. Apply moving average, meaning equal weights, in the center-gapped window to obtain

the estimated trend of time series.

Step 2. Calculate deviations from the estimated trend and standardize all the deviations.

Step 3. Apply a user-defined weight function on standardized deviations, for example, e� x2

,

normalize them and obtain moving weighted mean.

Step 4. Repeat Step 2 and 3 until the estimated trend converges with the difference of the esti-

mated long-term trends k � k1< 10−6.

The convergence of trend estimates is very fast. Typically, it takes less than 10 iterations for

each window. The R code is available upon request.

There are infinitely many choices of the recursive weight function. In the following

section, two recursive weight functions e� jxj1=2

and e� x2

are used for demonstration, where

e� jxj1=2

has less penalized weighting on deviations while e� x2

has more penalized weighting on

deviations.

General properties

In general, choosing the width of window and gap should incorporate two basic consider-

ations. First, if the period of seasonality is roughly known, then the window size should be a

fraction of the period. The literature in the case crossover design, see [17], of air quality study

typically use a window size from a few weeks up to a month. If certain shock events are roughly

known, then the gap size should be approximately the shock width. Shocks are usually certain

extreme phenomena that immediately raise the level of ozone, for example, wildfires.

For the three classes of time series smoothers, there are both shared and individual proper-

ties. The shared properties come from the window and gap. When the window size increases,

the trend estimated is smoother and the deviation will contain more long-term signal; when

the gap size increases, the trend is also smoother and the deviation will contain more long-

term signal. The individual properties come from the different measures of central tendency.

Moving trimmed mean has widespread use. When the trimming percentage increases, the esti-

mated trend becomes more robust. Moving weighted mean is more flexible, depending on the

weighting scheme. It can accommodate a researcher’s subject knowledge and preference. Mov-

ing recursive weighted mean estimates a relatively robust central tendency and makes the

abnormal deviations more prominent and the ordinary deviations near zero. In this sense, it

should be more helpful in recovering abnormal signals.

More specifically, the exemplified smoothers also have their own properties. Moving aver-

age is less robust than moving median but more efficient in the trend removal. Within the

moving window, if the fluctuations around the trend are symmetric, moving average can easily

recover the underlying trend of the time series. If the fluctuations around the trend are nor-

mally distributed, then moving average is statistically optimal. Moving median is the most

robust moving measure that captures the overall trend of the time series. Within the moving

window, no matter whether the fluctuations around the trend are symmetric or not, the

median can estimate the central tendency with little influence by outliers. If the fluctuations

are Laplace distributed, then moving median is statistically optimal.

Center-weighted moving average can be used when a researcher wants more weight on the

observations near the time point of interest to obtain a better local or short-term fluctuation

estimate. It weighs heavily on the local observations in forming a long-term estimate thus is

more aggressive on the short-term signal removal. Edge-weighted moving average is used

when a researcher wants more weight on the observations further away from the time point of
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interest to obtain a longer-term estimate. It weighs lightly on the local observations in forming

a long-term estimate thus less aggressive on the short-term signal removal.

Moving recursive weighted mean with e� jxj1=2

places more weight on the ordinary observa-

tions and less weight on the abnormal observations. This weight function penalizes less on

large deviations and the resulting smoothed estimate follows the fluctuated curve closer.

Hence, the deviations would moderately stand out. Moving recursive weighted mean with

e� jxj2 has a weight function with much heavier weight on the ordinary observations and much

lighter weight on the abnormal observations. This weight function penalizes more on large

deviations and the resulting smoothed estimate follows the long-term trend closer. Hence, the

deviations would be more prominent.

Case study

Data and description

For decades, the air quality problem in California has been discussed, due to potential impacts

on the large population. In Los Angeles California, there is much sunshine and low rainfall;

these weather characteristics contribute to high levels of ozone, fine particles, and dust. More-

over, there is often low wind speed accompanied by high air pressure. In [15], a large dataset

on human morality and air quality of Los Angeles was collected and investigated. This dataset

contains mortality counts, ozone levels, PM2.5 levels, minimum temperature, maximum tem-

perature and maximum relative humidity, daily from Year 2000 to 2012.

Fig 1 is a snapshot of the research dataset, downloadable from S1 Dataset. AllCause75 is the

daily mortality at Age 75 and above, excluding accidental deaths. o3 is the daily average level of

ozone. tmin.0 is the daily minimum temperature. tmax.0 is the daily maximum temperature.

MAXRH.0 is the daily maximum relative humidity level.

In this case study, the cross-association between daily ozone level and mortality is our main

interest. Due to a large number of analysis choices, a factorial design of different scenarios is

configured. By the factorial design and its corresponding sensitivity analysis, characteristics of

the proposed smoothers are shown, along with the subject question about the acute effect.

For the dependence measure, the correlation and partial correlation, as well as their p-val-

ues, are adopted. Partial correlation adjusts for the observed weather covariates in this dataset:

minimum temperature, maximum temperature, and maximum relative humidity level.

Current smoothing methods

The current smoothing methods, such as spline smoothing, require the smoothing parameter

tuning. Depending on how to choose the smoothing parameters, significant correlations can

be induced, from negative to positive. For demonstration, cubic smoothing splines are utilized.

Cubic smoothing splines perform a regularized regression over the natural spline basis, placing

knots at all the points. They circumvent the problem of knot selection and simultaneously con-

trol for over-fitting by shrinking the coefficients of the estimated smooth function. More

details can be seen in [18]. It can be shown that the spline smoothing methods can be too

smooth to be relied on.

In Fig 2, the cubic smoothing spline changes from a straight line to the roughest curve by

varying the smoothing parameter. The smoothing parameter is controlled by the option spar
of smooth.spline() in R. The upper bound spar = 1.50 represents the smoothest while the lower

bound spar = −1.50 represents the roughest. For simplicity, the smoothing parameters are set

to be equal for both AllCause75 and O3.
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In Fig 2, the red line in each plot is a cubic smoothing spline with a certain spar; spar
changes from the highly smooth spar = 1.50, the moderately smooth spar = 0.60 to the highly

rough spar = −1.50, from top to bottom. The deviations are obtained by using the observed val-

ues subtracting the spline values at each time.

In Table 1, Spar is the smoothing parameter spar in smooth.spline() and its values are chosen

based on the sign changes of the resulting correlations. Correlation means Pearson correlation

between deviations of mortality and deviations of ozone, while partial correlation means the

partial correlation between deviations of mortality and deviations of ozone given the weather

covariates temperature and relative humidity. As the long-term trend including seasonality

gets eliminated more and more, both the correlation and partial correlations between mortal-

ity and ozone changes from significantly negative, insignificant and then to significantly posi-

tive. Hence, researchers have to find a proper way to justify their detrending method or find a

method with better accuracy and precision before making a claim on any possible association

between air quality and acute mortality.

Proposed smoothing methods

To study the proposed smoothers, a factorial design of different scenarios is utilized. By experi-

menting with all representative combinations of analysis choices, the factorial design can give

us a thorough sensitivity analysis. Table 2 gives a summary of the factorial design of scenarios;

detailed explanations follow.

For the moving window size, the factor Window is defined as 7, 15, 21, 29, 35, 43, 49 or 57

days. The actual meanings are half a week, one week and up to one month before and after the

time of interest. For the gap size, the factor Gap is defined as 0, 1, 3, 5, 7, 9, 11 or 13 days. The

actual meanings are no removal, one-day point removal and up to one-week points removal

Fig 1. A screenshot of twenty data entries of Los Angeles. RowID: the number of data entry counting from Jan 1

2000 till Dec 31 2012. basin: the air basin south coast in Los Angeles California. year: the year of the data entry. month:

the month of the data entry. day: the day of the data entry. dayofyear: the day of the year of the data entry. AllCause75:

the daily number of mortality at Age 75 and above, excluding accidental deaths. PM25davg: the daily average level of

PM2.5 in microgram per cubic meter (μgm−3). o3: the daily average level of ozone in parts per billion (ppb). tmin.0: the

daily minimum temperatures are recorded in Fahrenheit (°F). tmax.0: the daily maximum temperatures are recorded

in Fahrenheit (°F). MAXRH.0: the daily maximum relative humidity level in percentages of the air-water mixture.

https://doi.org/10.1371/journal.pone.0195360.g001
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before and after the time point of interest. Note that when the gap size is 0, the ordinary mov-

ing measures are simply used. The gap is always smaller than the window. For the measure,

the factor Measure uses two distinctive levels on central tendency to study the effect of the pre-

selected parameter or weighting scheme. For moving trimmed mean, the trimming percent-

ages are selected to be 0% the average or 50% the median. There are infinite choices of the

parameters or weighting schemes within the window. This can be decided by a researcher’s

subject knowledge or preference.

Fig 2. Raw time series and smoothing splines of mortality and ozone. The left three figures are the time series of

mortality and the right three figures are the time series of ozone. The black dots represent the observed values and the

red curves represent the smoothing splines. The smoothing parameters from top to bottom are set to be 1.5, 0.6, -1.5,

representing highly smooth, moderately smooth and highly rough splines.

https://doi.org/10.1371/journal.pone.0195360.g002

Table 1. Correlations and partial correlations with p-values between mortality and ozone.

Spar Correlation P-value Partial Correlation P-value

1.50 -0.4313 � 0 -0.0835 � 0

0.71 -0.2665 � 0 -0.0010 0.9427

0.70 -0.2429 � 0 0.0081 0.5750

0.61 -0.0052 0.7203 0.0698 � 0

0.60 0.0140 0.3367 0.0717 � 0

-1.50 0.0725 � 0 0.0463 � 0

https://doi.org/10.1371/journal.pone.0195360.t001
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The factor Type is defined, where D and R stands for deviations and raw data, respectively,

to investigate whether there is any effect between deviations of mortality and deviations of

ozone by the abbreviation DD, between deviations of mortality and raw time series of ozone

by the abbreviation DR, between raw time series of mortality and deviations of ozone by the

abbreviation RD and between raw time series of mortality on raw time series of ozone by the

abbreviation RR. Since no smoother is applied on RR, it is a special case in this design.

All scenarios combined resembles a full factorial design of experiments for us to examine

all possible effects. This factorial design is of the size 8 × 8 × 2 × 4 − # missing = 325.

For the factorial analysis, a linear regression model is utilized and all main effects and

two-way interactions are chosen. Volcano plots are utilized to summarize the effect size and

significance.

For illustration, the results of moving trimmed mean are demonstrated. Moving weighted

mean and moving recursive weighted mean can be analyzed in a similar fashion. For the factor

Measure, moving average with trimming percentage = 0% and moving median with trimming

percentage = 50% are selected.

In Fig 3 and S1 Appendix, it is shown that only the effects with Type have both large size

and significance; all other effects have small size although they are significant. For correlation,

all main effects and two-way interaction effects are significant except the main effect Lambda

and the interaction effect Gap×Lambda. However, the increments of Window or Gap are so

small when Type is fixed that they would not alter the sign of the correlation. On the other

hand, Type can make a significant difference on the cross-association between mortality and

ozone. The trimming percentage Lambda is insignificant. For the response measure partial

correlation, we can obtain similar results. The table of detailed coefficient estimates and signifi-

cance are in S1 Appendix. Thus, moving trimmed mean is robust and stable with respect to

different Window, Gap and Lambda for a fixed Type.

In Fig 4, correlation and partial correlation across different types are summarized in box-

plots. Table 3 shows the correlations and partial correlations with their p-values for each type

when Window = 21, Gap = 5 and Trimming Percentage = 50%.

Based on Fig 4 and Table 3, it can be seen that the correlations and partial correlations

when Type = DD are positively significant. This means that the acute mortality has a nomi-

nally significant positive linear association with the sudden change in ozone, with or without

meteorological covariates. When Type = DR, half of the correlations are insignificant while all

the partial correlations are insignificant. This means that without meteorological covariates,

the linear relationship between the acute mortality and ozone level is unclear; with meteoro-

logical covariates, there is no significant linear relationship between the acute mortality and

ozone level. When Type = RD, half of the correlations are significant while all the partial corre-

lations are positively significant. This means that without meteorological covariates, the linear

relationship between the mortality level and ozone change is unclear; with meteorological

covariates, there is no significant linear relationship between the mortality level and ozone

change. Detrending on both time series appears to be a greedy search on positive significance.

Table 2. Factors and levels of factorial design of scenarios.

Factor Level

Window 7, 15, 21, 29, 35, 43, 49 or 57

Gap 0, 1, 3, 5, 7, 9, 11 or 13

Measure e.g. Trimming Percentage = 0% or 50%

Type DD, DR, RD, RR

https://doi.org/10.1371/journal.pone.0195360.t002
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In addition, it is a researcher’s decision to examine the raw data or the deviations. Is it the

jump in the air quality variable that has an acute effect on mortality or is it the absolute level?

Depending on the researcher’s decision on Type, either positive significant effect or null effect

can be deduced.

Fig 3. Volcano plot of regression coefficient and p-values by moving trimmed mean. The x-axis is the effect size

measured by regression coefficient. The y-axis is the transformed p-value by -log10(); the larger transformed value, the

more significance. The black dots represent each coefficient and the red lines are y = −log100.05: any black dot above

the red line means that the coefficient is nominally significant.

https://doi.org/10.1371/journal.pone.0195360.g003

Fig 4. Boxplots of association between mortality and ozone by moving trimmed mean. The top two figures are the

correlation and partial correlation between mortality and ozone; the bottom two figures are their corresponding

transformed p-value plots by -log10(): the larger transformed value, the more significance. The x-axis has the three

levels of the factor Type. The top two red lines are y = 0; the bottom two red lines are y = −log100.05. Each box plot is

the graphical summary under different Window, Gap and Lambda.

https://doi.org/10.1371/journal.pone.0195360.g004

Time series smoother for effect detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0195360 April 23, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0195360.g003
https://doi.org/10.1371/journal.pone.0195360.g004
https://doi.org/10.1371/journal.pone.0195360


From the sensitivity analysis, Window and Gap can adjust the cross-association slightly;

however, the sign of cross-association will not flip when Type is fixed. For moving trimmed

mean, the small effect of Window and Gap implies the robustness to different window and gap

sizes, and the null effect of Lambda implies the stability.

Discussion & recommendations

In this case illustration, it is discovered that the current spline smoothing methods can induce

significant correlations, both negative and positive, depending on how the smoothing parame-

ters are varied, see Table 1. On the other hand, robust and stable smoothers are proposed to

avoid the fine tuning of smoothing parameters; the sensitivity of the proposed smoothers is

also evaluated on the sample dataset.

The framework of the proposed methods is to utilize a moving window with a centered

gap. Within each window, different central tendency measures can be selected, based on a

researcher’s preference. As the window size increases, the estimated curve is smoother and

the detrending is less severe; a stronger association will be found between deviations. As the

gap size increases, more local signals are removed from the window, the estimated curve is

also smoother and the detrending is less severe; stronger association will be found between

deviations. However, no matter how the window or gap size changes, within a wide range of

days used by subject experts, the sign or significance of the cross-association for each type

remains the same. This is the first important property, robustness to different window and

gap sizes.

Within each moving window with a centered gap, three classes of time series smoothers are

proposed. For each moving measure, varying the parameter or weight can adjust the correla-

tion or partial correlation. However, the sign or significance does not change. This is the sec-

ond important property, stability to different central tendency measures.

For moving trimmed mean, a collection of trimmed means is utilized, changing from mean

to median. Within each moving window, different trimmed means can reach statistical opti-

mality by certain goodness of fit criterion, depending on the underlying distributions. If a

researcher does not have any subject knowledge or preference on the abnormal signals of time

series data, moving average or median should work well.

For moving weighted mean, weighted arithmetic mean is utilized. Within each moving

window, a researcher can decide how to assign different weights to the points based on one’s

subject knowledge or preference on the abnormal signals of multiple time series data. If a

researcher has insight on the nature of the data, moving weighted mean can be quite useful.

For moving recursive weighted mean, a certain re-weighting scheme is utilized in order to

retain central tendency conservatively and enhance abnormal short-term signals. It is more

greedy in searching for an anomaly. If a researcher emphasizes on conserving the long-term

central tendency and revealing more anomalies, moving recursive weighted mean can be a

good choice.

Table 3. Correlations and partial correlations with p-values by type for moving trimmed mean: Window = 21, Gap = 5, Trimming Percentage = 50%.

Type Correlation P-value Partial Correlation P-value

DD 0.0869 � 0 0.0568 � 0

DR 0.0331 0.0227 -0.0283 0.0515

RD 0.0336 0.0207 0.1140 � 0

RR -0.4338 � 0 -0.0956 � 0

https://doi.org/10.1371/journal.pone.0195360.t003
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Simulation study

Simulation setting

For our setup, the target cross-correlations between deviations of mortality and deviations of

ozone are selected to be 0, 0.01, 0.02, 0.05 and 0.10, because it is generally thought that the

acute effect between air quality and mortality is relatively small. In Section Case Study, the

detected correlation is between 0.05 and 0.10 and therefore it is reasonable to set the correla-

tion to be under 0.10. Including 0.01 and 0.02 can demonstrate how sensitive the proposed

smoothers are in discovering abnormal short-term effect. Including 0 can demonstrate

whether the proposed smoothers cause large spurious correlation. When the cross-correlation

between deviations of mortality and ozone is pre-specified, leaving the other covariate struc-

tures unchanged, the partial correlation will also be pre-specified and can be obtained from

the whole correlation matrix. Using the R package corpcor, the corresponding partial correla-

tions are computed as -0.0290, -0.0182, -0.0074, 0.0250 and 0.0791.

Since the proposed smoothers give consistent results, the choice of Window and Gap size

can be flexible. In our case, Window = 21, meaning the extracted information are within 10

days before and after the time point of interest, and Gap = 5, meaning the removal of the local

signal are within 2 days before and after, are chosen, based on the literature of air quality stud-

ies. The number of simulations for each scenario is 100 and the total number of simulations is

1000.

In this simulation study, the idea is to generate synthetic datasets very close to the original

dataset, namely indistinguishable. In our case, indistinguishable means that the measures cor-

relation and partial correlation are identical on both the original and synthetic datasets. To

maintain the original correlation structure, each time series is decomposed by LOESS into the

linear, seasonal and remainder terms. LOESS is locally weighted regression developed by [19]

and the seasonal-trend decomposition is further developed in [20]. Only the deviations are

simulated by multivariate normal distribution with the actual means and variances of the

decomposed deviations, and pre-defined correlations thus covariances. The detailed algorithm

is as follows.

Step 1. Decompose each time series into linear, seasonal and deviation components.

Step 2. Retain the actual means and variances of each time series of deviations. Set the correla-

tion between deviations of mortality and ozone to be the pre-specified value above

and obtain the new covariance matrix of all the variables.

Step 3. Simulate the deviations by multivariate normal distribution with the actual means and

new covariance matrix.

Step 4. Add the simulated deviations back to the decomposed linear and seasonal compo-

nents so that the simulated data are generated.

In the following, the boxplots of the differences between the found correlation (or partial

correlation) and the specified correlation (or partial correlation) across different pre-specified

values of correlation (or partial correlation) are displayed and interpreted. These boxplots are

expected to be narrowly centered at 0 so that the estimation is accurate and precise. Addition-

ally, the boxplots of correlation (or partial correlation) and −log10(p-value) across different

pre-specified values of correlation (or partial correlation) are displayed and interpreted. The

correlations (or partial correlations) are expected to be consistently larger or smaller than 0 to

show stability and the −log10(p-value) plot should be above the threshold −log(0.05) to show

significance.
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Simulation comparison

Current smoothing methods. Given the cubic spline smoothing, generalized cross-vali-

dation can be adopted to select the smoothing parameter.

In Fig 5, it is seen that these boxplots are mostly around 0 and becomes closer to 0 when the

pre-specified correlations value gets larger. Under multivariate normality, the current smooth-

ing with generalized cross-validation (GCV) can identify the correct correlation and partial

correlation with small errors. Generalized cross-validation is a common criterion for model

selection, in this case, spline tuning parameter selection, which is a computationally efficient

alternative to cross-validation, see [18].

In Fig 6, both pre-specified correlation and partial correlation can be found consistently on

the same side of 0; the significance can be detected when the pre-specified correlation is higher

than 0.05.

Without the loss of generality, the highly rough Sp = −1.5 and the moderately smooth

Sp = 0.60 are selected as the other smoothing scenarios.

In Fig 7, it can be seen that the estimated correlations or partial correlations display some

systematic bias, i.e., the estimated correlations are uniformly smaller while the estimated par-

tial correlations are uniformly larger than the pre-defined values. Also, the estimation variation

is large. In Fig 8, both correlation and partial correlation switch sides, from negative to posi-

tive. Statistical significance generally cannot be obtained except when the pre-defined correla-

tion is 0.10, for either correlation or partial correlation.

Proposed smoothing methods. Following the above convention, moving trimmed mean

is demonstrated. Moving average with trimming percentage = 0% and moving median with

trimming percentage = 50% are used for simulation illustration.

In Fig 9, it can be seen that when the pre-specified correlation or partial correlation

increases, the estimated correlation or partial correlation will be less biased. When the pre-

Fig 5. Plots of difference between found and specified in correlation and partial correlation by cubic spline

smoothing under GCV. The x-axis has the five levels of specified correlations or partial correlations between the

deviations of mortality and the deviations of ozone. The y-axis is the found—specified correlation or partial correlation

after applying cubic spline smoothing under GCV. The red lines are y = 0. Each box plot is the graphical summary

under simulations.

https://doi.org/10.1371/journal.pone.0195360.g005
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Fig 6. Boxplots of association between mortality deviations and ozone deviations by cubic spline smoothing

under GCV. The top two figures are the correlation and partial correlation between mortality deviations and ozone

deviations; the bottom two figures are their corresponding transformed p-value plots by -log10(): the larger

transformed value, the more significance. The x-axis has the five levels of specified correlations and partial correlations.

The top two red lines are y = 0; the bottom two red lines are y = −log100.05. Each box plot is the graphical summary

under simulations.

https://doi.org/10.1371/journal.pone.0195360.g006

Fig 7. Plots of difference between found and specified in correlation and partial correlation by cubic spline

smoothing. The x-axis has the five levels of specified correlations or partial correlations between the deviations of

mortality and the deviations of ozone. The y-axis is the found—specified correlation or partial correlation after

applying cubic spline smoothing under the two smoothing scenarios. The red lines are y = 0. Each box plot is the

graphical summary under simulations.

https://doi.org/10.1371/journal.pone.0195360.g007
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specified correlation or partial correlation is relatively small, the found correlation or partial

correlation tends to be slightly larger than the pre-specified ones. In Fig 10, when the pre-

specified correlation is 0, no statistical significance can be found in either correlation or

partial correlation. When the pre-specified correlation is small, such as 0.01 or 0.02, even if

Fig 8. Boxplots of association between mortality deviations and ozone deviations by cubic spline smoothing. The

top two figures are the correlation and partial correlation between mortality deviations and ozone deviations; the

bottom two figures are their corresponding transformed p-value plots by -log10(): the larger transformed value, the

more significance. The x-axis has the five levels of specified correlations and partial correlations. The top two red lines

are y = 0; the bottom two red lines are y = −log100.05. Each box plot is the graphical summary under simulations.

https://doi.org/10.1371/journal.pone.0195360.g008

Fig 9. Plots of difference between found and specified in correlation and partial correlation by moving trimmed

mean. The x-axis has the five levels of specified correlations or partial correlations between the deviations of mortality

and the deviations of ozone. The y-axis is the found—specified correlation or partial correlation under the two

trimming percentages. The red lines are y = 0. Each box plot is the graphical summary under simulations.

https://doi.org/10.1371/journal.pone.0195360.g009
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the correlations can be correctly found, we did not obtain statistical significance. When the

pre-specified correlation gets larger than 0.05, our estimate becomes more accurate. Likewise,

the partial correlation behaves similarly except that less significance can be found when the

pre-specified cross-correlation is set small.

Discussion & recommendations

Without a proper tuning parameter, the conventional approach of spline smoothing can

change the association or even bias the estimation; it may also introduce large variation in esti-

mation. Three proposed classes of time series smoothers can correctly detect small correlations

and partial correlations, typically over 0.05, and the accuracy and precision of detection are

improved when the actual association increases, given that the sample size is fixed.

If the long-term trend can be estimated more accurately, abnormal short-term signals are

better recovered as well. One possible improvement is to adjust the window and gap size adap-

tively. For instance, we can enlarge the window and gap size during a non-volatile period and

shrink their sizes during a volatile period. Another possible improvement is ideally to choose

the most appropriate measure within each moving window with a centered gap. Assuming

that the detrended time series are weakly stationary, there is a certain measure of central ten-

dency that can achieve the optimality within the moving window. For instance, when the fluc-

tuations around the long-term trend are normally distributed, moving average is statistically

optimal for recovering the abnormal signals; when the fluctuations around the long-term

trend are Laplace distributed, which places a higher probability on rare events than does the

normal, moving median is statistically optimal. In more complicated distributions, different

weighting schemes in moving weighted mean can empirically separate the long-term trend

and abnormal signals well. Different recursive weighting schemes can also be useful in greedily

searching for abnormal short-term signals. In our simulation setting, multivariate normal

Fig 10. Boxplots of association between mortality deviations and ozone deviations by moving trimmed mean. The

top two figures are the correlation and partial correlation between mortality deviations and ozone deviations; the

bottom two figures are their corresponding transformed p-value plots by -log10(): the larger transformed value, the

more significance. The x-axis has the five levels of specified correlations and partial correlations. The top two red lines

are y = 0; the bottom two red lines are y = −log100.05. Each box plot is the graphical summary under simulations.

https://doi.org/10.1371/journal.pone.0195360.g010
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datasets are generated and all the measures behave very well under the normal assumption and

thus the simulation results are quite similar.

The general recommendations can be stated as follows. First of all, the window and gap size

should be chosen based on the scientific background or the literature. Ideally, they should be

adaptive to capture the long-term trend. If no other information is available, a researcher can

simply choose any pair of window and gap that fits the subject knowledge. Due to the robust-

ness of the proposed smoothers, different window and gap sizes should always detect the

cross-association reasonably well. Secondly, if a researcher has no subject knowledge or prefer-

ence on the moving measure, moving trimmed mean should be used; the trimming percentage

can be decided by the researcher, depending on how one wants to truncate for the central ten-

dency within each window. If a researcher has some subject knowledge or preference on the

moving measure, moving weighted mean should be used; the weighting scheme is up to the

researcher, depending on the relevance of each data point to the time point of interest. If a

researcher wants to focus on finding abnormal short-term signals, moving recursive weighted

mean can be used; the re-weighting scheme is also up to the researcher’s choice, depending on

how flexible a researcher wants for the long-term central tendency.

Conclusions

First of all, the major formulations of smoothing in air quality studies are reviewed. A potential

pitfall has been found: the prevailing spline smoothing methods can obtain any significant

result, from negative to positive, by varying the smoothing parameters. This can undermine

the validity of the discovered relationship between air quality and acute death. In general, the

de-trending method is devised to estimate the deviation of the daily value from the trend by

refitting the long-term trend value. As it turns out, the researchers in air quality studies have

been quite versatile in how they fit the long-term trend, with little explanation or justification.

That flexibility can lead to different answers, which is one of the novel results of our research.

Second, robust and stable time series smoothers are proposed. Each smoothed estimate can

serve as an experimental control at the time point of interest. There are three classes of robust

time series smoothers: moving trimmed mean, moving weighted mean and moving recursive

mean. The strengths of the proposed methods are the robustness to different window/gap sizes

and the stability to different tuning of the central tendency measure. One limitation is the

inherent difficulty of knowing the correct separation between long-term trend and short-term

fluctuation. Spline smoothing can obtain a wider range of smoothed curves, at the expense of

moving the fluctuations into the trend or vice versa, while the proposed method results in less

variation by different window and gap sizes. Another limitation is that the proposed method

could be computationally heavy. The moving window with a centered gap needs to slide point

by point to calculate the long-term trend estimate; it is time consuming to go through all the

points from the beginning to the end. It would be more computationally expensive if we

attempt to optimize the window and gap sizes. All of these moving window methods can gen-

erate robust and stable detrended time series.

Third, the characteristics and sensitivities of time series smoothers are examined using a

factorial design of scenarios in our case illustration and indistinguishable synthetic datasets in

our simulation. Choice of data type, raw data or deviations, has a dramatic effect on results.

Within each data type, the proposed smoothers have the capacity of obtaining the correct

cross-association with little bias and small variation.

Last but not least, although the robustness and stability of our proposed smoothers can

assure the result’s consistency, it is still recommended to choose the window and gap size

using domain knowledge, rather than experimenting with the dataset at issue. The window
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size should be a fraction of the period of the long-term trend with seasonality and the gap size

should be the average length of the shock period. Within each moving window, a researcher

can tailor-make the time series smoother, according to the data characteristics. A researcher

should use moving trimmed mean if no extra information is available about the time series dis-

tribution. Otherwise, one should consider using moving weighted mean with an empirical

weighting scheme that addresses the specific distribution. If one wants to estimate the central

tendency conservatively and retain more short-term abnormalities, moving recursive weighted

mean can be adopted. In a nutshell, the proposed time series smoothers provide us a reliable

and efficient collection of statistical tools that do not require fine tuning of smoothing parame-

ters and produce reliable results with little bias and small variation.
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