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ABSTRACT Deep learning is at the heart of the current rise of artificial intelligence. In the field of computer
vision, it has become the workhorse for applications ranging from self-driving cars to surveillance and
security. Whereas, deep neural networks have demonstrated phenomenal success (often beyond human
capabilities) in solving complex problems, recent studies show that they are vulnerable to adversarial attacks
in the form of subtle perturbations to inputs that lead a model to predict incorrect outputs. For images,
such perturbations are often too small to be perceptible, yet they completely fool the deep learning models.
Adversarial attacks pose a serious threat to the success of deep learning in practice. This fact has recently
led to a large influx of contributions in this direction. This paper presents the first comprehensive survey on
adversarial attacks on deep learning in computer vision. We review the works that design adversarial attacks,
analyze the existence of such attacks and propose defenses against them. To emphasize that adversarial
attacks are possible in practical conditions, we separately review the contributions that evaluate adversarial
attacks in the real-world scenarios. Finally, drawing on the reviewed literature, we provide a broader outlook
of this research direction.

INDEX TERMS Deep learning, adversarial perturbation, black-box attack, white-box attack, adversarial
learning, perturbation detection.

I. INTRODUCTION
Deep Learning [1] is providing major breakthroughs in solv-
ing the problems that have withstood many attempts of
machine learning and artificial intelligence community in
the past. As a result, it is currently being used to decipher
hard scientific problems at an unprecedented scale, e.g. in
reconstruction of brain circuits [2]; analysis of mutations in
DNA [3]; prediction of structure-activity of potential drug
molecules [4], and analyzing the particle accelerator data [5]
[6]. Deep neural networks have also become the preferred
choice to solve many challenging tasks in speech recogni-
tion [7] and natural language understanding [8].

In the field of Computer Vision, deep learning became the
center of attention after Krizhevsky et al. [9] demonstrated the
impressive performance of a Convolutional Neural Network
(CNN) [10] based model on a very challenging large-scale
visual recognition task [11] in 2012. A significant credit for
the current popularity of deep learning can also be attributed
to this seminal work. Since 2012, the Computer Vision com-
munity has made numerous valuable contributions to deep
learning research, enabling it to provide solutions for the

problems encountered in medical science [21] to mobile
applications [179]. The recent breakthrough in artificial intel-
ligence in the form of tabula-rasa learning of AlphaGo
Zero [14] also owes a fair share to deep Residual Networks
(ResNets) [15] that were originally proposed for the task of
image recognition.

With the continuous improvements of deep neural network
models [15], [144], [166]; open access to efficient deep learn-
ing software libraries [175]–[177]; and easy availability of
hardware required to train complex models, deep learning
is fast achieving the maturity to enter into safety and secu-
rity critical applications, e.g. self driving cars [12], [180],
surveillance [13], maleware detection [34], [107], drones and
robotics [155], [178], and voice command recognition [7].
With the recent real-world developments like facial recogni-
tion ATM [181] and Face ID security onmobile phones [182],
it is apparent that deep learning solutions, especially those
originating from Computer Vision problems are about to play
a major role in our day-to-day lives.

Whereas deep learning performs a wide variety of
Computer Vision tasks with remarkable accuracies,
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FIGURE 1. Example of attacks on deep learning models with ‘universal adversarial perturbations’ [16]: The attacks are
shown for the CaffeNet [9], VGG-F network [17] and GoogLeNet [18]. All the networks recognized the original clean
images correctly with high confidence. After small perturbations were added to the images, the networks predicted
wrong labels with similar high confidence. Notice that the perturbations are hardly perceptible for human vision system,
however their effects on the deep learning models are catastrophic.

Szegedy et al. [22] first discovered an intriguing weakness of
deep neural networks in the context of image classification.
They showed that despite their high accuracies, modern deep
networks are surprisingly susceptible to adversarial attacks
in the form of small perturbations to images that remain
(almost) imperceptible to human vision system. Such attacks
can cause a neural network classifier to completely change its
prediction about the image. Even worse, the attacked models
report high confidence on the wrong prediction. Moreover,
the same image perturbation can fool multiple network clas-
sifiers. The profound implications of these results triggered
a wide interest of researchers in adversarial attacks and their
defenses for deep learning in general.

Since the findings of Szegedy et al. [22], several inter-
esting results have surfaced regarding adversarial attacks on
deep learning in Computer Vision. For instance, in addi-
tion to the image-specific adversarial perturbations [22],
Moosavi-Dezfooli et al. [16] showed the existence of ‘uni-
versal perturbations’ that can fool a network classifier on any
image (see Fig. 1 for example). Similarly, Athalye et al. [65]
demonstrated that it is possible to even 3-D print real-
world objects that can fool deep neural network classifiers
(see Section IV-C). Keeping in view the significance of deep
learning research in Computer Vision and its potential appli-
cations in the real life, this article presents the first com-
prehensive survey on adversarial attacks on deep learning in
Computer Vision. The article is intended for a wider read-
ership than Computer Vision community, hence it assumes
only basic knowledge of deep learning and image processing.
Nevertheless, it also discusses technical details of important
contributions for the interested readers.

We first describe the common terms related to adversarial
attacks in the parlance of Computer Vision in Section II.
In Section III, we review the adversarial attacks for the

task of image classification and beyond. A separate section
is dedicated to the approaches that deal with adversarial
attacks in the real-world conditions. Those approaches are
reviewed in Section IV. In the literature, there are also works
that mainly focus on analyzing the existence of adversar-
ial attacks. We discuss those contributions in Section V.
The approaches that make defense against the adversarial
attacks as their central topic are discussed in Section VI.
In Section VII, we provide a broader outlook of the research
direction based on the reviewed literature. Finally, we draw
conclusion in Section VIII.

II. DEFINITIONS OF TERMS
In this section, we describe the common technical terms used
in the literature related to adversarial attacks on deep learning
in Computer Vision. The remaining article also follows the
same definitions of the terms.
• Adversarial example/image is a modified version of
a clean image that is intentionally perturbed (e.g. by
adding noise) to confuse/fool a machine learning tech-
nique, such as deep neural networks.

• Adversarial perturbation is the noise that is added to the
clean image to make it an adversarial example.

• Adversarial training uses adversarial images besides the
clean images to train machine learning models.

• Adversary more commonly refers to the agent who cre-
ates an adversarial example. However, in some cases the
example itself is also called adversary.

• Black-box attacks feed a targeted model with the adver-
sarial examples (during testing) that are generated with-
out the knowledge of that model. In some instances, it is
assumed that the adversary has a limited knowledge of
the model (e.g. its training procedure and/or its archi-
tecture) but definitely does not know about the model
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parameters. In other instances, using any information
about the target model is referred to as ‘semi-black-box’
attack. We use the former convention in this article.

• Detector is a mechanism to (only) detect if an image is
an adversarial example.

• Fooling ratio/rate indicates the percentage of images on
which a trained model changes its prediction label after
the images are perturbed.

• One-shot/one-step methods generate an adversarial per-
turbation by performing a single step computation, e.g.
computing gradient of model loss once. The opposite
are iterative methods that perform the same computation
multiple times to get a single perturbation. The latter are
often computationally expensive.

• Quasi-imperceptible perturbations impair images very
slightly for human perception.

• Rectifier modifies an adversarial example to restore the
prediction of the targeted model to its prediction on the
clean version of the same example.

• Targeted attacks fool a model into falsely predicting a
specific label for the adversarial image. They are oppo-
site to the non-targeted attacks in which the predicted
label of the adversarial image is irrelevant, as long as it
is not the correct label.

• Threat model refers to the types of potential attacks
considered by an approach, e.g. black-box attack.

• Transferability refers to the ability of an adversarial
example to remain effective even for the models other
than the one used to generate it.

• Universal perturbation is able to fool a given model on
‘any’ imagewith high probability. Note that, universality
refers to the property of a perturbation being ‘image-
agnostic’ as opposed to having good transferability.

• White-box attacks assume the complete knowledge of
the targetedmodel, including its parameter values, archi-
tecture, training method, and in some cases its training
data as well.

III. ADVERSARIAL ATTACKS
In this section, we review the body of literature in Computer
Vision that introduces methods for adversarial attacks on
deep learning. The reviewed literature mainly deals with the
art of fooling the deep neural networks in ‘laboratory set-
tings’, where approaches are developed for the typical Com-
puter Vision tasks, e.g. recognition, and their effectiveness is
demonstrated using standard datasets, e.g. MNIST [10]. The
techniques that focus on attacking deep learning in the real-
world conditions are separately reviewed in Section IV. How-
ever, it should be noted that the approaches reviewed in this
section form the basis of the real-world attacks, and almost
each one of them has the potential to significantly affect deep
learning in practice. Our division is based on the evaluation
conditions of the attacks in the original contributions.

The review in this section is mainly organized in chrono-
logical order, with few exceptions to maintain the flow of
discussion. To provide technical understanding of the core

concepts to the reader, we also go into technical details of the
popular approaches and some representative techniques of the
emerging directions in this area. Other methods are discussed
briefly. We refer to the original papers for the details on
those techniques. This section is divided into two parts. In
part III-A, we review the methods that attack deep neural
networks performing the most common task in Computer
Vision, i.e. classification/recognition. Approaches that are
predominantly designed to attack deep learning beyond this
task are discussed in part III-B.

A. ATTACKS FOR CLASSIFICATION
1) BOX-CONSTRAINED L-BFGS
Szegedy et al. [22] first demonstrated the existence of small
perturbations to the images, such that the perturbed images
could fool deep learning models into misclassification. Let
Ic ∈ Rm denote a vectorized clean image - the subscript ‘c’
emphasizes that the image is clean. To compute an additive
perturbation ρ ∈ Rm that would distort the image very
slightly to fool the network, Szegedy et al. proposed to solve
the following problem:

min
ρ
||ρ||2 s.t. C(Ic + ρ) = `; Ic + ρ ∈ [0, 1]m, (1)

where ‘`’ denotes the label of the image and C(.) is the
deep neural network classifier. The authors proposed to solve
(1) for its non-trivial solution where ‘`’ is different from
the original label of Ic. In that case, (1) becomes a hard
problem, hence an approximate solution is sought using a
box-constrained L-BFGS [20]. This is done by finding the
minimum c > 0 for which the minimizer ρ of the following
problem satisfies the condition C(Ic + ρ) = `:

min
ρ

c|ρ| + L(Ic + ρ, `) s.t. Ic + ρ ∈ [0, 1]m, (2)

where L(., .) computes the loss of the classifier. We note that
(2) results in the exact solution for a classifier that has a
convex loss function. However, for deep neural networks, this
is generally not the case. The computed perturbation is simply
added to the image to make it an adversarial example.
As shown in Fig. 2, the above method is able to compute

perturbations that when added to clean images fool a neural
network, but the adversarial images appear similar to the
clean images to the human vision system. It was observed by
Szegedy et al. that the perturbations computed for one neural
network were also able to fool multiple networks. These
astonishing results identified a blind-spot in deep learning.
At the time of this discovery the Computer Vision community
was fast adapting to the impression that deep learning features
define the space where perceptual distances are well approxi-
mated by the Euclidean distances. Hence, these contradictory
results triggered a wide interest of researchers in adversarial
attacks on deep learning in Computer Vision.

2) FAST GRADIENT SIGN METHOD (FGSM)
It was observed by Szegedy et al. [22] that the robustness
of deep neural networks against the adversarial examples
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FIGURE 2. Illustration of adversarial examples generated using [22] for
AlexNet [9]. The perturbations are magnified 10x for better visualization
(values shifted by 128 and clamped). The predicted labels of adversarial
examples are also shown.

could be improved by adversarial training. To enable effec-
tive adversarial training, Goodfellow et al. [23] developed a
method to efficiently compute an adversarial perturbation for
a given image by solving the following problem:

ρ = ε sign (∇J (θ , Ic, `)) , (3)

where ∇J (., ., .) computes the gradient of the cost function
around the current value of the model parameters θ w.r.t. Ic,
sign(.) denotes the sign function and ε is a small scalar value
that restricts the norm of the perturbation. The method for
solving (3) was termed ‘Fast Gradient Sign Method’ (FGSM)
in the original work.

Interestingly, the adversarial examples generated by
FGSM exploit the ‘linearity’ of deep network models in
the higher dimensional space whereas such models were
commonly thought to be highly non-linear at that time.
Goodfellow et al. [23] hypothesized that the designs of mod-
ern deep neural networks that (intentionally) encourage linear
behavior for computational gains, alsomake them susceptible
to cheap analytical perturbations. In the related literature, this
idea is often referred to as the ‘linearity hypothesis’, which is
substantiated by the FGSM approach.

Kurakin et al. [80] noted that on the popular large-scale
image recognition data set ImageNet [11], the top-1 error rate
on the adversarial examples generated by FGSM is around
63 − 69% for ε ∈ [2, 32]. The authors also proposed a
‘one-step target class’ variation of the FGSM where instead
of using the true label ` of the image in (3), they used the
label `target of the least likely class predicted by the network
for Ic. The computed perturbation is then subtracted from
the original image to make it an adversarial example. For a
neural network with cross-entropy loss, doing so maximizes
the probability that the network predicts `target as the label
of the adversarial example. It is suggested, that a random

class can also be used as the target class for fooling the
network, however it may lead to less interesting fooling,
e.g. misclassification of one breed of dog as another dog
breed. The authors also demonstrated that adversarial training
improves robustness of deep neural networks against the
attacks generated by FGSM and its proposed variants.

The FGSM perturbs an image to increase the loss of
the classifier on the resulting image. The sign function
ensures that the magnitude of the loss is maximized, while
ε essentially restricts the `∞-norm of the perturbation.
Miyato et al. [103] proposed a closely related method to
compute the perturbation as follows

ρ = ε
∇J (θ , Ic, `)
||∇J (θ , Ic, `)||2

. (4)

In the above equation, the computed gradient is normalized
with its `2-norm. Kurakin et al. [80] referred to this technique
as ‘Fast Gradient L2’ method and also proposed an alternative
of using the `∞-norm for normalization, and referred to the
resulting technique as ‘Fast Gradient L∞’ method. Broadly
speaking, all of these methods are seen as ‘one-step’ or ‘one-
shot’ methods in the literature related to adversarial attacks
in Computer Vision.

3) BASIC & LEAST-LIKELY-CLASS ITERATIVE METHODS
The one-step methods perturb images by taking a single large
step in the direction that increases the loss of the classifier
(i.e. one-step gradient ascent). An intuitive extension of this
idea is to iteratively take multiple small steps while adjusting
the direction after each step. The Basic Iterative Method
(BIM) [35] does exactly that, and iteratively computes the
following:

Ii+1ρ = Clipε
{
Iiρ + α sign(∇J (θ , Iiρ, `)

}
, (5)

where Iiρ denotes the perturbed image at the ith iteration,
Clipε{.} clips (the values of the pixels of) the image in its
argument at ε and α determines the step size (normally,
α = 1). The BIM algorithm starts with I0ρ = Ic and
runs for the number of iterations determined by the formula
bmin(ε+4, 1.25ε)c. Madry et al. [55] pointed out that BIM is
equivalent to (the `∞ version of) Projected Gradient Descent,
a standard convex optimization method.

Similar to extending the FGSM to its ‘one-step target class’
variation, Kurakin et al. [35] also extended BIM to Iterative
Least-likely Class Method (ILCM). In that case, the label `
of the image in (5) is replaced by the target label `target of the
least likely class predicted by the classifier. The adversarial
examples generated by the ILCM method has been shown to
seriously affect the classification accuracy of a modern deep
architecture Inception v3 [144], even for very small values
of ε, e.g. < 16.

4) JACOBIAN-BASED SALIENCY MAP ATTACK (JSMA)
In the literature, it is more common to generate
adversarial examples by restricting `∞ or `2-norms of the
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perturbations to make them imperceptible for humans. How-
ever, Papernot et al. [60] also created an adversarial attack
by restricting the `0-norm of the perturbations. Physically,
it means that the goal is to modify only a few pixels in
the image instead of perturbing the whole image to fool
the classifier. The crux of their algorithm to generate the
desired adversarial image can be understood as follows.
The algorithm modifies pixels of the clean image one at a
time and monitors the effects of the change on the resulting
classification. The monitoring is performed by computing
a saliency map using the gradients of the outputs of the
network layers. In this map, a larger value indicates a higher
likelihood of fooling the network to predict `target as the
label of the modified image instead of the original label `.
Thus, the algorithm performs targeted fooling. Once the map
has been computed, the algorithm chooses the pixel that is
most effective to fool the network and alters it. This process
is repeated until either the maximum number of allowable
pixels are altered in the adversarial image or the fooling
succeeds.

5) ONE PIXEL ATTACK
An extreme case for the adversarial attack is when only one
pixel in the image is changed to fool the classifier. Inter-
estingly, Su et al. [68] claimed successful fooling of three
different network models on 70.97% of the tested images by
changing just one pixel per image. They also reported that the
average confidence of the networks on the wrong labels was
found to be 97.47%. We show representative examples of the
adversarial images from [68] in Fig. 3. Su et al. computed
the adversarial examples by using the concept of Differential
Evolution [146]. For a clean image Ic, they first created a
set of 400 vectors in R5 such that each vector contained
xy-coordinates and RGB values for an arbitrary candidate
pixel. Then, they randomly modified the elements of the
vectors to create children such that a child competes with its
parent for fitness in the next iteration, while the probabilistic
predicted label of the network is used as the fitness criterion.
The last surviving child is used to alter the pixel in the image.

FIGURE 3. Illustration of one pixel adversarial attacks [68]: The correct
label is mentioned with each image. The corresponding predicted label is
given in parentheses.

Evenwith such a simple evolutionary strategy Su et al. [68]
were able to show successful fooling of deep networks.
Notice that, differential evolution enables their approach to
generate adversarial examples without having access to any
information about the network parameter values or their gra-
dients. The only input their technique requires is the proba-
bilistic labels predicted by the targeted model.

6) CARLINI AND WAGNER ATTACKS (C&W)
A set of three adversarial attacks were introduced by Carlini
and Wagner [36] in the wake of defensive distillation against
the adversarial perturbations [38]. These attacks make the
perturbations quasi-imperceptible by restricting their `2, `∞
and `0 norms, and it is shown that defensive distillation for
the targeted networks almost completely fails against these
attacks. Moreover, it is also shown that the adversarial exam-
ples generated using the unsecured (un-distilled) networks
transfer well to the secured (distilled) networks, which makes
the computed perturbations suitable for black-box attacks.

Whereas it is more common to exploit the transferabil-
ity property of adversarial examples to generate black-box
attacks, Chen et al. [41] also proposed ‘Zeroth Order Opti-
mization (ZOO)’ based attacks that directly estimate the gra-
dients of the targeted model for generating the adversarial
examples. These attacks were inspired by C&W attacks.
We refer to the original papers for further details on C&W
and ZOO attacks.

7) DEEPFOOL
Moosavi-Dezfooli et al. [72] proposed to compute a minimal
norm adversarial perturbation for a given image in an iterative
manner. Their algorithm, i.e. DeepFool initializes with the
clean image that is assumed to reside in a region confined by
the decision boundaries of the classifier. This region decides
the class-label of the image. At each iteration, the algorithm
perturbs the image by a small vector that is computed to
take the resulting image to the boundary of the polyhydron
that is obtained by linearizing the boundaries of the region
within which the image resides. The perturbations added to
the image in each iteration are accumulated to compute the
final perturbation once the perturbed image changes its label
according to the original decision boundaries of the network.
The authors show that the DeepFool algorithm is able to
compute perturbations that are smaller than the perturbations
computed by FGSM [23] in terms of their norm, while having
similar fooling ratios.

8) UNIVERSAL ADVERSARIAL PERTURBATIONS
Whereas the methods like FGSM [23], ILCM [35], Deep-
Fool [72] etc. compute perturbations to fool a network on a
single image, the ‘universal’ adversarial perturbations com-
puted by Moosavi-Dezfooli et al. [16] are able to fool a
network on ‘any’ image with high probability. These image-
agnostic perturbations also remain quasi-imperceptible for
the human vision system, as can be observed in Fig. 1.
To formally define these perturbations, let us assume that
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clean images are sampled from the distribution=c. A pertur-
bation ρ is ‘universal’ if it satisfies the following constraint:

P
Ic∼=c

(
C(Ic) 6= C(Ic + ρ)

)
≥ δ s.t. ||ρ||p ≤ ξ, (6)

where P(.) denotes the probability, δ ∈ (0, 1] is the fooling
ratio, ||.||p denotes the `p-norm and ξ is a pre-defined con-
stant. The smaller the value of ξ , the harder it is to perceive
the perturbation in the image. Strictly speaking, the perturba-
tions that satisfy (6) should be referred to as (δ, ξ )-universal
because of their strong dependence on the mentioned param-
eters. However, these perturbations are commonly referred to
as the ‘universal adversarial perturbations’ in the literature.

The authors computed the universal perturbations by
restricting their `2-norm as well as `∞-norm, and showed
that the perturbations with their norms upper bounded by 4%
of the respective image norms already achieved significant
fooling ratios of around 0.8 or more for state-of-the-art image
classifiers. Their iterative approach to compute a perturbation
is related to the DeepFool strategy [72] of gradually pushing
a data point (i.e. an image) to the decision boundary for its
class. However, in this case, ‘all’ the training data points are
sequentially pushed to the respective decision boundaries and
the perturbations computed over all the images are gradu-
ally accumulated by back-projecting the accumulator to the
desired `p ball of radius ξ every time.
The algorithm proposed by Moosavi-Dezfooli et al. [16]

computes perturbations while targeting a single network
model, e.g. ResNet [15]. However, it is shown that these
perturbations also generalize well across different networks
(especially those having similar architectures). In that sense,
the author’s claim the perturbations to be, to some extent,
‘doubly universal’. Moreover, it is also shown that high
fooling ratio (e.g. δ ≥ 0.5) is achievable by learning a
perturbation using only around 2, 000 training images.

9) UPSET AND ANGRI
Sarkar et al. [145] proposed two black-box attack algorithms,
namely UPSET: Universal Perturbations for Steering to Exact
Targets, and ANGRI: Antagonistic Network for Generating
Rogue Images for targeted fooling of deep neural networks.
For ‘n’ classes, UPSET seeks to produce ‘n’ image-agnostic
perturbations such that when the perturbation is added to an
image that does not belong to a targeted class, the classifier
will classify the perturbed image as being from that class. The
power of UPSET comes from a residual generating network
R(.), that takes the target class ‘t’ as input and produces a
perturbation R(t) for fooling. The overall method solves the
following optimization problem using the so-called UPSET
network:

Iρ = max(min(sR(t)+ Ic, 1),−1), (7)

where the pixel values in Ic are normalized to lie in [−1, 1],
and ‘s’ is a scalar. To ensure Iρ to be a valid image, all values
outside the interval [−1, 1] are clipped. As compared to the
image-agnostic perturbations of UPSET, ANGRI computes

image-specific perturbations in a closely related manner, for
which we refer to the original work. The perturbations result-
ing from ANGRI are also used for targeted fooling. Both
algorithms have been reported to achieve high fooling ratios
on MNIST [10] and CIFAR-10 [150] datasets.

10) HOUDINI
Cisse et al. [130] proposed ‘Houdini’- an approach for fooling
gradient-based learning machines by generating adversarial
examples that can be tailored to task losses. Typical algo-
rithms that generate adversarial examples employ gradients
of differentiable loss functions of the networks to compute the
perturbations. However, task losses are often not amenable
to this approach. For instance, the task loss of speech recog-
nition is based on word-error-rate, which does not allow
straightforward exploitation of loss function gradient. Hou-
dini is tailored to generate adversarial examples for such
tasks. Besides successful generation of adversarial images
for classification, Houdini has also been shown to success-
fully attack a popular deep Automatic Speech Recognition
system [149]. The authors have also demonstrated the trans-
ferability of attacks in speech recognition by fooling Google
Voice in a black-box attack scenario. Moreover, successful
targeted and non-targeted attacks are also demonstrated for a
deep learning model for human pose estimation.

11) ADVERSARIAL TRANSFORMATION NETWORKS (ATNs)
Baluja and Fischer [42] trained feed-forward neural networks
to generate adversarial examples against other targeted net-
works or set of networks. The trained models were termed
Adversarial Transformation Networks (ATNs). The adversar-
ial examples generated by these networks are computed by
minimizing a joint loss function comprising of two parts. The
first part restricts the adversarial example to have perceptual
similarity with the original image, whereas the second part
aims at altering the prediction of the targeted network on the
resulting image.

Along the same direction, Hayex and Danezis [47] also
used an attacker neural network to learn adversarial examples
for black-box attacks. In the presented results, the examples
computed by the attacker network remain perceptually indis-
tinguishable from the clean images but they are misclassified
by the targeted networks with overwhelming probabilities -
reducing classification accuracy from 99.4% to 0.77% on
MNIST data [10], and from 91.4% to 6.8% on the CIFAR-10
dataset [150].

12) MISCELLANEOUS ATTACKS
The adversarial attacks discussed above are either the pop-
ular ones in the recent literature or they are representative
of the research directions that are fast becoming popular.
A summary of the main attributes of these attacks is also
provided in Table 1. For a comprehensive study, below we
provide brief descriptions of further techniques to generate
adversarial attacks on deep neural networks. We note that
this research area is currently highly active. Whereas every
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TABLE 1. Summary of the attributes of diverse attacking methods: The ‘perturbation norm’ indicates the restricted `p-norm of the perturbations to make
them imperceptible. The strength (higher for more asterisks) is based on the impression from the reviewed literature.

attempt has been made to review as many approaches as
possible, we do not claim the review to be exhaustive. Due
to high activity in this research direction, many more attacks
are likely to surface in the near future.

Sabour et al. [26] showed the possibility of generating
adversarial examples by altering the internal layers of deep
neural networks. The authors demonstrated that it is possible
tomake internal network representation of adversarial images
to resemble representations of images from different classes.
Papernot et al. [109] studied transferability of adversarial
attacks for deep learning as well as other machine learn-
ing techniques and introduced further transferability attacks.
Narodytska andKasiviswanathan [54] also introduced further
black-box attacks that have been found effective in fooling
the neural networks by changing only few pixel values in
the images. Liu et al. [31] introduced ‘epsilon-neighborhood’
attack that have been shown to fool defensively distilled
networks [108] with 100% success for white-box attacks.
Oh et al. [132] took a ‘Game Theory’ perspective on adver-
sarial attacks and derived a strategy to counter the counter-
measures taken against adversarial attacks on deep neural
networks. Mpouri et al. [134] developed a data-independent
approach to generate universal adversarial perturbations for
the deep network models. Hosseini et al. [98] introduced
the notion of ‘semantic adversarial examples’ - input images
that represent semantically same objects for humans but deep
neural networks misclassify them. They used negatives of the
images as semantic adversarial examples. Kanbak et al. [73]
introduced ‘ManiFool’ algorithm in the wake of DeepFool
method [72] to measure robustness of deep neural networks
against geometrically perturbed images. Dong et al. [168]
proposed an iterative method to boost adversarial attacks for
black-box scenarios. Recently, Carlini and Wagner [49] also
demonstrated that ten different defenses against perturbations
can again be defeated by new attacks constructed using new
loss functions. Rozsa et al. [94] also proposed a ‘hot/cold’
method for generatingmultiple possible adversarial examples
for a single image.

We note that the authors of many works reviewed in
this article have made the source code of their imple-
mentations publicly available. This is one of the major
reasons behind the current rise in this research direction.

Beside those resources, there are also libraries, e.g.
Cleverhans [111], [112] that have started emerging in
order to further boost this research direction. Adversarial-
Playground (https: //github.com/QData/AdversarialDNN-
Playground) is another example of a toolbox made public by
Norton and Qi [141] to understand adversarial attacks.

B. ATTACKS BEYOND CLASSIFICATION/RECOGNITION
With the exception of Houdini [130], all the mainstream
adversarial attacks reviewed in Section III-A directly focused
on the task of classification - typically fooling CNN-
based [10] classifiers. However, due to the seriousness of
adversarial threats, attacks are also being actively investi-
gated beyond the classification/recognition task in Computer
Vision. Below, we review the works that develop approaches
to attack deep neural networks beyond classification.

1) ATTACKS ON AUTOENCODERS AND
GENERATIVE MODELS
Tabacof et al. [127] investigated adversarial attacks for
autoencoders [152], and proposed a technique to distort input
image (to make it adversarial) that misleads the autoencoder
to reconstruct a completely different image. Their approach
attacks the internal representation of a neural network such
that the representation for the adversarial image becomes
similar to that of the target image. However, it is reported
in [127] that autoencoders seem to be much more robust
to adversarial attacks than the typical classifier networks.
Kos et al. [120] also explored methods for computing adver-
sarial examples for deep generative models, e.g. variational
autoencoder (VAE) and theVAE-Generative Adversarial Net-
works (VAE-GANs). GANs, such as [151] are becoming
exceedingly popular now-a-days in Computer Vision appli-
cations due to their ability to learn data distributions and gen-
erate realistic images using those distributions. The authors
introduced three different classes of attacks for VAE and
VAE-GANs. Owing to the success of these attacks it is
concluded that the deep generative models are also vulner-
able to adversaries that can convince them to turn inputs
into very different outputs. This work adds further support
to the hypothesis that ‘‘adversarial examples are a general
phenomenon for current neural network architectures’’.
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2) ATTACK ON RECURRENT NEURAL NETWORKS
Papernot et al. [110] successfully generated adversarial input
sequences for Recurrent Neural Networks (RNNs). RNNs are
deep learning models that are particularly suitable for learn-
ing mappings between sequential inputs and outputs [153].
Papernot et al. demonstrated that the algorithms proposed
to compute adversarial examples for the feed-forward neural
networks (e.g. FGSM [23]) can also be adapted for fooling
RNNs. In particular, the authors demonstrated successful
fooling of the popular Long-Short-Term-Memory (LSTM)
RNN architecture [154]. It is concluded that the cyclic neu-
ral network model like RNNs are also not immune to the
adversarial perturbations that were originally uncovered in
the context of acyclic neural networks, i.e. CNNs.

3) ATTACKS ON DEEP REINFORCEMENT LEARNING
Lin et al. [133] proposed two different adversarial attacks
for the agents trained by deep reinforcement learning [155].
In the first attack, called ‘strategically-timed attack’,
the adversary minimizes the reward of the agent by attacking
it at a small subset of time steps in an episode. A method is
proposed to determine when an adversarial example should
be crafted and applied, which enables the attack to go unde-
tected. In the second attack, referred as ‘enchanting attack’,
the adversary lures the agent to a designated target state by
integrating a generative model and a planning algorithm. The
generative model is used for predicting the future states of the
agent, whereas the planning algorithm generates the actions
for luring it. The attacks are successfully tested against
the agents trained by the state-of-the-art deep reinforcement
learning algorithms [155], [156]. Details on this work and
example videos of the adversarial attacks can be found on the
following URL: http: //yclin.me/adversarial_attack_RL/.

In another work, Huang et al. [62] demonstrated that
FGSM [23] can also be used to significantly degrade per-
formance of trained policies in the context of deep rein-
forcement learning. Their threat model considers adversaries
that are capable of introducing minor perturbations to the
raw input of the policy. The conducted experiments demon-
strate that it is fairly easy to confuse neural network poli-
cies with adversarial examples, even in black-box scenarios.
Videos and further details on this work are available on
http://rll.berkeley.edu/adversarial/.

4) ATTACKS ON SEMANTIC SEGMENTATION &
OBJECT DETECTION
Semantic image segmentation and object detection are among
the mainstream problems in Computer Vision. Inspired by
Moosavi-Dezfooli et al. [16] and Metzen et al. [67] showed
the existence of image-agnostic quasi-imperceptible pertur-
bations that can fool a deep neural network into signifi-
cantly corrupting the predicted segmentation of the images.
Moreover, they also showed that it is possible to compute
noise vectors that can remove a specific class from the seg-
mented classes while keepingmost of the image segmentation

FIGURE 4. Adversarial example for semantic segmentation and object
detection [115]. FCN [157] and Faster-RCNN [148] are used for
segmentation and detection, respectively. Left column (top-down): Clean
image, normal segmentation (purple region is predicted as dog) and
detection results. Right column (top-down): Perturbation 10x, fooled
segmentation (light green region is predicted as train and the pink region
as person) and detection results.

unchanged (e.g. removing pedestrians from road scenes).
Although it is argued that the ‘‘space of the adversarial per-
turbations for the semantic image segmentation is presum-
ably smaller than image classification’’, the perturbations
have been shown to generalize well for unseen validation
images with high probability. Arnab et al. [51] also evaluated
FGSM [23] based adversarial attacks for semantic segmenta-
tion and noted that many observations about these attacks for
classification do not directly transfer to segmentation task.

Xie et al. [115] computed adversarial examples for seman-
tic segmentation and object detection under the observation
that these tasks can be formulated as classifying multiple
targets in an image - the target is a pixel or a receptive field
in segmentation, and object proposal in detection. Under this
perspective, their approach, called ‘Dense Adversary Gener-
ation’ optimizes a loss function over a set of pixels/proposals
to generate adversarial examples. The generated examples are
tested to fool a variety of deep learning based segmentation
and detection approaches. Their experimental evaluation not
only demonstrates successful fooling of the targeted networks
but also shows that the generated perturbations generalize
well across different network models. In Fig. 4, we show a
representative example of network fooling for segmentation
and detection using the approach in [115].

5) ATTACKS ON FACE ATTRIBUTES
Face attributes are among the emerging soft biometrics for
modern security systems. Although face attribute recogni-
tion can also be categorized as a classification problem, we
separately review some interesting attacks in this direction
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because face recognition itself is treated as a mainstream
problem in Computer Vision.

Rozsa et al. [129], [158] explored the stability of multiple
deep learning approaches using the CelebA benchmark [159]
by generating adversarial examples to alter the results of
facial attribute recognition, see top-row in Fig. 5. By attacking
the deep network classifiers with their so-called ‘Fast Flip-
ping Attribute’ technique, they found that robustness of deep
neural networks against the adversarial attacks varies highly
between facial attributes. It is claimed that adversarial attacks
are very effective in changing the label of a target attribute
to a correlated attribute. Mirjalili and Ross [160] proposed a
technique that modifies a face image such that its gender (for
a gender classifier) is modified, whereas its biometric utility
for a face matching system remains intact, see bottom-row
in Fig. 5. Similarly, Shen et al. [143] proposed two different
techniques to generate adversarial examples for faces that can
have high ‘attractiveness scores’ but low ‘subjective scores’
for the face attractiveness evaluation using deep neural net-
work. We refer to [183] for further attacks related to the task
of face recognition.

FIGURE 5. Top-row: Example of changing a facial attribute ‘wearing
lipstick’ to ‘not wearing lipstick’ by Fast Flipping Attribute method [129].
Bottom row: Changing gender with perturbation generated by [160].

IV. ATTACKS IN THE REAL WORLD
The literature reviewed in Section III assumes settings where
adversaries directly feed deep neural networks with perturbed
images. Moreover, the effectiveness of attacks are also eval-
uated using standard image databases. Whereas those set-
tings have proven sufficient to convince many researchers
that adversarial attacks are a real concern for deep learning
in practice, we also come across instances in the literature
(e.g. [30], [48]) where this concern is down-played and adver-
sarial examples are implicated to be ‘only a matter of curios-
ity’ with little practical concerns. Therefore, this Section is
specifically dedicated to the literature that deals with the
adversarial attacks in practical real-world conditions to help
settle the debate.

A. CELL-PHONE CAMERA ATTACK
Kurakin et al. [35] first demonstrated that threats of adver-
sarial attacks also exist in the physical world. To illustrate
this, they printed adversarial images and took snapshots from
a cell-phone camera. These images were fed to Tensor-
Flow Camera Demo app [179] that uses Google’s Inception
model [144] for object classification. It was shown that a large
fraction of images were misclassified even when perceived
through the camera. In Fig. 6, an example is shown from
the original paper. A video is also provided on the following
URL https://youtu.be/zQ_uMenoBCk that shows the threat
of adversarial attacks with further images. This work studies
FGSM [23], BIM and ILCM [35] methods for attacks in the
physical world.

B. ROAD SIGN ATTACK
Etimov et al. [75] built on the attacks proposed in [36]
and [88] to design robust perturbations for the physical world.
They demonstrated the possibility of attacks that are robust
to physical conditions, such as variation in view angles,
distance and resolution. The proposed algorithm, termed
RP2 for Robust Physical Perturbations, was used to generate
adversarial examples for road sign recognition systems that
achieved high fooling ratios in practical drive-by settings.
Two attack classes were introduced in this work for the
physical road signs, (a) poster-printing: where the attacker
prints a perturbed road sign poster and places it over the
real sign (see Fig. 7), (b) sticker perturbation: where the
printing is done on a paper and the paper is stuck over
the real sign. For (b) two types of perturbations were stud-
ied, (b1) subtle perturbations: that occupied the entire sign
and (b2) camouflage perturbations: that took the form of
graffiti sticker on the sign. As such, all these perturbations
require access to a color printer and no other special hard-
ware. Successful generation of perturbations for both (a) and
(b) such that the perturbations remained robust to natural
variations in the physical world demonstrate the threat of
adversarial example in the real world. We refer to the follow-
ing URL for further details and videos related to this work:
https://iotsecurity.eecs.umich.edu/#roadsigns.

It should be noted that Lu et al. [30] had previously
claimed that adversarial examples are not a concern for object
detection in Autonomous Vehicles because of the changing
physical conditions in a moving car. However, the attack-
ing methods they employed [22], [23], [35] were somewhat
primitive. The findings of Etimov et al. [75] are orthog-
onal to the results in [66]. However, in a follow-up work
Lu et al. [19] showed that the detectors like YOLO9000 [147]
and FasterRCNN [148] are ‘currently’ not fooled by the
attacks introduced by Etimov et al. [75]. Zeng et al. [87]
also argue that adversarial perturbations in the image space
do not generalize well in the physical space of the real-world.
However, Athalye et al. [65] showed that we can actually print
3D physical objects for successful adversarial attacks in the
physical world. We discuss [65] in Section IV-C.
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FIGURE 6. Example of adversarial attack on mobile phone cameras: A clean image (a) was taken and used to
generate different adversarial images. The images were printed and the TensorFlow Camera Demo app [179] was
used to classify them. A clean image (b) is recognized correctly as a ‘washer’ when perceived through the camera,
whereas adversarial images (c) and (d) are mis-classified. The images also show network confidence in the range
[0,1] for each image. The value of ε is given for (3).

FIGURE 7. Example of road sign attack [75]: The success rate of fooling LISA-CNN [75] classifier on all the shown
images is 100%. The distance and angle to the camera are also shown. The classifier is trained using LISA dataset for
road signs [174].

Gu et al. [33] also explored an interesting notion of threats
to outsourced training of the neural networks in the context
of fooling neural networks on street signs. They showed that
it is possible to train a network (a BadNet) that shows state-
of-the-art performance on the user’s training and validation
samples, but behaves badly on attacker-chosen inputs. They
demonstrated this attack in a realistic scenario by creating a
street sign classifier that identifies stop signs as speed limits
when a special sticker is added to the stop sign. Moreover,
it was found that the fooling of the network persisted to a
reasonable extent even when the network was later fine-tuned
with additional training data.

C. GENERIC ADVERSARIAL 3D OBJECTS
Athalye et al. [65] introduced a method for constructing 3D
objects that can fool neural networks across a wide variety
of angles and viewpoints. Their ‘Expectation Over Trans-
formation’ (EOT) framework is able to construct examples
that are adversarial over an entire distribution of image/object
transformations. Their end-to-end approach is able to print
arbitrary adversarial 3D objects. In our opinion, results of this
work ascertain that adversarial attacks are a real concern for
deep learning in the physical world. In Fig. 8 we show an

example of 3D-printed turtle that is modified by EOT frame-
work to be classified as rifle. A video demonstrating the fool-
ing by EOT in the physical world is available at the following
URL: https://www.youtube.com/watch?v=YXy6oX1iNoA&
feature=youtu.be.

D. CYBERSPACE ATTACKS
Papernot et al. [39] launched one of the first attacks against
the deep neural network classifiers in cyberspace in the real-
world settings. They trained a substitute network for the tar-
geted black-box classifier on synthetic data, and instantiated
the attack against remotely hosted neural networks by Meta-
Mind, Amazon and Google. They were able to show that the
respective targeted networks misclassified 84.24%, 96.19%
and 88.94% of the adversarial examples generated by their
method. Indeed, the only information available to the attacker
in their threat model was the output label of the targeted
network for the input image fed by the attacker. In a related
work, Liu et al. [88] developed an ensemble based attack and
showed its success against Clarifai.com - a commercial com-
pany providing state-of-the-art image classification services.
The authors claim that their attacks for both targeted and non-
targeted fooling are able to achieve high success rates.
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FIGURE 8. Different random poses of a 3D-printed turtle perturbed by EOT [65] to be classified as a rifle by
an ImageNet classifier. The unperturbed version (not shown) is classified correctly with 100% probability.

Grosse et al. [61] showed construction of effective adver-
sarial attacks for neural networks used as malware clas-
sifiers. As compared to image recognition, the domain of
malware classification introduces additional constraints in
the adversarial settings, e.g. continuous input domains are
replaced by discrete inputs, the condition of visual similar-
ity is replaced by requiring equivalent functional behavior.
However, Grosse et al. [61] showed that creating effective
adversarial examples is still possible for maleware classi-
fication. Further examples of successful adversarial attacks
against deep lrearning based malware classification can also
be found in [64], [107], and [124].

E. ROBOTIC VISION & VISUAL QA ATTACKS
Melis et al. [63] demonstrated the vulnerability of robots to
the adversarial manipulations of the input images using the
techniques in [22]. The authors argue that strategies to enforce
deep neural networks to learn more stable representations
are necessary for secure robotics. Xu et al. [40] generated
adversarial attacks for the Visual Turing Test, also known
as ‘Visual Question Answer’ (VQA). The authors show that
the commonly used compositional and non-compositional
VQA architectures that employ deep neural networks are
vulnerable to adversarial attacks. Moreover, the adversarial
examples are transferable between the models. They con-
clude that the ‘‘adversarial examples pose real threats to not
only image classification models, but also more complicated
VQA models’’ [63].

V. ON THE EXISTENCE OF ADVERSARIAL EXAMPLES
In the literature related to adversarial attacks on deep learning
in Computer Vision, there are varied views on the exis-
tence of adversarial examples. These views generally align
well with the local empirical observations made by the
researchers while attacking or defending the deep neural
networks. However, they often fall short in terms of gener-
alization. For instance, the popular linearity hypothesis of
Goodfellow et al. [23] explains the FGSM and related attacks

very well. However, Tanay and Griffin [74] demonstrated
image classes that do not suffer from adversarial examples
for linear classifier, which is not in-line with the linearity
hypothesis. Not to mention, the linearity hypothesis itself
deviates strongly from the previously prevailing opinion that
the adversarial examples stem from highly non-linear deci-
sion boundaries induced by deep neural networks. There
are also other examples in the literature where the linearity
hypothesis is not directly supported [118].

Flatness of decision boundaries [69], large local curvature
of the decision boundaries [70] and low flexibility of the
networks [71] are some more examples of the viewpoints on
the existence of adversarial examples that do not perfectly
align with each other. Whereas it is apparent that adversarial
examples can be formed by modifying as little as one pixel
in an image, current literature seems to lack consensus on the
reasons for the existence of the adversarial examples. This
fact also makes analysis of adversarial examples an active
research direction that is expected to explore and explain the
nature of the decision boundaries induced by deep neural net-
works, which are currently more commonly treated as black-
boxmodels. Below, we review the works that mainly focus on
analyzing the existence of adversarial perturbations for deep
learning. We note that, besides the literature reviewed below,
works related to adversarial attacks (Section III) and defenses
(Section VI) often provide brief analysis of adversarial per-
turbations while conjecturing about the phenomena resulting
in the existence of the adversarial examples.

A. LIMITS ON ADVERSARIAL ROBUSTNESS
Fawzi et al. [117] introduced a framework for studying the
instability of classifiers to adversarial perturbations. They
established fundamental limits on the robustness of classi-
fiers in terms of a ‘distinguishability measure’ between the
classes of the dataset, where distinguishability is defined as
the distance between the means of two classes for linear
classifiers and the distance between the matrices of second
order moments for the studied non-linear classifiers. This
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work shows that adversarial examples also exist for the clas-
sifiers beyond deep neural networks. The presented analysis
traces back the phenomenon of adversarial instability to the
low flexibility of the classifiers, which is not completely
orthogonal to the prevailing belief at that time that high-
nonlinearity of the networks make them susceptible to adver-
sarial examples.

B. SPACE OF ADVERSARIAL EXAMPLES
Tabacof and Valle [25] generated adversarial examples for
shallow and deep network classifiers on MNIST [10] and
ImageNet [11] datasets and probed the pixel space of adver-
sarial examples by using noise of varying distribution and
intensity. The authors empirically demonstrated that adver-
sarial examples appear in large regions in the pixel space,
which is in-line with the similar claim in [23]. However,
somewhat in contrast to the linearity hypothesis, they argue
that a weak, shallow and more linear classifier is also as
susceptible to adversarial examples as a strong deep classifier.

Tramer et al. [131] proposed a method to estimate the
dimensionality of the space of the adversarial examples. It is
claimed that the adversarial examples span a contiguous high
dimension space (e.g. with dimensionality ≈ 25). Due to
high dimensionality, the subspaces of different classifiers
can intersect, which gives rise to the transferability of the
adversarial examples. Interestingly, their analysis suggests
that it is possible to defend classifiers against transfer-based
attacks even when they are vulnerable to direct attacks.

C. BOUNDARY TILTING PERSPECTIVE
Tanay and Griffin [74] provided a ‘boundary tilting’ per-
spective on the existence of adversarial examples for deep
neural networks. They argued that generally a single class
data that is sampled to learn and evaluate a classifier lives
in a sub-manifold of the class, and adversarial examples for
that class exist when the classification boundary lies close to
this sub-manifold. They formalized the notion of ‘adversarial
strength’ of a classifier and reduced it to the ‘deviation angle’
between the boundaries of the considered classifier and the
nearest centroid classifier. It is then shown that adversarial
strength of a classifier can be varied by decision ‘boundary
tilting’. The authors also argued that adversarial stability of
the classifier is associated with its regularization. In the opin-
ion of Tanay and Griffin, the linearity hypothesis [23] about
the existence of adversarial examples is ‘‘unconvincing’’.

D. PREDICTION UNCERTAINTY AND EVOLUTIONARY
STALLING OF TRAINING CAUSE ADVERSARIES
Cubuk et al. [91] argue that the ‘‘origin of adversarial exam-
ples is primarily due to an inherent uncertainty that neural
networks have about their predictions’’. They empirically
compute a functional form of the uncertainty, which is shown
to be independent of network architecture, training protocol
and dataset. It is argued that this form only depends on
the statistics of the network logit differences. This eventu-
ally results in fooling ratios caused by adversarial attacks

to exhibit a universal scaling with respect to the size of
perturbation. They studied FGSM [23], ILCM and BIM [35]
based attacks to corroborate their claims. It is also claimed
that accuracy of a network on clean images correlates with its
adversarial robustness (see Section V-E for more arguments
in this direction).

Rozsa et al. [102] hypothesized that the existence of adver-
sarial perturbations is a result of evolutionary stalling of
decision boundaries on training images. In their opinion,
individual training samples stop contributing to the training
loss of the model (i.e. neural network) once they are clas-
sified correctly, which can eventually leave them close to
the decision boundary. Hence, it becomes possible to throw
those (and similar) samples away to a wrong class region by
adding minor perturbations. They proposed a Batch Adjusted
Network Gradients (BANG) algorithm to train a network to
mitigate the evolutionary stalling during training.

E. ACCURACY-ADVERSARIAL ROBUSTNESS CORRELATION
In the quest of explaining the existence of adversarial pertur-
bations, Rozsa et al. [97] empirically analyzed the correla-
tion between the accuracy of eight deep network classifiers
and their robustness to three adversarial attacks introduced
in [23] and [94]. The studied classifiers include AlexNet [9],
VGG-16 and VGG-19 networks [161], Berkeley-trained
version of GoogLeNet and Princeton-GoogLeNet [18],
ResNet-52; ResNet-101; and ResNet-152 [15]. The adver-
sarial examples are generated with the help of large-scale
ImageNet dataset [11] using the techniques proposed in [23]
and [94]. Their experiments lead to the observation that the
networks with higher classification accuracy generally also
exhibit more robustness against the adversarial examples.
They also concluded that adversarial examples transfer better
between similar network topologies.

F. MORE ON LINEARITY AS THE SOURCE
Kortov and Hopfiled [126] examined the existence of adver-
sarial perturbations in the context of Dense AssociativeMem-
ory (DAM)models [162]. As compared to the typical modern
deep neural networks, DAM models employ higher order
(more than quadratic) interactions between the neurons. The
authors have demonstrated that adversarial examples gen-
erated using DAM models with smaller interaction power,
which is similar to using a deep neural network with ReLU
activation [163] for inducing linearity, are unable to fool mod-
els having higher order interactions. The authors provided
empirical evidence on the existence of adversarial examples
that is independent of the FGSM [23] attack, yet supports the
linearity hypothesis of Goodfellow et al. [23].

G. EXISTENCE OF UNIVERSAL PERTURBATIONS
Moosavi-Dezfooli et al. [16] initially argued that univer-
sal adversarial perturbations exploit geometric correlations
between the decision boundaries induced by the classifiers.
Their existence partly owes to a subspace containing nor-
mals to the decision boundaries, such that the normals also
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FIGURE 9. Broad categorization of approaches aimed at defending deep
neural networks against adversarial attacks.

surround the natural images. In [70], they built further on
their theory and showed the existence of common directions
(shared across datapoints) along which the decision boundary
of a classifier can be highly positively curved. They argue that
such directions play a key role in the existence of universal
perturbations. Based on their findings, the authors also pro-
pose a new geometricmethod to efficiently compute universal
adversarial perturbations.

It is worth noting that previously Fawzi et al. [69] also
associated the theoretical bounds on the robustness of clas-
sifiers to the curvature of decision boundaries. Similarly,
Tramer et al. [77] also held the curvature of decision bound-
aries in the vicinity of data points responsible for the vulner-
ability of neural networks to black-box attacks.

VI. DEFENSES AGAINST ADVERSARIAL ATTACKS
Currently, the defenses against the adversarial attacks are
being developed along three main directions:

1) Using modified training during learning or modified
input during testing.

2) Modifying networks, e.g. by adding more layers/sub-
networks, changing loss/activation functions etc.

3) Using external models as network add-on when classi-
fying unseen examples.

The approaches along the first direction do not directly
deal with the learning models. On the other hand, the other
two categories are more concerned with the neural networks
themselves. The techniques under these categories can be
further divided into two types; namely (a) complete defense
and (b) detection only. The ‘complete defense’ approaches
aim at enabling the targeted network to achieve its original
goal on the adversarial examples, e.g. a classifier predicting
labels of adversarial examples with acceptable accuracy. On
the other hand, ‘detection only’ approaches are meant to raise
the red flag on potentially adversarial examples to reject them
in any further processing. The taxonomy of the described
categories is also shown in Fig. 9. The remaining section is
organized according to this taxonomy. In the used taxonomy,
the difference between ‘modifying’ a network and employing
an ‘add-on’ is that the former makes changes to the original
deep neural network architecture/parameters during training.
On the other hand, the latter keeps the original model intact
and appends external model(s) to it during testing.

A. MODIFIED TRAINING/INPUT
1) BRUTE-FORCE ADVERSARIAL TRAINING
Since the discovery of adversarial examples for the deep
neural networks [22], there has been a general consensus
in the related literature that robustness of neural networks
against these examples improves with adversarial training.
Therefore, most of the contributions introducing new adver-
sarial attacks, e.g. [22], [23], [72] (see Section III) simultane-
ously propose adversarial training as the first line of defense
against those attacks. Although adversarial training improves
robustness of a network, it is a non-adaptive strategy that
requires training to be performed using strong attacks and the
architecture of the network is sufficiently expressive. Since
adversarial training necessitates increased training/data size,
we refer to it as a ‘brute-force’ strategy.

It is also commonly observed in the literature that brute-
force adversarial training results in regularizing the network
(e.g. see [23], [90]) to reduce over-fitting, which in turn
improves robustness of the networks against the adversarial
attacks. Inspired by this observation, Miyato et al. [113]
proposed a ‘Virtual Adversarial Training’ approach to smooth
the output distributions of the neural networks. A related ‘sta-
bility training’ method is also proposed by Zheng et al. [116]
to improve the robustness of neural networks against small
distortions to input images. It is noteworthy that whereas
adversarial training is known to improve robustness of neural
networks, Moosavi-Dezfooli et al. [16] showed that effec-
tive adversarial examples can again be computed for already
adversarially trained networks.

2) DATA COMPRESSION AS DEFENSE
Dziugaite et al. [122] noted that most of the popular image
classification datasets comprise JPG images. Motivated by
this observation, they studied the effects of JPG compres-
sion on the perturbations computed by FGSM [23]. It is
reported that JPG compression can actually reverse the drop
in classification accuracy to a large extent for the FGSM
perturbations. Nevertheless, it is concluded that compres-
sion alone is far from an effective defense. JPEG compres-
sion was also studied by Guo et al. [82] for mitigating
the effectiveness of adversarial images. Das et al. [37]
also took a similar approach and used JPEG compression
to remove the high frequency components from images
and proposed an ensemble-based technique to counter the
adversarial attacks generated by FGSM [23] and Deep-
Fool method [72]. Whereas encouraging results are reported
in [37], there is no analysis provided for the stronger attacks,
e.g. C&W attacks [36]. Moreover, Shin and Song [184]
have demonstrated the existence of adversarial examples
that can survive JPEG compression. Compression under Dis-
crete Cosine Transform (DCT) was also found inadequate
as a defense against the universal perturbations [16] in our
previous work [81]. One major limitation of compression
based defense is that larger compressions also result in loss
of classification accuracy on clean images, whereas smaller
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compressions often do not adequately remove the adversarial
perturbations.

In another related approach, Bhagoji et al. [167] proposed
to compress input data using Principal Component Analysis
for adversarial robustness. However, Xu et al. [139] noted
that this compression also results in corrupting the spatial
structure of the image, hence often adversely affecting the
classification performance.

3) FOVEATION BASED DEFENSE
Luo et al. [118] demonstrated that significant robustness
against the adversarial attacks using L-BFGS [22] and
FGSM [23] is possible with ‘foveation’ mechanism - apply-
ing neural network in different regions of images. It is hypoth-
esized that CNN-based classifiers trained on large datasets,
such as ImageNet [11] are generally robust to scale and
translation variations of objects in the images. However,
this invariance does not extend to adversarial patterns in
the images. This makes foveation as a viable option for
reducing the effectiveness of adversarial attacks proposed
in [22] and [23]. However, foveation is yet to demonstrate
its effectiveness against more powerful attacks.

4) DATA RANDOMIZATION AND OTHER METHODS
Xie et al. [115] showed that random resizing of the adversarial
examples reduces their effectiveness. Moreover, adding ran-
dom padding to such examples also results in reducing the
fooling rates of the networks. Wang et al. [137] transformed
the input data with a separate data-transformation module to
remove possible adversarial perturbations in images. In the
literature, we also find evidence that data augmentation dur-
ing training (e.g. Gaussian data augmentation [46]) also helps
in improving robustness of neural networks to adversarial
attacks, albeit only slightly.

B. MODIFYING THE NETWORK
For the approaches that modify the neural networks for
defense against the adversarial attacks, we first discuss
the ‘complete defense’ approaches. The ‘detection only’
approaches are separately reviewed in Section VI-B.8.

1) DEEP CONTRACTIVE NETWORKS
In the early attempts of making deep learning robust to adver-
sarial attacks, Gu and Rigazio [24] introduced Deep Con-
tractive Networks (DCN). It was shown that Denoising Auto
Encoders [152] can reduce adversarial noise, however stack-
ing them with the original networks can make the resulting
network even more vulnerable to perturbations. Based on this
observation, the training procedure of DCNs used a smooth-
ness penalty similar to Contractive Auto Encoders [171].
Whereas reasonable robustness of DCNs was demonstrated
against the L-BGFS [22] based attacks, many stronger attacks
have been introduced since DCNs were initially proposed.
A related concept of using auto encoders for adversarial
robustness of the neural networks can be also found in [140].

2) GRADIENT REGULARIZATION/MASKING
Ross and Doshi-Velez [52] studied input gradient regular-
ization [165] as a method for adversarial robustness. Their
method trains differentiable models (e.g. deep neural net-
works) while penalizing the degree of variation resulting in
the output with respect to change in the input. Implying,
a small adversarial perturbation becomes unlikely to change
the output of the trained model drastically. It is shown that
this method, when combined with brute-force adversarial
training, can result in very good robustness against attacks
like FGSM [23] and JSMA [60]. However, each of these
methods almost double the training complexity of a network,
which is already prohibitive in many cases.

Previously, Lyu et al. [28] also used the notion of penal-
izing the gradient of loss function of network models with
respect to the inputs to incorporate robustness in the net-
works against L-BFGS [22] and FGSM [23] based attacks.
Similarly, Shaham et al. [27] attempted to improve the local
stability of neural networks byminimizing the loss of a model
over adversarial examples at each parameter update. They
minimized the loss of their model over worst-case adversarial
examples instead of the original data. In a related work,
Nguyen and Sinha [44] introduced a masking based defense
against C&W attack [36] by adding noise to the logit outputs
of networks.

3) DEFENSIVE DISTILLATION
Papernot et al. [38] exploited the notion of ‘distillation’ [164]
to make deep neural networks robust against adversarial
attacks. Distillation was introduced by Hinton et al. [164]
as a training procedure to transfer knowledge of a more
complex network to a smaller network. The variant of the
procedure introduced by Papernot et al. [38] essentially uses
the knowledge of the network to improve its own robustness.
The knowledge is extracted in the form of class probability
vectors of the training data and it is fed back to train the
original model. It is shown that doing so improves resilience
of a network to small perturbation in the images. Further
empirical evidence in this regard is also provided in [108].
Moreover, in a follow-up work, Papernot and McDaniel [84]
also extended the defensive distillation method by addressing
the numerical instabilities that were encountered in [38].
It is worth noting that the ‘Carlini and Wagner’ (C&W)
attacks [36] introduced in Section III-A are claimed to be suc-
cessful against the defensive distillation technique. We also
note that defensive distillation can also be seen as an example
of ‘gradient masking’ technique. However, we describe it
separately keeping in view its popularity in the literature.

4) BIOLOGICALLY INSPIRED PROTECTION
Nayebi and Ganguli [123] demonstrated natural robust-
ness of neural networks against adversarial attacks with
highly non-linear activations (similar to nonlinear dendritic
computations). It is noteworthy that the Dense Associative
Memory models of Krotov and Hopfield [126] also work
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on a similar principle for robustness against the adver-
sarial examples. Considering the linearity hypothesis of
Goodfellow et al. [23], [123], and [126] seem to further the
notion of susceptibility of modern neural networks to adver-
sarial examples being the effect of linearity of activations. We
note that Brendel and Bethge [185] claim that the attacks fail
on the biologically inspired protection [123] due to numeri-
cal limitations of computations. Stabilizing the computations
again allow successful attacks on the protected networks.

5) PARSEVAL NETWORKS
Cisse et al. [130] proposed ‘Parseval’ networks as a defense
against the adversarial attacks. These networks employ a
layer-wise regularization by controlling the global Lipschitz
constant of the network. Considering that a network can be
seen as a composition of functions (at each layer), robus-
tification against small input perturbations is possible by
maintaining a small Lipschitz constant for these functions.
Cisse et al. proposed to do so by controlling the spectral norm
of the weight matrices of the networks by parameterizing
them with ‘parseval tight frames’ [170], hence the name
‘Parseval’ networks.

6) DeepCloak
Gao et al. [138] proposed to insert a masking layer immedi-
ately before the layer handling the classification. The added
layer is explicitly trained by forward-passing clean and adver-
sarial pair of images, and it encodes the differences between
the output features of the previous layers for those image
pairs. It is argued that the most dominant weights in the
added layer correspond to the most sensitive features of the
network (in terms of adversarial manipulation). Therefore,
while classifying, those features are masked by forcing the
dominant weights of the added layer to zero.

7) MISCELLANEOUS APPROACHES
Among other notable efforts in making neural networks
robust to adversarial attacks, Zantedeschi et al. [46] pro-
posed to use bounded ReLU [172] to reduce the effective-
ness of adversarial patterns in the images. Jin et al. [119]
introduced a feedforward CNN that used additive noise to
mitigate the effects of adversarial examples. Sun et al. [56]
prposed ‘HyperNetworks’ that use statistical filtering as a
method to make the network robust. Madry et al. [55]
studied adversarial defense from the perspective of robust
optimization. They showed that adversarial training with
a PGD adversary can successfully defend against a range
of other adversaries. Later, Carlini et al. [59] also verified
this observation. Na et al. [85] employed a network that
is regularized with a unified embedding for classification
and low-level similarity learning. The network is penalized
using the distance between clean and the corresponding
adversarial embeddings. Strauss et al. [89] studied ensem-
ble of methods to defend a network against the perturba-
tions. Kadran and Stanley [135] modified the output layer of
a neural network to induce robustness against the adversarial

attacks. Wang et al. [121], [128] developed adversary resis-
tant neural networks by leveraging non-invertible data trans-
formation in the network. Lee et al. [106] developedmanifold
regularized networks that use a training objective to mini-
mizes the difference between multi-layer embedding results
of clean and adversarial images. Kotler and Wong [96] pro-
posed to learn ReLU-based classifier that show robustness
against small adversarial perturbations. They train a neural
network that provably achieves high accuracy (>90%) against
any adversary in a canonical setting (ε = 0.1 for `∞-norm
perturbation on MNIST). However, given that their approach
is computationally infeasible to apply on larger networks,
the only defenses that have been extensively evaluated are
those of Madry et al. [55], giving 89% accuracy against large
ε (0.3/1) on MNIST and 45% for moderate ε (8/255) on
CIFAR for the `∞-norm perturbations.

8) DETECTION ONLY APPROACHES
a: SafetyNet
Lu et al. [66] hypothesized that adversarial examples produce
different patterns of ReLU activations in (the late stages of)
networks than what is produced by clean images. Based
on this hypothesis, they proposed to append a Radial Basis
Function SVM classifier to the targeted models such that the
SVM uses discrete codes computed by the late stage ReLUs
of the network. To detect perturbation in a test image, its
code is compared against those of training samples using the
SVM. Effective detection of adversarial examples generated
by [23], [35], and [72] is demonstrated by their framework,
named SafetyNet.

b: DETECTOR SUBNETWORK
Metzen et al. [78] proposed to augment a targeted network
with a subnetwork that is trained for a binary classification
task of detecting adversarial perturbations in inputs. It is
shown that appending such a network to the internal layers of
a model and using adversarial training can help in detecting
perturbations generated using FGSM [23], BIM [35] and
DeepFool [72] methods. However, Lu et al. [66] later showed
that this approach is again vulnerable to counter-counter mea-
sures.

c: EXPLOITING CONVOLUTION FILTER STATISTICS
Li and Li [105] used statistics of the convolution filters in
CNN-based neural networks to classify the input images
as clean or adversarial. A cascaded classifier is designed
that uses these statistics, and it is shown to detect more
than 85% adversarial images generated by the methods
in [22] and [114].

d: ADDITIONAL CLASS AUGMENTATION
Grosse et al. [57] proposed to augment the potentially tar-
geted neural network model with an additional class in which
the model is trained to classify all the adversarial examples.
Hosseini et al. [32] also employed a similar strategy to detect
black-box attacks.
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FIGURE 10. Illustration of defense against universal perturbations [81]:
The approach rectifies an image to restore the network prediction. The
pattern removed by rectification is separately analyzed to detect
perturbation.

C. NETWORK ADD-ONS
1) DEFENSE AGAINST UNIVERSAL PERTURBATIONS
Akhtar et al. [81] proposed a defense framework against
the adversarial attacks generated using universal perturba-
tions [16]. The framework appends extra ‘pre-input’ layers
to the targeted network and trains them to rectify a perturbed
image so that the classifier’s prediction becomes the same as
its prediction on the clean version of the same image. The
pre-input layers are termed Perturbation Rectifying Network
(PRN), and they are trained without updating the parameters
of the targeted network. A separate detector is trained by
extracting features from the input-output differences of PRN
for the training images. A test image is first passed through
the PRN and then its features are used to detect perturbations.
If adversarial perturbations are detected, the output of PRN
is used to classify the test image. Fig. 10, illustrates the
rectification performed by PRN. The removed patterns are
separately analyzed for detection.

2) GAN-BASED DEFENSE
Lee et al. [101] used the popular framework of Generative
Adversarial Networks [151] to train a network that is robust
to FGSM [23] like attacks. The authors proposed to directly
train the network along a generator network that attempts to
generate perturbation for that network. During its training,
the classifier keeps trying to correctly classify both the clean
and perturbed images. We categorize this technique as an
‘add-on’ approach because the authors propose to always

train any network in this fashion. In another GAN-based
defense, Shen et al. [58] use the generator part of the network
to rectify a perturbed image.

3) DETECTION ONLY APPROACHES
a: FEATURE SQUEEZING
Xu et al. [43] proposed to use feature squeezing to detect
adversarial perturbation to an image. They added two external
models to the classifier network, such that these models
reduce the color bit depth of each pixel in the image, and
perform spatial smoothing over the image. The predictions of
the targeted network over the original image and the squeezed
images are compared. If a large difference is found between
the predictions, the image is considered to be an adversarial
example. Whereas [43] demonstrated the effectiveness of this
approach against more classical attacks [23], a follow-up
work [139] also claims that themethodworks reasonablywell
against the more powerful C&W attacks [36]. He et al. [76]
also combined feature squeezing with the ensemble method
proposed in [173] to show that strength of defenses does not
always increase by combining them.

b: MagNet
Meng and Chen [45] proposed a framework that uses
one or more external detectors to classify an input image as
adversarial or clean. During training, the framework aims at
learning the manifold of clean images. In the testing phase,
the images that are found far from the manifold are treated
as adversarial and are rejected. The images that are close
to the manifold (but not exactly on it) are always reformed
to lie on the manifold and the classifier is fed with the
reformed images. The notion of attracting nearby images
to the manifold of clean images and dropping the far-off
images also inspires the name of the framework, i.e. MagNet.
It is noteworthy that Carlini and Wagner [186] very recently
demonstrated that this defense technique can also be defeated
with slightly larger perturbations.

c: MISCELLANEOUS METHODS
Liang et al. [50] treated perturbations to images as noise
and used scalar quantization and spatial smoothing filter to
separately detect such perturbations. In a related approach,
Feinman et al. [86] proposed to detect adversarial perturba-
tions by harnessing uncertainty estimates (of dropout neural
networks) and performing density estimation in the feature
space of neural networks. Eventually, separate binary classi-
fiers are trained as adversarial example detectors using the
proposed features. Gebhart and Schrater [92] viewed neu-
ral network computation as information flow in graphs and
proposed a method to detect adversarial perturbations by
applying persistent homology to the induced graphs.

VII. OUTLOOK OF THE RESEARCH DIRECTION
In the previous sections, we presented a comprehensive
review of the recent literature in adversarial attacks on deep
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learning. Whereas several interesting facts were reported in
those sections along the technical details, below we make
more general observations regarding this emerging research
direction. The discussion presents a broader outlook to the
readers without in-depth technical knowledge of this area.
Our arguments are based on the literature reviewed above.

d: THE THREAT IS REAL
Whereas few works suggest that adversarial attacks on deep
learning may not be a serious concern, a large body of the
related literature indicates otherwise. The literature reviewed
in Sections III and IV clearly demonstrate that adversar-
ial attacks can severely degrade the performance of deep
learning techniques on multiple Computer Vision tasks, and
beyond. In particular, the literature reviewed in Section IV
ascertains that deep learning is vulnerable to adversarial
attacks in the real physical world. Therefore, we can conclu-
sively argue that adversarial attacks pose a real threat to deep
learning in practice.

e: ADVERSARIAL VULNERABILITY IS A GENERAL
PHENOMENON
The reviewed literature shows successful fooling of different
types of deep neural networks, e.g. MLPs, CNNs, RNNs
on a variety of tasks in Computer Vision, e.g. recognition,
segmentation, detection. Although most of the existing works
focus on fooling deep learning on the task of classifica-
tion/recognition, based on the surveyed literature we can
easily observe that deep learning approaches are vulnerable
to adversarial attacks in general.

f: ADVERSARIAL EXAMPLES OFTEN GENERALIZE WELL
One of the most common properties of adversarial examples
reported in the literature is that they transfer well between
different neural networks. This is especially true for the net-
works that have relatively similar architecture. The general-
ization of adversarial examples is often exploited in black-
box attacks.

g: REASONS OF ADVERSARIAL VULNERABILITY NEED
MORE INVESTIGATION
There are varied view-points in the literature on the reasons
behind the vulnerability of deep neural networks to subtle
adversarial perturbations. Often, these view-points are not
well-aligned with each other. There is an obvious need for
systematic investigation in this direction.

h: LINEARITY DOES PROMOTE VULNERABILITY
Goodfellow et al. [23] first suggested that the design of mod-
ern deep neural networks that forces them to behave linearly
in high dimensional spaces also makes them vulnerable to
adversarial attacks. Although popular, this notion has also
faced some opposition in the literature. Our survey pointed
out multiple independent contributions that hold linearity of
the neural networks accountable for their vulnerability to
adversarial attacks. Based on this fact, we can argue that

linearity does promote vulnerability of deep neural networks
to the adversarial attacks. However, it does not seem to be
the only reason behind successful fooling of deep neural
networks with cheap analytical perturbations.

i: COUNTER-COUNTER MEASURES ARE POSSIBLE
Whereas multiple defense techniques exist to counter adver-
sarial attacks, it is often shown in the literature that a
defended model can again be successfully attacked by devis-
ing counter-counter measures, e.g. see [49]. This observation
necessitates that new defenses also provide an estimate of
their robustness against obvious counter-counter measures.

j: HIGHLY ACTIVE RESEARCH DIRECTION
The profound implications of vulnerability of deep neural
networks to adversarial perturbations have made research
in adversarial attacks and their defenses highly active in
recent time. The majority of the literature reviewed in this
survey surfaced in the last two years, and there is currently
a continuous influx of contributions in this direction. On one
hand, techniques are being proposed to defend neural net-
works against the known attacks, on the other; more and
mote powerful attacks are being devised. Recently, a Kaggle
competition was also organized for the defenses against the
adversarial attacks (https://www.kaggle.com/c/nips-2017-
defense-against-adversarial-attack/). It can be hoped that this
high research activity will eventually result in making deep
learning approaches robust enough to be used in safety and
security critical applications in the real world.

VIII. CONCLUSION
This article presented the first comprehensive survey in the
direction of adversarial attacks on deep learning in Computer
Vision. Despite the high accuracies of deep neural networks
on a wide variety of Computer Vision tasks, they have been
found vulnerable to subtle input perturbations that lead them
to completely change their outputs. With deep learning at
the heart of the current advances in machine learning and
artificial intelligence, this finding has resulted in numerous
recent contributions that devise adversarial attacks and their
defenses for deep learning. This article reviews these contri-
butions, mainly focusing on the most influential and inter-
esting works in the literature. From the reviewed literature,
it is apparent that adversarial attacks are a real threat to
deep learning in practice, especially in safety and security
critical applications. The existing literature demonstrates that
currently deep learning can not only be effectively attacked
in cyberspace but also in the physical world. However, owing
to the very high activity in this research direction it can be
hoped that deep learning will be able to show considerable
robustness against the adversarial attacks in the future.
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