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Abstract

With the onset of COVID-19 and the resulting shelter in place guidelines combined with

remote working practices, human mobility in 2020 has been dramatically impacted. Existing

studies typically examine whether mobility in specific localities increases or decreases at

specific points in time and relate these changes to certain pandemic and policy events. How-

ever, a more comprehensive analysis of mobility change over time is needed. In this paper,

we study mobility change in the US through a five-step process using mobility footprint data.

(Step 1) Propose the Delta Time Spent in Public Places (ΔTSPP) as a measure to quantify

daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal

Component Analysis (PCA) to reduce the ΔTSPP time series of each county to lower-

dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis

to find counties that exhibit similar latent components. (Step 4) Investigate local and global

spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investi-

gate how various population characteristics and behavior correlate with mobility patterns.

Results show that by describing each county as a linear combination of the three latent com-

ponents, we can explain 59% of the variation in mobility trends across all US counties. Spe-

cifically, change in mobility in 2020 for US counties can be explained as a combination of

three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3)

short-term reduction in mobility. Furthermore, we find that US counties that are geographi-

cally close are more likely to exhibit a similar change in mobility. Finally, we observe signifi-

cant correlations between the three latent components of mobility change and various

population characteristics, including political leaning, population, COVID-19 cases and

deaths, and unemployment. We find that our analysis provides a comprehensive under-

standing of mobility change in response to the COVID-19 pandemic.

1 Introduction

Human mobility plays a crucial role in spreading an infectious virus such as SARS-CoV-2 and

has been instrumental in the onset of the COVID-19 pandemic. In response to this global
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crisis, non-pharmaceutical interventions (NPIs), including stay-at-home orders and social dis-

tancing guidelines, have been implemented [1], reducing physical contacts and resulting in sig-

nificant changes to normal mobility patterns [2]. These changes can be observed using

individual-level mobility data such as mobile phone data embedded with Bluetooth and global

positioning system (GPS), collected actively through Call Detail Records (CDRs) and passively

through the use of smartphone applications (apps).

Individual-level mobility data are typically anonymized and aggregated to various spatial

resolutions to produce a range of different mobility indicators (see Table 1). As part of their

COVID-19 Data Consortium efforts, SafeGraph Inc. [3] has made available a comprehensive

set of mobility indicators ranging from mean distance traveled to median dwell time at and

away from home for each census block group in the US. Descartes Labs Inc. [4] makes avail-

able the median of the maximum distance traveled by users at the national, state, and county

levels. Through the Data for Good [5, 6] effort, Facebook makes available the fraction of users

who stay put in a 60x60 meter tile.

By using indicators such as these, we can derive a mobility change measure by comparing

mobility as measured by an indicator for a specific point in time and place with a baseline rep-

resenting normal mobility as measured by the same indicator (see Table 1).

To preserve the privacy of users, many companies like Google and Apple have not made

available mobility indicators, but instead make available their mobility change measures, which

are based on some measured mobility indicator. Google [9] makes available the percent change

in minutes spent at various POI groups like parks, residential, workplace, retail, and public

transportation each day compared to a baseline. Similar mobility change measures based on

POI visits are produced by Foursquare [11], Safegraph [7], and Unacast [14]. Apple [10]

makes available the percent change in volume of direction requests. Unicast also makes avail-

able the absolute change in distance traveled compared to a baseline and the absolute change

in unique human encounters per sq km. Safegraph [8] makes available their own mobility
change measure, a shelter in place index which measures the change in percent in the popula-

tion that stays at home each day compared to a baseline. Descartes Labs Inc. [4] makes avail-

able the percent change in max distance traveled relative to a baseline. In all of the above

examples, the choice of baseline varies. In most cases, these baselines are static and usually

look at the average mobility measured by the indicator of choice over a short period represent-

ing normal mobility (usually January or February 2020).

Quantifying the spatial and temporal change in mobility has been critical for evaluating the

effectiveness of NPIs [15–17], explaining behavior related to mobility patterns [18], supporting

contact tracing efforts [19], and developing realistic models that predict trajectories of the dis-

ease [20]. However, due to the challenges associated with analyzing big data with both spatial

and temporal dimensions, mobility change measures are typically either 1) mapped to show the

increase or decrease in mobility at specific points in time [13] or 2) plotted to show the change

in mobility as a time series for a specific study area [21]. In either case, studies tend to associate

these changes at specific points in time with certain NPIs and furthermore attempt to deter-

mine the underlying explanations for the variation in the social distancing behaviors [17].

However, A more comprehensive understanding of mobility changes is needed.

Therefore, the objectives of this study are to (1) develop a novel mobility change measure
and (2) identify and describe common temporal and spatial trends that are observed across all

US counties over the period of a year during the COVID-19 pandemic. We aim to explore

three related hypotheses, as follows:

• Our first hypothesis is that mobility behavior during the pandemic varies spatially and tem-

porally, but we can quantify general mobility trends across counties. To evaluate this
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hypothesis, we use principal component analysis (PCA) approach based on truncated Singu-

lar Value Decomposition (SVD) to decompose the mobility time series of all counties into

latent components of mobility behavior.

• Our second hypothesis is that geographically close counties have similar mobility change

trends. By representing each county as a linear combination of latent features of human

mobility, we can map these features into geographic space and measure their spatial

autocorrelation.

• Our third hypothesis is that the strength of mobility components correlate with other popu-

lation characteristics such as population density, income, and political leaning. To evaluate

this hypothesis, we test for a significant correlation between mobility components and these

explanatory variables for the same county.

By exploring these hypotheses, we aim to uncover hidden spatial and temporal patterns and

provide a concise summary of human mobility behavior.

2 Methods

In this paper, we analyze mobility change in the US using high-resolution foot traffic data

(Fig 1). We first propose the Delta Time Spent in Public Places (ΔTSPP), which measures

changes in mobility for each US county from 2019 to 2020 (Section 2.2). In this study, any geo-

graphical region that has a FIPs code including counties, cities, and boroughs is designated as

a county. Because of the high dimensionality of the data, we next use Principal Component

Analysis (PCA) to reduce the data into three latent components, where each component is

explained as a time series representing the change in mobility in US counties (Section 2.3).

Table 1. Publicly available mobility indicators and mobility change measures.

Name Mobility Indicators Geography US Spatial

Granularity

Mobility Change Measure Baseline

SafeGraph [7,

8]

candidate device count, origin CBG and

POI destination, completely home

device count, home dwell time, non-

home dwell time, distance traveled from

home

US census block

group

shelter in place index, relative foot traffic

index

average time spent at home/

foot traffic from Feb. 20–27,

2020

Google [9] N/A global county relative time spent at various POI groups

compared to baseline

median value for the

corresponding day of the

week, during the 5 week

period Jan.3-Feb.6, 2020

Apple [10] N/A global county, city relative number of direction requests

compared to baseline

volume of requests on Jan. 13,

2020

Foursquare

[11, 12]

N/A US national and

select states

relative number of visits to different POIs

compared to baseline

average number of visits from

Feb. 13–19, 2020

Descartes

Labs Inc [4,

13]

number of samples, median of the max

distance

US national, state,

and county level

relative median max distance compared

to baseline

average median max distance

from Feb. 17-Mar. 7, 2020

Facebook [5,

6]

fraction of users that stay put in a region global national, state,

county, and city

level

relative number of trips to other 60m tiles

compared to baseline

average from Feb. 2-Mar. 29,

2020

Unacast [14] N/A US county level relative distance traveled compared to

baseline, relative number of visits to non

essential retail and essential services

compared to baseline, relative number of

unique human encounters relative to

baseline

average from Feb. 2-Mar. 29,

2020

https://doi.org/10.1371/journal.pone.0259031.t001
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Third, we use clustering analysis to find which counties have similar weighted combinations of

the three components (Section 2.4). Fourth, we investigate local and global spatial autocorrela-

tion for each component (Section 2.5). And finally, we conduct correlation analysis to investi-

gate how various population characteristics and behavior correlate with mobility patterns

(Section 2.6).

2.1 Mobility data source

The data used in this study was obtained “from SafeGraph, a data company that aggregates

anonymized location data from numerous applications in order to provide insights about

physical places, via the Placekey Community. To enhance privacy, SafeGraph excludes census

block group information if fewer than five devices visited an establishment in a month from a

given census block group” [3, 22].

As part of SafeGraph’s Data for Academics [23], SafeGraph offers a Social Distancing Met-

rics Dataset [8] (archived on April 16, 2020). This dataset is available at no cost for academic

researchers for non-commercial work. In general, SafeGraph obtains precise device location

information from third-party data partners such as mobile application developers. This infor-

mation is collected through APIs where app developers provide information about their users

[24]. The device’s home census block group (CBG) is determined based on the nighttime loca-

tion of devices over six weeks so that Social Distancing Metrics including the CBG’s device

count, the complete at home device count, the median distance traveled from home, the

median home dwell time, median non-home dwell-time and more can be calculated. It should

be noted that SafeGraph’s Social Distancing Metrics are available from January 1, 2019,

through to April 16, 2021, and are no longer being updated. For this study, we use data from

SafeGraph’s Social Distancing Metrics from January 1, 2019, to December, 31st 2020.

2.2 Human mobility measures

As an indicator to assess changes in human mobility in the US, we selected SafeGraph’s mea-

sure of median_non_home_dwell_time from the Social Distancing Metrics dataset,

which is defined as the median time (minutes each day) that all devices in a census block

group (CBG) spend visiting public points of interest (POIs) located outside the boundaries of

their home geohash (using a 153m × 153m hash buckets). This includes minutes spent at

Fig 1. Overview of methodology.

https://doi.org/10.1371/journal.pone.0259031.g001
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public POIs such as grocery stores, restaurants, bars, and movie theaters. We note that this

measure only includes public POIs that are captured among the 6.5 million POIs in the Safe-

Graph Core Places database [7]. We aggregate this measure to the county level by averaging

the median_non_home_dwell_time for each CBG in each county to give us an avera-
ge_median_non_home_dwell_time for each county.

Our goal is to compare the average_median_non_home_dwell_time for each

county for each day in 2019 and the corresponding day in 2020. Weekly patterns strongly

affect mobility in the United States, where in general, lower mobility is observed on the week-

ends, especially on Sundays. Since corresponding days in 2019 and 2020 may not be corre-

sponding days of the week, we use the seven-day rolling average of the

average_median_non_home_dwell_time for both 2019 and 2020. That is, we calcu-

late the mean average_median_non_home_dwell_time for that day and the three

days before and after that day. We formally define this as Time Spent at Public Places (TSPP)

calculated for both 2019 and 2020 as follows:

Definition 1 (Time Spent at Public Places (TSPP)) Let R be a region, and let DR ¼

½dR
1
; :::; dR

N � denote a time series of daily median_non_home_dwell_time for that region,
where N is the number of days of interest. We define our Time Spent at Public Places measure at
the i-th day as:

TSPPðDR
Þ½i� ¼

P3

j¼� 3
dR

iþj

7
;

where i is an index of DR and 4� i� N − 3. For example, for a 365 day time series,

TSPPðDRÞ½i� is defined from Day 4 to Day 362, since for the first and last three days, there are

not enough day before and after, respectively, to compute the centered weekly average. The

denominator denotes the size of a sliding window, i.e., 7 days, used for calculating the mean.

Next, we look at the difference between the Time Spent at Public Places (TSPP) measure

calculated for the i-thday in the time series for each county in 2019 and the i-th day in the time

series for the same county in 2020. We define this as Change in Time Spent at Public Places

measure or ΔTSPP as follows:

Definition 2 (Time Spent at Public Places (ΔTSPP)) Let R be a region and let DR
y the time

series of 365 daily median_non_home_dwell_time values in R for all days in year y. We
define the daily change in TSPP as:

DTSPPðR; y1; y2Þ ¼ TSPPðDR
y1
Þ � TSPPðDR

y2
Þ;

where y1 and y2 are a target year and a reference year to compare, respectively. For short,

ΔTSPP is referred to DTSPPðR; 2020; 2019Þ in this paper, where R is all counties of the US.

We consider an increase in ΔTSPP, where TSPP is higher in 2020 than in 2019, as a proxy

for increased mobility, thus increasing the risk of exposure. Although individual counties can

provide the spatial and temporal heterogeneity in the post-pandemic mobility behavior, there

are thousands of counties in the US, each with a unique mobility trend. Thus, we seek an

approach that can identify different mobility trends found commonly across all 3107 counties

while handling both the dimensionality and variance of the data.

2.3 Mobility feature extraction: Principal Component Analysis

Principal Component Analysis (PCA) [25] is a commonly used technique to reduce the

dimensionality, yet maintain the variation, present in large multivariate data and is a generali-

zation of eigendecomposition for non-square and non-maximum rank matrices. We define a
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data matrix R 2 IRm�n as a m × n matrix where m = 359 corresponds to days the number of

days of the year (except for the first three and last three days due to the seven-day sliding win-

dow) and where n = 3100 corresponds to the number of US counties (we remove seven outlier

counties—see Section 2 in S1 File). Using singular value decomposition (SVD), R is factorized

in the product of three matrices R = USVT where S is a diagonal matrix containing the square

roots of the eigenvalues of RRT, and the columns of U (V) are the eigenvectors of RRT (RT R).

To reduce the dimensionality of R we truncate the SVD to obtain only the first K dimen-

sions. Thus, SK is a K × K diagonal matrix containing the K largest eigenvalues, UK is a m × K
matrix describing each of the m days with K latent features, and VK is a K × n matrix describing

each county with K latent features.

The idea of using SVD in this context is to decompose the time series of each county into a

linear combination of K archetypal time series called principal components (PCs). SVD

assumes that the ΔTSPP is a linear combination of latent features. This assumption holds since

the average ΔTSPP that we observe is indeed derived from the mobility change of individual

people. By applying SVD to the set of ΔTSPP time-series of all counties of the US, we can find

components of individual human behavior as follows.

• Reduced mobility during the entirety of March-December 2020 corresponding to counties

with individuals who have the ability and obedience to stay at home for the remainder of

2020, such as people who worked remotely.

• Reduced mobility only during Summer 2020 corresponding to individuals who stop isola-

tion after the first wave of infections in the US, either due to having to go back to work or

due to growing weary of mobility restrictions.

• No reduced mobility, corresponding to individuals who cannot stay at home such as health

professionals or individuals who are not willing to follow stay-at-home directions.

In addition to finding these three latent PCs (see Section 3.3 in S1 File), SVD further allows

us to describe each county as a linear combination of these components, which can be inter-

preted as corresponding mobility behavior. In the case that some counties are not well

explained by any of the latent components, we calculate the coefficient of determination for

each county.

2.4 Clustering analysis

Due to a large number of counties, it is difficult to determine which counties exhibit similar

mobility trends. Therefore, we cluster counties into groups of counties that exhibit similar

latent features of change of exposure. We first plot each county into the PCA space where each

point represents a county, and each axis represents the weight of each PC in explaining the

county’s ΔTSPP, normalized from 0 to 1. For clustering, we compared the K-means algorithm

[26] against other clustering algorithms and determined K-means to be the most appropriate

(see Section 3.4 in S1 File). The K-means algorithm partitions n observations into k clusters by

randomly initializing k points (means or cluster centroids) and assigning each observation to

their closest point. The coordinate point is updated iteratively to reflect the mean center of

observations that belong to it. This approach requires the number of k points to begin with.

We choose k = 3 so that we can better visualize the counties that have similar weighted combi-

nations of PCs (see Section 3.4 in S1 File for more details).
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2.5 Spatial autocorrelation analysis

To test the impact of proximity in mobility change, we measure the spatial autocorrelation of

counties and their corresponding weights for each PC using both Global Moran’s I [27] and

Anselin’s Local Moran’s I [28]. The concept of spatial autocorrelation is based on Tobler’s First

Law of Geography which states that things that are closer to each other are more similar than

things that are far apart [29]. Moran’s I calculates the degree to which features in a dataset are

positively spatially autocorrelated (neighboring features are alike), negatively spatially autocor-

related (neighboring features are not alike), or not spatially autocorrelated (attributes of fea-

tures are independent of location).

First, we compute a matrix of spatial weights to define each counties’ neighbors mathemati-

cally. We used Queens-case, meaning counties are considered to be neighboring if their border

shares at least one common vertex. After building this matrix, we discovered that the only

neighboring county to Fairfax City is Fairfax County, Virginia, which was identified as an out-

lier in the PCA space and removed earlier in this analysis. To resolve this issue, Fairfax City

was also removed. Next, we calculate the fraction of the total variation that is attributed to

counties that are close together across the entire study area to give us a measure of global spa-

tial autocorrelation (Moran’s I) and then decompose the measure for each feature to give us

local spatial autocorrelation (Anselin’s Local Moran’s I).

2.6 Correlation analysis

We have covered both the spatial and temporal variation of mobility trends across all of the

counties in the US in response to the COVID-19 pandemic. Next, we aim to identify some

population variables that may explain the variation. Thus, we use the Pearson’s R coefficient to

calculate the correlation between the weight of each PC and a variety of explanatory variables,

including income, political leaning, employment, percent age over 65, and COVID-19 cases

and deaths for each county. Pearson’s R is a statistical measure of linear association that

returns a value between -1 and 1 that defines how strong the correlation is, where the further

away that value is from 0, the stronger the correlation. We test for significance using a p-value.

Since we hypothesize that there is a linear relationship between the strength of the PCs in

explaining county mobility and different county variables, we did not investigate non-linear

relationships.

3 Results

3.1 General mobility trends

We calculate the TSPP for each of the 3107 counties to produce a time series representing

mobility in each county in 2019 and 2020. This can be aggregated to the US. Fig 2 shows the

Time Spent in Public Places TSPPðDRÞ for the region R corresponding to all counties aggre-

gated to the United States level, excluding Alaska, Hawaii, and US territories, and for the

sequence of days DR
ranging from Jan to Dec. for 2019 and 2020. The boxplots for the 2019

and 2020 TSPP can be found in the Section 3.1 in S1 File.

We observe anomalously high mobility in January and February 2020. This is likely a com-

bined effect due to higher-than-average temperatures, 50% less snow depth, and panic buying

behaviors (see S1 File). Starting March 2020, we observe a rapid drop in mobility due to the

COVID-19 pandemic. Interestingly, we also observe that these drops swing back to normal by

June 2020 and even exceeds 2019 mobility overall.

Next, we look at the Change in Measure of Public Exposure. Fig 3 shows the ΔTSPP mea-

sure for the US and for three counties. We can visually observe radically different mobility
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behavior among these counties. Arlington County, VA, exhibits a large drop in mobility in

March 2020 than other counties. We also observe that this reduction in mobility persists

throughout the year 2020. In contrast, the mobility of Cambria County, PA, exhibits a less

extreme drop in mobility and quickly returns to and exceeds normal mobility after June 2020,

where ΔTSPP is greater than or equal to 0. Tulare County, California, exhibits a much less

extreme drop in mobility, but in general, maintains this reduction of mobility.

3.2 Principal components of ΔTSPP

3.2.1 Qualitative interpretation. We find that K = 3 principal components explain 59%

of the variation in all of the included time series where PC1 explains 35.6%, PC2 explains

Fig 2. TSPP calculated for the United States in 2019 and 2020.

https://doi.org/10.1371/journal.pone.0259031.g002

Fig 3. ΔTSPP calculated for the US, Arlington County (VA), Tulare County (CA), and Cambria County (PA).

https://doi.org/10.1371/journal.pone.0259031.g003
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15.3%, and PC3 explains 8.8% of the variance. Thus, using Matrix VK, each county in the U.S.

is described as a linear combination of three PCs, with a loss of 1–59% = 41% of explained vari-

ance (see Section 3.3 in S1 File). This result shows that by describing each county by only three

archetypal behaviors, we can explain more than half of the variance across the 359 dimensions

that each county is described by in the full space.

Towards explainable machine learning, Fig 4 shows the three latent principal components

describing each county in the U.S. mapped back into the full 359-day space.

• The mobility trend captured by PC1 (in red) begins with slightly higher mobility in January

and February 2020 compared with 2019. In March 2020, there is a sharp deviation from the

mobility observed in March 2019 as mobility declines in response to the pandemic. For the

remainder of 2020, mobility remains consistently lower than mobility in 2019. We explain

PC1 by individuals who reduced their mobility in March 2020 and then maintained this

stay-at-home and social distancing behavior for the rest of the year. Counties that are well

explained by PC1 may be composed of individuals who are able to work from home in April

and continued working from home throughout the year.

• The mobility trend captured by PC2 (in green) begins with a slightly lower mobility in Janu-

ary and February 2020 than in comparison with 2019. In the spring, mobility steadily

increases until April 2020, when mobility declines slightly in response to the COVID-19 pan-

demic. For the remainder of 2020, mobility remains higher than mobility in 2019. The only

time mobility is lower than in comparison to 2019 is before the pandemic. Counties that are

well explained by PC2 may be composed of individuals who can’t or won’t comply with stay-

at-home orders (such as health care workers, essential workers, and other individuals).

• Finally, the mobility trend captured by PC3 (in blue) begins with more mobility in January

and February 2020 than in 2019. In response to the pandemic, there is a sharp drop in mobil-

ity in March 2020 until it returned to normal mobility in June 2019. Mobility then increases

in late summer and remains higher for the remainder of the year than in 2019. We explain

PC3 by individuals who have reduced mobility directly after the pandemic (March-June

Fig 4. Three latent features describing mobility in the US mapped back into the temporal space.

https://doi.org/10.1371/journal.pone.0259031.g004
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2020) but then return to normal mobility. Counties that are well explained by PC3 may be

composed of individuals who were unable to work due to a shutdown in March 2020, but

returned to work in June 2020. Counties that are well explained by PC3 may also be com-

posed of individuals who were fearful during the onset of the pandemic but experienced pan-

demic fatigue and became less compliant with stay-at-home orders as the pandemic

continued.

Abstractly speaking, we can interpret these three latent components as “Long term mobility

reduction” (PC1), “No mobility reduction” (PC2), and “Short term mobility reduction” (PC3).

In the Singular Value Decomposition, Matrix V provides us with the K = 3 weights of these

latent features for each county. In the following, Section 3.2.1 provides a qualitative spatial

analysis of these three principal components to understand which parts of the United States

exhibit strong weights for each of these latent features. We provide quantitative analysis to

show that the weights of these latent features are strongly spatially auto-correlated with a num-

ber of significant spatial clusters.

3.2.2 Spatial analysis. We provide a spatial analysis of the principal components of

change of exposure across all counties in the United States. Section 3.4 shows the spatial distri-

bution of each principal components, Section 3.2.2 analyses clusters of counties having similar

principal components, and Section 3.5 explores which counties are well-modeled by these

components and which counties still exhibit large unexplained variance using three principal

components only.

Matrix V describes each county as a linear combination of the three components. For exam-

ple, Arlington County’s ΔTSPP (See Fig 3) is described as 98% PC1, 20% PC2, and 21% PC3,

thus having a dominant first component. In contrast, Tulare County’s ΔTSPP (See Fig 3) is

described as 51% PC1, 16% PC2, and 33% PC3, thus having a stronger weight on PC3 than

Fairfax.

Fig 5A to 5C maps the strength of each PC in explaining the mobility trend of all 3100

counties. Based on visual analysis of the results, we find that the counties on the east and west

coast have a higher weight in PC1, counties in the south-west and south-east have a higher

weight in PC2, and counties in the mid-west have a higher weight in PC3. Stacking these three

figures creates a Red-Green-Blue (RGB) composite map to show the linear combination of the

components for each county where red is PC1, green is PC2, and blue is PC3 (see Section 3.5

in S1 File).

Since the three principal components only explain 59% of the variation among the

358-dimensional representation of counties as a sequence of daily changes in mobility, an

important and open question is to ask which counties of the U.S. are explained well by these

components and which ones are not. That is, which counties may be better explained by the

remaining 355 components that we truncated to reduce the dimensionality. Fig 6 shows the

explained and unexplained variance using the coefficient of determination. The counties with

positive values (green) are well explained by the three PCs. The counties with negative values

(red) are not well explained by the three PCs and would be better explained by taking the sim-

ple average of the counties ΔTSPP.

3.3 Clustering of latent features of ΔTSPP

Fig 7 depicts the resulting feature vectors for all counties in the K = 3 dimensional latent fea-

ture space from two angles (Fig 7A and 7B) for easier interpretation. The colors in Fig 7 repre-

sent the result of the K-means clustering analysis. We map the results of K-means analysis to

see the spatial distributions of the counties related to each cluster (Fig 8).
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Fig 5. Spatial distribution of the three principal components of change of public exposure. (A) Principal

Component 1: Reduced ΔTSPP March-December (B) Principal Component 2: Increased ΔTSPP March-December (C)

Principal Component 3: Reduced ΔTSPP March-June. Maps produced in QGIS [30] using SafeGraph [3] derived data,

shapefiles from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.g005
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We can see that counties in the southwest and southwest, excluding Arizona, New Mexico,

Virginia, and West Virginia, belong primarily to Cluster 1 (in green) and thus have similar

weighted combinations of PCs. Counties along the west and northeastern coast, as well as the

Florida coast and southern Texas, belong primarily to Cluster 2 (in pink). Counties that belong

to the Rocky Mountain region of the US as well as Maine, Vermont, much of New York, West

Fig 6. Spatial distribution of the explained variance (R2) for all counties across the US using three principal components. Map produced in QGIS

[30] using SafeGraph [3] derived data, shapefile from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.g006

Fig 7. Counties plotted in PCA space. (A) Angle 1. (B) Angle 2.

https://doi.org/10.1371/journal.pone.0259031.g007
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Virginia, Minnesota, and Wisconsin belong primarily to Cluster 3 (in purple). Counties in

many states in the midwest and southeast are a mix of belonging to different clusters.

3.4 Spatial autocorrelation of mobility behavior between counties

The results of the Global Moran’s I analysis for each of the three latent features are presented

in Table 2. We found a strong positive spatial autocorrelation for all three features. The spatial

autocorrelation of PC1 and PC2 at 0.556 and 0.544, respectively, is higher than the spatial auto-

correlation of PC3 at 0.489. For all three components, the positive spatial autocorrelation is

highly significant at p-values� 10−28 having Z-scores of 46 and greater. As we suspected from

our qualitative analysis, this result confirms that the patterns of ΔTSPP that we observed in Fig

5 are indeed strongly positively spatially autocorrelated.

Next, we calculate Anselin’s Local Moran’s I [28] to help visualize clusters of counties with

similar neighbors and outlier counties with dissimilar neighbors (Fig 9). The results of Anse-

lin’s Local Morain’s I for PC1 are presented in Fig 9A. We can identify clusters of counties

with high weights corresponding to PC1 that have neighbors with high weights. We refer to

these patterns as High-High (HH) clusters that are positively spatially autocorrelated. In addi-

tion, we can identify the counties with low weights corresponding to PC1 that have neighbors

Fig 8. K-means analysis mapped geographically. Map produced in QGIS [30] using SafeGraph [3] derived data, shapefile from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.g008

Table 2. Global Moran’s I measure of spatial autocorrelation for each principal component.

Component Moran’s I Z-score

PC1 0.556 52.4

PC2 0.544 51.3

PC3 0.489 46.1

https://doi.org/10.1371/journal.pone.0259031.t002
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Fig 9. Anselin’s Local Moran’s I (LISA) results. (A) LISA for PC1. (B) LISA for PC2. (C) LISA for PC3. Maps

produced in QGIS [30] using SafeGraph [3] derived data, shapefiles from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.g009
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with low weights. We refer to these patterns as Low-Low(LL) clusters that are positively spa-

tially autocorrelated. Anselin’s Local Moran’s I also uncover outliers, where we find counties

with high or low weights corresponding to PC1 that have oppositely weighted neighbors. We

refer to these patterns as Low-High(LH) outliers and High-Low (HL) outliers that are nega-

tively spatially autocorrelated. Counties with a p-value of greater than.05 are considered insig-

nificant. We present the results of Anselin’s Local Moran’s I for PC2 and PC3 in Fig 9B and

9C.

3.5 Explaining variation in mobility patterns

We examine the correlation between the weight of each PC and other variables for each

county. The results are presented in Table 3. PC1 captures the mobility trends in US counties

that maintain decreased mobility from the onset of the pandemic and beyond. We find that

there is a strong positive correlation between counties with a higher income (median house-

hold income and per capita income) and a higher weight corresponding to PC1. This has been

supported in the literature in other studies that find that higher-income counties and states are

able to follow social distancing guidelines better and stay-at-home orders [32].

We find a strong positive correlation between counties that are democratic leaning and

have a higher weight corresponding to PC1. In contrast, we find a strong negative correlation

between counties that are republican leaning in the 2020 and 2016 election and have a higher

weight corresponding to PC1. This has been supported in the literature where it has been

found that counties and states that are democratic leaning better follow social distancing

guidelines and stay-at-home orders [33]. Interestingly, we find that the strength of the correla-

tions between PC1 weight and political leaning decrease as we use political data from 2012,

2008, 2004, and 2000.

Table 3. Correlation analysis results showing Pearson’s correlation and respective p-values between each principal component (PC1-PC3) and other population

characteristics.

Correlation Variable PC1 PC1 P-value PC2 PC2 P-value PC3 PC3 P-value

Median Household Income 0.63 0.00e+00 -0.11 1.84e-09 0.22 2.39e-36

Per Capita Income 0.55 1.02e-244 -0.15 2.02e-16 0.19 5.13e-26

2020 Rep Vote Percent -0.45 8.12e-152 0.38 2.90e-104 -0.02 3.34e-01

2020 Dem Vote Percent 0.44 3.61e-150 -0.37 4.56e-99 -3.23e-02 5.14e-01

2016 Rep Vote Percent -0.42 5.79e-133 0.39 7.45e-112 0.02 1.72e-01

2016 Dem Vote Percent 0.41 5.40e-125 -0.33 1.93e-81 -0.03 7.25e-02

ACS 2019 Pop Est 0.38 4.50e-106 -0.18 3.32e-25 -0.02 2.32e-01

Percent Pop Over 65 -0.34 1.23e-84 -0.025 0.16 -0.078 1.50e-05

2012 Dem Vote Percent 0.28 2.42e-56 -0.39 1.11e-115 0.02 3.38e-01

2012 Rep Vote Percent -0.28 4.62e-55 0.42 1.07e-130 -0.02 3.55e-01

2008 Dem Vote Percent 0.26 2.18e-47 -0.44 2.48e-143 0.05 5.09e-03

2008 Rep Vote Percent -0.24 1.03e-41 0.45 1.32e-157 -0.05 4.78e-03

2000 Rep Vote Percent -0.19 7.16e-27 0.30 1.99e-64 0.03 1.01e-01

2004 Dem Vote Percent 0.19 1.01e-25 -0.35 2.06e-89 -1.49e-02 4.07e-01

2004 Rep Vote Percent -0.18 3.74e-25 0.36 1.65e-97 0.02 3.41e-01

2000 Dem Vote Percent 0.17 1.95e-21 -0.23 4.50e-40 -0.03 9.62e-02

Unemployment Rate 0.11 1.42e-10 -0.31 1.28e-69 -0.02 2.65e-01

Deaths Per Thousand 0.09 1.36e-07 0.15 2.64e-16 -0.17 1.31e-21

Cases Per Thousand -0.05 1.18e-02 0.25 5.15e-44 -0.16 6.41e-20

https://doi.org/10.1371/journal.pone.0259031.t003
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We also find moderate positive correlations between counties with high population and a

higher weight corresponding to PC1. We find moderate negative correlations between coun-

ties with high percentage of population over 65 and a higher weight corresponding to PC1. We

do not find strong correlations between counties with a higher weight corresponding to PC1

and normalized numbers of cases and deaths corresponding to COVID-19. In any case, it is

difficult to properly quantify the relationship between total and normalized COVID-19 cases

and deaths and PC weight based on the uncertainty inherent to the data due to inconsistent

reporting.

PC2 captures the mobility trends in US counties that increase their mobility. We find that

the correlations between counties with a high weight of PC2 and the variables are opposite that

of PC1. Thus, there is a strong positive correlation between counties that are republican lean-

ing in the 2020 and 2016 election with a higher weight corresponding to PC2. PC3 captures

the average mobility trends in US counties. There does not appear to be nearly as strong corre-

lations between counties with a high weight corresponding to PC3 and the variables.

4 Discussion and conclusions

In this study, we calculate a novel indicator of mobility change which we call the Time Spent at
Public Places (TSPP) using Safegraph data [3]. We quantify the change of mobility by calculat-

ing the running difference of this measure between 2019 and 2020 for each county to estimate

a measure of mobility change (ΔTSPP) that describes each county as a time series of mobility

change of 365 days.

Confirming our first hypothesis, we find that mobility behavior during the pandemic varies

spatially and temporally, but that there are three main mobility trends uncovered by our PCA

analysis. PC1 captures the mobility trends of counties that drop their mobility at the onset of

the pandemic and maintain reduced mobility through to the end of the year, the behavior of

which we refer to as “Long term mobility reduction”. PC2 captures the mobility trends of

counties that increase their mobility in 2020 or, in other words “No mobility reduction”. PC3

captures the mobility trends of counties that drop their mobility at the onset of the pandemic

and then quickly return to normal mobility, which we call “Short term mobility reduction”.

PC3 can be considered the average mobility trend across all counties. Confirming our second

hypothesis, we find that mobility trends are positively spatially autocorrelated, meaning that

counties that are geographically close exhibit similar mobility trends. Finally, we partly con-

firmed our third hypothesis is that we find some correlations between the variation in mobility

trends and underlying population behavior and characteristics.

While we obtained interesting results, there are certain limitations of the data relevant to

this study including sparse documentation of data collection, data completeness, bias, geo-

graphic coverage, and open-access. First, although SafeGraph has gone to unprecedented

lengths to make the data public, perhaps unsurprisingly as a corporate data provider, their

methods and sources for collecting device data and POI data are sparse. Detailed methods,

sources of data, and truth datasets are not available and thus cannot be independently evalu-

ated [34].

Data completeness is also difficult to assess. Our mobility indicator is based on the med-
ian_non_home_dwell_time which measures the median time that devices in the same

CBG spend at public POIs that are included in SafeGraph’s Core Places database. SafeGraph

represents the location of over 6300 distinct brands as POIs and this number changes over

time as new brands are added. These are chains of commercial POIs that include all major

brands in the United States (McDonald’s, AMC, Macy’s, Chevrolet, Whole Foods Market). Of

the brands that SafeGraph includes, they capture close to 100% of the brands’ locations [35].
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About 80% of SafeGraph POIs have no brand associated as they are single commercial loca-

tions (local restaurants, museums). It is not possible to assess the actual completeness of Safe-

Graph’s POIs; specifically, the total number of all POIs in the US versus the total number of

POIs represented in the Safegraph Core Places Dataset.

SafeGraph’s Social Distancing Metrics dataset is based on device users that make up

approximately 10% of the United States population, which is significantly larger than typical

household mobility surveys. Although there are concerns that the sample is not a perfect repre-

sentative of the population, SafeGraph reports that their sample correlates very highly with

true census populations [36]. SafeGraph finds a Pearson’s R Correlation Coefficient of 0.966

and a Sum Absolute Bias of 24.77 between the real county population and the number of

devices in the county counted by SafeGraph. SafeGraph finds little to no race-level sampling

bias, educational attainment-level sampling bias, and household income-level bias with Pear-

son’s R Correlation Coefficients of 1, 0.999, and 0.997 and Sum Absolute Biases of 3.70, 3.43,

and 1.75, respectively. The code to run independent sampling bias analysis on SafeGraph data

is provided by SafeGraph [37].

We found that the geographic coverage of the data was complete at the county level with

100% coverage. There were no counties that were excluded from the dataset as a result of few

POIs or lower device counts (see the Section 3.6 in S1 File). As part of SafeGraph’s Data for

Academics, academic researchers have no-cost access to SafeGraph data for non-commercial

work. The reliance on commercial data means that there are limited safeguards to the data,

and changes to data and data access may occur beyond our control. For example, SafeGraph

recently stopped updating the Social Distancing Metrics dataset. However, SafeGraph pro-

vided ample notice, and the archived data is still available for academic researchers, ensuring

the reproducibility of this study. Furthermore, we have made available ΔTSPP on this project’s

GitHub Repository (see the Section 1 in S1 File).

Our results are only applicable to the United States. Application of the same methodology

to other countries is yet to be conducted. Finally, our PCA components capture�59% of the

movement patterns, and the rest 41% is unexplained with our approach. Additional work is

needed to cover a better percentage of variation without significantly increasing the PCA

space. Future work will also focus on exploring the correlation between the PCs and additional

variables, including commute, weather, and policy guidelines. This study provides a more

comprehensive and data-driven approach to examining how human mobility has changed in

response to the pandemic.
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