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Abstract

In a progressively interconnected world, the loss of system resilience has consequences for

human health, the economy, and the environment. Research has exploited the science of

networks to explain the resilience of complex systems against random attacks, malicious

attacks, and the localized attacks induced by natural disasters or mass attacks. Little is

known about the elucidation of system recovery by the network topology. This study adds to

the knowledge of network resilience by examining the nexus of recoverability and network

topology. We establish a new paradigm for identifying the recovery behavior of networks

and introduce the recoverability measure. Results indicate that the recovery response

behavior and the recoverability measure are the function of both size and topology of net-

works. In small sized networks, the return to recovery exhibits homogeneous recovery

behavior over topology, while the return shape is dispersed with an increase in the size of

network. A network becomes more recoverable as connectivity measures of the network

increase, and less recoverable as accessibility measures of network increase. Overall, the

results not only offer guidance on designing recoverable networks, but also depict the recov-

ery nature of networks deliberately following a disruption. Our recovery behavior and recov-

erability measure has been tested on 16 distinct network topologies. The relevant recovery

behavior can be generalized based on our definition for any network topology recovering

deliberately.

Introduction

Networks have become a ubiquitous tool in understanding both natural and engineered sys-

tems, including, climate systems [1], physiological systems [2], civil infrastructure systems [3,

4], social interactions [5–8], and biochemical reactions [9]. As a representation of the interac-

tion patterns in complex systems, networks equip scientists to manifest how systems exhibit

similarities in the organization of their structure [10–13], in their complex features [14], and

in their resilience [14–16]. In a progressively interconnected world, the loss of system resil-

ience has consequences for human health [17], the economy [18], and the environment [19],

yielding in the assessment of the system’s dynamics and topology from meso- and macro-scale

perspectives. The failure of an individual component may or may not influence the perfor-

mance of a system, depending on the topology and the intensity of the interactions among the
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network components. A scale-free topology, for example, is robust against random attacks, but

is vulnerable to localized attacks targeted at hubs [20].

A large proportion of research has exploited the science of networks to explain the resil-

ience of complex systems against random attacks [12, 21, 22], malicious attacks [23–25], and

localized attacks induced by natural disasters or mass attacks [26–28]. While there is no singu-

lar definition of network resilience, it is frequently interpreted as the ability of a network to

prepare, respond, and recover from heterogeneous and dynamic sets of hazards [29]. A net-

work, when affected by an attack, experiences three states: (1) original state, (2) disrupted

state, and (3) recovered state. Transitioning between the original state and the disrupted state

forms the system disruption, and transitioning between the disrupted state and the recovered

state constitutes the system recovery. The mechanism of recovery, in nature, happens sponta-

neously or deliberately [30]. In fact, a damaged component of the network returns to a normal

condition either by itself or through deliberate action. Previous research has contributed to the

interpretation of system disruption by percolation theory [11, 31, 32] and critical component

identification [33, 34]. Theory aside, the network topology has long been implicated in dictat-

ing the properties of network resilience [20, 35, 36]. Little is known about the elucidation of

system recovery by the physics of the network. How does a system transition from the dis-

rupted state to the recovered state? What characteristics affect the degree of convexity in recov-

erability trajectories? What are the topological characteristics that facilitate or impede the

transition?

Here, we establish a new paradigm for measuring the recovery of networks and identifying

the interdependence between physics of the network and recoverability. Our intention, as the

overarching goal of the current study, is to equip scientists and practitioners with the knowl-

edge and tools necessary to characterize the nexus of network topology and recoverability.

This is achieved through an integrated study of networks with different topological patterns

and sizes in the face of attacks, which drastically compromise the performance of networks by

demolishing a set of links or the total network. This knowledge is needed to determine better

techniques to avoid cascading failures and improve the dissemination of demand through the

network [37, 38]. The research objectives to help achieve our overarching goal are (1) gain a

fundamental understanding of the recovery response of networks with different size and topol-

ogy, (2) quantify the relationship between recoverability and network topology characteristics,

and (3) determine how the evolving behavior of networks influences the recovery response

and recoverability of networks.

We develop and test our algorithm on 16 directed and unweighted networks with distinct

topologies in ten different sizes. Previous research exercised random recovery, greedy recov-

ery, and local optimal strategies to recover disrupted networks [39, 40]. Unlike the random

recovery that restores damaged links randomly, greedy recovery and local optimal strategies

repair the network taking into consideration the network functionality. The link restoration

selection in the greedy recovery strategy assures maximizing the network functionality in each

step, which brings high computational complexity. Local optimal strategies reduce the compu-

tational expense by weighting each link. Our proposed model uses a combination of branch-

and-bound and dual simplex methods to find the optimal sequence of links to recover. Despite

heuristic strategies, the proposed exact methods guarantee the maximum elevation in the func-

tionality of the evolving network topology over the recovery horizon as the simplex method

sifts through all feasible solutions one at a time to find the global optimal solution. The compu-

tational expenses, however, increase exponentially as the network size increases. The algorithm

practices the optimal restoration plan for a completely disrupted network by forming the best

sequence of disrupted links. The functionality of the algorithm is calibrated to recover a

sequence of links, each reconnecting the maximum possible origin-destination (OD) pairs.
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The choice of which link to recover in each step affects the recoverability trajectory of the

residual network, as restoration might augment the system performance or increase the

redundancy of already recovered paths. This is illustrated in Fig 1. This figure exemplifies

the two recovery alternatives on a complete graph with four nodes and two recovered links.

If link (2,3) is recovered, the system experiences redundancy rather than performance

enhancement. If link (1,4), (3,4), or (2,4) is recovered, however, the system is fully connected

and delivers the total initial demand. Although an exhaustive search is the most guaranteed

method to recover without redundancy, it is not a timely solution for large networks. The

complexity of the search proliferates by O(n!) with an increase in the number of links, form-

ing NP-hard problems. The reader is referred to S1 File for the mathematical representation

of the induction proof. Exact methods cannot solve NP-hard problems for large scale

instances. For small to medium scale instances, however, the Gurobi solver used in this

study obtains the global optimal solution by employing concurrent simplex and barrier

algorithms.

Our empirical findings demonstrate how and to what extent adding redundant paths ele-

vates the robustness of the network. In turn, this adds to the knowledge of identifying the per-

formance of residual network topologies following the recovery of each component. The

remainder of this study is organized as follows. First, the recoverability measure is introduced.

Second, a recoverability optimization algorithm is proposed along with the charactersitics of

the networks used for the analysis. Third, the analytical and numerical results are discussed in

three separate parts to understand (1) how the trajectory of recovery is a function of topology

and size, (2) the relationship between the recoverability measure and the network topology

and size, and (3) how the recoverability measure is identified by connectivity and accessibility

measures. This is followed by a discussion and conclusion.

An introduction to recoverability measure

A network is a mathematical representation of a real-world system. In graph theory, an

unweighted directed network is defined as an ordered pair G = (N,L), where N is the set of

nodes and L is the set of links. We define φG
jLj as the performance of network G = (N,L) corre-

sponding to the original state, where |L| number of links are operational in the network and

the total initial demand is delivered between OD pairs. Following the elimination of |J| links,

where J�L, the performance of network G = (N,L) diminishes to φG
jLj� jJj and the network transi-

tions from the original state to the disrupted state. A recovery process, if it happens, restores

the network from a disrupted state to a recovered state by increasing the performance of the

Fig 1. Schematic of two recovery options in a toy network.

https://doi.org/10.1371/journal.pone.0245396.g001

PLOS ONE Recovery patterns and physics of the network

PLOS ONE | https://doi.org/10.1371/journal.pone.0245396 January 19, 2021 3 / 20

https://doi.org/10.1371/journal.pone.0245396.g001
https://doi.org/10.1371/journal.pone.0245396


network from φG
jLj� jJj to φ

G
jLj� jJjþjIj. The network is fully recovered if φG

jLj� jJjþjIj equals φG
jLj. Here,

φG
jLj� jJjþjIj is the performance of the recovered state with the recovery of |I| links, where I is the

set of recovered links and I�J. Mathematically, we examine the recovery of network G follow-

ing the restoration of ith link, where i2I, by measuring the total delivered demand after the

recovery of ith link over the total initial demand in the network.

RG ið Þ ¼
φG
jLj� jJjþi

φGjLj
ð1Þ

This ratio indicates (1) the system is fully recovered if the demand delivered through the

network equals the total initial demand, and (2) no recovery without redundancy is exhibited

if there is no change in the delivery of demand following the disruption. As depicted in Fig 2,

the topology of the recovered state in which the performance of the network equals the original

state performance is not necessarily the same as the original state, and might be similar or dif-

ferent from the topology of the original state. Looking at complete network topology, it is

inferred that the performance of the network escalates from φG
jLj� jJj to φG

jLj by restoring the third

disrupted link. Related but not alike, the hub-and-spoke topology requires the restoration of

all links to reach φG
jLj.

Here, we introduce RGðN; LÞ as the recoverability measure of a network with |N| nodes and

|L| links, which manifests itself through the number of links required to reach the original state

performance following a disruption. Mathematically, the recoverability measure is defined in

Eq 2. In this equation, |S| is the cardinality of sets of required links to reach the original state

performance following a disruption and |L| is the cardinality of sets of links at the original state

of the network. As alluded to in Fig 1, |S| is not necessarily the same as |L|, and the ratio is a

function of topology.

RG N; Lð Þ ¼ 1 �
jSj
jLj
; S � L ð2Þ

The following considerations are important. First, the recoverability measure indicates the

proportion of links that can remain disrupted while the network delivers the total initial

demand. Second, the minimum value of RGðN; LÞ equals zero, obtained when
jSj
jLj ¼ 1. This

happens when the network is fully disrupted and requires the restoration of all links to reach

φG
jLj. Third, the maximum value of RGðN; LÞ equals one, obtained when |S| = 0. This happens

when the network requires the restoration of no links to reach φG
jLj.

Materials and methods

Following a disruptive event, a set of links, L0�L, are adversely impacted, deteriorating the per-

formance of the network to φG
jLj� jL0 j. Here, we introduce an optimization model that provides a

sequential link recovery plan to maximize the total delivered demand after the recovery of

each disrupted link. The objective function is concise:

max
XjL
0 j

l¼1

RGðlÞ ð3Þ

To distribute the demand in network G, the model represents a set of flow balance equa-

tions. For each pair of origin-destination, Eq 4 distributes one unit of demand from the origin

node to the destination node. Eq 5 assures the distributed demand reaches to its corresponding

destination, while Eq 6 assures that no transshipment node absorbs the demand or adds any
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additional unit of demand to the origin-destination path.

X

k:ði;kÞ2A

fijikl �
X

k:ðk;iÞ2A

fijkil � 1 8ði; jÞ 2 OD; l ¼ 1; . . . ; jLj ð4Þ

X

j:ðk;jÞ2A

fijkjl �
X

j:ðj;kÞ2A

fijjkl ¼ oijl 8ði; jÞ 2 OD; l ¼ 1; . . . ; jLj ð5Þ

X

j:ðk;jÞ2A

fijkjl �
X

j:ðj;kÞ2A

fijjkl ¼ 0 8ði; jÞ 2 OD; l ¼ 1; . . . ; jLj; k 2 N � fi; jg ð6Þ

The model defines fijhkl, a continuous variable, as the flow of link (h,k)2L, distributing the

origin-destination path (i,j)2OD, and ωijl, a continuous variable, as the flow reaching destina-

tion node i2N from origin node j2N after the recovery of lth link. PjNj2 represents the capacity

of each link and is sufficient enough to carry total demand. To complete the set, the model

assures the flow does not exceed the capacity of links and demand node and formulates it as

expressed in Eq 7 and Eq 8. The network performance after the recovery of lth link is calculated

as the total delivered demand in the residual network after the lth link.

0 � oijl � 1 8ði; jÞ 2 OD; l ¼ 1; . . . ; jLj ð7Þ

0 � fijhkl � P
jNj
2 8ði; jÞ 2 OD;8ðl; kÞ 2 A; l ¼ 1; . . . ; jLj ð8Þ

φ
jLj� jL0 jþl ¼

X

ði;jÞ2OD

oijl l ¼ 1; . . . ; jLj ð9Þ

In the recovery schedule problem, αhkl, a binary variable, sets disrupted link (h,k)2L0 as the

lth recovered link in network G. Aligned with the value of α, the recovered links return to the

system in sequential order, using:

X

ði;jÞ2SD
fijhkl � P

jNj
2

Xl

s¼1

ahkl 8ði; jÞ 2 OD;8ðl; kÞ 2 L0; l ¼ 1; . . . ; jL0j ð10Þ

XjL0 j

l¼1
ahkl ¼ 1 8ðl; kÞ 2 L0 ð11Þ

X

ðh;kÞ2A0
ahkl ¼ 1 l ¼ 1; . . . ; jA0j ð12Þ

In general, the recovery model scales as O(|L0|2), where |L0|2 is the number of binary vari-

ables used in the computational domain. The quadratic running time increases the CPU time

drastically as the number of nodes, and consequently, links increases. To reduce the computa-

tional time, we relax the binary decision constraint and provide an initial feasible solution for

the model. The initial solution, along with the model results in an optimal recoverability trajec-

tory in a timely manner.

Despite the binary constraint relaxation, the solution time of the linear model increases

polynomially as the number of disrupted links increases. For example, for a totally disrupted

Fig 2. Recovery trajectory of toy complete and hub-and-spoke topologies. This figure portrays the trajectory of the recovery

process for two toy networks with different topologies: (A) Complete topology and (B) Hub-and-Spoke topology.

https://doi.org/10.1371/journal.pone.0245396.g002
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complete network with 30 nodes, there are 870 direct links to be recovered. The problem then

has the solution time complexity of O(870log870) on average. Without loss of generality, we

limit the recovery model to be tested on 16 network topologies with 8, 10, 12, 14, 16, 18, 20, 22,

24, and 26 nodes. Fig 3 depicts selected network topologies with 16 nodes as a schematic exam-

ple. Alongside the number of nodes, a set of properties are required to generate the structure

of each network topology. For example, we use Barabási–Albert model [41] to generate a scale-

free network. The model needs to have the number of required links to attach a new node to

existing nodes as well as the total number of nodes. Also, to generate random networks, we

need to identify the probability of link creation alongside the number of nodes. The produc-

tion procedure starts with positioning nodes on a plane and then connecting each node to the

growing network iteratively following the network properties. Table 1 represents the property

of each network topology for each network size.

For each network, Algorithm 1 captures the set of nodes, the set of links, a list of origin-des-

tination paths, number of cycles, the average degree of each node, and the betweenness

Fig 3. Network topology and extrapolation with 16 nodes used in the current research.

https://doi.org/10.1371/journal.pone.0245396.g003
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centrality of each link. The algorithm then uses this information to obtain diameter, average

Shimbel, beta, and gamma indices. The definition of topological indices is summarized in

Table 2.

In the next step, the algorithm disrupts all links and feeds the residual network to the recov-

erability model. The proposed model represents the optimal recoverability trajectory of each

network, the minimum number of links required to reach its full performance, and the area

under the recoverability curve.
Algorithm 1. Recoverability Trajectory model
1: Input

U = {8,10,12,14,16,18,20,22,24,26}
Paths ¼ fg; SubPaths ¼ fg;G ¼ fg;B ¼ fg

2: for u in U do

Table 1. Number of links and nodes for different network topologies.

Network Topology Network Size

|N| = 8 |N| = 10 |N| = 12 |N| = 14 |N| = 16 |N| = 18 |N| = 20 |N| = 22 |N| = 24 |N| = 26

Divergin Tail 7 9 11 13 15 17 19 21 23 25

DoubleU 8 10 12 14 16 18 20 22 24 26

Hub-and-Spoke 7 9 11 13 15 17 19 21 23 25

Tree 7 12 12 14 14 20 20 22 24 26

Scale Free 15 21 27 33 39 45 51 57 63 69

Random 14 22 30 52 47 66 77 146 115 131

Single Depot 10 12 14 16 18 20 22 24 26 28

Crossing Path 7 9 11 13 15 17 19 21 23 25

Matching Pair 16 25 36 49 64 81 100 121 144 169

Ring 8 10 12 14 16 18 20 22 24 26

Central Ring 8 10 12 14 16 16 20 22 24 26

Complete 28 45 66 91 120 153 190 231 276 325

Converging Tail 8 9 12 14 16 18 20 22 24 26

Diamond 12 12 20 20 28 28 36 36 44 44

Grid 10 13 17 19 24 27 31 31 38 37

Complete Grid 20 21 29 31 42 41 55 51 68 61

Note: Each cell represents number of links.

https://doi.org/10.1371/journal.pone.0245396.t001

Table 2. Definition of network topology measures used in the current research.

Index Formula Definition

Connectivity
Beta b ¼

jLj
jNj

Ratio of number of links to number of nodes.

Gamma g ¼
jLj

jNjðjNj� 1Þ
Ratio of number of links to maximum possible number of links in a

directed network.

Accessibility
Diameter D =max(dij) The maximum distance of all shortest paths between all origin-destination

pairs in the network.

Average Shimbel
A ¼

PjNj

i¼1

PjNj

j¼1;i6¼j
dij

jNj

The average of the length of shortest paths connecting each node to the

others.

Betweenness

Centrality
BCij ¼

shkði;jÞ
shk

Number of times a node is crossed by shortest paths in a network. σhk is

the total number of paths between nodes h and k. σhk(i,j) is the number of

paths between nodes h and k that include link (i,j).

https://doi.org/10.1371/journal.pone.0245396.t002
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Networks with u nodes and u−1 links:
G GTreeðu; 1Þ ! Tree network with one main branch
G GSingleDepotðu; 3Þ ! Traveling Salesman routing network with three

main paths
G GRingðuÞ ! Ring network
G GConvergingTailðn; uÞ ! Converging Tail networks with a Ring with size n

and two branches with a, and b nodes, where a+b = u−n and n<u
G GCrossingPathðn; uÞ ! Crossing Path network with two paths with n, and

u−n nodes, where u<n
G GCenralRingðn;uÞ ! Converging Tail networks with a Ring with size n

and four branches with a,b,c, and d nodes, where a+b+c+d =u−n, and u<n
G GDoubleUðuÞ ! DoubleU network with a 4 nodes ring and two bi

branches with a,b,c, and d nodes, where a+b+c+d = u−4
G GDivergingTailðn;m; u � n � mÞ ! Diverging Tail with three branches with

n,m, and n−m nodes, where n+m<u
Networks with u nodes and l links (l6¼u−1):
G GGridðn;mÞ ! n�m grid networks with n×m nodes and 2mn−m−n links,

where n×m = u
G GScaleFreeðu; ς;ϑ; ξÞ ! Scale-Free network with i nodes, where ς+W+ξ =

1
G GCompleteGridðn;mÞ ! n�m complete grid network, where n×m = u
G GDiamondðm�Þ ! Diamond network with m� nodes, where

m� ¼ Argminm>0;4m<n Remainder n
4m

� �� �

G GRandomðu; pÞ ! Random network with the node connection probability p
G GMatchingPairsðn;mÞ ! Matching Pair network with n and m nodes lined

up parallelly, and n×m links
G GCompleteðuÞ ! Complete network with u nodes and u�ðu� 1Þ

2
links

G GHub:Spokeðuþ 1Þ ! Complete network with u+1 nodes and u links
3: for G 2 G do
4: N G.nodes()! Set of nodes
5: L G.edges()! Set of links
6: Connectivity DFS(G)! Depth First Search Algorithm (DFS)
finds total number of cycles in network G
7: Average:Degree jLj

u ! Ratio of twice the number of links to number
of nodes in network G
8: b  

jLj
u ! Ratio of number of links to number of nodes

9: g  
jLj

uðu� 1Þ
! Ratio of number of links to the maximum possible

number of links in network G
10: for k = 1,. . .,h do
11: Sub_Paths = {}
12: for κ = 1,. . .,h do
13: SubPaths[κ] = Dijkstra(k,κ)! Dijkstra Algorithm finds
all origin-destination paths, dij,(i,j)2L in network G
14: Paths[k] = Sub_Path
15: for i = 1,. . .,|N| do
16: for j = 1,. . .,|N| do
17: count = 0
18: for k in Paths do
19: if (i,j) in k do
20: count = count+1
21: B[i,j] count

22: Betweenness Centrality 
P

ði;jÞ2L
B½i;j�

jLj

23: Diameter dij
PjNj

2
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24: Average Shimbel 
P

dij
ðu� 1Þu

25: φl Recovery formulation (G,L0 = L)
26: l�  min¼1;...;L0 ðlÞ ! the minimum number of links required to be
recovered to result in, R(l�) = 1

Analytical and numerical results

Return to recovery

We pinpoint how the trajectory of recovery is a function of topology and size, and encapsulate

how the topology either impedes or facilitates the recovery of the network by studying 16 net-

work topologies. The topologies selected in this study exist in climate systems, physiological

systems, civil infrastructure systems, social interactions, and biochemical reactions. We inves-

tigate the trajectory of the recovery for each network topology from complete shutdown,

where all links are disrupted, to full operation, where no demand remains unsatisfied. For

modeling, we choose a range of network sizes starting from 8 nodes to 26 nodes. Regardless of

the size and topology of a network, we assign one unit of demand to each origin-destination

pair. The cost of each link equals one. Our algorithm recovers the disrupted network in a

sequential order by maximizing the residual network performance following the recovery of

each disrupted link. Fig 4 depicts the trajectory of recovery for 16 network topologies with

four sizes of 8, 14, 20, and 26 nodes. The reader is referred to S1 Fig for all sizes. Two observa-

tions are noted. First, the return to recovery happens with an increasing return rate, while the

return shape depends on the topology and size of the network. This confirms that as recovery

proceeds, the next recovered link brings the shortest paths back to the system. In small sized

networks with 8 nodes, the return to recovery exhibits homogeneous recovery behavior over

topology and our 16 topologies merge into three clusters. The first cluster includes converging

tail, diverging tail, hub-and-spoke, complete, central ring, ring, matching pairs, crossing path,

single depot, random, scale-free, and double-u topologies. The second cluster includes dia-

mond, grid, and complete grid topologies. The third cluster includes only tree topology. The

return shape is dispersed with an increase in the size of the network. For some topologies, the

increase in the size of a network disturbs the uniformity of recovery rate function, starting

with the slow increase in the rate of recovery, and halfway through the recovery process, pro-

ceeding with a steep recoverability trajectory. Concretely speaking, the increase in the number

of nodes, for some topologies, means the increase in the average length of the shortest paths,

and consequently in the number of required links to recover them. This return to recovery is

observed in converging tail, ring, central-ring, and single-depot networks.

Recoverability and network topology

We elucidate the relationship between the recoverability measure and the network topology

and size. Unlike the trajectory of recovery, the recoverability measure, regardless of size, exhib-

its almost homogeneous recovery behavior over topology. This is observed in Fig 5. This figure

represents the variation in the recoverability measure over multiple sizes and topologies of the

network. The recoverability measure is the highest for matching pairs topology. This is fol-

lowed by complete and random topologies. The lowest recoverability measure goes to tree,

diverging tails, crossing paths, and hub-and-spoke, showing no superior recovery performance

over size. The recoverability measure of these networks is equal to 0. It means 100% of the net-

work should be recovered to deliver the total initial demand.

Except for tree, diverging tails, crossing paths, and hub-and-spoke topologies that the

recoverability measure remains the same by an increase in the size, our recoverability measure
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changes for other network topologies. Fig 6 depicts the analytical trend function of change in

the recoverability measure by increasing the size of a network from 8 nodes to 100 nodes. As

the size of a network is raised, different network topologies display different trends of our

recoverability measure. In spite of the difference, the trend in their recoverability measure fol-

lows a particular mapping function f : ðN;TÞ ! R, where f is a representative function of

nodes and topology, (N,T), and R is our recoverability measure. Here, we elaborate on the

behavioral change of the recoverability measure in response to the size of the network for our

16 network topologies tested in this research. Our results indicate that diverging tail, hub-and-

spoke, tree, and crossing path topologies require the recoverability of all links to return to their

original performance as their directed topology includes no cycle. The recoverability measure

Fig 4. Recovery trajectory of 16 network topologies. (A) 8 nodes, (B) 14 nodes, (C) 20 nodes, and (D) 26 nodes.

https://doi.org/10.1371/journal.pone.0245396.g004
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then follows f Nð Þ ¼ 1 �
jNj� 1

jNj� 1
� 0 function. The directed topology of double-u, central ring,

ring, and converging tail includes at least a subset of nodes connected only through a directed

cycle. For such cycles withm nodes, the recovery ofm−1 links is sufficient to connect all nodes

in the cycle. For these topologies, the recoverability measure function is f N; rð Þ ¼ 1 �
jNj� 1

jNj .

The recoverability measure function for single depot topology follows f N; rð Þ ¼ 1 �
jNj� 1

jNjþr� 1

where r is the number of cycles. The recoverability measure function for diamond network is

f Nð Þ ¼ 1 �
jNj� 1

2jNj� 6
, for matching pair is f Nð Þ ¼ 1 �

jNj� 1

jNj2
, and for complete network is

f Nð Þ ¼ 1 �
jNj� 1

jNj2
. In a random network with |N| nodes, the probability of connecting each pair

equals p. The average number of links in a random network equals p jNjðjNj� 1Þ

2
, and the recover-

ability measure function is f N; pð Þ ¼ 1 �
jNj� 1

pjNjðjNj� 1Þ

2

� 1 � 2

pjNj.

For diamond, random, complete, and matching pairs topologies, the recoverability measure

function takes the downward concave trajectory. This means with an increase in the number

of nodes, the recoverability measure increases at a decreasing rate. We interpret the increase in

the recoverability measure as a result of the increase in the density of the network, and the

decreasing rate as a result of increase in the Hamiltonian path of the network. For double-u,

Fig 5. Recoverability measure over multiple size and topology.

https://doi.org/10.1371/journal.pone.0245396.g005
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central ring, ring, and converging tail topologies, the recoverability measure function takes the

upward concave trajectory. This means with an increase in the number of nodes, the recover-

ability measure decreases at a decreasing rate. Here, the increase in the network density is not

as significant as the increase in the network Hamiltonian path and consequently results in a

decrease in recoverability measure. The decreasing rate reflects the effect of increase in the net-

work density, however insignificant, as the number of nodes increases. In the presence of ther-

modynamic limit, |N|!1, the recoverability measure leans towards 0 for double-u, central

ring, ring, converging tail, and single-depot, 1

2
for diamond network, and 1 for matching pairs,

complete, and random networks. This means the double-u, central ring, ring, converging tail,

and single-depot networks become extremely vulnerable at large scale, and matching pairs,

complete, and random networks become the most robust networks at large scale. The dia-

mond network shows a constant recoverability measure starting from 36 nodes showing the

independence of network recoverability from the size of the network.

Grid, complete grid, and scale-free topologies follow a different physical pattern of recoverability

measure in response to the size of network, and as a result we plot their behavior separately in Fig 6.

For the grid topology, the recoverability measure function follows f N; n;mð Þ ¼ 1 �
jNj� 1

nðm� 1Þþmðn� 1Þ
,

and for complete grid topology the function is f N; n;mð Þ ¼ 1 �
jNj� 1

nðm� 1Þþmðn� 1Þþ2ðn� 1Þðm� 1Þ
, where

n×m = |N|. For scale-free topology, there is no specific analytical function to identify the trends in

recoverability measure. This happens due to the variations in the probability for adding a new node

connected to an existing node in the scale-free network generation process.

In grid and complete grid topologies with size |N|, the topology of the network depends on

the layout of nodes in rows, n, and columns,m, n×m = |N|. The layout affects the recoverability

measure and consequently disturbs the consistency of trends in the recoverability measure.

Despite the fluctuations, the recoverability measure of the grid, complete grid, and scale-free

networks lean toward 1 at large scale, showing the robustness of the network against

disruptions.

A grid network with |N| = 24, for instance, can be arranged as 4×6, 3×8, and 2×6 layout

with recoverability measures 0.31, 0.70, and 0.71, respectively. This change in the layout of

grid and complete grid network justifies the fluctuations in their corresponding trends. The

trend line for grid and complete grid topologies follows a power function f(|N|) = 0.5119|

N|0.065 for |N|�1.43×1011 with R2 = 0.36 and f(|N|) = 0.2525|N|0.114 for |N|�1.13×109 with R2 =

0.36, respectively. Similar but not identical, we observe no trend in the scale-free network

recoverability measure. Here, the best fitted trend line for the recoverability measure function

is f(|N|) = 0.486|N|0.0234 for |N|�8.94×1031 with R2 = 0.17.

Recoverability and topology measures

We examine how the recoverability measure of a network is identified by the topology of the

network and its measures. An individual network measure may characterize one or several

aspects of the topology. We consider basic and important measures including betweenness

centrality, average Shimbel, diameter, beta, and gamma. The measures detect aspects of con-

nectivity and accessibility of networks.

We develop a set of bivariate linear regression models, where the recoverability measure is

the dependent variable and the independent variables are the linear and square form of each

Fig 6. The analytical function of recoverability measure trends over size. (A) Diverging Tail, Hub-and-Spoke, Tree, Crossing

Path, Double-U, Central Ring, Ring, Converging Tail, and Single Depot with 3 and 5 routes; Diamond, Matching Pair, Complete,

and Random networks with connection probability of 0.3, 0.5, and 0.7. (B) Scale-Free, Grid, and Complete Grid networks.

https://doi.org/10.1371/journal.pone.0245396.g006
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network measure as expressed in Eq 13.

Yi ¼ b0 þ b1Xi þ b2Xi
2 þ ui ð13Þ

Here, Yi is the vector of endogenous variable, Xi is the vector of exogenous variables, β0, β1,

and β2 are regression coefficients estimated by maximum likelihood, and ui is the Gaussian

distributed error term. The slope coefficient measures the marginal effects, which is the change

in Y for a unit change in X. We judged the statistical significance of variables using P-value.

We measured the goodness-of-fit of the models calculating the Adjusted R2, which ranges

between 0 and 1 and the greater the value is the better the fit of model becomes. This index

measures the improvement of a fitted model over a null model.

Table 3 reports the results of the modeling. Results indicate that our recoverability measure

is significantly explained by betweenness centrality, beta, and gamma. Their Adjusted R2 fluc-

tuates between 0.98 and 0.83. It means betweenness centrality, beta, and gamma explain

between a 98% and 83% variation in the recoverability measure around its mean, having a sim-

ilar explanation power for beta and gamma. The percentage of the recoverability measure vari-

ations that our models explain, however, diminishes with an increase in the size of network.

While average Shimbel explains a 75% variation in the recoverability measure around its mean

in networks with 8 nodes, the goodness-of-fit declines to 0.59 for networks with 26 nodes. The

Adjusted R2 of the models including diameter is almost 0.55 regardless of the size of network.

Unlike betweenness centrality, beta, gamma, and average Shimbel, the explanatory power of

Table 3. Results of the linear regression models with simple or quadratic form.

Number of Nodes

Coefficients 8 10 12 14 16 18 20 22 24 26

Betweenness Centrality

β0 0.907 0.901 0.900 0.884 0.884 0.871 0.878 0.866 0.856 0.853

β1 -0.150 -0.110 -0.079 -0.062 -0.048 -0.039 -0.033 -0.027 -0.022 -0.020

β2 0.006 0.003 0.001 0.001 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001

Adj. R2 0.957 0.940 0.930 0.911 0.901 0.888 0.879 0.867 0.844 0.835

Average Shimbel

β0 1.108 0.976 0.953 0.886 0.870 0.857 0.830 0.823 0.806 0.779

β1 -0.424 -0.302 -0.252 -0.203 -0.178 -0.156 -0.134 -0.121 -0.111 -0.099

Adj. R2 0.758 0.707 0.694 0.661 0.638 0.646 0.627 0.633 0.617 0.592

Diameter

β0 0.795 0.741 0.752 0.716 0.711 0.718 0.703 0.711 0.699 0.683

β1 -0.165 -0.120 -0.100 -0.082 -0.071 -0.064 -0.055 -0.050 -0.046 -0.041

Adj. R2 0.549 0.552 0.562 0.550 0.516 0.547 0.529 0.544 0.529 0.514

Beta

β0 -0.647 -0.533 -0.462 -0.427 -0.358 -0.314 -0.270 -0.233 -0.187 -0.173

β1 0.451 0.361 0.307 0.280 0.238 0.212 0.188 0.168 0.147 0.139

β2 -0.036 -0.023 -0.017 -0.0140 -0.010 -0.008 -0.006 -0.005 -0.004 -0.003

Adj. R2 0.984 0.976 0.971 0.964 0.950 0.938 0.924 0.909 0.886 0.879

Gamma

β0 -0.648 -0.534 -0.462 -0.427 -0.358 -0.314 -0.270 -0.233 -0.187 -0.173

β1 1.244 1.012 0.871 0.800 0.684 0.613 0.545 0.489 0.430 0.407

β2 -0.275 -0.187 -0.139 -0.114 -0.086 -0.070 -0.056 -0.046 -0.037 -0.033

Adj. R2 0.984 0.977 0.971 0.964 0.950 0.939 0.924 0.909 0.886 0.879

Note: All variables are significant at the 99% confidence interval.

https://doi.org/10.1371/journal.pone.0245396.t003
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diameter measure remains partially the same with an increase in the size of network, indicating

the robustness of the explanation.

Fig 7 graphs the marginal effects of topology measures over the size of the network. Mar-

ginal effects measure the impact that an instantaneous unit change in an exogenous variable

has on the endogenous variable. As shown, the highest positive effect is for the gamma mea-

sure. A one-unit increase in the ratio of the number of links to the maximum possible number

of links increases the recoverability of the network, on average, by 0.44 over different sizes.

The magnitude of a positive impact is tightly followed by beta measure. The marginal effects of

this measure fluctuates between 0.24 and 0.09 with an average of 0.15 over different sizes. The

highest negative correlation is for the average Shimbel index. A one-unit increase in the aver-

age of the sum of the lengths of all shortest paths connecting all pairs of nodes decreases the

recoverability measure, on average, by 0.19 over different sizes. The magnitude of negative

impact is followed by diameter measure. The marginal effects of this measure fluctuates

between -0.16 and -0.04 with an average of -0.08 over different sizes. Two conclusions can be

drawn from the marginal effects chart. First, regardless of the topology measure, the marginal

effects diminish with an increase in the size of network. While the statistical correlation

between recoverability and network measures is robust, the magnitude of impact is reduced

when the size of a network increases. Second, the accessibility aspects of networks have a nega-

tive effect on the recoverability measure, unlike the connectivity aspects. By investigating the

impact of betweenness centrality on recoverability measures over different sized networks, it is

noted an increase in the number of times a node is crossed by the shortest path in the graph

reduces the recoverability measure of the network.

Fig 7. Marginal effects of topology measures on recoverability measure.

https://doi.org/10.1371/journal.pone.0245396.g007
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Conclusions

We argue that our analysis embodies the transition of natural and engineered systems from the

disrupted state to the recovered state, and quantifies the effect of network topology on facilitating

or impeding this transition. We have scrutinized the recovery behavior of networks with com-

mon topologies and different sizes, rather than self-selecting, both numerically and analytically

with excellent agreement. We have developed satisfactory sizes under which recovery happens

either quickly or slowly. The behavior is tight for multiple network topologies in small sized net-

works, while it diverges by an increase in the size of the network. This is justified by the increase

in the average length of the shortest path in the diverging trajectories. We have shown that the

disrupted network attains its recovered state gradually with an increasing return to recovery.

This is justified by the uniform demand distribution between nodes. We speculate that the

recovery might take a constant or decreasing shape of return as well, if the uniform demand dis-

tribution assumption is uplifted. This constitutes a promising future research avenue.

By scrutinizing the recovery behavior of networks, we have expanded the knowledge of recov-

ery in networks with introducing and testing the recoverability measure. This measure is a func-

tion of network topology and is explained by the physics of the network. Our results have revealed

that the network topology with high network connectivity follows a downward concave recover-

ability measure trend. Regardless of the network size, the recoverability measure trends for the

network topologies with a low level of connectivity and no cycle equals zero. For networks with a

low level of connectivity, the existence of at least one subset of nodes connecting only through a

cycle turns the recoverability measure trends to downward concave functions. In between, there

are some network topologies that do not follow any significant trend, including scale-free, grid,

and complete grid topologies. The power trend line is the best illustrator of these networks recov-

erability measure behavior in response to an increase in the size of the network. Our recoverability

measure developed here provides an understanding of how the recoverability of the network is a

function of not only the size of the network, but also the connectivity and accessibility measures

of the network. Our results show that a network becomes more recoverable as connectivity mea-

sures of the network such as beta and gamma increase. In particular, a network becomes more

recoverable with an increase in the ratio of the number of links to the number of nodes and the

ratio of the number of links to the maximum possible number of links. A network, however,

becomes less recoverable as accessibility measures of the network, such as betweenness centrality,

Shimbel index, and diameter, increase. De facto, accessibility decreases the recoverability of the

system, as reflected in the lower recoverability measure and abrupt transitions. The functionality

is not robust over the size of the network and the connection between the recoverability measure

and topology measures declines with an increase in the size of the network. Although our measure

is applied here to study the recoverability of unweighted networks, it is expandable to the study of

weighted networks with an uneven demand distribution.

Overall, the results not only offer guidance on designing recoverable networks, but also pic-

ture the recovery nature of networks deliberately following a disruption. The knowledge of

network recovery helps assess the system risks and govern system mitigation under random

attacks, malicious attacks, and the localized attacks induced by natural disasters or mass

attacks. Our recovery behavior and recoverability measure has been tested on 16 distinct net-

work topologies. The relevant recovery behavior can be generalized based on our definition

for any network topology recovering deliberately.

Software and packages

The network topologies are coded in Python 3.7.3, and we use Gurobi 9.0.1 package to solve

the recoverability model. All instances were tested on an Intel1 Core i7-8700U CPU @ 3.20
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GHz 3.19 GHz with 64 GB RAM. The codes for generating network topologies and character-

istics are publicly available via https://github.com/MODALHUB/NetworkResilence for use

and distribution, except for commercial use, with proper citations and acknowledgement of

the authors.
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