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Abstract

The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure
and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities
vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an
effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new
expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity
per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a
systematic dependence of urban productivity on city population size, resulting from the mismatch between the size
dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling
of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of
local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is
maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and
high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and
employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain
the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform
the development of economic theory related to growth.
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Introduction

The importance of population size as a major determinant of

the intensity of socio-economic activity in urban areas has recently

been emphasized by research applying scaling analyzes to a

diverse spectrum of urban indicators [1,2,3,4]. Scaling analysis,

which quantifies how measurable aggregate characteristics re-

spond to a change in the size of the system, has been a powerful

tool across a broad spectrum of science and technology research.

Its analytical punch stems from the observation that this response

is often a simple, regular, and systematic function over a wide

range of sizes, indicating that there are underlying generic

constraints at work on the system as it develops.

Cities, too, manifest non-trivial scaling across many metrics,

both infrastructural and socio-economic, and scale in a similar way

across a variety of urban systems worldwide. This is surprising

since cities are quintessential complex adaptive systems manifest-

ing multiple spatio-temporal scales with emergent dynamics that

are typically viewed as historically contingent. Nevertheless, simple

power law scaling is a good universal characterization of the

average characteristic of cities world-wide, suggesting that a

common organization and dynamics is at play in their develop-

ment and economies, independent of local history, geography and

culture [1,3]. To be clear, we do not claim that there is a causal

relation between urban scaling and urban productivity; scaling

reveals a systematic relationship between urban population size

and productivity, which itself is a manifestation of a more general

relationship between population size and productivity [5,6].

Causality stems from the ways in which being embedded inside

larger agglomerations fundamentally affects how individuals

interact with each other.

The scaling perspective, which may be familiar from the

application of physics-based approaches to studying other complex

systems, is reminiscent of another, seemingly unrelated, set of

scaling relations that serve as the starting point for most economic

approaches to cities and other economic units, such as firms or

nations. The methodological hallmark of modern economics for

discussing and quantifying the sources of economic growth and the

determinants of productivity is a production function. Basically, a

production function encapsulates a compact description of how

aggregate economic output is generated from aggregate inputs,

such as labor and capital. The conditions under which specific

forms of a production function can be used to capture economic

activity in cities within an urban system are often simply assumed

and very rarely verified (see, for example, [7]). The major

contribution of this paper is to address the question of how specific

forms of production functions, common to all cities, emerge as

effective models of economic output as a result of the observation

of urban scaling relations and their theoretical underpinnings. We

believe that the resulting synthesis, obtained from unifying these

physics and economics-based perspectives, potentially leads to new

and useful insights into the socio-economic dynamics of cities.
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The derivation of specific forms of urban production functions

also leads to a new analysis of the economic productivity of cities.

Much research has been carried out over the past two decades on

the causes of productivity differences across urban areas. The

prevalent methodological approach has been to utilize a variant of

the so-called growth accounting method [8] in order to statistically

examine which of the myriad characteristics of urban areas affect

their economic productivity [9,10,11,12,13,14,15,16,17]. This

procedure relies on the assumption of a specific form of production

function, such as Cobb-Douglas, and thereby on the identification

of changes in its pre-factor, usually referred to as total factor

productivity, as the fundamental measure of changes in economic

productivity.

Agglomeration economies–a set of phenomena ultimately

dependent on the size and density of urban populations–have

been highlighted in the literature as causal mechanisms for the

productivity-enhancing effects of scale and concentration in cities

[18,19,20,21,22,23,24,25]. An earlier literature documented the

positive correlations between urban (population) size and produc-

tivity, measured as average wage or value added [26,27,28,29].

The positive relationship between urban size and productivity is

indeed a central fact of urban economics, and understanding its

origins remains a major challenge in understanding cities. Thus, a

derivation of a production function for cities that explains and

constrains these analyzes would potentially make an important

contribution to the understanding of the productivity of urban

economies.

The paper is organized as follows. The next section briefly

introduces and reviews scaling analysis. Section 2.2 builds upon

the scaling relationship to construct scale-adjusted indicators of

metropolitan performance. Section 2.3 derives the form of a

general production function. Section 2.4 uses urban scaling

relations to derive an analytical expression for the urban

production function. Finally, section 2.5 shows our empirical

estimation for the scale-adjusted productivity of U.S. urban areas

and its statistical patterns. We close by presenting our conclusions

and discussing the implications of the present results for further

research.

Results

Scaling Analysis in Urban Systems
One fundamental aspect of cities is that most of their properties

are not simply proportional to population size. For example larger

cities tend to display larger per capita outputs in many their socio-

economic quantities, from violent crime to wages, and need less

material infrastructure per person (from roads to cables and pipes),

though also use it more intensely [1]. These properties, and their

detailed observed quantitative expression in terms of scaling

relations can be derived from a microscopic theory that describes

cities as co-located mixing social networks, subject to certain

general efficiency constraints [5].

Specifically, scaling relations characterize how a given quantity

of interest, Y, depends on a measure of the size of a system, N. A

common feature of scaling is scale invariance, which corresponds to a

relationship formalized as:

Y (N)~Y0Nb, ð1Þ

where Y0 is a normalization constant and b is the scaling exponent

(which can also be interpreted as an elasticity, as usually defined in

economics). The significance of this power-law relation becomes

clear when we consider an arbitrary scale change by a factor l

from N to lN. This induces a change in Y from Y(N) to Y(lN) that,

without loss of generality, can be expressed as

Y (lN)~Z(l,N)Y (N): ð2Þ

When the scale factor Z depends only on l, i.e. Z(lN)~Z(l),
equation (2) can be solved uniquely to give the scale-invariant

result of equation (1), with Z(l)~lb. Scale-invariance implies that

such a relationship–the ratio Y (lN)=Y (N)–is parameterized by a

single dimensionless number, b. The ratio Y (lN)=Y (N) is

independent of the particular system size N but is dependent on

the ratio between sizes, l; such systems are often referred to as self-

similar [30]. Non-interacting systems, e.g. an ideal gas, are strictly

extensive and are characterized by b = 1. Most complex systems

that can exist over a range of scales, from river networks to

organisms, and from cities to ecosystems, are characterized

typically by b different from unity; with open ended complex

system typically displaying productivity that is superlinear, b .1.

Equation (1) bears a close resemblance to a production function

(discussed in detail below), with Y denoting total economic output

and N the size of urban population or labor pools (see, e.g., [14]).

On a per capita basis, Equation (1) implies y:Y=N~Y0Nb{1,

which can be interpreted, for example, as an equation for output

per person as a function of the maximal number of people sharing

ideas with each other [31]. In this sense the mathematical

expression of economic output in terms of production functions

and scaling analysis of general complex systems are very similar,

although superficially originating from different perspectives.

Below we show explicitly how these two pictures are related by

deriving the form of the urban production function from scaling

relations and their underlying microscopic dynamics.

Scale-Adjusted Metropolitan Indicators
Scaling relations and production functions express only average

expectations for (economic) outputs in terms of sets of inputs. But,

as has been recently shown [32], the correct statistical interpre-

tation of scaling laws is as expectation values for the quantity Y,

conditional on the population size of a city; that is the mean

associated with the probability density P(Y|N).

The statistical fluctuations about the mean scaling law, together

with the value of the scaling parameters, can be determined using

the log-transformed version of equation (1):

ln Yi~ ln Y0zb ln Nizji, ð3Þ

with urban areas indexed by i. Here, the fluctuations or ‘‘random

shocks’’ ji represent local (city-specific) deviations from the scale-

invariant form. As an example of an urban metric that exhibits

scaling behavior consider total wages, defined as the sum total of

wages and salaries earned by residents in an urban area. Ordinary

least squares estimation (OLS) of equation (3)– correcting for

heteroskedasticity, and using data on Total Wages (TW) and

population for the 943 urban areas of the United States (which

consists of 367 Metropolitan Statistical Areas (MSAs) and 576

Micropolitan Areas, see Materials and Methods) smoothed over

the 2009–2011 period–gives the following result:

ln (TWi)~1:404z1:146 ln (Popi), R2~0:97, ð4Þ

with p-values virtually zero. Figure 1 shows the scatter plot of the

data and the fitted regression line; a plot (Figure 2) clearly shows

that they are scale-independent. Thus, a 1% increase in
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population is associated on average with a 1.15% increase in

output, regardless of city size, in general agreement with

theoretical expectations for b,7/6 [5]. These self-similar and

increasing returns to scale establish quantitatively the economic

advantages of large cities (for further evidence of scaling behavior

regarding urban characteristics see [1,2,3,4]).

Equation (4) expresses the average productivity for a city of size

N. Deviations from this average behavior capture the character-

istics of each individual urban area not accounted for by the

general agglomeration effects of population size. These deviations

can be quantified by writing the residual equation in (3) as

ji~ ln
Yi

Y (Ni)
~ ln

Yi

Y0N
b
i

, ð5Þ

where Yi is the observed value of output for each metropolitan

area. We refer to j as a Scale-Adjusted Metropolitan Indicator (SAMI)

[3]. The construction of SAMIs is similar to other uses of the

method of residues [33]. Unlike per capita indicators, SAMIs are

dimensionless and, by construction, independent of urban size

[34]. SAMIs can be constructed for any variable capturing

features of urban life which are subject to scaling agglomeration

effects. (The deviations from the fitted line in Figure 1 and the

residuals plotted in Figure 2 are in effect the SAMIs for total

wages.) As a result of these definitions we can write any stochastic

urban indicator, exactly, as

Yi~Y0N
b
i e

jY
i : ð6Þ

We are now ready to derive the economic production function of

cities from their probabilistic scaling properties.

General Derivation of Economic Production Functions
We briefly recapitulate the derivation of a general production

function in order to set up the theoretical framework. We proceed

by first stating (as in [35]) an accounting relation: at any time, t,

Yi(t)~Wi(t)zRi(t), ð7Þ

with Y signifying the pecuniary value of the total output generated in

the ith metropolitan area, W denoting its total labor income, and R

its total capital income. It is from the observables in equation (7) that

a putative production function is built. The production factor shares

are defined as:

1{a~
Wi(t)

Yi(t)
, a~

Ri(t)

Yi(t)
: ð8Þ

Note that in general a~ai(t,Ni) is city specific and a function of both

time and population size N. We can differentiate equation (7) with

respect to time (or with respect to N) and divide by output, Y, to obtain

1

Yi(t)

dYi(t)

dt
~

1

Yi(t)

dWi(t)

dt
z

1

Yi(t)

dRi(t)

dt

~
½1{a(t)�

Wi(t)

dWi(t)

dt
z

a(t)

Ri(t)

dRi(t)

dt
:

ð9Þ

Figure 1. Scaling of total wages using data for all 943 urban areas of the United States (smoothed over the 2009–2011 period)
showing superlinear scaling.
doi:10.1371/journal.pone.0058407.g001
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This can be integrated to give

ln Yi(t)~

ð
(1{a)d ln Wi(t)z

ð
ad ln Ri(t): ð10Þ

Integration by parts then yields the general result:

ln Yi(t)~(1{a) ln Wi(t)za ln Ri(t)z

ð
ln

Wi(t)

Ri(t)

� �
da: ð11Þ

The last integral can be written as

ð
ln

1{a

a

� �
da~ ln c(1{a)a{1a{a

� �
, ð12Þ

where c is a constant of integration, so that, finally,

Yi(t)~c(1{a)a{1a{aWi(t)
1{aRi(t)

a: ð13Þ

We note that equation (13) is an instantiation of a more general

relationship (for arbitrary c), which can in turn be derived

algebraically (note too that for the free factor to be independent of

the production factors a must be a constant). We prefer the

derivation presented here so as to highlight that Y, W and R are

functions of time.

Constraining the solution in equation (11) to be consistent with

the original equation (7) determines c = 1. This solution is general

in that it does not require, for example, that the factor shares, a, be

constant in time or population size. Thus the derivation of a Cobb-

Douglas type production function (see also below) follows directly

from the definitions (7–8) and does not carry more specific

economic significance beyond that contained in these relations. In

fact, and not withstanding its prominent role in the history of

economic analyses, the Cobb-Douglas production function is

basically a trivial identity that follows from a simple dimensional

argument: since Y, W and R must have the same dimensions, and

assuming that Y is solely composed of W and R, it must be

expressible as equation (13), with exponents adding up to unity.

However, this formalism takes on potentially greater usefulness

when a is, in fact, a constant, independent of both time and

population size; that is, when

La

LN
Dt~0,

La

LN
DN~0: ð14Þ

Although the constancy of a is typically assumed when using

production functions, its validity at the urban level is rarely

confronted by data. We have performed an analysis using data for

U.S. urban areas to check its empirical basis. The share of total

Figure 2. Residuals from regressing ln(total wages) on ln(population) using data for all 943 urban areas of the United States
smoothed over the 2009–2011 period.
doi:10.1371/journal.pone.0058407.g002
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income accruing to labor, 1– a, can be calculated for both

Metropolitan Statistical Areas (MSAs) and Micropolitan Statistical

Areas, which together constitute the entire urban system of the

United States. Figure 3 shows the time series, from 1969 to 2009,

for the economy-wide value and the urban mean of 1– a. Urban

labor’s share of total income displays roughly the same temporal

trend as the national labor’s share of income, both hovering

around a value of 0.70 (the coefficient of variation for 1– a is

approximately 0.15 within each year). The correlation between the

values of (1– a) specific to urban areas and their population size

hovers around a paltry 0.05 over the whole of the period for which

we have data: the share of total urban income accruing to location-

specific labor is not a function of urban population size. (There is

evidence that labor’s share of total national income is declining in

the U.S. although the argument presented here holds even if this is

the case. For a review of the evidence go to www.clevelandfed.

org/research/trends/2012/0212/01gropro.cfm).

Equation (11), under the assumption of constant a, can be easily

related to the familiar Cobb-Douglas production function, which is

a widely used model for national and urban economies (see, for

example, [7,13,14,36]). This requires the introduction of conver-

sion factors relating wages, Wi(t), to labor input, Li(t), and capital

income, Ri(t), to capital input, Ki(t) :):

wi(t)~
Wi(t)

Li(t)
, ri(t)~

Ri(t)

Ki(t)
, ð15Þ

w is average wage, while r is the average rental price of capital. We

can then write, Y, in the more familiar form

Yi(t,N)~C(a)Wi(t,N)1{aRi(t,N)a

~Ai(t,N)Li(t,N)1{aKi(t,N)a,
ð16Þ

with C(a):(1{a){(1{a)a{a: The pre-factor A(t,N) is often

referred to as the total factor productivity (TFP) of the ith urban

area and is the preferred measure of its economic productivity. A

larger or smaller TFP multiplies the same factor inputs of labor

and capital to produce greater or smaller economic output,

respectively. Thus, the value of the TFP is interpreted as a body of

technologies that allow the same input factors to produce a more

valuable output, for example by shifting labor and capital from

‘‘basic’’ agriculture to ‘‘high-tech’’ industries. Technology, as

captured by the value of A, should be interpreted broadly so that it

can encompass all the social, demographic, technological,

environmental, policy and even cultural factors that determine

the overall productivity of an urban area. Finally, from equation

(16) we obtain the following expression for urban TFP as a

function of the productivity of labor and capital:

Figure 3. Ratio of urban labor income to total income (1– a) for MSAs and Micropolitan Areas in the U.S. 1969–2009.
doi:10.1371/journal.pone.0058407.g003
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Ai(t,Ni)~C(a)
Wi(t,Ni)

Li(t,Ni)

� �1{a
Ri(t,Ni)

Ki(t,Ni)

� �a

~C(a)wi(t,Ni)
1{ari(t,Ni)

a:

ð17Þ

Next, we show how the existence of scaling relations determines

the form of A, resulting in its systematic parameterization as an

explicit function of population size, Ni, and specific local

deviations, ji.

Derivation of Urban Total Factor Productivity From
Scaling

So far we have explored the consequences of an accounting

relation, equation (7) and the definition of factor shares, equation

(8), together with the conservation laws expressed in equation (14),

to obtain a Cobb-Douglas type production function common to all

cities. We now show that the constancy of a is a consequence of

urban scaling relations and their underlying microscopic dynam-

ics, and use these relations to obtain a new expression for Ai(t,Ni).

First note that, with

Wi(t,Ni)~W0e
jW
i

(t)
N

bW
i (t), Ri(t,Ni)~R0e

jR
i

(t)
N

bR
i (t), ð18Þ

it follows that

a~
R0(t)

Y 0(t)
e

jR
i

(t){jY
i

(t)
N

bR{bY
i (t)

~1{
W0(t)

Y 0(t)
e

jW
i

(t){jY
i

(t)
N

bW {bY
i (t):

ð19Þ

Thus, for a to be independent of N is equivalent to requiring that

both wages and rents scale with the same exponent, so that

bW ~bR. This is predicted from theory [5] as both quantities

result from socioeconomic interactions in the city, and, as we

showed above, empirically observed for U.S. cities, as bW ~bY ,

within their statistical confidence intervals. Consequently, the

observation of universal socioeconomic superlinear urban scaling

and its theoretical underpinnings imply the conservation of a vs. N

and a Cobb-Douglas general form for the economic output of

cities vs. population size.

The constancy of a in time is more problematic as it requires

that the pre-factors W0 and R0 share the same time dependence,

and that the differences between the SAMIs for location-specific

total wages and total capital income, and the SAMI for total

output also be time independent. The former relate to urban

system-wide (national) economic growth and as such can be

expected to vary slowly in time. The latter do change slowly in

time [3], but analysis of their statistics reveals that their variance

(recall that the SAMIs have zero mean) is approximately time

independent [3,32], as such we can expect that the average of a
over the SAMIs is also approximately time independent. The

deeper reasons for the approximate time independence of these

quantities remain an important open problem grounded on the

theory of economic growth, beyond the scope of the present paper.

Assuming the constancy of a from the previous arguments, we

now derive an explicit expression for the TFP of cities. We first

note that both the numerator and denominator in the expressions

for wage per worker and average capital rent exhibit scaling

behavior so that the marginal productivity of the two production

factors can be recast using their associated SAMIs as:

wi(t)~
Wi(t,Ni)

Li(t,Ni)
~

W0e
jW
i

(t)
Ni(t)

bW

L0e
jL

i
(t)

Ni(t)
bL

~
W0

L0
eji

W (t){ji
L(t)Ni(t)

bW {bL ,

ð20Þ

ri(t)~
Ri(t,Ni)

Ki(t,Ni)
~

R0e
jR
i

(t)
Ni(t)

bR

K0e
jK
i

(t)
Ni(t)

bK

~
R0

K0

e
jR
i

(t){jK
i

(t)
Ni(t)

bR{bK ,

ð21Þ

The term for TFP then takes the general form:

Ai(t)~Ao(t)e
jA

i N
bA
i (t), ð22Þ

with

A0(t)~C(a)
W0(t)

L0(t)

� �1{a
R0(t)

K0(t)

� �a

, ð23Þ

jA
i ~(1{a) jW

i {jL
i

� 	
za jR

i {jK
i

� 	
, ð24Þ

bA~(1{a)(bW {bL)za(bR{bK ): ð25Þ

Equations (22)-(25) make explicit how urban TFP depends on

both population size, through the scaling exponents, and on local,

scale-independent fluctuations through the SAMIs. Equation (22)

differs from a standard TFP formulation in that the productivity-

enhancing effects of population are explicitly controlled for and

the population-neutral effects explicitly represented by the term in

equation (24). As a consequence any additional urban property

proposed to explain a higher or lower productivity of specific cities

not tied to their size (see below) must be expressed in terms of its

contribution to the SAMIs for W, L, R and K.

Evaluating A requires knowledge of how K, the metropolitan

capital stock, scales with urban size. Unfortunately, reliable data

on urban capital stocks in the U.S. are not available at present. We

can, however, estimate the value of the scaling coefficient for

urban TFP by making a set of standard arguments. Given the

observed values for the scaling coefficients for total wages and

labor, bW < 1.15 and bL < 1, and with (12a)<0.7 the first term to

the right of the equal sign on equation (24) has a value of 0.11

What about the value of the a(bR{bK ) term? Under the widely-

made assumption [34] that the rental price of capital. r, is constant,

or nearly so, across metropolitan areas, and given that R~r|K

or equivalently, R0NbK ~rK0NbK then r~ R0=K0ð ÞNbR{bK For r

to be a constant, we must have bR~bK . Therefore, bA < 0.11

implying that urban productivity, measured by the TFP, increases

on average by about 11% with each doubling of population.

The systematic (i.e., average) dependence of A on urban

population size thus originates in the mismatches of the scaling

of total wages. W, versus labor, L, and, potentially, of capital

Urban Scaling and Production Function for Cities
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Table 1. Top 50 urban areas, ranked by their scale-adjusted measure of TFP (jA).

Urban Area jA jW jL

1 Los Alamos, NM (Micropolitan Area) 0.6964 1.7771 0.7822

2 San Jose-Sunnyvale-Santa Clara, CA (Metropolitan Area) 0.3674 0.6155 0.0907

3 Gillette, WY (Micropolitan Area) 0.3480 0.7895 0.2923

4 Bridgeport-Stamford-Norwalk, CT (Metropolitan Area) 0.3342 0.5672 0.0898

5 Rock Springs, WY (Micropolitan Area) 0.2937 0.6664 0.2467

6 Trenton-Ewing, NJ (Metropolitan Area) 0.2799 0.6054 0.2056

7 Harriman, TN (Micropolitan Area) 0.2791 0.1053 20.2934

8 Midland, MI (Micropolitan Area) 0.2691 0.3906 0.0061

9 Kokomo, IN (Metropolitan Area) 0.2652 0.4415 0.0627

10 Elko, NV (Micropolitan Area) 0.2544 0.4585 0.0950

11 Sidney, OH (Micropolitan Area) 0.2369 0.6268 0.2884

12 Borger, TX (Micropolitan Area) 0.2328 0.2749 20.0576

13 Marshfield-Wisconsin Rapids, WI (Micropolitan Area) 0.2196 0.5390 0.2253

14 Lexington Park, MD (Micropolitan Area) 0.2189 0.3729 0.0602

15 Wilmington, OH (Micropolitan Area) 0.2045 0.5831 0.2909

16 Columbus, IN (Metropolitan Area) 0.1995 0.5330 0.2480

17 Connersville, IN (Micropolitan Area) 0.1845 0.1965 20.0671

18 Columbia, TN (Micropolitan Area) 0.1783 0.3424 0.0878

19 Boulder, CO (Metropolitan Area) 0.1776 0.5536 0.3000

20 Hinesville-Fort Stewart, GA (Metropolitan Area) 0.1762 0.1730 20.0787

21 Oshkosh-Neenah, WI (Metropolitan Area) 0.1731 0.4166 0.1694

22 Ann Arbor, MI (Metropolitan Area) 0.1728 0.4689 0.2220

23 Durham-Chapel Hill, NC (Metropolitan Area) 0.1715 0.4795 0.2344

24 Bellefontaine, OH (Micropolitan Area) 0.1676 0.2733 0.0340

25 Auburn, IN (Micropolitan Area) 0.1652 0.4951 0.2590

26 Bloomington-Normal, IL (Metropolitan Area) 0.1643 0.4435 0.2089

27 Defiance, OH (Micropolitan Area) 0.1640 0.3351 0.1008

28 Corning, NY (Micropolitan Area) 0.1636 0.1331 20.1006

29 Battle Creek, MI (Metropolitan Area) 0.1612 0.1723 20.0579

30 Andrews, TX (Micropolitan Area) 0.1559 0.1135 20.1092

31 Pahrump, NV (Micropolitan Area) 0.1546 20.0364 20.2573

32 Fort Leonard Wood, MO (Micropolitan Area) 0.1542 0.2880 0.0677

33 Carson City, NV (Metropolitan Area) 0.1540 0.5265 0.3065

34 Norwich-New London, CT (Metropolitan Area) 0.1534 0.3287 0.1095

35 Decatur, IL (Metropolitan Area) 0.1533 0.2927 0.0736

36 St. Marys, GA (Micropolitan Area) 0.1511 0.1630 20.0529

37 Rochester, MN (Metropolitan Area) 0.1511 0.4771 0.2613

38 Warsaw, IN (Micropolitan Area) 0.1510 0.2754 0.0597

39 Manchester-Nashua, NH (Metropolitan Area) 0.1471 0.2958 0.0857

40 Wilson, NC (Micropolitan Area) 0.1450 0.2973 0.0902

41 Fort Valley, GA (Micropolitan Area) 0.1395 20.0795 20.2787

42 Hartford, CT (Metropolitan Area) 0.1357 0.2802 0.0864

43 Crawfordsville, IN (Micropolitan Area) 0.1351 0.2644 0.0714

44 LaGrange, GA (Micropolitan Area) 0.1321 0.3561 0.1674

45 Owatonna, MN (Micropolitan Area) 0.1316 0.4748 0.2869

46 Warner Robins, GA (Metropolitan Area) 0.1313 0.2055 0.0178

47 Findlay, OH (Micropolitan Area) 0.1304 0.4602 0.2739

48 Racine, WI (Metropolitan Area) 0.1285 0.0224 20.1612

49 Kennewick-Pasco-Richland, WA (Metropolitan Area) 0.1281 0.1230 20.0600

50 San Francisco-Oakland-Fremont, CA (Metropolitan Area) 0.1241 0.2166 0.0394

doi:10.1371/journal.pone.0058407.t001
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income, R, versus capital returns, K. Given the observed values for

the scaling coefficients for total wages and labor, their difference

can generate an average increase in productivity resulting from a

self-similar wage premium for the same amount of labor (and also,

potentially, a savings in the amount of labor input). The scale-

adjusted measure for urban TFP can be well-approximated by:

jA
i &(1{a) jW

i {jl
i

� 	
: ð26Þ

Below we measure these quantities in order to shed light on the

ways in which cities can be more or less economically productive

independently of their population size.

Decomposition of Urban Total Factor Productivity
We calculated the scale-adjusted TFP using equation (26) and

data for both Metropolitan and Micropolitan Areas averaged over

the period 2001–2005, and setting 1– a (labor’s share of income),

to be 0.7. For this decomposition we only use data on metropolitan

wages and employment as these two variables are directly and

unambiguously measurable.

The top fifty urban areas, ranked according to the values of

their scale-adjusted productivity, jA, are shown on Table 1, while

Table 2 shows the rankings for the top fifty Metropolitan Areas

(MSAs). One result immediately stands out: the absence of most of

the large metropolitan areas from the top ranks of the most

productive urban centers in contrast to a ranking generated by

simply using the conventional output per worker as the measure of

productivity. The scale-adjusted measure of urban TFP removes

the productivity-enhancing effects of population size thereby

identifying the truly most productive urban areas–the standard

ranking using per capita measures seriously overestimates the

largest metropolitan areas’ productivity.

Figure 4 shows all urban areas in terms of their two

performance metrics: the SAMIs for wages, jW, and labor, jL.

The population size of each city is denoted by the size of the

circles, and their scale adjusted productivity jA as their color. We

easily see that the 45u solid green line divides the plane into two

regions: above the line, where jA .0, urban areas display above

average TFP and are denoted in warm colors (green to red); below

the line, where jA .0, and denoted in cold colors (green to dark

blue) appear urban areas with below average TFP. Perhaps the

most striking aspect of Figure 4 is how narrow that band of values

is; remarkably there are almost no cities in the second and forth

quadrants far from the origin.

The results show an interesting trend in the exceptionality of

urban TFPs, once population size has been factored out. While the

way to maximize TFP is to maximize the difference jW {jL; that

is to have exceptionally high wages and exceptionally low labor

input (employment), few cities with such properties exist (they

would appear in the 2nd quadrant of Figure 4). The urban area

with the highest productivity, by far, is Los Alamos, the

Micropolitan Area in New Mexico that hosted the Manhattan

Table 2. Top 50 metropolitan areas, ranked by their scale-
adjusted TFP (jA).

Area jA jW jL

1 San Jose-Sunnyvale-Santa Clara, CA 0.4743 0.7609 0.0834

2 Bridgeport-Stamford-Norwalk, CT 0.4433 0.7178 0.0845

3 Trenton-Ewing, NJ 0.3917 0.7567 0.1972

4 Kokomo, IN 0.3784 0.5597 0.0192

5 Columbus, IN 0.3140 0.6575 0.2088

6 Hinesville-Fort Stewart, GA 0.2920 0.3145 20.1026

7 Oshkosh-Neenah, WI 0.2860 0.5504 0.1418

8 Ann Arbor, MI 0.2856 0.6314 0.2235

9 Boulder, CO 0.2852 0.6337 0.2263

10 Durham-Chapel Hill, NC 0.2839 0.6480 0.2424

11 Bloomington-Normal, IL 0.2789 0.6014 0.2030

12 Battle Creek, MI 0.2742 0.3022 20.0895

13 Carson City, NV 0.2709 0.6742 0.2871

14 Norwich-New London, CT 0.2659 0.4771 0.0973

15 Rochester, MN 0.2657 0.6396 0.2599

16 Decatur, IL 0.2652 0.3952 0.0164

17 Manchester-Nashua, NH 0.2588 0.4495 0.0798

18 Warner Robins, GA 0.2489 0.3947 0.0392

19 Hartford-West Hartford-East Hartford, CT 0.2449 0.4428 0.0930

20 Kennewick-Pasco-Richland, WA 0.2445 0.3191 20.0303

21 Racine, WI 0.2420 0.1725 20.1733

22 Huntsville, AL 0.2343 0.4667 0.1320

23 Vineland-Millville-Bridgeton, NJ 0.2321 0.1744 20.1572

24 San Francisco-Oakland-Fremont, CA 0.2292 0.3744 0.0469

25 Napa, CA 0.2287 0.5025 0.1757

26 Ithaca, NY 0.2151 0.4459 0.1386

27 Washington-Arlington-Alexandria,
DC-VA-MD-WV

0.2146 0.4588 0.1522

28 Monroe, MI 0.2146 20.063920.3705

29 Saginaw-Saginaw Township North, MI 0.2130 0.2330 20.0712

30 Longview, WA 0.2101 0.1487 20.1515

31 Springfield, IL 0.2081 0.4361 0.1389

32 Sheboygan, WI 0.2079 0.4470 0.1500

33 Atlantic City-Hammonton, NJ 0.2050 0.4705 0.1776

34 Dalton, GA 0.2048 0.4995 0.2069

35 Boston-Cambridge-Quincy, MA-NH 0.1980 0.3698 0.0870

36 Sandusky, OH 0.1974 0.3751 0.0931

37 Elkhart-Goshen, IN 0.1925 0.5796 0.3046

38 Janesville, WI 0.1899 0.2121 20.0591

39 Corvallis, OR 0.1840 0.4342 0.1713

40 Burlington-South Burlington, VT 0.1837 0.4833 0.2209

41 Mansfield, OH 0.1828 0.2294 20.0318

42 Peoria, IL 0.1783 0.2633 0.0086

43 Rome, GA 0.1781 0.2529 20.0015

44 New Haven-Milford, CT 0.1779 0.2168 20.0374

45 Holland-Grand Haven, MI 0.1757 0.2310 20.0201

46 Cheyenne, WY 0.1749 0.4234 0.1736

47 Cedar Rapids, IA 0.1722 0.3898 0.1438

48 Spartanburg, SC 0.1717 0.2269 20.0183

Table 2. Cont.

Area jA jW jL

49 Harrisburg-Carlisle, PA 0.1716 0.4782 0.2330

50 Bay City, MI 0.1657 0.0233 20.2134

doi:10.1371/journal.pone.0058407.t002
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Project, not shown in Figure 3 because it is so far off-scale. Los

Alamos, with a population of about 18,000 inhabitants, receives an

annual investment of approximately $2.2 billon in federal funds

allocated to Los Alamos National Laboratory. Los Alamos shows

both exceptionally high wages and levels of employment, but

clearly these are largely the result of a particular federal decision

related to the high value of Los Alamos National Laboratory’s

mission and its need for a small and remote location. The second

highest urban TFP, even after accounting for population size,

corresponds to Silicon Valley (the San Jose-Santa Clara, Metro-

politan Area in California). San Jose also shows exceptionally high

wages, and to a lesser extent high levels of employment. All other

urban areas with highest TFP (dark red in Figure 4) share most of

the same general characteristics. A singular exception is Harriman,

TN, which shows a high TFP as a result of low levels of

employment, and not particularly high wages.

To emphasize these points we show in Figure 4 several lines of

equal TFP, which are parameterized by jW = C+jL, where the

intercept C = jA/a is set for different values of jA. The red solid

line in Figure 4 maps the space of equal TFP at varying jW and jL

for Silicon Valley. Note how no other urban area approaches the

performance of San Jose, and no urban areas even come close

among those with employment less than average (2nd and 3rd

quadrants). Similarly the lowest possible TFP would correspond to

low wages and high employment (4th quadrant). The dark blue

line, tracks the TFP of the lowest ranked metropolitan area: Rio

Grande City-Roma, TX. Most actual cities with very low TFP,

including the metropolitan areas of McAllen and Brownsville, TX,

show similar patterns of low wages and low employment. However

there are some exceptions, such as Vermillion (South Dakota),

which shows exceptionally large employment (jL = 0.44) but only

average total wages (jW = 0.03). While arguably these are signs of a

functioning community it is penalized in terms of an exceptionally

low TFP because its marginal product of labor (MPL) is small. A

summary of these results is provided by a simple linear regression

(jW = 20.02+1.17 jL, R2 = 0.74, black solid line), which is close to

a 45-degree line but also shows a slightly greater slope emphasizing

the trend for higher wages and lower employment in high TFP

cities and lower wages and higher employment for those with

lower TFP.

These results suggest that the principal objective of cities is not

to maximize their productivity alone. In fact, as decentralized

economies where economic optimization is driven primarily by

individuals, the key property of economically successful cities may

be to maximize wages and this in turn may lead to general high

levels of employment through supporting activities. This close

relationship between high wages and high levels of employment

and vice-versa seems to be a general feature of urban economies in

the U.S. It would be interesting to test it further in other nations,

through time.

Discussion

We have shown that an integrated consideration of the standard

approach to urban areas as aggregate production devices and of

the systematic dependence of the main factors of production on

population size (via urban scaling) results in a specific form of a

Cobb-Douglas type production function common to all cities. The

resulting functional form manifests explicitly dependences of urban

productivity on population size and local factors in terms of size-

independent deviations (SAMIs). In particular, the analysis leads to

a new expression for the total factor productivity (TFP) in terms of

an explicit scale-invariant dependence on population size and on

size-independent deviations due to the mismatch between labor

income and employment (as well as capital income and capital

stock).

We believe that these results provide some reassurance to urban

economic theory, but, more importantly, a set of tight quantitative

constraints that any model that aspires to describe real cities

should satisfy. In fact, the decomposition of urban productivity

through scaling analysis shows that the productivity of urban areas

is actually a fairly low dimensional quantity characterized not only

by a systematic average dependence on population size but also by

a close relationship between exceptions to population size

expectations in terms of wages and labor. This decomposition

parallels, and may motivate, a re-examination of the sometimes

difficult distinction between general urbanization effects common

to all cities, which must be average functions of city size, and more

particular localization effects that may be specific to a single city or

to groups of cities.

It is the fact that larger deviations in magnitude occur for wages

than for employment that makes this co-variation positive or

negative. These results suggest that the economies of cities are not

maximizing total productivity per se, as might be the case for a

firm, but instead at providing environments for economic

development and productivity enhancements that, when success-

ful, lead to growth in both wages and employment. We believe

that economic theory aimed at explaining the aggregate produc-

tivity of urban areas (in the U.S., at least) should be aimed at these

clear and regular empirical relationships. It remains an open

question for further study whether these relations apply to other

urban systems, and to what extent the approximate time

independence of the factors share, a, can be derived from a

deeper understanding of the processes of economic growth at the

regional and national levels.

Materials and Methods

Functional City Definitions
Metropolitan and Micropolitan Statistical Areas are defined by the

U.S. Office of Management and Budget and are standardized

Figure 4. The SAMIs for urban areas’ TFP (color) in the jW- jL

plane. The size of each symbol denotes its population (smallest cities
are shown at the same small symbol size). The solid green line divides
the space into TFPs above (positive) and below (negative) the expected
value for each city’s population. The solid red line is the equal TPF
parameter space for Silicon Valley, while the solid blue line is the equal
TFP space for the least productive city in the sample (Rio Grande City-
Roma, TX). The black solid line shows the linear best fit to the data
jW = 20.02+1.17 jL (R2 = 0.74).
doi:10.1371/journal.pone.0058407.g004
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county-based regions having at least one urbanized area (with

50,000 or more population in the case of MSAs or at least 10,000,

but less than 50,000, in the case of Micropolitan Areas), plus

adjacent territory with a high degree of social and economic

integration with the core as measured by commuting ties. Both

MSAs and Micropolitan Areas are in effect unified labor markets

that represent a wide variety of geographic, demographic and

socio-economic characteristics. There are 366 MSAs and 576

Micropolitan Areas in the USA as of June 2011.

Data Sources
Data on Gross Metropolitan Product and on metropolitan

employment, population and personal income are provided by the

U.S. Commerce Department’s Bureau of Economic Analysis

(BEA) (www.bea.gov/regional/index.htm#gsp). Total personal

income is calculated as the sum of wage and salary disbursements,

supplements to wages and salaries, proprietors’ income, rental,

dividend and interest income, and personal current transfer

receipts, less contributions for government social insurance, while

labor income is the sum of wage and salary disbursements and

supplements to wages and salaries. Data on total wages,

employment and population were obtained from the Regional

Economic Accounts also produced by the BEA (www.bea.gov/

regional/reis/). Wage data was deflated using the Federal

Reserve’s chain-type price index and is expressed in 2005 dollars

(www.research.stlouisfed.org).
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