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Abstract

OpenFlow makes a network highly flexible and fast-evolving by separating control and data

planes. The control plane thus becomes responsive to changes in topology and load balanc-

ing requirements. OpenFlow also offers a new approach to handle security threats accu-

rately and responsively. Therefore, it is used as an innovative firewall that acts as a first-hop

security to protect networks against malicious users. However, the firewall provided by

OpenFlow suffers from Internet protocol version 6 (IPv6) fragmentation, which can be used

to bypass the OpenFlow firewall. The OpenFlow firewall cannot identify the message pay-

load unless the switch implements IPv6 fragment reassembly. This study tests the IPv6

fragmented packets that can evade the OpenFlow firewall, and proposes a new mechanism

to guard against attacks carried out by malicious users to exploit IPv6 fragmentation loop-

hole in OpenFlow networks. The proposed mechanism is evaluated in a simulated environ-

ment by using six scenarios, and results exhibit that the proposed mechanism effectively

fixes the loophole and successfully prevents the abuse of IPv6 fragmentation in OpenFlow

networks.

Introduction

The use of software-defined networking (SDN) has rapidly increased in the last decade, and

this increased usage has resulted in a new technique to control and manage a network from a

centralized controller [1]. SDN uses many protocols, the most common of which is OpenFlow

[2], [3], [4]. OpenFlow has elicited interest due to the amount of control it provides to develop-

ers of network control software. The Control-plane logic can be moved from individual net-

work devices to a centralized controller or a collection of controllers by generating a

standardized network-accessible interface to control the data plane of network equipment.

The network protocol is changed by implementing the control logic in the controller, and

complex traffic engineering requirements are met by reconfiguring, updating, or swapping the

controller instead of upgrading or replacing the network hardware [5], [6]. Moreover, due to

the capability of OpenFlow switches to manage and control network, several studies, such as

[7], [8], [9], and [10], have used OpenFlow’s capabilities as a firewall (i.e., first-hop security).

The firewall capabilities of OpenFlow switches can be used to filter packets on layer two,

three and four to prevent and mitigate various types of attacks such as Denial of Service (DoS)
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and Man-in-the-middle (MITM). However, these firewall-based rules and filters can easily be

circumvented in IPv6 based networks because many attacks can be fused with the IPv6 frag-

mented packet to bypass OpenFlow filtering. OpenFlow documentation [11] suggests that an

OpenFlow switch can be configured in a manner that it can reassemble fragmented packets to

avoid packet evasion. Despite the capability of OpenFlow switches to reassemble the IPv6 frag-

mented packet and prevent these attacks, the reassembly approach is not ideal and not even a

valid solution for real-world network designs. This approach may degrade the network perfor-

mance and introduce packet latency because it requires waiting for all fragments to arrive

before reassembly [12], [13].

Several forwarding and protective devices that enforce a forwarding policy on a packet-by-

packet basis are available in traditional networks. These devices suffer from evasion by frag-

mented packets that do not contain the entire IPv6 header chain. Therefore, RFC7112 recom-

mends that intermediate systems (e.g., firewall or router) discard these fragmented packets

[14]. These protection techniques are not applicable and cannot be used to prevent attacks car-

ried by using IPv6 fragments in OpenFlow networks. The OpenFlow networks are managed

and controlled by the centralized controllers where switches adhere to policies to pass-

through/drop packets based on flow entries provided by the controllers. Furthermore, these

techniques seem impractical as network administrators are forced to configure all switches

manually in the network [15]. Since no known existing protection technique can be used to

prevent abuse of IPv6 fragments in OpenFlow networks. This research attempts to construct a

sophisticated mechanism to protect systems against anomalous fragmented packets.

The remaining sections are arranged as follows. Section 2 presents background information

concerning IPv6 extension headers (EHs), IPv6 Fragmentation, abuse of IPv6 EHs, and how

the OpenFlow protocol started its support for IPv6. Section 3 presents related works. Section 4

describes the conceptual model for the proposed mechanism. Section 5 discusses the imple-

mentation details and validates the results by using six scenarios. Section 6 discusses the results

and implications of the proposed mechanism, and Section 7 presents the conclusion and

future work.

Background

Several of the features of IPv6 are new and unique, and one of the most significant features

and improvement in IPv6 is the Extension Headers [16]. The additional information enclosed

within IPv6 Extension Headers helps network devices (such as routers and switches) to deter-

mine efficient ways to process an IPv6 packet. The downside, however, is that Extension Head-
ers create new attack opportunities [17]. An adversary can exploit extension headers to evade

firewalls and security systems. This study discusses the IPv6 Extension Headers in greater detail

in the first subsection. The second subsection presents the IPv6 fragmentation. The third sub-

section shows an example of how an attacker can exploit IPv6 fragmentation to circumvent a

firewall. The last two subsections briefly discuss OpenFlow standard and its support IPv6

protocol.

IPv6 extension headers (EHs)

IPv6 extension headers are optional fields that are added to support extra functionality

required per case. Within an IPv6 packet, these optional extension headers are placed between

IPv6 header and transport layer protocol headers such as TCP, UDP, or ICMPv6. The exten-
sion headers are linked to the IPv6 header so that each successive header points to the next

one. The type of subsequent headers can be determined by examining the next header field

(i.e., NH field in IPv6 packet), which may have one of the values given in Table 1. The cascaded
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header chain terminates either with an upper-layer protocol or with a value of 59 (i.e., No Next
Header) which indicates the end of the header chain. IPv6 packets may contain zero, one, or

more extension headers, and each extension header includes a length field and a Next Header
field. Every offset of extension header starts after the length of a preceding header is finished.

Fig 1 depicts an example of chained extended headers linked along with an IPv6 header.

IPv6 fragmentation

IP fragmentation is a process that breaks packets into smaller pieces (fragments) so that the

resulting pieces can pass through a link with a smaller maximum transmission unit (MTU). In

IPv6 networks, fragmentation is carried out at the source node, and the receiver node reassem-

bles the fragmented packets to its original form [19].

Fragmentation requires the source node to discover a path with the smallest MTU sup-

ported by any sub-network on the path by using Path MTU Discovery (PMTUD). PMTUD is

a mechanism to check the MTU size along the path between two nodes. When a source node

sends a packet to the destination node, all routers on the path compare the packet size with

their MTU. If packet size exceeds the MTU size, then the router will drop the packet and gen-

erate an ICMPv6 error message containing its MTU size and send it back to the source node.

Upon receiving the smallest MTU size along the path, the source node will fragment the pack-

ets to match the smallest MTU for the current flow, as shown in Fig 2. Alternatively, the source

node may set the packet size to 576 bytes, which is the smallest MTU supported by all networks

[19].

In IPv6 protocol, fragmentation is accomplished using an extension Fragment Header.
Unlike IPv4 protocol where fragmentation-fields were part of the IPv4 header, these fields

have been moved to extension header in IPv6. All the fragmented packets must contain exten-

sion Fragment Header along with the header information of the original packet as shown in

Fig 4. The extension Fragment Header has all the information required to reassemble the

packet at the destination. Fig 3 shows the extension Fragment Header format [20]. The Frag-
ment Header has the following fields:

• Next header (8-bits): Defines the type of next header that follows the extension Fragment
Header.

• Fragment Offset (13-bits): Identifies where the fragment must be placed during the reassem-

bling of the fragmented packet.

Table 1. IPv6 extension headers along with their associated NH numerical values [18].

No. Header Type NH Description

1 Basic IPv6 - Main IPv6 header

2 Hop-by-Hop (HBH) 0 A destination of the packet only checks these options

3 Destination Options (DOH) 60 All nodes on the path must check these Options

4 Routing Header (RH) 43 Used to specify the route for packets

5 Fragment Header (FH) 44 Used for fragmentation information

6 Authentication Header (AH) 51 Used to confirm the authenticity of the packet.

7 Encapsulation Security Payload 50 Provides encrypted data for secure communication

8 Mobility 135 Used for Mobile IPv6.

9 Host Identity Protocol 139 Used for Host Identity Protocol version 2

10 Shim6 Protocol 140 Used for Shim6

11 No next header 59 Indicates the end of the header chain

https://doi.org/10.1371/journal.pone.0232574.t001
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• Resaved (2-bits): Reserved for future use.

• Identification (32-bits): Identify a unique Id for the original packet.

Fig 1. IPv6 packets with zero, one and two extended header fields.

https://doi.org/10.1371/journal.pone.0232574.g001

Fig 2. PMTUD and fragmentation process.

https://doi.org/10.1371/journal.pone.0232574.g002
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Abuse of IPv6 fragmentation

The basic idea behind the abuse of IPv6 fragmentation is that the legitimate IPv6 packet is

crafted in a manner that IPv6 header chain of the attacker packet is fragmented into several

fragments and the first fragmented packet may not contain the necessary information about

upper-layer protocols such as TCP and UDP. IPv6 header chain is required by security devices

to determine that the incoming packets are compliant with their configured policies. Often,

intermediate devices such as routers and non-stateful devices only inspect the first fragmented

packet containing the header information (i.e., an IPv6 fragment with a fragment offset equal

to 0), allowing attackers to obfuscate data in subsequent fragmented packets to circumvent the

security devices. The Attacker breaks down a legitimate packet in many smaller fragmented

packets to hide data. The obfuscated data carried out in these small fragmented packets look

legitimate and can easily pass through security systems, however, once reassembled in its

entirety at the receiving host, it can be used to execute a DoS attack on the target machine.

Fig 4. IPv6 packet: (a) original packet and (b) packet after fragmentation.

https://doi.org/10.1371/journal.pone.0232574.g004

Fig 3. Extinction fragment header format.

https://doi.org/10.1371/journal.pone.0232574.g003
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According to Gont (2014) [18], two types of fragmented packets can be used to evade a protec-

tion system.

1. Known upper-layer protocol. In this type (Type-1) of fragmented packets, an attacker

can use Fragment Header along with Destination Options Header, Hop-By-Hop, or Routing
Header to hide upper-layer protocol headers (e.g., TCP, UDP, ICMPv6). Fig 4(A) depicts the

original packet where the cascaded header chain retains header information and ultimately

terminates with upper-layer protocol header information (i.e., TCP). In contrast, in Fig 4(B),

the last Next Header field of the first fragment is set to value 6, i.e., TCP (known upper-layer

protocol, i.e., TCP), whereas the upper-layer header (i.e., TCP) itself is shifted in the second

fragment. The switch processing only second fragment cannot determine how many bytes

should be skipped to get the offset of the upper-layer header because the Destination Options
Header breaks the header chain by occupying space between Fragment Header and Upper-

Layer header [21].

2. Concealed upper-layer protocol. In the second type (Type-2), the attacker hides both

the last Next Header and the Upper-Layer header; hence, the switch cannot determine the type

of Upper-Layer protocol. This concealment can be achieved by using Fragment Header and

two Extension Headers (i.e., Destination Options Header, Hop-By-Hop, or Routing Header).
Fig 5. illustrates an example of this fragmented packet. The figure shows the original packet

(TCP packet) before fragmentation and the two resulting packets that are sent as part of the

attack. In this case, the last Next Header field of the first fragment is set to Destination Options
Header, and the last Next Header field of the original packet is in the second fragment. Thus,

the first fragment does not expose the last Next Header of the original packet (i.e., the Upper-

Layer protocol) [21]. The Type-2 of the fragmented packet presents similar challenges as the

first attack. Besides, the first fragment does not have the Upper-Layer header type.

OpenFlow

The functional operations of any conventional switching device can be broadly categorized

into two types, namely, Data-Plane and Control-Plane. The Data-Plane activities operate on

received data packets and take necessary actions such as forwarding incoming packets to a spe-

cific outbound port. The Control-Plane deals with management activities, such as maintaining

switching tables, and enforce packet forwarding policies [22].

In any conventional switching device, both Data-Plane and Control-Plane activities take

place on the same switching device. In OpenFlow networks, the Control-Plane is decoupled

from Data-Plane. The OpenFlow switches only take care of Data-Plane, whereas the Control-

Plane activities are handled by centralized Controllers. Upon receiving a packet from any node,

the OpenFlow switch will perform a table-lookup and based on flow entries it will take appro-

priate actions (i.e., forward, drop etc.), otherwise and it will consult the centralized controller

if it does not find a match-entry for the received packet [22]. The OpenFlow network has three

main components which are OpenFlow Controller, OpenFlow Switches and OpenFlow proto-

col as shown in Fig 6.

In the OpenFlow network, the OpenFlow controller manages the entire network. The con-

troller is considered the brain of the OpenFlow network [23]. The controller maintains net-

work topology information, installs the instruction in all OpenFlow devices and monitors the

network status network. On the other hand, an OpenFlow switch is to consider forwarding

devices. Every OpenFlow switch contains a Flow Table which consists of flow entries and is

managed by the controller through insert and deletes flow entries by using the OpenFlow pro-

tocol. The flow entry consists of several fields, the main fields which are match fields, and
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Fig 5. IPv6 packets: (a) original packet and (b) packet after fragmentation.

https://doi.org/10.1371/journal.pone.0232574.g005

Fig 6. OpenFlow network.

https://doi.org/10.1371/journal.pone.0232574.g006
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instructions. The match fields are used to compare the packet and the instructions are used to

define the action, such as drop and forward.

The basic workflow of the OpenFlow network is when the switch receives a packet, it checks

the flow table to match the packet header against flow entry. If the packet header matches a

flow entry, the switch will take action according to the instructions of the flow entry. Other-

wise, the switch sends the packet header to the controller. The controller supplies the switch

on how to handle the packet by using OpenFlow flow entries. Subsequently, the Switch for-

wards the packet based on the controller instruction and saves this instruction to forward the

other similar packets. The following section explains match field that used to match excep-

tional conditions in IPv6 Extension Headers [24].

OpenFlow support for IPv6

OpenFlow has undergone many revisions, and additional changes are likely [11]. OpenFlow

began to support essential IPv6 matching and header rewriting in version 1.2. In the next ver-

sion, OpenFlow 1.3 added the field OXM_OF_IPV6_EXTHDR, which can match the presence

of standard IPv6 Extension Headers and several exceptional conditions in IPv6 Extension

Headers. OXM_OF_IPV6_EXTHDR is a pseudo field that indicates the presence of various

IPv6 Extension Headers in the packet header, as shown in Fig 7. For example, under Open-

Flow Protocol IPv6 Extension Header (OFPIEH), the OFPIEH_UNSEQ flag is used to match a

packet with IPv6 Extension Headers that are not in the preferred order [11].

Related work

In traditional networks, there are many protection mechanisms that devices that enforce a

forwarding policy on a packet-by-packet basis. These protection mechanisms can be evaded

by using IPv6 fragmentation. The following are the most common security mechanisms that

prevent the abuse of IPv6 Fragmentation.

Access control list (ACL), a stateless firewall, is the most popular mitigation technique

against IPv6 attacks mentioned in [25]. ACL defines a set of policies that enable switching

devices to accept or reject inbound/outbound packets. ACL policies performed sequentially

and in a logical order. The ACL policies enable switching devices to filter each packet based on

the packet header information (such as the source/destination port addresses) to discard mali-

cious packets. The ACL policies act upon IPv6 packets having complete header-chain details,

which is sometimes not available in fragmented packets. Therefore, the ACL policies cannot

prevent IPv6 fragmented packets from evading the switches. To solve this problem some ven-

dor such as Cisco supports the ACL by “undetermined-transport” keyword. When this key-

word is used with a deny statement, the ACL drops a packet if it cannot determine the upper-

layer protocol in the fragmented packet [26].

Router advertisement (RA) guard is another protection firmware designed to protect net-

works against RA based Attack. The RA based attack is one of the most common attacks in the

IPv6 network, which is rogue RA message crafted by the attacker and send to IPv6 nodes in

the network to inject rogue information in the IPv6 host which could cause either DoS or

MITM attacks. An RA-Guard mechanism is used to validate incoming RA messages and deter-

mine whether they match the conditions defined in the policy. The RA-Guard mechanism was

unable to handle fragmented packets. The newer versions of RA-Guard opted to discard the

first fragment that does not include the entire header chain because the RA-Guard cannot

determine the content of the first fragment [21].

Dynamic host configuration protocol (DHCP) v6-Shield is another firmware designed to

protect networks against a rogue DHCP server. An adversary could install a rogue DHCPv6
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server on an IPv6 network to inject malicious information to carry out attacks such as DoS

and MITM. A DHCPv6-Shield mechanism is used to validate incoming DHCPv6 server mes-

sages on a specific port. This mechanism also can be evaded by the IPv6 fragmentation packet.

Therefore, it is designed to discard the first fragment that does not contain the entire header

chain [27].

The main limitations of the aforementioned mechanisms are firstly because it is very diffi-

cult to manage OpenFlow switches in medium to large-scale/enterprise networks [15]; Sec-

ondly, the above-listed schemes drop the fragmented packet regardless of the information that

exists in the next header which may lead in dropping a legitimate fragmented packet as well

[14]. Lastly, these mechanisms cannot work in an OpenFlow network because Control-Plane

activities are managed by a centralized controller that has a network-wide view of entire

network.

Proposed mechanism

The abuse of IPv6 Extension Headers enables attackers to deceive switches form adequately

applying OpenFlow policies to filter and block IPv6 fragmented packets discussed in section

Abuse of IPv6 Fragmentation. Each type of fragmented packets has attributes for first and

non-first fragments. The proposed mechanism intends to match anomalous conditions in the

first fragment of an IPv6 fragmented packet. The attack by exploiting IPv6 fragmentation can

be easily identified by analyzing the first fragment because the suspicious presence of incom-

plete and broken IPv6 header chain indicates an anomalous behavior. On the other hand, IPv6

fragmented attack carried out using non-first fragmented packets is difficult if not impossible

to detect since non-first fragmented packets contain only Fragmented Header extension chain

which does not reveal the information about Upper-Layer protocol header. Fortunately, filter-

ing and blocking of the first fragmented packet are sufficient to detect and prevent the attack

because without having the first-fragmented packet, the receiving host cannot reassemble the

fragmented packet, and hence the packets are discarded.

Fig 7. OXM_OF_IPV6_EXTHDR match field in OpenFlow standard.

https://doi.org/10.1371/journal.pone.0232574.g007

Fig 8. Two new flags for filtering Type-1 and Type-2 fragmented packets.

https://doi.org/10.1371/journal.pone.0232574.g008

PLOS ONE Prevent the abuse of IPv6 fragmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232574 May 11, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0232574.g007
https://doi.org/10.1371/journal.pone.0232574.g008
https://doi.org/10.1371/journal.pone.0232574


Two new flags have been added and used in the proposed mechanism to filter out Type-1
and Type-2 anomalous fragmented packets. These flags are OFPIEH_UNDLH (Undetermined

Last Header), and OFPIEH_UNDLNH (Undetermined Last Next Header) to match Type-1

and Type-2 anomalous conditions, respectively. Fig 8 shows the flags and the fragmented

packets that can be filtered using these flags.

These flags will be set to value 1 whenever IPv6 fragmented packets match the anomalous

conditions. Fig 9 demonstrates the working of these flags in an OpenFlow switch.

For simplicity, these two flags have been added in the existing standard OpenFlow protocol

without introducing new matching fields. The proposed mechanism uses the OXM_OF_IP-

V6_EXTHDR field, and the two flags are appended to the end of the flags of the OXM_OF_IP-

V6_EXTHDR field, as illustrated in Fig 10.

The two new flags, OFPIEH_UNDH and OFPFIEH_UNDLH, are appended next to the

OFIEH_UNSEQ, and they obtain bit numbers 9 and 10, respectively. To match the first frag-

ment, as shown in Fig 4(b), the OXM_OF_IPv6_EXTHDR field is set to (010 0000 0000)2 that

is equal to (512)10. Further, to match the first fragment in Fig 5(b), the OXM_OF_EXTHDR

field is set to (100 0000 0000)2 this equivalent to (1024)10. These newly added flags offer flexi-

bility to match different types of packets. For example, the OFPIEH_UNDLH flag can be used

with OpenFlow’s OXM_OF_IP_PROTO match field (upper-layer protocol) that helps to pass

through or drop the first fragment that has the type of upper-layer protocol and the hidden

upper-layer header. The added flags give OpenFlow programmers more flexibility to forward

or drop the desired packet at will.

Implementation

The proposed mechanism is implemented to apply the modifications to the OpenFlow switch

and controller. The Ryu Controller [28] running OpenFlow 1.3 has been modified with added

flags. In addition, the Ofsoftswitch13 switch [29] is also modified to process the new flags

because this switch is a virtual open-source switch that supports the OXM_OF_IP-

V6_EXTHDR match field. The modified source code, along with scenarios, can be accessed at

https://github.com/al-ani/fragmenation_attack.

Testing the network topology

The network topology used to test the functionality and effectiveness of the proposed mecha-

nism is comprised of two host machines (i.e., Host-A and Host-B), one OpenFlow switch and

one controller server, as shown in Fig 11. The Mininet network emulator tool is used to gener-

ate a simple network topology with a Ryu framework controller and an Ofsoftswitch13 switch.

Both Ryu Controller and Ofsoftswitch13 are modified and updated with flags proposed in this

study. The Scapy (a packet manipulation tool) is used to craft fragmented packets [30] and to

launch an attack on the target machine. The Wireshark (a packet analyzer tool) [31] is used to

monitor and capture the network traffic between the switch and Host-B.

Testing scenarios

In order to test and validate the functioning of the proposed mechanism, six different scenar-

ios are being developed, where each scenario attempts to block ICMPv6 echo request messages

by using an OpenFlow switch. Table 2 shows the three flow entries preconfigured on Open-

Flow switch in different scenarios to test and validate the results.

• Flow-Entry-1. It serves the purpose of dropping all ICMPv6 echo request packets.
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• Flow-Entry-2. The flag OFPIEH_UNDLH is used to filter Type-1 packets. This entry drops

all fragmented packets where the upper-layer protocol is ICMPv6, but the last Extension
Header entry is missing.

• Flow-Entry-3. The flag OFPIEH_UNDLNH is used to test and drop the first fragmented

packet that does not have the last Next Header of the original packet.

In all the scenarios mentioned below, the communication between Host-A and Host-B is

carried out using network topology mentioned in Fig 10. The Fragmented packets have been

crafted using Scapy [30], and the network traffic is captured, monitored, and analyzed using

Wireshark [31].

Scenario-I. Drop unfragmented ICMPv6 echo packet. The first scenario aims to verify

whether the Flow-Entry-1 works properly and drops unfragmented ICMPv6 echo request

packets or not. In this scenario, only the standard OpenFlow match field is used; therefore, the

switch is preconfigured with Flow-Entry-1. On receiving an ICMPv6 echo request packet from

Host-A, the switch consults to its flow entry table and finds a match that enforces a drop action

on such a packet. Fig 12 depicts that the packet count (pkt_cnt) is equal to 1 on the switch, sig-

nifying that one ICMPv6 echo packet matching the Flow-entry-1 is filtered and dropped. Non-

appearance of any packet on Host-B further strengthens the confidence of successful

enforcement of the drop policy applied on the switch.

Scenario-II. Evasion of fragmented ICMPv6 echo packet. In the second scenario, Host-
A sends a fragmented ICMPv6 echo request packet similar to that in Fig 4(B). This scenario

aims to test how an attacker can use Type-1 fragmented packet to evade the OpenFlow switch

having configured only one flow entry, i.e., Flow-Entry-1. Fig 13 shows that a fragmented

packet is sent from Host-A to Host-B, the Wireshark dump shows that Host-B successfully

received an echo message from Host-A, and in response, Host-B sends back a reply message to

Fig 9. Flowchart of the proposed mechanism.

https://doi.org/10.1371/journal.pone.0232574.g009

Fig 10. OXM_OF_IPV6_EXTHDR match field with the new flags.

https://doi.org/10.1371/journal.pone.0232574.g010
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Host-A. Thus, the attack went successful, and the packet penetrated the security and success-

fully evaded the switch to reach the intended destination, i.e., Host-B.

Scenario-III. Drop fragmented (type-1) ICMPv6 echo packet. The switch in Scenario-II

was unable to block the attack carried out by using IPv6 fragmented packets; therefore, the

Scenario-III tests the “OFPIEH_ UNDLH” flag to drop the fragmented packet crafted in Sce-

nario-II. To attain this, the switch is preconfigured with the Flow-Entry-2 to match and drop

packets that do not contain the last header and have the last Next Header set to ICMPv6.

When the switch receives a fragmented packet from Host-A, it consults to its flow table and

finds flow entry (i.e., Flow-Entry-2), which enforces the switch to drop such packets. Following

are findings observed at the switch and the host Host-A:

• It can be observed in Wireshark dump captured at Host-B that, Host-B does not receive the

first fragmented packet, and only receives the second fragmented packet, as shown in Fig 14.

Thus, the Host-B, without having the first fragment, cannot reassemble the fragmented

packet and discards it.

• Fig 15 shows the first fragment from Host-A was received at the switch, and it was dropped

based on the action enforced by Flow-Entry-2.

Based on the results as mentioned above, it can be claimed that the flag OFPIEH_UNDLH

was effectively used to identify and drop the fragmented packet.

Scenario-IV. Evasion of fragmented (type-2) ICMPv6 echo packet. The flag OFPIEH_

UNDLH used in Scenario-III successfully patched the loophole and blocked Type-1 frag-

mented packets; however, the flow table entries Flow-Entry-1 and Flow-Entry-2 are not suffi-

cient to prevent Type-2 fragmented packets. To prove this, the scenario-IV aims to evade an

OpenFlow switch preconfigured with F1 and F2 by using the ICMPv6 fragmented echo-

request packet that has neither the last Next Header nor the last header (similar to Type-2 of

fragmented packets explained in section Abuse of IPv6 Fragmentation). The attack is carried

Fig 11. A simple testbed network topology.

https://doi.org/10.1371/journal.pone.0232574.g011

Table 2. Flow entries of the OpenFlow.

No. Flow match fields Actions

F1 OXM_OF_ETH_TYPE = 0x86dd, OXM_OF_IP_PROTO = 58 (icmpv6), OXM_OF_ICMPV6_TYPE = 128 Drop

F2 OXM_OF_ETH_TYPE = 0x86dd, OXM_OF_IP_PROTO = 58 (icmpv6), OXM_OF_IPV6_EXTHDR = 010 0000 00002 Drop

F3 OXM_OF_ETH_TYPE = 0x86dd, OXM_OF_IPV6_EXTHDR = 100 0000 00002 Drop

https://doi.org/10.1371/journal.pone.0232574.t002
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out from Host-A by sending a fragmented ICMPv6 echo request message, similar to that

shown in Fig 5(B). The Wireshark dump captured at Host-B, as shown in Fig 16, illustrates

that the packet has once again passed through the OpenFlow switch. The Flow-entry-2 could

not match this fragmented packet because it matches the fragmented packet that has the last

Next Header set to ICMPv6. Therefore, the fragmented packet evades the OpenFlow switch

that has Flow-Entry-1 and Flow-Entry-2.

Scenario–V. Drop all fragmented (type-2) ICMPv6 echo packets. In this scenario, the

flag OFPIEH_ UNDLNH is used to fix the problem highlighted in the Scenario-IV. The switch

is preconfigured with Flow-Entry-3 to fix the loophole caused by Type-2 IPv6 fragmented

packets. Once again, the Host-A sends a crafted packet similar to that shown in Fig 5(B) to the

Host-B. As it can be seen in Fig 17, the switch received a packet from Host-A, and it dropped

the packet by matching Flow-Entry-3. The Wireshark also shows that Host-B received only the

second fragmented packet, as illustrated in Fig 18. Hence, the proposed mechanism fixed the

Type-2 loophole and enabled the switch to drop the anomalous packets.

Scenario–VI. Let pass-through fragmented TCP packets. All the previous scenarios

attempted to block the ICMPv6 echo request message. However, this scenario aims to test the

flows that can allow the TCP fragment hidden in the last header and with the last Next Header

set to 6 (TCP) to pass (i.e., similar to Type-1 of a fragmented packet). The scenario started

when Host-A sent the fragmented TCP packet to Host-B. Wireshark showed that Host-B
received the fragmented packet, as illustrated in Fig 19. The reason why switch did not drop

the packet is obvious because the field OXM_OF_IP_PROTO is set to 58, which refers to

ICMPv6 instead of TCP; therefore, TCP packets can pass-through the switch.

Fig 12. Snapshot of the switch showing that Flow-Entry-1 matches one packet.

https://doi.org/10.1371/journal.pone.0232574.g012

Fig 13. Screenshot of wireshark showing the ICMP echo request messages.

https://doi.org/10.1371/journal.pone.0232574.g013
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Discussion

The six scenarios discussed in the preceding sections are summarized in Table 3. The experi-

ments conducted in these scenarios exhibit how fragmented packets can evade the OpenFlow

switch. The proposed mechanism provides flexibility and capability to the OpenFlow switch to

drop or forward the network traffic. The proposed mechanism is better than any existing solu-

tion available in traditional networks that follow “RFC7112,” which suggests dropping any

packet that does not contain the entire IPv6 header chain regardless of whether or not the last

Next Header exists [32]. Meanwhile, the proposed mechanism drops only selected traffic

based on the last Next Header. For instance, in the experiment, the scenario-VI demonstrated

that the OpenFlow switch did not drop the TCP fragment packet that has the last Next Header

set to TCP not having an upper-layer protocol header (i.e., TCP).

Fig 20 summarizes various aspects of the experiments conducted in a virtual network simu-

lation environment. The proposed mechanism was evaluated under six different scenarios,

and all scenarios were carefully designed to ascertain a specific aspect of the proposed mecha-

nism. The Scenario-I demonstrated that an unfragmented ICMPv6 echo-request packet was

sent from Host-A to Host-B, and the switch, having F1 as a drop policy, successfully dropped

the packet. The Scenario-II exposed the loophole and demonstrated that the Type-1 packet

could easily evade the switch if the switch has no protection and guard against Type-1 attacks.

Note that in Scenario-II, the OpenFlow switch was preconfigured with only F1 only, which

failed to prevent an unfragmented packet (Type-1) from passing through. The Scenario-III

demonstrated that the switch was preconfigured with F1 and F2 dropped the first fragment,

and successfully prevented it from passing through. The flag (OFPIEH_UNDH) served its pur-

pose and helped out the switch to drop the intended packet. It should be noted here that, non-

first fragmented packets evaded the switch. The non-first fragmented packets were dropped

on Host-B because Host-B cannot reassemble fragmented packets without the first fragment.

Scenario-IV demonstrated that the switch having F1 and F2 could only prevent Type-1 packets

from passing through and it cannot block Type-2 packets. To prevent Type-2 packets from

passing through, this time, in Scenario-V, the switch was preconfigured with F1, F2, and F3

flow entries, and as it can be seen in Fig 20, that the first-fragment having Type-2 packet was

successfully dropped on the switch. The final scenario (i.e., Scenario-VI) demonstrated that

network developers enjoy the freedom and the flexibility to drop selected packets matching

with flow entries preconfigured on the switch. The Scenario-VI demonstrated that a frag-

mented TCP packet successfully passed through the switch, because flow entries F1, F2, and F3

only matched with ICMPv6 packets.

Fig 14. Wireshark is showing the second frgment of the packet.

https://doi.org/10.1371/journal.pone.0232574.g014

Fig 15. Snapshot of the switch showing that Flow-Entry-2 matches one packet.

https://doi.org/10.1371/journal.pone.0232574.g015
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Conclusions and future work

To the best of our knowledge, there exists no specialized technique that prevents IPv6 frag-

mented packets from invading the OpenFlow networks. IPv6 fragmented packets can be used

to launch attacks in the network. This study exposed that an attacker could use IPv6 fragmen-

tation to evade the OpenFlow first-hop security and static OpenFlow firewall. Abuse of IPv6

fragmentation can be used in combination with various attacks, such as SYN and UDP flood

attacks, to evade the OpenFlow forwarding policies. In typical networks, network devices have

specialized firmware designed to deal with RA-based and DHCPv6 server-based attacks. How-

ever, in OpenFlow networks, protection against these attacks is left to the OpenFlow

Fig 16. ICMP echo-request packet evades the switch.

https://doi.org/10.1371/journal.pone.0232574.g016

Fig 17. Snapshot of the switch showing that Flow-Entry-3 matches one packet.

https://doi.org/10.1371/journal.pone.0232574.g017

Fig 18. Host-B receives a non-first fragmented packet.

https://doi.org/10.1371/journal.pone.0232574.g018

Fig 19. Host-B receives a fragmented TCP packet.

https://doi.org/10.1371/journal.pone.0232574.g019
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controller, which can be evaded by abusing IPv6 fragmentation [6]. The proposed mechanism

provides a practical and powerful approach to prevent such attacks. In our future work, we

will consider the use of these flags to protect a network against RA-based and DHCPv6 server-

based attacks. Besides, there are several attacks, as mentioned in [33] that can also evade the

OpenFlow switch filter, which can be the basis for the author’s future work.

Supporting information

S1 Data.

(RAR)

Author Contributions

Conceptualization: Ayman Al-Ani, Shams A. Laghari.

Data curation: Ayman Al-Ani.

Formal analysis: Ayman Al-Ani, Shams A. Laghari.

Table 3. Summary of scenarios.

Scenario No. Aim to test flag Flow entries used Type of the packet that was used Observations on Host-B?

1 None F1 ICMPv6 non-fragment packet None

2 None F1 ICMPv6 fragmented packet Type-1 Fragmented packet

3 OFFIEH_UNDLH F1, F2 ICMPv6 fragmented packet Type-1 Non-first fragment

4 OFFIEH_UNDLH F1, F2 ICMPv6 fragmented packet Type-2 Fragmented packet

5 OFFIEH_UNDLNH F1, F2, F3 ICMPv6 fragmented packet Type-2 Non-first fragment

6 OFFIEH_UNDLH, OFFIEH_UNDLNH F1, F2, F3 TCP fragmented packet Type-1 Fragmented packet

https://doi.org/10.1371/journal.pone.0232574.t003

Fig 20. The summary of six scenarios along with associated flags applied.

https://doi.org/10.1371/journal.pone.0232574.g020

PLOS ONE Prevent the abuse of IPv6 fragmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232574 May 11, 2020 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232574.s001
https://doi.org/10.1371/journal.pone.0232574.t003
https://doi.org/10.1371/journal.pone.0232574.g020
https://doi.org/10.1371/journal.pone.0232574


Funding acquisition: Ayman Al-Ani.

Investigation: Ayman Al-Ani, Shams A. Laghari.

Methodology: Ayman Al-Ani.

Project administration: Ayman Al-Ani.

Resources: Ayman Al-Ani.

Software: Ayman Al-Ani.

Supervision: Ayman Al-Ani.

Validation: Ayman Al-Ani, Shams A. Laghari.

Visualization: Ayman Al-Ani, Shams A. Laghari.

Writing – original draft: Ayman Al-Ani.

Writing – review & editing: Ayman Al-Ani, Mohammed Anbar, Shams A. Laghari, Ahmed

K. Al-Ani.

References
1. Thottan M. et al., “The network OS: Carrier-grade SDN control of multi-domain, multi-layer networks,”

Bell Labs Tech. J., vol. 24, pp. 1–26, 2019, https://doi.org/10.15325/bltj.2018.2856598

2. P. A. Ribeiro, L. Duoba, R. Prior, S. Crisostomo, and L. Almeida, “Real-Time Wireless Data Plane for

Real-Time-Enabled SDN,” in 2019 15th IEEE International Workshop on Factory Communication Sys-

tems (WFCS), 2019, pp. 1–4, https://doi.org/10.1109/wfcs.2019.8757951

3. E. L. Fernandes et al., “The Road to BOFUSS: The Basic OpenFlow User-space Software Switch,”

arXiv Prepr. arXiv1901.06699, 2019.

4. Z. Latif, K. Sharif, F. Li, M. M. Karim, and Y. Wang, “A Comprehensive Survey of Interface Protocols for

Software Defined Networks,” arXiv Prepr. arXiv1902.07913, 2019.

5. K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” HotSDN 2013—Proc. 2013

ACM SIGCOMM Work. Hot Top. Softw. Defin. Netw., pp. 151–152, 2013, https://doi.org/10.1145/

2491185.2491222

6. K. Benton, “Securing the Internet Control Plane.” Indiana University, 2017.

7. D. Nelle and T. Scheffler, “Securing IPv6 neighbor discovery and SLAAC in access networks through

SDN,” in Proceedings of the Applied Networking Research Workshop, 2019, pp. 23–29, https://doi.org/

10.1145/3340301.3341132

8. Germann B., Schmidt M., Stockmayer A., and Menth M., “OFFWall: A static openflow-based firewall

bypass,” in Lecture Notes in Informatics (LNI), Proceedings—Series of the Gesellschaft fur Informatik

(GI), 2018, vol. 283, pp. 43–55.

9. Banerjee A. and Akbar Hussain D. M., “Maintaining Consistent Firewalls and Flows (CFF) in Software-

Defined Networks,” in Smart Network Inspired Paradigm and Approaches in IoT Applications, Springer,

2019, pp. 15–24.

10. M. F. Monir and S. Akhter, “Comparative analysis of UDP traffic with and without SDN-based firewall,”

in 1st International Conference on Robotics, Electrical and Signal Processing Techniques, ICREST

2019, 2019, pp. 85–90, https://doi.org/10.1109/ICREST.2019.8644395

11. Tian H. et al., “Global patterns and controls of soil organic carbon dynamics as simulated by multiple ter-

restrial biosphere models: Current status and future directions,” Global Biogeochemical Cycles, vol. 29,

no. 6. pp. 775–792, 2015, https://doi.org/10.1002/2014GB005021 PMID: 27642229

12. B. Chinni, M. Hlady, and B. Helmajer, “Forwarding packet fragments using l4-l7 headers without reas-

sembly in a software-defined networking (sdn) system,” US Patent App. 14/462,442. Google Patents,

15-Aug-2014.

13. C. Ghali, A. Narayanan, D. Oran, G. Tsudik, and C. A. Wood, “Secure Fragmentation for Content-Cen-

tric Networks (extended version),” in Network Computing and Applications (NCA), 2015 IEEE 14th Inter-

national Symposium on, 2014, pp. 47–56.

14. IETF, “Implications of Oversized IPv6 Header Chains,” RFC Editor, 2015.

PLOS ONE Prevent the abuse of IPv6 fragmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232574 May 11, 2020 17 / 18

https://doi.org/10.15325/bltj.2018.2856598
https://doi.org/10.1109/wfcs.2019.8757951
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/3340301.3341132
https://doi.org/10.1145/3340301.3341132
https://doi.org/10.1109/ICREST.2019.8644395
https://doi.org/10.1002/2014GB005021
http://www.ncbi.nlm.nih.gov/pubmed/27642229
https://doi.org/10.1371/journal.pone.0232574


15. J. H. Cox, R. J. Clark, and H. L. Owen, “Leveraging SDN to improve the security of DHCP,” in SDN-NFV

Security 2016—Proceedings of the 2016 ACM International Workshop on Security in Software Defined

Networks and Network Function Virtualization, co-located with CODASPY 2016, 2016, pp. 35–38,

https://doi.org/10.1145/2876019.2876028

16. R. Hinden, “Internet protocol, version 6 (IPv6) specification (RFC 8200),” RFC Editor, 2017.

17. Blumbergs B., Pihelgas M., Kont M., Maennel O., and Vaarandi R., “Creating and detecting IPv6 transi-

tion mechanism-based information exfiltration covert channels,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016,

vol. 10014 LNCS, pp. 85–100, https://doi.org/10.1007/978-3-319-47560-8_6

18. S. Jiang and B. Carpenter, “RFC 7045—Transmission and Processing of IPv6 Extension Headers,”

RFC Editor, 2013.
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