
RESEARCH ARTICLE

Protecting contacts against privacy leaks in

smartphones

Youngrok Cha, Wooguil Pak*

Department of Computer Engineering, Keimyung University, Daegu, Republic of Korea

* wooguilpak@kmu.ac.kr

Abstract

Due to recent developments in technologies associated with the Internet of Things (IoT), a

large number of people now regularly use smart devices, such as smartwatches and smart-

phones. However, these devices are prone to data leaks because of security vulnerabilities.

In particular, Android devices use permission-based security, which allows users to directly

approve permissions requested by an app when installing it. As a result, many malicious

apps can obtain and leak private user data by requesting more permissions than are

needed. However, it is difficult to identify malicious apps based solely on the requested per-

missions. A system is hence needed to accurately identify malicious apps and protect pri-

vate data from them. In this paper, we propose a system for hiding data related to a user’s

contacts or providing virtual data according to preconfigured policies when an Android app

requests access to them. By hiding data related to the contacts, the proposed system can

protect them from malicious apps. By using virtual data, it can even detect malicious apps

that leak private data. The system requires less storage and provides faster access to user

contacts than prevalent solutions to similar problems.

Introduction

Android is the most popular operating system for smartphones worldwide with a market share

of approximately 86.1% [1]. Since it is open source, anyone can use and modify the source

code. This feature enables Android to be used anywhere and on any device. However, open-

source software can be more vulnerable to malicious users and apps than closed proprietary

platforms, and Android has accordingly suffered from various security threats in recent years,

such as private data leaks [2–17].

Many malicious apps nowadays seek to access and use private data on smartphones without

this being noticed by users. Leaked private data are used mostly for e-mail spam and voice

phishing. E-mail spam has significantly increased in volume over the years, and is a serious

problem as it is costly for users, companies, and even governments.

Some cellphone carriers have lately begun providing a service called ‘intelligent spam filter-

ing’ to customers to help them avoid spam [18–20]. However, it is well known that its effect is

limited because it relies on pattern matching based on a pre-built database containing infor-

mation about known spammers. Hence, it cannot effectively handle unknown attacks. The

only viable solution is to prevent the leaking of private data in the first place.

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cha Y, Pak W (2018) Protecting contacts

against privacy leaks in smartphones. PLoS ONE

13(7): e0191502. https://doi.org/10.1371/journal.

pone.0191502

Editor: Chun-Hsi Huang, University of Connecticut,

UNITED STATES

Received: July 17, 2017

Accepted: April 2, 2018

Published: July 11, 2018

Copyright: © 2018 Cha, Pak. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was supported by the

Keimyung University Research Grant of 2018. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0191502
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191502&domain=pdf&date_stamp=2018-07-11
https://doi.org/10.1371/journal.pone.0191502
https://doi.org/10.1371/journal.pone.0191502
http://creativecommons.org/licenses/by/4.0/


In this paper, we propose a new approach to protect private user data from malicious apps.

It extends the original contacts of a user on an Android device to hide private data from

untrusted apps or share virtual fake data with them instead of real data. By doing so, private

data leaks can be avoided. Our approach also provides a solution for safely running untrusted

apps without having to worry about leaks of private data even when apps require access to the

data. It can also detect private data leaks and accurately identify the guilty app. Although our

approach is similar to virtualization-based solutions, it has many advantages that are not

achievable by these methods, such as small storage requirement and fast access.

The remainder of this paper is organized as follows: In Section 2, we briefly review related

work on Android security. We describe the overall structure of the proposed system and each

core component in detail in Section 3, and report tests on our approach through intensive

experiments in Section 4. We offer our conclusions in Section 5.

Related work

Research on leakage of private data can be divided into studies that have focused on detecting

malicious apps and those that have considered protecting internal private data by supplement-

ing the system. The detection of malicious apps can be further divided into static approaches,

which analyze the app package itself, and dynamic approaches, which analyze the execution

behavior of the app.

Static analysis

Static analysis-based approaches determine whether apps are malicious or benign, and con-

sider the possibility of leakage of private data by analyzing the package files of apps without

running them [21–36].

Some well-known static approaches are those based on ‘signature’ and ‘code analysis.’ Sig-

nature-based approaches [32] detect malware by using pattern matching with a signature data-

base built beforehand by analyzing known malicious apps. Code analysis-based approaches

determine the possibility of data leaks by decompiling and analyzing the ‘.dex’ files of the sus-

pected app. Another approach uses the ‘AndroidManifest.xml’ file to obtain privileged infor-

mation to determine whether a given app is malicious.

Yet another static approach based on a control flow graph (CFG) detects user privacy leaks

through inter-component communication (ICC) [33–35]. A machine learning-based approach

was recently proposed [36] that uses Extra-Trees, a machine learning algorithm to detect mali-

cious apps regardless of code obfuscation.

There is a new approaches to combine static analysis with recommendation algorithm. It

recommends selected apps according to app risk score calculating method (ARSM) which take

account of statically analysis results for apps’ permissions and users’ interests [37].

Since static analysis can determine whether apps are malicious as they are being installed, it

can prevent damage from malicious ones. However, it has critical limitations as it cannot accu-

rately detect malicious apps if they exploit permissions by collaborating with pre-installed apps

[38]. Moreover, code obfuscation and dynamic code execution deteriorate the performance of

static analysis-based approaches. For these reasons, techniques based on static analysis struggle

to detect malicious apps.

Dynamic analysis

In contrast with static analysis, dynamic analysis involves running an app to check for private

data leakage. To analyze the dynamic behavior of the app, it collects various logs while running

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 2 / 21

https://doi.org/10.1371/journal.pone.0191502


the app, trails information flow between content providers, and monitors the system calls

made by the app [39–60].

Dynamic analysis takes a long time because it needs to wait for the malware to misbehave.

It sometimes adopts a virtual environment to reduce the time needed for analysis and yield

more accurate results. However, if the app is programmed to leak private data under specific

conditions, dynamic analysis has difficulty to detect malware.

TaintDroid is a well-known anti-malware system based on the dynamic approach [59]. It

detects privacy leaks through ICC and informs the user of the system in real time. A dynamic

approach based on machine learning has recently been proposed. For example, there was a

research exploiting two machine learning algorithms, a linear classifier and a support vector

machine, to achieve high classification accuracy in identifying malicious apps [60].

In the original Android, it is nearly impossible to accurately trace the flow of private data.

Therefore, Android should be extended to track such access flow by attaching labels to it.

However, this requires modifying the Dalvik virtual machine or the kernel, which degrades the

performance of the system due to labeling overhead.

Enhancing system security

This approach strengthens system security to render it immune to malicious apps. SEAndroid

is a well-known derivation of SELinux to Android [61]. It adopts mandatory access control

(MAC) based on a predefined policy. In SEAndroid, each process and object belong to each

specific domain, and the policy defines the domains that can access particular objects [62]. It is

effective in privilege escalation of vulnerabilities in the existing Android security model. How-

ever, the main obstacle to using SEAndroid is that no efficient solution has been developed to

date to configure its complicated policy.

To improve system security, a ’purpose involved access control framework’ (PACF) was

proposed [63]. Previous access control frameworks focused on who performs which action on

which data. Thus, privacy policies are defined by user, action, and data. However, PACF

focuses on user’s purpose itself to eliminate the limitation of previous systems. Some

researches have been proposed to protect privacy data using PACF [64–66]. Complicate poli-

cies for privacy are defined in terms of ‘purpose’. Administrator can preserve private data

through PACF to restrict accesses.

Another approach to extending the Android system involves allowing users to formulate

policies for the access control of each app [67]. MockDroid is the most well-known system

exemplifying this approach. It can protect private user data from all apps installed on smart-

phones. Permissions for accessing private data can be configured as normal or mocked. Nor-

mal permissions allow an app to access to private data according to the Android security

mechanism. If a permission to access private data is configured as mocked, an app obtains

empty data due to missing data or hardware limitations whenever it requests data. Since it

hides all private data, MockDroid provides tight security to users. However, some apps fail to

work properly with empty data.

A recent study proposed an approach to control the private data available to apps using vir-

tualization technology [68]. An app running on each virtualization instance can only access

the resources for that instance. Thus, it is among the most effective solutions to prevent the

leakage of private data [69–75].

Since mobile devices have limited resources, container-based virtualization is used instead

of system virtualization because of its low overhead. Samsung KNOX and VMWare AirWatch

are well-known commercial products in this vein [74, 75]. However, virtualization encounters

the problem of resource redundancy. For example, containers A and B should have two

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 3 / 21

https://doi.org/10.1371/journal.pone.0191502


independent contacts. Therefore, it consumes more storage and memory. It causes another

limitation not to support multiple containers. Most virtualization solutions, including KNOX

support, only one or two containers at most. Thus, they are limited at managing private data

for various apps.

Proposed approach

Although various techniques such as static analysis, dynamic analysis, and enhancing system

security have been developed, the fundamental solution against malicious apps does not exist.

Since malicious apps have been evolved and many variants have created to avoid security solu-

tion, it is impossible to defend private data against such variants in time by updating existing

security solution. Thus, we propose a new approach which deceives malicious apps by provid-

ing fake privacy data or hide real ones. In this case, malicious apps can leak only fake informa-

tion, so we can keep privacy safe. If we monitor fake information, it is possible to detect

leaking easily. Moreover, if we can elaborately design the information, it can help users to find

malicious apps.

The proposed system belongs to the system security enhancement approach. However, it is

designed to increase the security of the system without incurring redundant resources for

existing virtualizations.

Features of the proposed approach

In the proposed system, a user classifies each app into predefined categories according to its

reliability. For each category, the user configures a policy to determine the private data that are

made accessible to apps in it. The system provides fine granularity to control private data and,

therefore, can prevent or minimize the damage caused by malicious apps.

The proposed approach is similar to SEAndroid in that it provides policy-based access con-

trol, but it is also similar to container-based virtualization in that the private data exposed to

apps are independent for each category to which the apps belong. The proposed system can be

configured to hide all or part of private data, or to expose virtual data instead of real data when

the app is unreliable.

Private data hiding. The proposed system uses virtual data, and is very similar to the safe

number service used in online shopping [76]. For example, an e-mail sent to a virtual e-mail

address is relayed to the user’s actual e-mail address by an external e-mail proxy server. Virtual

phone numbers are also used to replace real ones, and can be discarded when no longer

needed.

Any function requiring private data can be seamlessly served such that the user can use

even malicious apps without worrying about leaking private data.

The e-mail proxy server can add a warning message to the original e-mail to highlight spam

e-mails. The virtual phone number server can also deliver a warning message before call setup

to let the receiver know that the phone number has been leaked and may be used for such

crimes as voice phishing.

Leak detection and path tracking. In addition to protecting private data from security

threats, the proposed approach detects the leakage of such data and tracks how they are leaked.

For example, if a user enables virtual data for a contact, each app belonging to different cate-

gory gets different virtual private data. It is assumed that specific virtual e-mail information is

leaked by a malicious app and used for e-mail spam. The user notices that private data has

been leaked when the e-mail proxy server receives spam addressed to the virtual e-mail

address. The user can also find the app category to which the malicious app belongs from the

virtual e-mail address of the spam e-mail. App category is helpful to detect malicious app.

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 4 / 21

https://doi.org/10.1371/journal.pone.0191502


Overall structure

The overall system structure is shown in Fig 1. Android smartphones only connect to the pri-

vate data management server when the user configures the policy using the policy configura-

tion app on a smartphone.

If the management server detects private data leakage or related events, it sends a message

to the smartphone to notify the user. We now explain each core component of the proposed

system.

Policy configuration app

Data in the contacts’ list, the address book of Android, are classified into several categories,

called the contacts’ category, according to the required security level. The installed apps are

also grouped into categories, i.e., app categories, according to the level of trust in them. Fig 2

shows an example where the user has classified contacts’ data into ‘family,’ ‘friend,’ and ‘com-

pany’ using a policy configuration app.

Fig 3 also shows that all installed apps are divided into three groups of ‘trusted,’ ‘untrusted,’

and ‘social network service’ (SNS) apps. We use three categories in Figs 2 and 3 as examples,

but there is no restriction on the number of contacts and app categories.

Fig 1. Block diagram of our proposed system.

https://doi.org/10.1371/journal.pone.0191502.g001

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0191502.g001
https://doi.org/10.1371/journal.pone.0191502


If we use more categories, it is easier to precisely detect malicious apps leaking information,

but management and storage costs increase. Therefore, users should select the numbers of cat-

egories of app and contacts according to their needs.

Once the contacts and apps have been categorized, the user sets up a policy to determine

how data relating to contacts belonging to each contact category are shown to apps in each app

category. Therefore, a policy is assigned for each pair of contact and app category, denoted by

[C,A] where C and A represent the names of the contact and the app categories, respectively.

• No-protection

When the policy is set to ‘No-protection’ for [C,A], the contacts’ data belonging to C are

directly shown to any app belonging to A. Therefore, it is used only for trusted apps or unim-

portant contacts’ data.

• Hiding

When the policy is set to ‘hiding’ for [C,A], the contacts’ data belonging to C are invisible to

any app belonging to A. It is used to prevent apps in A from leaking data in C.

• Virtualization

When the policy is set to ‘virtualization’ for [C,A], the contacts’ data belonging to C are invis-

ible to the apps belonging to A. Instead, virtual contacts’ data are exposed to the apps.

The virtual data are synthesized by the private data management server shown in Fig 1, and

are uniquely used for [C,A]. Thus, if ‘virtualization’ is the policy for both [C,A1] and [C,A2],

app X in A1 and app Y in A2 receive different virtual data corresponding to the data in C.

Fig 4 shows an example of policy configuration where the apps only in the trusted apps’ cat-

egory access the original contacts’ data. For apps belonging to other categories, part of the con-

tact data are replaced by virtual data or hidden according to the policy.

Fig 2. An example of the categories of contacts. Information pertaining to four contacts is in three categories.

https://doi.org/10.1371/journal.pone.0191502.g002

Fig 3. An example of app categories for the installed apps. Six apps are classified here into three categories.

https://doi.org/10.1371/journal.pone.0191502.g003

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0191502.g002
https://doi.org/10.1371/journal.pone.0191502.g003
https://doi.org/10.1371/journal.pone.0191502


Structure of contacts’ database to support policy

In an Android system, an app receives the same contacts’ data when it accesses the contact list.

However, in the proposed system, each app receives different data as determined by the policy.

To this end, it needs an independent and separate contacts’ data for each app category. How-

ever, the total size of the contacts’ data increases proportional to the number of app categories,

hence incurring significant storage cost.

In another approach, an integrated contacts’ database can be used to support the above fea-

ture. The integrated database can be built by adding data for the app categories for the con-

tacts. It can help save storage but increases access time, as the system needs to dynamically

generate data for apps according to the relevant policies.

To solving the above issue, we propose an approach that uses a ‘view’ for each app category.

View is a virtual table and represents a subset of data in the ‘table’, but it takes up less storage

but achieves almost the same access time as a table in SQLite in Android [77]. Hence, it can

simultaneously solve the issues of storage space and access time. We will describe the structure

of the contacts’ database in detail.

(1) A single database

One of the simplest ways to implement the proposed approach is by using separate contacts’

databases for each category. However, this consumes more storage and increases access time.

To solve this problem, the original and virtual data are stored together in an integrated data-

base, which helps reduce the requisite storage size and access time. However, it requires a

more elaborate database structure.

(2) Prebuilt contacts’ view

When an app requests access to contacts, the proposed system not only searches the original

data, but also virtual data if required according to the policy. It then merges them into one

large view and reveals them to the requesting app. However, this causes a delay in processing

the procedures when the app requests access to data. To avoid this, we extend the Android

middleware to build ‘view’ in advance. The extended Android creates a ‘view’ when an app

belonging to a specific category is launched for the first time. The Android system needs to

maintain the view until all apps belonging to the same category are closed. Once the view has

been created, the app accesses it instead of the contacts’ database table. The view is almost

identical to the table in terms of functionality but consumes very little memory.

If a user creates a large number of app categories, the total memory required becomes a

very important factor for scalability. Because of the small size of the ‘view,’ the proposed system

can support a large number of app categories.

Fig 4. Contacts in the untrusted apps’ category.

https://doi.org/10.1371/journal.pone.0191502.g004

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 7 / 21

https://doi.org/10.1371/journal.pone.0191502.g004
https://doi.org/10.1371/journal.pone.0191502


We consider an example to clarify the above. A user configures a policy for an untrusted

app as shown in Fig 4. When the user first launches any app from the untrusted app category,

e.g., the game Angry Bird, the proposed system creates a ‘view’ of contacts for untrusted app

categories.

If Angry Bird tries to access the contacts, the Android system redirects access to a private

‘view’ instead of the existing contacts’ database table. By doing so, no app in the category can

access the original contacts’ table and, therefore, private data are protected.

(3) Structure of fast access-oriented table

In the above example, when a user runs an app, Android creates a ‘view’ if needed. For this,

it selects the required records in a contacts’ database for original and virtual data according to

the relevant policy as they are stored in the same database. Assuming that each record is scat-

tered all over the database, it takes a long time to create a view. In the proposed system, we

organize the original and virtual data for fast access. Contacts’ data in the database configured

as original or virtual data and belonging to the same contacts’ category are consecutively

located when they are sorted by a primary key ‘_id’ as shown in Fig 5.

The virtual data are located below the original data. Such a consecutive arrangement of data

allows the system to retrieve all related database records for a specific app category without

Fig 5. An example of the proposed database structure. The gray-colored records denote virtual data.

https://doi.org/10.1371/journal.pone.0191502.g005

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0191502.g005
https://doi.org/10.1371/journal.pone.0191502


increasing access time. For example, we use the following SQL query to create an untrusted

view for Angry Bird as shown in Fig 6:

To build a new SQL query for each app category, we need to find the ranges of indices of

the original and virtual data. We can easily do this by using a hash-based data structure called

the ‘database range table,’ as shown in Fig 7. We can hence build each ‘view’ while launching

the corresponding app without a significant delay that can bother users. Fig 8 shows the final

view for an untrusted app category for the SQL query in Fig 6 for the contacts’ data shown in

Fig 7.

Private data management server

The private data management server is responsible for allocating and managing private data

when a user configures the proposed system using the policy configuration app. Virtual data

are used to detect and track leaked private data; thus, the virtual data should be uniquely gener-

ated for each <contacts category, app category> pair.

When data is leaked, the server notifies the e-mail proxy and the virtual phone number

servers of this, and the leaked virtual data are discarded to prevent subsequent damage, such as

e-mail spam or voice phishing.

E-mail proxy server

The e-mail proxy server relays e-mails destined to virtual addresses created by the private data

management server to their real destinations. It internally maintains a database consisting of

virtual and real e-mail addresses.

The proposed system uses ‘Sendmail’ and ‘Milter’ to build the e-mail proxy server [78, 79].

Milter acts as a filter that inspects received e-mails and processes them according to policies

transmitted by the private data management database.

The user can configure the e-mail proxy server to insert a warning message into the subject

of the e-mail and relay it to the real destination, or to transmit a leakage detection message

without any content in the body of the e-mail to the destination. The message contains the

name of the app category to which the leaking app belongs, thus enabling the user to easily

detect and handle malicious apps. Depending on the policy, it may also leave a log message

and discard the e-mail.

This approach causes a delay of less than a few seconds; but e-mail is not real-time service

and, therefore, such delay should not affect user experience.

Virtual phone number server

Similarly to the safe number service, a virtual phone number server relays calls or short mes-

sage service (SMS) messages destined for a virtual phone number to real one. It differs from

existing safe number services in that it can deliver a warning message prior to call setup and

insert similar texts into SMS messages.

Fig 6. SQL query to create a “view” for an app in the untrusted app category.

https://doi.org/10.1371/journal.pone.0191502.g006

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0191502.g006
https://doi.org/10.1371/journal.pone.0191502


It can also disconnect logical connections between virtual and real phone numbers, and can

send a leakage detection message to the user, as with the e-mail proxy server.

Call relay through a virtual phone number server creates additional delay, and it is critical

to ensure that this delay is short to prevent users from becoming agitated. We can estimate the

delay based on existing safe number services. In experiments, we found that the delay was less

than a second. Thus, this approach can effectively protect users from private leaks without

additional inconvenience.

Fig 7. An example of finding original and virtual data accessible from Angry Bird belonging to an untrusted app in the proposed contacts’ database using the

database range table.

https://doi.org/10.1371/journal.pone.0191502.g007

Fig 8. Contacts from the untrusted apps’ category.

https://doi.org/10.1371/journal.pone.0191502.g008

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0191502.g007
https://doi.org/10.1371/journal.pone.0191502.g008
https://doi.org/10.1371/journal.pone.0191502


How the system works

To describe the overall operation of the proposed system, we assume that a user uses a smart-

phone through the system shown in Fig 8. E-mail addresses and phone numbers are handled

by the e-mail proxy and the virtual phone number servers, respectively, but the two processes

are similar. Therefore, we only describe the detailed procedure for virtual e-mails, where the

reader should assume that the same description represents, mutatis mutandis, the procedure

for virtual phone number servers.

User A configures a policy and an external private data management server generates vir-

tual data for fields such as name, e-mail address, or phone number. The generated data are

accordingly transmitted to the external e-mail proxy or the virtual phone number servers.

Suppose a malicious app leaks and transmits contacts’ data from user A’s smartphone to an

external spam server. We also assume that the leaked data for a user B, among the contacts of

user A, are virtual. Thus, the virtual e-mail address of user B has been leaked.

The leaked e-mail address of user B is used for spam as shown in Fig 9. Since the address is

the virtual address of the e-mail proxy server, spam e-mail is destined for the e-mail proxy

server instead of user B. If the policy for data pertaining to user B is ‘discard and notify,’ the

proxy server discards the spam e-mail and sends a message to user A to the effect that the con-

tacts’ data of user A has been leaked, as shown in Fig 10.

The message also contains the name of the app category to which the malicious app belongs

and hence helps the user determine what the app is. Moreover, user B does not receive any

spam e-mail even though his/her information was leaked, and is hence protected.

Performance evaluation

We conducted experiments on the Samsung Galaxy S5 smartphone for accurate performance

evaluation and analysis of the proposed system. We implemented the system using Cyanogen-

Mod Android Lollipop 5.0.2 source code. Since the proposed approach is different from

Fig 9. Creation flow of virtual private data for e-mail.

https://doi.org/10.1371/journal.pone.0191502.g009

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0191502.g009
https://doi.org/10.1371/journal.pone.0191502


prevalent solutions, it was difficult to choose competitors. Our system provides very similar

security to that offered by KNOX if the external e-mail proxy and the virtual phone number

servers are excluded. Therefore, we chose KNOX for comparison. We also chose MockDroid

since it has similarity in that it uses policy to control accessing private data [62].

We used three scenarios for the assessment. For each, the number of contacts was increased

from 50 to 200 to analyze scalability. We configured two categories of contacts—‘Family’ and

‘Friend.’ The ratio of the number of contacts in ‘Family’ to that in ‘Friend’ was 3:7. For exam-

ple, if the total number of contacts is 100, 30 belong to ‘Family’ and 70 to ‘Friend.’ The number

of app categories was increased from two to 10, and policies were differently configured for

them according to scenario. To make the performance evaluation easy, we built a script file

that can be found in S1 Zip. The script automatically runs each evaluation one by one.

(1) Scenario 1

‘Hiding’ and ‘Virtualization’ were set for all fields of contacts, such as name, e-mail address,

and phone number, belonging to ‘Family’ and ‘Friend,’ respectively.

(2) Scenario 2

‘Virtualization’ was set for all fields of contacts belonging to ‘Family’ but only for the e-mail

addresses of contacts in ‘Friend’.

Fig 10. Detection of private data leakage.

https://doi.org/10.1371/journal.pone.0191502.g010

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0191502.g010
https://doi.org/10.1371/journal.pone.0191502


(3) Scenario 3

‘Virtualization’ was set for the e-mail addresses of contacts in ‘Family’ but to ‘No-protec-

tion’ for all fields of contacts in ‘Friend’.

Size of the contacts’ database

Size of contacts’ database according to the size of contacts. We compared the size of the

contacts’ database of the proposed system when one app category was used in Scenario 2 with

those of KNOX and MockDroid when one container was used.

In the experiment, each system, logically or physically, had two contacts, i.e., one in

Android and the other in the container for KNOX, or one for the first app category and the

other for the second app category. Thus, it was fair to compare the total size of contacts. For

better situation for KNOX, only contacts in the second app category were saved as contacts in

KNOX.

The results of the experiment are shown in Fig 11. The size of the contacts’ database for

Android without KNOX is also shown for analysis.

As shown in Fig 11, the database of the proposed system was at least 60% smaller in size

than that of KNOX and only 25% larger than that of the Android system. This confirmed that

our system can provide security without significant storage overhead. Since most smartphones

have limited local storage, the proposed system offers an efficient solution.

Fig 11. The size of the contacts’ database according to the number of contacts when one app category and one container were used for

Scenario 2.

https://doi.org/10.1371/journal.pone.0191502.g011

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 13 / 21

https://doi.org/10.1371/journal.pone.0191502.g011
https://doi.org/10.1371/journal.pone.0191502


Size of contacts’ database according to number of app categories. The size of the con-

tacts’ database increased proportionally to the number of app categories. However, the more

app categories a user has, the more accurately the proposed system can detect a malicious app

leaking private data. Therefore, even if the number of app categories increases, it is important

to prevent the size of the database from increasing significantly.

We measured the size of the contacts’ database of the proposed system according to the

number of app categories, with 200 contacts in the database. Since KNOX and MockDroid

cannot support multiple containers or categories, they were excluded from this evaluation.

Fig 12 shows the relative measured size of the total contacts’ database for different numbers

of app categories by assuming that the size of the contacts’ database with 200 contacts was one.

In Fig 12, we see that the increase in the size of the database varied according to scenario

because of the different numbers of virtual data items in each. For example, contacts in the

‘Friends’ category were not protected in Scenario 3, so no virtual data need for the category.

For cases involving 10 categories, the size of the database in the worst case was only 4.1

times larger than that of the Android database. This showed that the proposed system can sup-

port a large number of app categories without significant cost in terms of storage space. As

mentioned above, more app categories increase the accuracy of the detection of malicious

apps. Hence, it is a critical advantage of our system that it can support a large number of app

categories.

The proposed system minimizes the increase in storage overhead while supporting multiple

app categories using the ‘view’ instead of the ‘table’. Table 1 shows the total storage for ‘table’

Fig 12. The relative size of the contacts’ database compared with that in the original Android, where the number of contacts was 200.

https://doi.org/10.1371/journal.pone.0191502.g012

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0191502.g012
https://doi.org/10.1371/journal.pone.0191502


and ‘view’ according to the number of app categories when the number of contacts was 200.

Since each contact had three records—name, e-mail address, and phone number—the total

number of records was 600.

Table 1 shows that database size increased by only 4 KB, except in the first case, as the num-

ber of app categories increased by one. Since this was only 0.6% of the size of the entire data-

base, this shows that the ‘view’ is much more efficient in terms of storage than ‘table’.

Table 1. Database size according to the number of categories of apps for Scenario 2.

Number of App categories Database Size

0 610,304

1 618,496

2 622,592

3 626,688

4 630,784

5 634,880

6 638,976

7 643,072

8 647,168

9 651,264

10 655,360

https://doi.org/10.1371/journal.pone.0191502.t001

Fig 13. The ratio of the size of the contacts’ database of the proposed system to that of the Android system according to the total number of

contacts.

https://doi.org/10.1371/journal.pone.0191502.g013

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 15 / 21

https://doi.org/10.1371/journal.pone.0191502.t001
https://doi.org/10.1371/journal.pone.0191502.g013
https://doi.org/10.1371/journal.pone.0191502


Fig 13 shows the increase in the size of the contacts’ database of the proposed system

compared to the Android as the total number of contacts increased. For all scenarios, the

ratio of increase was lower than 1.3; thus, the proposed system efficiently uses the database

table.

Performance in terms of accessing contacts’ database

To compare the access performance of the proposed system with that of KNOX, we measured

the total access time needed to read every data item in the contacts’ database according to

number of contacts. As shown in Fig 14, the proposed system delivered almost the same per-

formance as the Android, but the results for KNOX were 50% poorer due to overhead from

the container. MockDroid showed the same performance as the original Android since it func-

tions identically to the Android when a mocked permission is not applied. The proposed sys-

tem used a prebuilt view for each app category, thus guaranteeing comparable performance to

the Android.

Fig 15 shows the total access time taken to read 200 contacts for each scenario. Scenario 1

had the fastest access time as the policy ‘hiding’ was applied to the contacts’ category ‘Family,’

so that the number of contacts in the view was the smallest of all scenarios. It took only 10ms

to read each contact on average regardless of scenario, thus confirming that our system guar-

antees short access time.

Fig 14. The total time of access to contacts according to the number of contacts, where one app category and one container

were used for Scenario 2.

https://doi.org/10.1371/journal.pone.0191502.g014

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0191502.g014
https://doi.org/10.1371/journal.pone.0191502


Conclusions

The proposed system has the unique feature whereby it can apply various security policies to

different app categories. It can achieve almost the same access performance as the Android sys-

tem and has a smaller database compared to competitors.

If attackers try to directly access a database file, they can bypass the security mechanism of

the proposed system. However, many studies have proposed mechanisms to protect file sys-

tems, and hence the problem can be simply solved by combining such solutions with the pro-

posed system.

Our system uses an external e-mail proxy and virtual phone number servers to prevent pri-

vate data from leaking and detect malicious apps. Other platforms besides Android can use the

system without modification. Therefore, we expect it to play an important role in protecting

private data in various environments.

Supporting information

S1 Zip. The script file to build the proposed Android from CyanogenMod Android Lolli-

pop 5.0.2 source code, and automatically conducts experiments.

(ZIP)

Acknowledgments

This research was supported by the Keimyung University Research Grant of 2018.

Fig 15. The total time of access to 200 contacts.

https://doi.org/10.1371/journal.pone.0191502.g015

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191502.s001
https://doi.org/10.1371/journal.pone.0191502.g015
https://doi.org/10.1371/journal.pone.0191502


Author Contributions

Conceptualization: Wooguil Pak.

Funding acquisition: Wooguil Pak.

Project administration: Wooguil Pak.

Software: Youngrok Cha.

Supervision: Wooguil Pak.

Validation: Youngrok Cha.

Writing – original draft: Wooguil Pak.

References
1. Egham. Gartner Says Worldwide Sales of Smartphones Grew 9 Percent in First Quarter of 2017. Gart-

ner. 2017; 5: 23. Available from: http://www.gartner.com/newsroom/id/3725117.

2. Esselbach P. Security Alert: DroidDream Malware Found in Android Market. Linux Compatible. 2011;3:

2 Available from: http://www.linuxcompatible.org/news/story/security_alert_droiddream_malware_

found_in_official_android_market.html.

3. Nolan D. Angry Birds leak: why app developers should guard their users’ privacy. The Guardian. 2014;

1: 28. Available from: https://www.theguardian.com/commentisfree/2014/jan/28/angry-birds-leak-why-

app-developers-should-guard-their-users-privacy.

4. Enck W. Ongtang M. McDaniel P. Understanding Android Security. IEEE Security & Privacy. 2009 Jan-

Feb. https://doi.org/10.1109/MSP.2009.26

5. Shabtai A. Fledel Y. Kanonov U. Elovici Y. Dolev S. Google android: A state-of-the-art review of security

mechanisms. 2009 Dec. doi: arXiv:0912.5101

6. Deshotels L. Notani V. Lakhotia A. DroidLegacy Automated Familial Classification of Android Malware.

PPREW’14 Proceedings of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop

2014. 2014 Jan. https://doi.org/10.1145/2556464.2556467

7. Mavoungou S. Kaddoum G. Taha M. Matar G. Survey on Threats and Attacks on Mobile Networks.

2016 Aug. https://doi.org/10.1109/ACCESS.2016.2601009

8. Suarez-Tangil G. Tapiador JE. Peris-Lopez P. Ribagorda A. Evolution, Detection and Analysis of Mal-

ware for Smart Devices. IEEE Communications Surveys & Tutorials. 2014 SECOND QUARTER.

https://doi.org/10.1109/SURV.2013.101613.00077

9. Flynn L. Klieber W. Smartphone Security. IEEE Pervasive Computing. 2015 Oct-Dec. https://doi.org/

10.1109/MPRV.2015.67

10. Faruki P. Bharmal A. Laxmi V. Ganmoor V. Gaur MS. Conti M. et al. Android Security: A Survey of

Issues, Malware Penetration, and Defenses. IEEE Communications Surveys & Tutorials. 2015 SEC-

OND QUARTER. https://doi.org/10.1109/COMST.2014.2386139

11. Polla ML. Martinelli F. Sgandurra D. A Survey on Security for Mobile Devices,” IEEE Communications

Surveys & Tutorials. 2013 FIRST QUARTER. https://doi.org/10.1109/SURV.2012.013012.00028

12. Zou F. Zhang S. Wan T. Pan L. A survey of android mobile platform security. 10th International Confer-

ence on Wireless Communications, Networking and Mobile Computing (WiCOM 2014). 2015 Jan.

https://doi.org/10.1049/ic.2014.0155

13. Liang H. Wu D. Xu J. Ma H. Survey on Privacy Protection of Android Devices. 2015 IEEE 2nd Interna-

tional Conference on Cyber Security and Cloud Computing. 2016 Jan. https://doi.org/10.1109/

CSCloud.2015.21

14. Sufatrio. Tan D.J.J Chua T-W. Thing V.L.L. Securing Android: A Survey, Taxonomy, and Challenges,”

ACM Computing Surveys (CSUR). 2015 Jul. https://doi.org/10.1145/2733306

15. Tam K. Feizollah A. Anuar NB. Salleh R. Cavallaro L. The Evolution of Android Malware and Android

Analysis Techniques. ACM Computing Surveys (CSUR). 2017 Feb. https://doi.org/10.1145/3017427

16. Xu M. Song C. Ji Y. Shih M-W. Lu K. Zheng C. et al. Toward Engineering a Secure Android Ecosystem:

A Survey of Existing Techniques. ACM Computing Surveys (CSUR). 2016 Nov. https://doi.org/10.1145/

2963145

17. Reaves B. Bowers J. Gorski IIII SA. Anise O. Bodhate R. Cho R. et al. *droid: Assessment and Evalua-

tion of Android Application Analysis Tools. ACM Computing Surveys (CSUR). 2016 Dec. 10.1145/

2996358

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 18 / 21

http://www.gartner.com/newsroom/id/3725117
http://www.linuxcompatible.org/news/story/security_alert_droiddream_malware_found_in_official_android_market.html
http://www.linuxcompatible.org/news/story/security_alert_droiddream_malware_found_in_official_android_market.html
https://www.theguardian.com/commentisfree/2014/jan/28/angry-birds-leak-why-app-developers-should-guard-their-users-privacy
https://www.theguardian.com/commentisfree/2014/jan/28/angry-birds-leak-why-app-developers-should-guard-their-users-privacy
https://doi.org/10.1109/MSP.2009.26
https://doi.org/10.1145/2556464.2556467
https://doi.org/10.1109/ACCESS.2016.2601009
https://doi.org/10.1109/SURV.2013.101613.00077
https://doi.org/10.1109/MPRV.2015.67
https://doi.org/10.1109/MPRV.2015.67
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/SURV.2012.013012.00028
https://doi.org/10.1049/ic.2014.0155
https://doi.org/10.1109/CSCloud.2015.21
https://doi.org/10.1109/CSCloud.2015.21
https://doi.org/10.1145/2733306
https://doi.org/10.1145/3017427
https://doi.org/10.1145/2963145
https://doi.org/10.1145/2963145
https://doi.org/10.1371/journal.pone.0191502


18. Almeida TA. Hidalgo JMG. Yamakami A. Contributions to the Study of SMS Spam Filtering: New Col-

lection and Results. DocEng ’11 Proceedings of the 11th ACM symposium on Document engineering

2011 Sep. https://doi.org/10.1145/2034691.2034742

19. Cormack GV. Hidalgo GJM. Sánz EP. Spam filtering for short messages. CIKM ’07 Proceedings of the

sixteenth ACM conference on Conference on information and knowledge management. 2007 Nov.

https://doi.org/10.1145/1321440.1321486

20. Okabe M. Yamada S. Interactive Spam Filtering with Active Learning and Feature Selection. 2008

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. 2008

Dec. https://doi.org/10.1109/WIIAT.2008.336

21. Cerbo FD. Giradello A. Michahelles F. Voronkova S. Detection of malicious applications on Android

OS. Proceedings of the 4th international conference on Computational forensics. 2010 Nov. https://doi.

org/10.1007/978-3-642-19376-7_12

22. Chin E. Felt AP. Greenwood K. Wagner D. Analyzing Inter-Application Communication in Android.

MobiSys ’11 Proceedings of the 9th international conference on Mobile systems, applications, and ser-

vices. 2011 Jun. https://doi.org/10.1145/1999995.2000018

23. Burguera I. Zurutuza U. Nadjm-Tehrani S. Crowdroid: Behavior-Based Malware Detection System for

Android. SPSM ’11 Proceedings of the 1st ACM workshop on Security and privacy in smartphones and

mobile devices. 2011 Oct. https://doi.org/10.1145/2046614.2046619

24. Wu D-J. Mao C-H. Wei T-E. Lee H-M. Wu K-P. DroidMat: Android Malware Detection through Manifest

and API Calls Tracing. 2012 Seventh Asia Joint Conference on Information Security. 2012 Aug. https://

doi.org/10.1109/AsiaJCIS.2012.18

25. Bartel A. Klein J. Monperrus M. Traon YL. Static Analysis for Extracting Permission Checks of a Large

Scale Framework: The Challenges and Solutions for Analyzing Android,” IEEE Transactions on Soft-

ware Engineering. 2014 Jun. https://doi.org/10.1109/TSE.2014.2322867

26. Grace M. Zhou Y. Zhang Q. Zou S. Jiang X. RiskRanker: Scalable and Accurate Zero-day Android Mal-

ware Detection. MobiSys ’12 Proceedings of the 10th international conference on Mobile systems,

applications, and services. 2012 Jun. https://doi.org/10.1145/2307636.2307663

27. Feng Y. Anand S. Dillig I. Aiken A. Apposcopy: semantics-based detection of Android malware through

static analysis. FSE 2014 Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering. 2014 Nov. https://doi.org/10.1145/2635868.2635869

28. Calzavara S. Grishchenko I. Maffei M. HornDroid: Practical and Sound Static Analysis of Android Appli-

cations by SMT Solving. 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 2016

May. https://doi.org/10.1109/EuroSP.2016.16

29. Sun M. Li X. Lui J.C.S. Ma R.T.B. Liang Z. Monet: A User-oriented Behavior-based Malware Variants

Detection System for Android. IEEE Transactions on Information Forensics and Security. 2016 Dec.

https://doi.org/10.1109/TIFS.2016.2646641

30. Alatwi HA. Oh T. Fokoue E. Stackpole. Android Malware Detection Using Category-Based Machine

Learning Classifiers. SIGITE ’16 Proceedings of the 17th Annual Conference on Information Technol-

ogy Education. 2016 Aug. https://doi.org/10.1145/2978192.2978218

31. Mann C. Starostin A. A framework for static detection of privacy leaks in android applications. SAC ’12

Proceedings of the 27th Annual ACM Symposium on Applied Computing. 2012 Mar. https://doi.org/10.

1145/2245276.2232009

32. Zheng M. Sun M. Lui J.C.S. Droid Analytics: A Signature Based Analytic System to Collect, Extract,

Analyze and Associate Android Malware. Trust, Security and Privacy in Computing and Communica-

tions (TrustCom), 2013 12th IEEE International Conference on. 2013 Dec. https://doi.org/10.1109/

TrustCom.2013.25

33. Xu K. Li Y. Deng RH. ICCDetector: ICC-Based Malware Detection on Android,” IEEE Transactions on

Information Forensics and Security. 2016 Feb. https://doi.org/10.1109/TIFS.2016.2523912

34. Arzt S. Rasthofer S. Fritz C. Bodden E. Bartel A. Klein J. et al. FlowDroid: precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis for Android apps. PLDI ’14 Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation. 2014 Jun. https://

doi.org/10.1145/2666356.2594299

35. Wei F. Roy S. Ou X. Robby. Amandroid: A Precise and General Inter-component Data Flow Analysis

Framework for Security Vetting of Android Apps. CCS ’14 Proceedings of the 2014 ACM SIGSAC Con-

ference on Computer and Communications Security. 2014 Nov. https://doi.org/10.1145/2660267.

2660357

36. Suarez-Tangil G. Dash SK. Ahmadi M. Kinder J. Giacinto G. Cavallaro L. DroidSieve: Fast and Accu-

rate Classification of Obfuscated Android Malware. CODASPY ’17 Proceedings of the Seventh ACM on

Conference on Data and Application Security and Privacy. 2017 Mar. https://doi.org/10.1145/3029806.

3029825

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 19 / 21

https://doi.org/10.1145/2034691.2034742
https://doi.org/10.1145/1321440.1321486
https://doi.org/10.1109/WIIAT.2008.336
https://doi.org/10.1007/978-3-642-19376-7_12
https://doi.org/10.1007/978-3-642-19376-7_12
https://doi.org/10.1145/1999995.2000018
https://doi.org/10.1145/2046614.2046619
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/AsiaJCIS.2012.18
https://doi.org/10.1109/TSE.2014.2322867
https://doi.org/10.1145/2307636.2307663
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.1109/EuroSP.2016.16
https://doi.org/10.1109/TIFS.2016.2646641
https://doi.org/10.1145/2978192.2978218
https://doi.org/10.1145/2245276.2232009
https://doi.org/10.1145/2245276.2232009
https://doi.org/10.1109/TrustCom.2013.25
https://doi.org/10.1109/TrustCom.2013.25
https://doi.org/10.1109/TIFS.2016.2523912
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1371/journal.pone.0191502


37. Peng M. Zeng G. Sun Z. Huang J. Wang H. Tian G. Personalized app recommendation based on app

permissions. World Wide Web. 2017 Apr. https://doi.org/10.1007/s11280-017-0456-y

38. Höbarth S. Mayrhofer R. “A framework for on-device privilege escalation exploit execution on Android,”

Third International Workshop on Security and Privacy in Spontaneous Interaction and Mobile Phone

Use (IWSSI/SPMU). 2011; 6.

39. Yuan Z. Lu Y. Xue Y. Droiddetector: android malware characterization and detection using deep learn-

ing. Tsinghua Science and Technology. 2016 Feb. https://doi.org/10.1109/TST.2016.7399288

40. Octeau D. McDaniel P. Jha S. Bartel A. Bodden E. Klein J. et al. Effective Inter-Component Communi-

cation Mapping in Android with Epicc: An Essential Step Towards Holistic Security Analysis. 2013; 8:

543–558.

41. Zhang Y. Yang M. Yang Z. Gu G. Ning P. Zang B. Permission Use Analysis for Vetting Undesirable

Behaviors in Android Apps. IEEE Transactions on Information Forensics and Security. 2014 Nov.

https://doi.org/10.1109/TIFS.2014.2347206

42. Suarez-Tangil G. Tapiador JE. Lombardi F. Pietro RD. Alterdroid: Differential Fault Analysis of Obfus-

cated Smartphone Malware. IEEE Transactions on Mobile Computing. 2016 Apr. https://doi.org/10.

1109/TMC.2015.2444847

43. Mahindru A. Singh P. Dynamic Permissions based Android Malware Detection using Machine Learning

Techniques. ISEC ’17 Proceedings of the 10th Innovations in Software Engineering Conference.

https://doi.org/10.1145/3021460.3021485

44. Liu Y. Xu C. VeriDroid: automating Android application verification. MDS ’13 Proceedings of the 2013

Middleware Doctoral Symposium. 2013 Dec. https://doi.org/10.1145/2541534.2541594

45. Ali-Gombe A. Ahmed I. Richard, III GG. Roussev V. AspectDroid: Android App Analysis System.

CODASPY ’16 Proceedings of the Sixth ACM Conference on Data and Application Security and Pri-

vacy. 2016 Mar. https://doi.org/10.1145/2857705.2857739

46. Petsas T. Voyatzis G. Athanasopoulos. Polychronakis M. Ioannidis S. Rage against the virtual machine:

hindering dynamic analysis of Android malware. EuroSec ’14 Proceedings of the Seventh European

Workshop on System Security. 2014 Apr. https://doi.org/10.1145/2592791.2592796

47. Wu W-C. Hung S-H. DroidDolphin: a dynamic Android malware detection framework using big data and

machine learning. RACS ’14 Proceedings of the 2014 Conference on Research in Adaptive and Con-

vergent Systems. 2014 Oct.

48. Tromer E. Schuster R. DroidDisintegrator: Intra-Application Information Flow Control in Android Apps.

ASIA CCS ’16 Proceedings of the 11th ACM on Asia Conference on Computer and Communications

Security. 2016 May. https://doi.org/10.1145/2897845.2897888

49. Sun H. Zheng Y. Bulej L. Binder W. Kell S. Custom full-coverage dynamic program analysis for Android.

SPLASH Companion 2015 Companion Proceedings of the 2015 ACM SIGPLAN International Confer-

ence on Systems, Programming, Languages and Applications: Software for Humanity. 2015 Oct.

https://doi.org/10.1145/2814189.2814190

50. Diao W. Liu X. Li Z. Zhang K. Evading Android Runtime Analysis Through Detecting Programmed Inter-

actions. WiSec ’16 Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and

Mobile Networks. 2016 Jul. https://doi.org/10.1145/2939918.2939926

51. Rastogi V. Chen Y. Enck W. AppsPlayground: automatic security analysis of smartphone applications.

CODASPY ’13 Proceedings of the third ACM conference on Data and application security and privacy.

2013 Feb. https://doi.org/10.1145/2435349.2435379

52. Canfora G. Medvet E. Mercaldo F. Visaggio CA. Detecting Android malware using sequences of system

calls. DeMobile 2015 Proceedings of the 3rd International Workshop on Software Development Life-

cycle for Mobile. 2015 Aug. https://doi.org/10.1145/2804345.2804349

53. Schütte J.Titze D. Fuentes J.M.D. AppCaulk: Data Leak Prevention by Injecting Targeted Taint Track-

ing into Android Apps. Trust, Security and Privacy in Computing and Communications (TrustCom),

2014 IEEE 13th International Conference on. 2015 Jan. https://doi.org/10.1109/TrustCom.2014.48

54. Li L. Bartel L. Bissyandé TF. Klein J. Traon YL. Arzt S. et al. IccTA: detecting inter-component privacy

leaks in Android apps ICSE ’15 Proceedings of the 37th International Conference on Software Engi-

neering—Volume 1. 2015;5: 280–291.

55. Yang K. Zhuge J. Wang Y. Zhou L. Duan H. IntentFuzzer: detecting capability leaks of android applica-

tions. ASIA CCS ’14 Proceedings of the 9th ACM symposium on Information, computer and communi-

cations security. 2014 Jun. https://doi.org/10.1145/2590296.2590316

56. Zhauniarovich Y. Ahmad M. Gadyatskaya O. Crispo B. Massacci F. StaDynA: Addressing the Problem

of Dynamic Code Updates in the Security Analysis of Android Applications. CODASPY ’15 Proceedings

of the 5th ACM Conference on Data and Application Security and Privacy. 2015 Mar. https://doi.org/10.

1145/2699026.2699105

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 20 / 21

https://doi.org/10.1007/s11280-017-0456-y
https://doi.org/10.1109/TST.2016.7399288
https://doi.org/10.1109/TIFS.2014.2347206
https://doi.org/10.1109/TMC.2015.2444847
https://doi.org/10.1109/TMC.2015.2444847
https://doi.org/10.1145/3021460.3021485
https://doi.org/10.1145/2541534.2541594
https://doi.org/10.1145/2857705.2857739
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1145/2897845.2897888
https://doi.org/10.1145/2814189.2814190
https://doi.org/10.1145/2939918.2939926
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2804345.2804349
https://doi.org/10.1109/TrustCom.2014.48
https://doi.org/10.1145/2590296.2590316
https://doi.org/10.1145/2699026.2699105
https://doi.org/10.1145/2699026.2699105
https://doi.org/10.1371/journal.pone.0191502


57. Yang Z. Yang M. Zhang Y. Gu G. Ning P. Wang X.S. AppIntent: analyzing sensitive data transmission

in android for privacy leakage detection. CCS ’13 Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security. 2013 Nov. https://doi.org/10.1145/2508859.2516676

58. Gajrani J. Sarswat J. Tripathi M. Laxmi V. Gaur M.S. Conti M. A robust dynamic analysis system pre-

venting SandBox detection by Android malware. SIN ’15 Proceedings of the 8th International Confer-

ence on Security of Information and Networks. 2015 Aug. https://doi.org/10.1145/2799979.2800004

59. Enck W. Gilbert P. Chun BG. Cox LP. Jung J. McDaniel P. et al. Taintdroid: An information-flow tracking

system for realtime privacy monitoring on smartphones. OSDI’10 Proceedings of the 9th USENIX con-

ference on Operating systems design and implementation. 2010; 10: 393–407.

60. Lindorfer M. Neugschwandtner M. Platzer C. MARVIN: Efficient and Comprehensive Mobile App Clas-

sification through Static and Dynamic Analysis. Computer Software and Applications Conference

(COMPSAC), 2015 IEEE 39th Annual, 2015 Sep. https://doi.org/10.1109/COMPSAC.2015.103

61. Security-Enhanced Linux in Android. 2017;3: 27. Available from: https://source.android.com/security/

selinux.

62. Smalley S. Craig R. Security Enhanced (SE) Android: Bringing Flexible MAC to Android. Proceedings

of the 20th Annual Network and Distributed System Security Symposium. 2013; 2: 20–38.

63. Wang H. Sun L. Bertino E. Building access control policy model for privacy preserving and testing policy

conflicting problems. Journal of Computer and System Sciences. 2014 Dec. https://doi.org/10.1016/j.

jcss.2014.04.017

64. Wang H. Cao J. Zhang Y. A flexible payment scheme and its role-based access control. IEEE Transac-

tions on Knowledge and Data Engineering. 2005 Mar. https://doi.org/10.1109/TKDE.2005.35

65. Kabir Md. E. Wang H. Bertino E. A conditional purpose-based access control model with dynamic roles.

Expert Systems with Applications. 2011 Mar. https://doi.org/10.1016/j.eswa.2010.07.057

66. Kabir Md. E. Wang H. Bertino E. A role-involved purpose-based access control model. Information Sys-

tems Frontiers. 2012 Jul. https://doi.org/10.1007/s10796-011-9305-1

67. Beresford AR. Rice A. Skehin N. Sohan R. MockDroid: trading privacy for application functionality on

smartphones. HotMobile ’11: Proceedings of the 12th Workshop on Mobile Computing Systems and

Applications. 2011 Mar. https://doi.org/10.1145/2184489.2184500

68. Shuja J. Gani A. Bilal K. Khan AUR. Madani SA. Khan SU. et al. A Survey of Mobile Device Virtualiza-

tion: Taxonomy and State of the Art. ACM Computing Surveys (CSUR), 2016 Jul. https://doi.org/10.

1145/2897164

69. Pearce M. Zeadally S. Hunt R. Virtualization: Issues, security threats, and solutions. ACM Computing

Surveys (CSUR). 2013 Feb. https://doi.org/10.1145/2431211.2431216

70. Park SW. Kim J. Lee DG. SecureDom: secure mobile-sensitive information protection with domain sep-

aration. The Journal of Supercomputing. 2016 Jul. https://doi.org/10.1007/s11227-015-1578-6

71. Xu L. Li G. Sun W. Chen W. Wang Z. Condroid: A Container-Based Virtualization Solution Adapted for

Android Devices. Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE

International Conference on. 2015 Jul. https://doi.org/10.1109/MobileCloud.2015.9

72. Chen W. Xu L. Li G. Xiang Y. A Lightweight Virtualization Solution for Android Devices. IEEE Transac-

tions on Computers. 2015 Oct. https://doi.org/10.1109/TC.2015.2389791

73. Sun Q. Qi T. Yang T. Cui Y. An Android Dynamic Data Protection Model Based on Light Virtualization.

Proceedings of the 15th IEEE International Conference on Communication Technology. 2013 Nov.

https://doi.org/10.1109/ICCT.2013.6820348

74. Samsung KNOX. Available from: https://www.samsungknox.com.

75. VMWare AirWatch. Available from: https://www.air-watch.com.

76. Safe number. Available from: https://hushed.com.

77. SQLite. Available from: https://www.sqlite.org.

78. Sendmail. Available from: https://www.proofpoint.com/us/sendmail-open-source.

79. Milter. Available from: https://en.wikipedia.org/wiki/Milter.

Protecting contacts in smartphones

PLOS ONE | https://doi.org/10.1371/journal.pone.0191502 July 11, 2018 21 / 21

https://doi.org/10.1145/2508859.2516676
https://doi.org/10.1145/2799979.2800004
https://doi.org/10.1109/COMPSAC.2015.103
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://doi.org/10.1016/j.jcss.2014.04.017
https://doi.org/10.1016/j.jcss.2014.04.017
https://doi.org/10.1109/TKDE.2005.35
https://doi.org/10.1016/j.eswa.2010.07.057
https://doi.org/10.1007/s10796-011-9305-1
https://doi.org/10.1145/2184489.2184500
https://doi.org/10.1145/2897164
https://doi.org/10.1145/2897164
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1007/s11227-015-1578-6
https://doi.org/10.1109/MobileCloud.2015.9
https://doi.org/10.1109/TC.2015.2389791
https://doi.org/10.1109/ICCT.2013.6820348
https://www.samsungknox.com
https://www.air-watch.com
https://hushed.com
https://www.sqlite.org
https://www.proofpoint.com/us/sendmail-open-source
https://en.wikipedia.org/wiki/Milter
https://doi.org/10.1371/journal.pone.0191502

