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Abstract

Assessments of the global carbon (C) cycle typically rely on simplified models which con-

sider large areas as homogeneous in terms of the response of soils to land use or consider

very broad land classes. For example, “cropland” is typically modelled as an aggregation of

distinct practices and individual crops over large regions. Here, we use the process-based

Rothamsted soil Carbon Model (RothC model), which has a history of being successfully

applied at a global scale, to calculate attainable SOC stocks and C mineralization rates for

each of c. 17,000 regions (combination of soil type and texture, climate type, initial land use

and country) in the World, under near-past climate conditions. We considered 28 individual

crops and, for each, multiple production practices, plus 16 forest types and 1 grassland

class (total of 80 classes). We find that conversion to cropland can result in SOC increases,

particularly when the soil remains covered with crop residues (an average gain of 12 t C/ha)

or using irrigation (4 t C/ha), which are mutually reinforcing effects. Attainable SOC stocks

vary significantly depending on the land use class, particularly for cropland. Common aggre-

gations in global modelling of a single agricultural class would be inaccurate representations

of these results. Attainable SOC stocks obtained here were compared to long-term experi-

ment data and are well aligned with the literature. Our results provide a regional and detailed

understanding of C sequestration that will also enable better greenhouse gas reporting at

national level as alternatives to IPCC tier 2 defaults.

Introduction

Understanding terrestrial carbon (C) cycle dynamics is essential to assess greenhouse gas

(GHG) emissions and to mitigate and adapt to climate change [1–3]. Land use and land use

change (LU/LUC) are the second most relevant anthropogenic source of C into the atmo-

sphere, after emissions from fossil fuel combustion [4]. Long-term transformations from forest

and grassland to cropland are known to deplete soil organic carbon (SOC) stocks [5–7] releas-

ing C into the atmosphere. SOC can be replenished through C sequestration [8,9]. SOC is

strongly linked with soil management practices (e.g. mulching), soil proprieties (e.g. texture),

climate (e.g. temperature and rainfall) [8,10,11]. These factors display high spatial variability

[9,10,12] and make terrestrial C fluxes the most uncertain in the global C cycle [13]. Besides
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temporal and spatial variability, SOC measurement is also significantly uncertain. Even in

unperturbed systems, this means that changes in the soil C pool can take 5 or more years to be

detectable [14,15]. Linking SOC and LU is additionally difficult as global LU maps and data-

bases typically have a low number of classes or lack relevant information [16]. The European

Land Use/Land Cover Area Frame Survey (LUCAS) [17] database jointly reports SOC and LU

class for c. 19,000 field measurements that will continue to be repeated into the future. How-

ever, LUCAS does not include any information regarding how long after the last LUC event

the measurement was taken. The dynamics of SOC after LUC and the legacy effects of prior

LU are relevant for the determination of potential SOC stocks and how fast SOC is mineralized

[18].

In 2006, the Intergovernmental Panel on Climate Change (IPCC) proposed a method [19]

with three tiers of detail to account for changes in soil C stocks due to LU/LUC. This method

has been applied at local [20], regional [21,22] and global scales [23]. Tier 1 has default factors

of emissions and sequestration of LU/LUC. Tier 2 can potentially incorporate country-specific

management systems and biophysical data to calculate SOC stocks for mineral and organic

soils. Emission/sequestration C flows between atmosphere and soil are then calculated as the

yearly change in SOC stocks over 20 years. Nevertheless, Tier 2 approaches still rely heavily on

default factors for unspecific LU classes within major LU types (cropland, forest, pasture) [19],

as shown in the inventories to the United Nations Framework Convention on Climate Change

and submitted to the Kyoto Protocol by countries such as Canada [24], France [25] and Portu-

gal [26]. Consequently, comparisons of the IPCC method with regionalized models have

revealed large discrepancies regarding SOC changes [20,21].

The alternative for global and regional large-scale assessments of SOC change is to use pro-

cess-based models. Process-based soil models consider biogeochemical processes formulated

according to mathematical-ecological theory. They are capable of simulating SOC turnover

according to specific site conditions and relating it to management practices [27–29]. They

address user-defined temporal and spatial scales based on scenarios that characterize intra and

inter-annual dynamics. The application of these models transfers the need for highly regional-

ized data from the output variable (i.e. SOC) to the input variables. The Rothamsted Carbon

Model (RothC) [30] model is one of the most commonly used soil models today [30–35]. The

set of inputs required by RothC is a crucial advantage when compared with other process-

based soil models that require much larger datasets [33]. The range of dynamic SOC processes

captured by RothC is lower, but the fact that it is a parsimonious model makes RothC a good

candidate for global modelling exercises due to its manageability. However, few examples exist

of continental or global-scale applications of RothC [32,36], which had either low spatial reso-

lution or a low number of classes. For example, Gottschalk et al. [32] applied it globally to gain

insight on future SOC stocks under scenarios of LU distribution, but including only three LU

classes.

As the past few years have seen a surge in computational power and in global data availabil-

ity for modelling [29], here we propose new Tier 2-equivalent defaults obtained from global

SOC modelling with a modified version of RothC. The main innovative features of the mod-

elled data obtained here are (a) the level of spatial differentiation of the results (and respective

uncertainty), and (b) the number of land classes, particularly crop types. Regarding (a), the

basic unit of analysis were around 17,000 unique homogeneous territorial units (UHTU),

which result from the spatial combination of thermal zones, land cover, soil type, soil texture

and countries. Regarding (b), we calculated global SOC dynamics for 80 specific LUs within

broad LU classes (croplands, forests and grassland). The main results targeted with this study

were in particular a new set of highly spatially differentiated and land class-specific attainable

SOC stocks and C mineralization rates. Attainable SOC is the maximum attainable SOC with

Global modelling of soil organic carbon
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occupation by a given vegetation type and climate conditions [37]. We calculate it as a present

potential due to the fact that we assume constant near-past climate and soil conditions, as well

as current crop yields, in its determination.

Materials and methods

The RothC model

The Rothamsted Carbon Model version 26.3 (RothC) is a model of C turnover in non-water-

logged soils [30]. It was initially developed to model C turnover in arable soils and later

expanded to grasslands and forests [3,30,31]. It takes into account the effects of temperature,

moisture content and soil type. The model uses a monthly step. SOC is divided in five com-

partments or pools, depending on decomposability: inert organic matter (IOM), easily decom-

posable plant material (DPM), resistant plant material (RPM), microbial biomass (BIO) and

humified organic matter (HUM). The IOM pool is resistant to decomposition and does not

receive C inputs [38]. Each compartment except IOM decomposes according to a first-order

decomposition process. RothC has been applied using data from long-term experiments across

several ecosystems, climate conditions, and land use (LU) classes [3,30,31].

Calculation procedure

The calculation procedure is depicted in Fig 1 and summarized as follows. The details for each

of these steps are presented in the ensuing sub-sections. First, we collected the source data for

all input variables presented in Fig 1 (i.e. climate and management data, initial SOC stock and

clay content) and respective uncertainty, assuming normal distributions. These data involve all

climate variables (temperature, precipitation and evaporation), management variables (water

input, residues production per LU and country as function of the yield, farmyard manure and

organic fertilizer application per LU) and initial SOC stock and clay content. Then we defined

c. 17,000 Unique Homogeneous Territorial Units (UHTUs) that are assumed to be similar in

terms of soil type, climate regime and current LU. We assigned all input variables to each

UHTU. We then selected priority LU classes and a set of management practices for cropland

production. In each UHTU only a subset of the list of LU classes is biophysically feasible. The

next step was to insert all variables into a MATLAB version (produced in this paper) of RothC.

We ran model initialization to divide the initial SOC stock under current land use into the five

C pools using the method proposed by Weihermüller et al. [39]. Then, we used RothC one

hundred times in each UHTU for each feasible LU class and for 86 years, in order to simulate

results that take into consideration intra-UHTU variability and obtain uncertainty measures

for average UHTU-level results. Results were then used to fit a two-parameter saturating expo-

nential model for each UHTU. We calculated attainable SOC stocks and mineralization rates

per LU class and UHTU using those two parameters. Finally, we compared results to long-

term SOC measurements and data collected in international projects for a wide range of geo-

graphical regions.

Input data. Fig 1 indicates the land, soil and climate data inputs required by RothC [30].

Crop parameters involved in calculations are soil cover period, monthly input of plant residues

(t C/ha), farmyard manure (stored and sprayed manure/slurry and direct deposition of excre-

tions during grazing) C inputs (t C/ha) and irrigation (mm). The clay content of soils (%) is

used to determine the initial distribution of SOC between pools. The starting SOC content (t

C/ha) is used to initialize the model and also the CO2 flux from the soil in the first simulation

period. As for climate data, the model requires average monthly mean air temperature (˚C),

precipitation (mm) and open pan evaporation (mm). We considered a “static world” scenario,

i.e. there was no change in climate in the future. This provides potential SOC dynamics in

Global modelling of soil organic carbon
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near-past conditions but cannot be extrapolated for forecasting the role of climate change in

SOC. We assigned uncertainty to all input data using mean values and standard deviations.

We assumed a normal probability distribution for all parameters.

Soil cover period is required due to higher decomposability of C in uncovered soils [30].

This is a binary monthly variable, where 1 means that the soil was covered with vegetation dur-

ing that month and 0 means that the soil was uncovered. Soil cover period was set to 1 for per-

manent crops (orchards, olive groves and vineyards), forests, grasslands and shrublands. For

croplands, this parameter was obtained from Chapagain et al. [40] and depends on the thermal

zones used by the Global Agro-ecological Zones (GAEZ) Project [41], whose definition is

based on temperature and precipitation. They provide sowing/planting dates and the duration

of the vegetation cycles. In the months between sowing/plantation and harvesting we consid-

ered the soil cover parameter to be 1 and in the other months, in the case where residues are

not left on the field and so the soil is bare, we assigned it the value 0. For cereals, when residues

are left on the field we used the value 1 for all months.

To estimate annual plant residue C input, we used the IPCC methods [19,42,43]. Perma-

nent and annual crop residues are equal to a fraction of above-ground crop yield plus the

below-ground residues [30]. Below-ground residues are also a fixed fraction of the above-

ground yield. Yield data at country-level was obtained from the Food and Agriculture Organi-

zation of the United Nations (FAO) [44]. We used the average and standard deviation of yields

between 2004 and 2014. For forests and grasslands, residue inputs are the biomass left to decay

on the ground (e.g. litter), which depends on the vegetation type and climate region. The full

Fig 1. Workflow procedure for data preparation to be implemented in the RothC model. LU–Land use; SOC–Soil organic carbon; UHTU—Unique Homogeneous

Territorial Unit.

https://doi.org/10.1371/journal.pone.0222604.g001
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method description and data used for crop and forest and grassland is in S1 File. The method

used for croplands determines C residues for an entire year. We then distributed the residues

monthly. This distribution depends on the distribution of net primary production per month

and the life stages of plants. We used the method proposed by Jebary et al. and Morais et al.

[33,45,46] to distribute residue C input to soil between months. According to this method, for

cereal crops, 50% of residues were allocated to the harvesting month and the remaining 50%

were equally distributed among the three months before. For permanent crops, 70% of resi-

dues were allocated to the pruning months and the remaining 30% to the prior four months.

This distribution depends on the monthly distribution of net primary production and life

stages of plants. The months for harvesting and pruning were obtained from Chapagain et al.

[40]. For forests and grasslands, residues were equally distributed during the year, thus assum-

ing that there are no management activities.

Farmyard manure is an extra C input in croplands and grasslands. In grasslands, the source

of this input is both direct dung deposition during grazing and (possibly) application of

manure, while in croplands only the latter is applicable. For dung excretions during grazing

we used livestock units on grasslands from Gridded Livestock of the World v2.0 [47] combined

with manure excretion from IPCC [19] for cattle, sheep and goat livestock. For manure appli-

cation in grass and croplands there is no known data available. Organic fertilization is highly

variable, as it depends on local manure availability and price, its source and type (solid, liquid)

and its chemical composition (humidity, C:N ratio, etc.). We used data from Mueller et al. [48]

for total aggregate consumption of nitrogen (N) fertilizers from synthetic and animal origin,

and considered three scenarios. In the first scenario, the total consumption of N from Mueller

et al. [48] was assumed to be synthetic fertilizer only, and thus there is no manure input. In the

second, we considered that only 50% of the total amount of fertilizer was applied as manure.

In the third scenario, we considered that all N used as fertilizer was manure (organic fertilizer).

To convert the N content of manure to C, we used the C:N ratio of farmyard manure provided

by FAO [49]. We excluded any vegetable material applied as part of manure (such as straw and

other materials from animal beddings) to avoid double-counting, as plant-based C input is

already included in cases where residues are left on the field. The detailed method is in S1 File.

RothC does not distinguish between water input types (i.e. water from irrigation and water

from precipitation). Water provision during dry seasons can make a difference in SOC miner-

alization [38]. We used the method of Pfister et al. [50] to calculate water input as the sum of

precipitation and irrigation. The method assumes that, for each crop and attainable yield, the

water requirements of that crop must be attained through precipitation alone or with addi-

tional irrigation. Irrigation is either zero (if precipitation is higher than the water needed for a

given month) or the difference between the water needed by the crop and the precipitation for

each month. Crop water requirements were obtained by multiplying specific crop coefficients

depending on a monthly growth stage factor and potential evapotranspiration. The growth

stage factors were obtained from Chapagain et al. [40] for all crops in each thermal zone.

Potential evapotranspiration was obtained using the Thornthwaite equation [51], which uses

monthly average air temperature, average day length, in hours, and number of days per month

obtained from MODIS [52]. The detailed method description and data used for croplands is in

S1 File.

Average monthly precipitation and mean air temperature were both obtained from

National Aeronautics and Space Administration’s (NASA). Precipitation was obtained from

the database of the “Global Precipitation Climatology Project (GPCP)” [53] We used data for

thirteen years (2000–2013). To establish normal climatic conditions, 30 years are usually nec-

essary. However, the data from NASA does not go so far back. Additionally, given recent

changes in climate that produce many anomalous meteorological years, we believe a shorter
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period can nevertheless more accurately represent near-past conditions [54–56]. Further, we

also used this period to ensure consistency with other data, as yield data is also valid for the

same period only. Monthly open pan evaporation was calculated as 75% of the potential evapo-

ration, an assumption used by previous studies using RothC [33,46]. Potential evaporation was

calculated using the Thornthwaite equation [51].

SOC initialization values were obtained from the European Soil Data Centre (ESDAC) [57].

Clay content was obtained from the Harmonized World Soil Database [58]. The topsoil layer

considered was 30 cm deep.

Definition of unique homogeneous territorial units. In this study, we used the concept

of UHTU to establish the basic units of analysis. UHTUs are geographical regions where soil

type and texture, climate type and LU are uniform at the scale of analysis. RothC was used for

each unique region individually. UHTUs were defined as a geographical combination of five

layers, namely thermal zones, land cover, soil type, soil texture and country. Thermal zones

were obtained from GAEZ [41], which divides the world into 12 zones (S1 File). We excluded

arctic and desert regions. We used data from the Land Processes Distributed Active Archive

Center (LP DAAC) [59] for attribution of land classes. This source considers 16 LU classes,

out of which we excluded “water” and “unclassified” regions from the analysis. Soil type and

texture data were obtained from the World Reference Base (WRB), as depicted in Fischer et al.

[60]. We considered the 8 types of soil and 13 types of texture from WRB. Finally, it was neces-

sary to use a country layer in the definition of UHTUs because crop yield data from FAO is

only available at country-level. We obtained the country borders from the World Borders

Dataset [61]. We used FAO yield data for 202 countries and for the period 2004–2014. The full

list of countries is in S1 File. The combination of these data sets resulted in 17,203 UHTUs (S3

File). An individual set of RothC simulations was then carried out for each UHTU. The aver-

age area of each UHTU is 6,400 km2.

Choice of land use classes. We performed simulations of SOC dynamics for 43 LU clas-

ses, including 28 agricultural classes (under different management practices), 16 forest classes

and 1 grassland class. The agricultural classes selected were the 28 most produced and traded

(which are the result of intersecting the top twenty most produced and traded products) dur-

ing the period 2004–2014 (most recent year available) [44] in the World (using FAOSTAT

nomenclature): apples; bananas; barley; cabbages and other brassicas; carrots and turnips;

cocoa, beans; coconuts; coffee, green; grapes; groundnuts, with shell; maize; oil, palm fruit;

olives; onions, shallots, green; oranges; potatoes; rapeseed; rice, paddy; seed cotton; sorghum;

soybeans; sugar beet; sugar cane; sunflower seed; sweet potatoes; tobacco, unmanufactured;

tomatoes; and wheat. Regarding management practices, besides the three organic fertilization

scenarios explained previously, we considered rainfed and irrigated production (except cab-

bage, carrot and onion, in which cases we only used irrigated production because rainfed areas

are insignificant compared with irrigated areas). We considered two management options for

residue management of cereals: (1) residues are left on the field; (2) residues are removed from

the field. Forest and grassland classes were obtained from the IPCC classification [19,43]:

broadleaf deciduous forest and needleleaf evergreen forest in the dry boreal zone, moist boreal

zone, moist cold temperate zone, dry cold temperate zone, dry warm temperate zone, moist

warm temperate zone, sub-tropical zone and tropical zone. The IPCC method [43] for forest

residues provides annual C residues and transition time for all forests. Thus, we used the linear

annual litter increase rate during forest growth and after maturity a constant annual C residue

input. IPCC considers only one type of grassland. In total there are 80 possible combinations,

combining cropland with management practices (irrigation/rainfed and residues left/removed

on/from the field) plus the forest classes and the grassland class. To determine the UHTUs

where each agricultural LU class is feasible, country-level FAOSTAT yield data is insufficient.

Global modelling of soil organic carbon
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Instead, we used production capacity maps from GAEZ [41]. These maps integrate climatic

and edaphic variables to determine feasible areas for each agricultural LU class. For each crop,

if there is at least one pixel inside of the UHTU with non-null production capacity in the pres-

ent, we assumed that the crop is feasible in that UHTU. Forest classes are divided by thermal

zone by definition. For grasslands, we used directly the areas classified as “grassland” from LP

DAAC maps [59].

MATLAB implementation. RothC can be obtained under a free for research license from

the Rothamsted Research website [62]. However, that version of the model only runs for one

region (UHTU) and one LU class at a time. To expedite calculations for all UHTUs simulta-

neously we implemented a Matlab version of RothC. We implemented also a Monte Carlo

approach [63] for determining the uncertainty of results. We ran the model 100 times for each

LU class in each UHTU. Each iteration thus used a unique set of input parameters drawn ran-

domly from their respective normal probability distributions.

Calculation of attainable SOC stocks and mineralization rates. We obtained the annual

SOC stock from the model for 86 years (simulation between 2014 and 2100). As 2000–2013 cli-

mate data was used, this estimation considers climate stability and does not take the role of cli-

mate change into account.

RothC is a multiple pool model but the overall shape of the dynamic SOC curves for each

pool is approximately exponential. For grassland and agricultural classes, this approximation

is a good fit for all periods simulated because the C input from residues is constant, but for for-

est classes it is only true after maturity (i.e. when annual C residues are constant). In the transi-

tion period, dynamic SOC curves are approximately a fourth-degree polynomial. For

grasslands, croplands and mature forests, we used a simple two-parameter mass balance

model for SOC dynamics to fit the annual SOC stocks obtained by the application of RothC

for each land class in each UHTU. The SOC balance is the difference between C input and

mineralization, described by

dSOC
dt
¼ K � aSOC ð1Þ

where SOC is the SOC stock (t C/ha) at time t, K is the C input to soil at time t, and α is the C

mineralization rate. C input (parameter K) is a function of the LU. Therefore, K and α are

time-invariant and vary with location (i.e. UHTU) and LU class. Integrating between 0 and t,

we obtain

SOCt ¼
K
a

1 � e� atð Þ þ e� atSOC0 ð2Þ

SOC is limited by an upper bound, i.e. SOC reaches a maximum attainable equilibrium,

which is given by K/α. The curve fitting procedure thus provides attainable SOC stocks and

mineralization rates that are LU and site-specific.

Comparison of results and assumptions with data and previous uses of the

model

Attainable SOC stocks calculated in this paper are difficult to validate for two main reasons.

First, because they are regional averages valid at UHTU scale, which are relative large and

approximately homogeneous areas. Our results should therefore be an approximation of mea-

surements made at point/plot scale within UHTUs, but not an exact match. Second, they are

difficult to compare with benchmarks because they are potentials rather than actual estimated

Global modelling of soil organic carbon
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SOC stocks. Comparison, for example, with available global SOC maps would be incorrect as

those depict current SOC levels rather than potentials.

To assess the agreement between our results and field-level measurements of SOC, we

therefore used a mixed strategy of indirect verification. Namely, we triangulated multiple lines

of evidence to inquire whether literature or database sources lend support to our main results.

This analysis included three separate parts.

First, we compared SOC stocks and mineralization rates obtained here with multiple field

measurements taken from multiple croplands and forests in different locations of the world.

In the absence of crop-specific global meta-analyses of SOC stock variation with LUC, we

compare our results with prior local/regional applications of RothC. We compare results from

those in-situ experiments to our results for the same regions, to assess if our approach, which

is global and not tailored for farm-level assessments, can nevertheless adjust well to observa-

tions. However, to avoid comparing potentials (our work) with current SOC levels, we used

only results from long-term experiments where, in principle, SOC stocks were closer to maxi-

mum attainable.

In this first step we used the search engine Google Scholar and the keywords “long-term

experiment” + “soil organic carbon” and “long-term experiment” + “mineralization”. The

search was conducted on July 30, 2018. We obtained 4,480 and 610 matches, respectively. We

then selected only peer-reviewed studies published in books and journals with impact factor

according to the 2017 InCites “Journal Citation Reports” from Clarivate Analytics [64]. We

excluded project reports, Master and PhD dissertations and other grey literature sources. We

also excluded experiments involving crop rotations or other LU changes within the study

period, as these are not included in our analysis. As the goal was not to perform a comprehen-

sive meta-analysis, we considered only the first 10 Google Scholar pages, i.e. 200 papers. We

only used studies that explicitly report SOC stock (t C/ha) or SOC concentration (g C/kg soil)

and bulk density (g/cm3) (to enable conversion of SOC concentration into stock). Using these

criteria, we obtained a final list of 12 papers (out of 200).

The second comparison we made in this paper involved the model parameters chosen in

local/regional and global applications of RothC regarding the DPM/RPM ratio and the decom-

position rate of each pool. RothC was calibrated using SOC data from long-term experiments

by the original developers of the model [30]. We used the default parameterization of the

model for the global application. As parameters could be UHTU-specific, we checked whether

other applications of the model have used non-default sets of parameters and, if so, if they

were significantly different from the default. We again used the search engine Google Scholar

and the keywords "Rothamsted Carbon Model" + "DPM" OR "RPM" OR "Hum" OR "Bio" OR

"IOM". The search was conducted on December 2, 2018. We obtained 521 matches. We

selected only peer-reviewed studies. Papers that used older versions of RothC than version

26.3 [30] and papers that only mentioned RothC without applying it were also excluded. Here,

studies involving crop rotations were included. We included local/regional applications

(mainly with measured soil C inputs) of RothC and continental/global applications (with esti-

mated and aggregated data for soil C inputs). As the goal was not to perform a comprehensive

meta-analysis, we considered only the first 50 papers (out of 521). Those 50 papers include a

total of 233 applications of the RothC to particular points/regions. The full list of references, as

well as parameters used in each of them, is included in S2 File.

The final step of this section of the work was a comparison of attainable SOC stocks

obtained in this study with SOC concentration measurements from the LUCAS Project [17].

In this project SOC concentrations were measured at the 0–20 cm topsoil layer. To compare

results, we assumed a uniform distribution on SOC in the topsoil profile, which means that 2/

3 of SOC is in the 0–20 cm layer. Finally, to convert SOC concentrations (kg C/kg soil) to SOC
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stock (t C/ha), we used bulk density maps produced in the same project [65]. These site mea-

surements covered 1,171 European UHTUs. As LUCAS assessed current SOC stocks, we

could not compare values directly. Instead, we assume that higher present SOC should be, on

average, correlated with higher potential SOC within the same land classes. We performed

geospatial correlation analysis using Pearson’s r using 21 LU classes whose classification

matches the system used in LUCAS. We excluded 20 LU classes because they had less than 100

observations each. To calculate these correlations, we used software SPSS version 23. We cre-

ated a correspondence between the classification used in this study and the LUCAS Project

classification, which is described in S1 File.

Results and discussion

Dynamics of SOC loss and accumulation

We ran RothC for 86 years (from 2014 to 2100) and simulated SOC dynamics in all LU classes

that are biophysically feasible in each of the c. 17,000 UHTUs, starting from present-day mea-

sured SOC stocks. Fig 2 displays selected results for the four largest UHTUs. SOC stocks (0–30

cm depth) are highly LU class-dependent even for classes that are traditionally aggregated

such as different types of arable land. For example, in the region along the northern border of

the United States of America (USA) with Canada the SOC stock after 86 years of irrigated

maize with residues left on the field is 89 ± 3 t C/ha while for irrigated soybean it is 56 ± 2 t C/

ha (Fig 2A), despite the fact that both are examples of typical agricultural classes. For each LU

class, the SOC stock is highly dependent on the region under consideration: for example the

average SOC stock for maize in Northwest India (Fig 2D) after 86 years is about 10 ± 1 t C/ha,

which is considerably lower than the previously cited stock in North America (Fig 2A).

Forest LU classes such as “broadleaf deciduous forests” in North America (Fig 2A) and Asia

(Fig 2C) need more time to reach the maximum attainable level. Immediately after transition

to forest, SOC stocks decrease due to the low input of C residues as the forest is starting to

grow. When forests reach a certain level of biomass stock, SOC begins to increase (Fig 2A and

Fig 2D) as observed in other studies [5]. Climatic features such as temperature and precipita-

tion and different soil types drive differences in soil C mineralization and also feasible yields,

which in turn drives plant C inputs to soil.

In general, agricultural LU classes reach lower SOC levels than forests at maturity. Some

boreal forests in western Scandinavia are exceptions where croplands can have higher SOC

stocks than forests. Potential C input from residues kept on the field is high in these regions

(e.g. tomato and maize), while boreal forests have low tree biomass and productivity and thus

low soil C input [66]. Additionally, conversions to agricultural classes typically reach new SOC

equilibria quicker than transitions to forest and grassland LU classes. Consequently, SOC loss

is typically faster than SOC recovery. Grasslands generally reach higher SOC levels than crop-

lands (Fig 2B and Fig 2D) due to plant shoot and roots and animal C inputs to soils [67,68],

with notable exceptions in some regions for agricultural classes with high plant residues, such

as irrigated maize (Fig 2A and Fig 2C). Fig 3 shows this effect clearly. When residues are

removed from the field, croplands almost always reach lower SOC stocks, but if residues

remain on the field there are large areas of North America, Western Europe, Central Asia and

Australia where croplands accumulate more SOC than grasslands. Two effects justify this

result–residues increase C input to soil, and soil cover with those residues reduces C minerali-

zation. Out of the two, plant residue C input is the key explanatory variable of the results, but

it is also the main source of uncertainty.

In order to test the significance of results in Fig 4, we performed ANOVA for all UHTU and

LU classes where attainable SOC for croplands were higher than attainable SOC in grasslands.
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On average, and for each LU class, the difference of the means is statistically significant at 5% in

30% of the UHTUs (15–67% depending on the agricultural LU class). Irrigated wheat with resi-

dues left on the field was the LU class with the highest number of UHTUs with p-value lower

than 5% (165 out of 673 UHTUs), while rainfed sorghum with residues left on the field was the

LUC class with the lowest number (2 out of 3). Irrigated maize with residues left on the field was

the LU with the highest number of UHTU where attainable SOC was higher (625 UHTU), but

the difference is only statistically significant in 20% of those UHTUs. These tests reassure statisti-

cally that for a fraction of the cases identified in Fig 4 some croplands indeed attain higher SOC.

Global distribution of long-term SOC equilibria and mineralization rates

To aid in interpretation, we fitted an exponential model to each 86-year SOC time series,

depicting inter-year changes in SOC stocks as a simple balance between fixed C inputs to soil

Fig 2. Soil organic carbon (SOC) stock (t C/ha) in four land use classes, in the scenario without manure application, in four unique territorial units studied (dark grey),

namely: a, 911 (North America). b, 11867 (South America). c, 3499 (Europe). d, 7916 (Asia). Marks in the graphs represent mean annual SOC stock obtained in RothC,

lines represent fitted exponential curves and the shaded area represents the 95% confidence interval of each fitted year.

https://doi.org/10.1371/journal.pone.0222604.g002
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and fixed rate C mineralization and emission as CO2 through soil respiration; this is effectively

the most simplified version of RothC possible, considering a single C pool in the soil and a

mean rate of mineralization for the average pool. The upper limit of the exponential model is

the maximum SOC stock obtainable, or attainable SOC. The full list of Curve fitting results

(i.e. long-term SOC stock, mineralization rates and the parameter K) are presented in S4 File.

Fig 4 depicts the global distribution of attainable SOC stocks for six particular LU classes,

while Fig 5 shows C mineralization for the same classes. Note that none of these classes exist in

all UHTUs, because of biophysical feasibility constraints. Irrigated tomato production, for

example, is feasible in 11,985 UHTUs (the highest number for all LU classes), and rainfed oil

palm in 73 UHTUs (the lowest number).

Regardless of LU class, high latitude regions and (for some land classes) Equatorial

regions display higher attainable SOC stocks (Fig 4), but for different reasons. Equatorial

regions are marked by high temperature and high rainfall, causing higher soil respiration

(Fig 5) through the effect on soil microbial activity [69,70], but this effect is countered by

Fig 3. Visual representation of the regions where soil organic carbon (SOC) stock (t C/ha) is higher for grasslands

than agricultural land uses (in green) or lower (in red). Agricultural land uses and practices represented: a, b, c, d–

maize, e, f, g, h–wheat; a, c, e, g–irrigated, b, d, f, h–rainfed; a, b, e, f—residues left on the field, c, d, g, h—residues

removed from the field.

https://doi.org/10.1371/journal.pone.0222604.g003
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higher yields and consequently higher plant C input to soil. High latitude regions have high

water availability and low temperature, and therefore low mineralization rates (Fig 5). The

Mediterranean and Australian semi-arid regions show high mineralization rates, but attain-

able SOC stocks are higher along the Mediterranean due to higher plant C inputs to soils

(e.g. Fig 4D and Fig 5D).

Coniferous forests in northern boreal regions (Fig 4E) have the highest attainable SOC out

of all types of forest anywhere in the World. Partially this is the result of climatic conditions in

the north boreal regions, but also of high plant C inputs. Southern boreal forests have lower

attainable SOC than northern regions as mineralization rates increase towards the Equator.

Despite lower mineralization in high latitude regions (boreal thermal zones), these forests in

the Southern border tend to have lower attainable SOC stock compared with temperate forests

due to higher annual litter production of the latter. In UHTUs where boreal coniferous forest

and temperate continental forest can coexist, the latter have on average 75 t C/ha higher attain-

able SOC.

Fig 4. Attainable soil organic carbon stock (t C/ha) obtained by curve fitting per unique homogeneous territorial unit, in the scenario without manure

application. a, irrigated maize, residues left on the field. b, irrigated soybean. c, irrigated sunflower. d, irrigated tomato. e, broadleaf deciduous forest in dry warm

temperate zone, and. f, grassland.

https://doi.org/10.1371/journal.pone.0222604.g004
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Regarding grasslands, the input of C from dung deposition depends on grazing intensity,

which introduces a high degree of spatial variability in attainable SOC. Lower SOC stocks are

found in arid and dry areas of Oceania (particularly Australia). In general all LU classes in this

region have low attainable SOC stocks (Fig 4) and high mineralization rates (Fig 5). Grasslands

have particularly high SOC stocks in equatorial regions (Sub-Saharan regions, Central Amer-

ica and Southern Asia regions), which is 7 t C/ha higher than in croplands on average. How-

ever, croplands with high residue production crops (e.g. maize, wheat) in mid and high

latitude regions, can have stocks up to 20 t C/ha higher than grasslands.

For maize (Fig 4A) there is a downward North-South gradient. In North Canada and the

USA SOC stocks are higher than in southern USA and Mexico, although moving towards the

South of the continent SOC increases slightly for some crops and grasslands. Typically, attain-

able SOC stock in Africa is lower than in the other regions due to high turnover rates of

organic material combined with low yields [71]. Irrigated sugarcane is the technically feasible

crop most found in African UHTUs, but it is also the agricultural LU class with the highest

Fig 5. Average organic carbon mineralization rate (% per year) obtained by curve fitting per unique homogeneous territorial unit, in the scenario without

manure application. a, irrigated maize, residues left on the field. b, irrigated soybean. c, irrigated coconut. d, irrigated tomato. e broadleaf deciduous forest in dry warm

temperate zone, and. f, grassland.

https://doi.org/10.1371/journal.pone.0222604.g005
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mean mineralization rate (about 5% per year). Tropical and subtropical forest classes have

lower mean SOC mineralization rates (about 1% per year) than arable land classes.

Fig 6 depicts the impact on attainable SOC stock of management practices in grain maize

production. We tested: a) the effects of irrigation against rainfed maize, b) leaving plant resi-

dues on the field against exporting crop leftovers, and c) organic fertilization. The distribution

is regionally asymmetrical, but in general leaving residues on the field (Fig 6B) produces higher

increases of attainable SOC stock than irrigation (Fig 6A) and organic fertilization (Fig 6C).

The average effect of irrigation on all agricultural classes is an increase in attainable SOC of

4 ± 2 t C/ha. Irrigation has less effect on permanent crops (0.9 ± 0.1 t C/ha). Wheat is the agri-

cultural class where irrigation has a higher positive effect (10 ± 5 t C/ha). SOC increased the

most with irrigation in temperate thermal zones. For example, the SOC increase due to irriga-

tion at temperate oceanic regions is 3–8 t C/ha for UHTUs. On average organic fertilization

increases the attainable SOC stock of agricultural classes by 3 ± 1 t C/ha. Potato (irrigated and

rainfed) is the class where organic fertilizer application increases attainable SOC stock the

most (about 8 ± 3 t C/ha). Temperate thermal zones are where organic fertilizer application

increases SOC stocks the most, between 4 and 6 t C/ha. Maintenance of residues on the field

increases attainable SOC stock for cereals classes by 12 t C/ha. The increase is highest (18 ± 4 t

C/ha) for maize and wheat.

Sugar crops (sugarcane and sugar beet) and tomato have the highest attainable SOC stocks

among crops, due to higher yields and production of residues. These crops are estimated to

produce residues that are twice the yield. Others crops, like tobacco, also produce more-than-

proportional residues but have low yields and as such do not accumulate as much SOC. Irri-

gated sugar beet leads to, on a global average, 20 t C/ha higher stabilisation SOC compared

with irrigated maize with residues left on the field. In this case, although maize is more produc-

tive, the fraction that is plant residue is much lower.

Fig 6. Soil organic carbon (SOC) stock difference (t C/ha) for the effect of management practices on attainable soil organic carbon stock for maize. a, SOC for

irrigated maize minus SOC for rainfed maize. b, difference in SOC for maize with residues left on the field and with full extraction of residues. c, difference in SOC for

100% organic fertilization of maize and 0% organic fertilization.

https://doi.org/10.1371/journal.pone.0222604.g006
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Additional management practices such as tillage can potentially affect SOC stocks, but are

not explicitly modelled by RothC. In the literature, the effect on SOC stocks of replacing con-

ventional tillage with no-till is on average 2–10 t C/ha [72,73]. According to the IPCC [19],

tilled cropland soils have 2–15% less SOC than no-till soils. This is less than half (31%) of the

difference between attainable SOC stocks of grasslands and cereals found here. Our conclu-

sions about regions where croplands reach higher SOC stocks than other land uses are there-

fore not affected by omitting the effects of tillage.

Comparison of results with data

Global modelling exercises provide highly uncertain results, in particular for SOC, which is

highly sensitive to geography and dependent of LU class. Our application of RothC provides

results depicting trends at UHTU level. At higher scales, results are well aligned with prior litera-

ture, despite high variation due to the crop-specificity of our results. For example, in Fig 2C the

SOC gain due to transformation to forests depicted for temperate zones is about 200%. Prior

research estimated SOC stock gains between 75% and 200% for transitions from cropland to for-

est (after 100 years), also for temperate zones [5]. Nevertheless, despite the high level of regionali-

zation, these estimates are not necessarily farm-specific and are not applicable locally. This raises

the question of whether the outputs of the model realistically depict SOC as measured.

In general, attainable SOC stocks and mineralization rates reported here are similar to values

reported in long-term field measurements for specific sites reported in other studies. In the

Huang-Huai-Hai Plain of China [74] the long term SOC stock (without organic fertilizer appli-

cation) at 20 cm depth for maize production is 18 t C/ha (27 t C/ha, assuming homogenous dis-

tribution in the first 30 cm depth). Our results for the same region were 20 ± 2 t C/ha (30 cm).

In another Chinese region (Jiangxi) [75] long-term maize production without fertilization

results in a SOC stock of 20 t C/ha, which changes to between 23 and 31 t C/ha with different

fertilization rates. For the same region we obtained 25 ± 5 t C/ha and 38 ± 8 t C/ha, respectively.

In a Canadian region [76] SOC in wheat fields stabilizes at 35 t C/ha (at 15 cm depth– 70 t C/ha

at 30 cm) when straw is left on the field, while we report 51 ± 10 t C/ha for the same case and

region. In the Harpenden region (United Kingdom) [30] SOC stocks of about 25 (at 15 cm

depth– 50 t C/ha at 30 cm) and 60 t C/ha (at 23 cm depth– 78 t C/ha at 30 cm) were reported

for arable land and mixed deciduous forest following a calibration procedure of RothC using

field-level data. We obtained for the same region 35 ± 9 and 66 ± 15 t C/ha. In the Ruzyně

region (Czech Republic) [30] arable land has 32 t C/ha in the first 20 cm (48 t C/ha at 30 cm),

according also to a calibration study with the same model, while we obtained 29 ± 11 t C/ha. In

the Halle region (Germany) [77] maize production without fertilizer applications leads to the

accumulation of 59.7 t C/ha and 43.2 t C/ha (at 35 cm depth– 51 and 37 t C/ha at 30 cm), while

in the same region we obtained 49.6 t C/ha and 48.6 t C/ha at 30 cm, respectively.

This assessment shows that, discounting differences in sampling depth, our results are gen-

erally in agreement with measurements. In particular, there is good agreement for European

temperate regions, as the default parameterization of RothC used here was obtained for those

conditions (originally for measurements of SOC in Harpenden, United Kingdom [30]). How-

ever, this is not the case for all regions of the World. Despite the notable exceptions mentioned

earlier, the estimation agreement is lower in regions with significant different climate condi-

tions to those where RothC were calibrated. Estimated attainable SOC for wheat in three

Indian regions (Barrackpore, Ranchi and Akola) [78] were 40% lower on average. SOC stocks

for wheat in those regions (at 30 cm depth) of 39, 24 and 19 t C/ha were reported. Respectively

for the same three regions we obtained 17 ± 4, 15 ± 5 and 14 ± 2 t C/ha. In the Sidney region

(Australia), long-term grasslands reached between 58 t C/ha and 82 t C/ha (depending on the
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tillage practice). In our work, we obtained 38 ± 3 t C/ha. Long-term rice cultivation in South

Korea leads to a SOC stock of 60t C/ha (without fertilization) and between 60 and 69 t C/ha,

depending on the fertilization rate, while we obtained 30 ± 6 t C/ha and 32 t C/ha, respectively.

Regarding the mineralization rate, an average range reported for sorghum production in Bur-

kina Faso [79] is 1.5 to 2.6%, which is similar to 3 ± 1% obtained in our results. The differences

can be justified due the differences in climatic variables between studies (e.g. the average rain-

fall used in this study is 200 mm higher). The average rate for fertilized grasslands in England

[80] are 3.0%, compared with 3.7% in our study. For oak forests in Italy [81], mineralization

rates reportedly range between 1 and 6%, while for the same region we obtained an estimated

5 ± 1% for temperate oceanic forests. As for the role of management practices on SOC, for

maize production in a Loess Plateau (China) [82] leaving straw on the field increases annual

SOC stock in 0.150 t C/ha.year. For the same region we obtained 0.350 ± 0.035 t C/ha.year,

considering the difference in SOC between the first year and at the end of the 86-year simula-

tion. A study in central Ohio (USA) [83] calculated that wheat residues left on the field

increase SOC by about 3 t C/ha.year. For the same region, we obtained 2 ± 2 t C/ha.year on

average for all LU classes.

A systematic comparison of our results with individual studies would require a large meta-

analysis of SOC measurement studies, which is outside the scope of this study. Our results are

valid over relatively aggregated regions that are approximately homogeneous (i.e. UHTUs), but

the studies in the literature are valid for specific points within those regions. It would be neces-

sary to aggregate the results of those studies into broader areas in order to compare them with

our regionally applicable results. At the moment, these comparisons provide promising indica-

tions that our results depict the main trends when comparing regions and LU classes. This pro-

vides some qualitative assurance for the main insights obtained from the results in this paper. In

most cases where the literature reports measured SOC stocks that are significantly different

from our results, the relative comparisons between LU classes and locations are very rarely dif-

ferent. If a given LU class in a given region has a higher measured SOC stock than another LUC

class in another region, our model results typically also report a higher SOC stock.

Besides individual studies, we also compared our results with pre-established SOC data-

bases. This enables a systematic assessment of the agreement between results. We used the

geo-referenced 19,000-measurement LUCAS database for the EU [17]. A geospatial analysis of

LUCAS depicts the same general conclusions of our work. Considering only EU countries, the

regions with higher attainable SOC stocks are Northern Europe, Southeast France and the

British Isles, which are the regions where higher SOC field measurements are located in

LUCAS. This fact can be explained by the combination of three factors: temperatures are rela-

tively low temperate, precipitation is relatively moderate (in the case of British Isles) or low

(Southeast France) and organic soils, which are typically high in SOM [17,84,85], are present.

Results of geospatial correlation analysis shows that for 13 LU classes out of 21 evaluated SOC

stocks in our work and LUCAS measurements are significantly correlated at 5% (mean Pear-

son’s r is 0.212). For sugar beet and rapeseed no spatial correlation was found. This result is

due to the fact that our results depict attainable SOC stocks, while LUCAS measurements

depict SOC stocks at an unknown time after transformation, with no assurance that SOC at

each location has stabilized. The fact that a positive correlation was found is reassuring, as a

stronger correlation could not be expected.

Comparison of assumptions with previous uses of the model

Regarding the choice of parameters made in previously published works using RothC at point/

plot scales, we observed a widespread use of default DPM/RPM ratios and decomposition
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rates for the different organic matter pools (Table 1). Most model applications (197) use only

defaults (i.e. DPM/RPM ratio of 1.44 for cropland and improved grasslands, 0.67 for unim-

proved grassland and scrub and 0.25 for forest; and decomposition rate of 10, 0.30, 0.66, 0.02

1/year for DPM, RPM, HUM and BIO, respectively). The decomposition rate of the HUM

pool was the parameter most often re-parameterized, followed by the DPM/RPM ratio of the

soil C inputs. The HUM pool is most often re-parameterized (as for example [86–88]) as it has

the most sensitive kinetic constant (due to the longer residence time). Regarding land classes

(data shown in S2 File), all three main LU types (cropland, grassland and forest) are covered

by the sampled papers, and for each of them multiple sub-classes are considered—e.g. in the

cropland class, the studies assessed involve 20 different crops/rotations (among others, maize,

wheat and rice). Forest is the class that required more re-parametrizations (23 out of 52 appli-

cations), mainly in the HUM decomposition rate. Nevertheless, twenty-two of those re-param-

etrizations are from only one study (Shirato et al. [86]). Croplands required the least changes

(only 5), which was expected considering that RothC was originally developed for croplands.

This low number of re-parameterizations in studies that applied the model at very fine scales

provides some assurance that the default configuration of the model used in this work works

well for most regions of the World.

The resilience of our results is also demonstrated when comparing our results to results

obtained using different parametrizations for specific regions. For example, RothC was origi-

nally developed for humid regions and is known to overestimate C mineralization in dry

regions [89]. A small change in the soil moisture rate modifier was proposed (where the mini-

mum value of the rate modifier was changed to 0.1 –originally it was 0.2) [89]. Comparing the

attainable SOC stocks in a dry region (Alentejo, Portugal) that were obtained in a previous

regional study [33] using the modified version of RothC to the attainable SOC stocks obtained

in this paper for the same region (using the “default” RothC parameter set), there are no statis-

tically significant differences in results (considering the confidence intervals for both applica-

tions of the model). For example, the average attainable SOC stocks for irrigated maize with

residues left on the field obtained in this paper was about 38 ± 7 t C/ha, while in the regionally

modified application it was 41 ± 4 t C/ha. The average obtained in each model application for

each land class always falls within the confidence interval obtained in the other. Therefore,

despite of the reported overestimation of C mineralization under dry conditions, there is no

statistically significant difference in results for our application at UHTU scale.

Comparison of results with large-scale RothC applications

We only found 2 continental/global applications [32,36] of RothC in the first 200 references

(out of the 521). As in this paper, all of them used the model without re-parametrization.

Those studies include the main three LU classes, cropland, grassland and forest, without dis-

criminating between sub-classes (e.g. specific crops). For grasslands, the model application

performed by Smith et al. [36] at European scale considered a DPM/RPM ratio of 1.44 (i.e, the

Table 1. Accounting of the RothC model parametrization. BIO microbial biomass; DPM—easily decomposable plant material; HUM—humified organic matter;

RPM—resistant plant material.

Was

it changed?

DPM/RPM ratio Decomposition rate

DPM RPM HUM BIO

Yes 10

(4%)

2

(1%)

4

(2%)

36

(15%)

1

(<1%)

No 222

(96%)

231

(99%)

229

(98%)

197

(85%)

232

(>99%)

https://doi.org/10.1371/journal.pone.0222604.t001
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default for improved grassland), while the global application performed by Gottschalk et al.

[32] considered 0.67 (i.e. the default for unimproved grasslands). Our study is therefore

aligned with past practices in terms of parameter selection but adds significant regional and

LU detail when compared to those prior applications. Both papers focus on the effects of cli-

mate change and estimate a SOC loss in cropland and grassland areas in Europe due to warmer

temperatures. They also note that SOC loss may be slowed by decreased soil moisture. Those

results cannot be directly compared to the results obtained in this paper because our study was

not forward-looking and did not take the effects of future climate change (temperature and

precipitation) into account. However, our results have implications for studies aimed to esti-

mating the effect of climate change on SOC loss. We show that SOC loss/gain is highly related

with the specific crop type. In the same UHTU, land occupation with one crop type could lead

to SOC gains and with another crop to SOC loss due to different yields and their response to

changing climate conditions. These results therefore suggest that future similar studies should

consider at minimum the same level of differentiation between crop types and regions used in

this paper.

The use of a Monte Carlo approach in this work also had additional value as it avoided

assuming that the number chosen for each input variable was representative of each entire

region. Input data varied per iteration according to a pre-set probability distribution depicting

the regional variability of the data within each UHTU. The average of the 100 iterations per-

formed for each UHTU and land class, which is indicated in this work as the most likely result

(with accompanying uncertainty intervals), is therefore representative of the UHTUs they

depict.

Limitations, extensions and future work

Comparison of RothC with other models. We selected RothC for this paper, but RothC

is one of several soil process-based models available that could have been used instead. Among

those, two notable models that were considered as alternatives for the research conducted here

were the widely used CENTURY [90] and DNDC [91] models. Originally, all models simulate

the first 20 cm depth, but all were already used at 30 cm depth. All models run using a monthly

time step. CENTURY has a broader scope than RothC, including not only soil C, but also N,

phosphorous and sulphur dynamics. DNDC includes the C and N cycle in the soil. Having a

larger scope for modelled processes, a limiting factor for using CENTURY and DNDC in full

is the higher number of variables/parameters required. Some variables are difficult to obtain

for a global application with the characteristics of the one in this paper. We focused specifically

on processes influencing C dynamics, and, as RothC includes only the C cycle, the number of

parameters involved and data required is lower. The lower number of required input data

makes a spatially differentiated and crop-specific global assessment feasible. Higher computa-

tional time requirement to run CENTURY and DNDC are additional limiting factors to use

these models at global scale.

For C, RothC considers a total of five pools (two litter pools, DPM and RPM, and three soil

pools, HUM, BIO and IOM), while DNDC has four pools (plant residue, microbial biomass,

active humus and passive humus) and CENTURY includes three SOM pools (active, slow and

passive) plus two litter pools (structural and metabolic) that are not included in the soil. The

simplicity of RothC, however, comes at a cost as it does not model some processes. It is the

only of the three models that omits leaching of organic matter and that does not include a

management practices module (other models can simulate the effects of fertilization, harvest-

ing, fire, grazing, irrigation and erosion–in some cases through extensions or more recent

modules built on top of the original model). The lack of depictions of these processes are
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limitations that may be overcome through extensions to RothC and are suggested for further

revisions of work similar to what we present in this paper.

Model parameterization. Despite several limitations inherent to the task of performing

global SOC modelling, such as the simplified depiction of soil biogeochemical processes by the

model and uncertainty of the input data (e.g. plant residues), our results qualitatively depict

well-established regional and global trends, such as the fact that SOC stocks are lower for agri-

cultural LU classes and that SOC loss in transitions to croplands is a faster process than SOC

recovery. Our results are also robust to differences within each LU class, e.g. attainable SOC

stock for wheat production is higher in northern Europe than southern Asia [76,78]. Here, we

used a “generic” parametrization of the RothC model, which together with other factors deter-

mines the obtained attainable SOC stock and mineralization rates. It is likely that general esti-

mation accuracy could be improved using local parametrization of the model, as performed by

some prior RothC applications [86–88], for those regions and classes where the estimated

results deviate from field-measured values. We expect locally specific parameterizations to

improve results because the agreement of the model with other published studies seems to be

better for temperate regions closer to the ones used for the original calibration of the model.

The quantitative comparison of results with data presented here is also promising despite the

fact that more work is needed to assess the regions and classes for which the model works

properly and the ones where the model fails to depict realistic SOC stock dynamics.

Attainable SOC stock and mineralization rates are also influenced by other methodological

choices done in this work. The Monte Carlo determination of intra-UHTU uncertainty did

not take into consideration the uncertainty in RothC parameters. Only input variables had an

assigned probability distribution within each UHTU, but even for those we assumed as a sim-

plification that all input variables were normally distributed. When we obtained the data from

a geospatial dataset (i.e. we estimated the parameters for a normal distribution starting from

pixel-level data within each UHTU), we verified statistically that the assumption was plausible.

For some data, however, we were unable to do so as we had to assume a distribution based on

one likely value plus a confidence interval (e.g. IPCC-based data on yields). It is unlikely that

all input variables are in fact distributed normally. For example, clay content is frequently used

in modelling according to a normal distribution (e.g. [33]), but empirically that is rarely the

case [92]. This information influences the depiction of intra-regional variability through the

uncertainty quantified using Monte Carlo analysis.

Calculation of soil carbon inputs. Soil C input is a critical factor in explaining differences

between attainable SOC, as demonstrated by complementary analysis reported in S1 File.

Yield data (FAOSTAT [44]) and the factors used to calculate above and belowground residues

(IPCC [19,42]) contribute the most to the soil C inputs and their uncertainty. In this work, for

all agricultural LU classes, we considered constant plant yields, as well as constant above-

ground and belowground residue C inputs and C from manure application.

This method introduces error in cases where belowground plant growth does not scale with

aboveground yield. There is some evidence that belowground C varies less between crops than

aboveground C. For example, Cagnarini et al. [35] conclude that the use of constant factors

overestimates belowground biomass when compared with field-measured belowground bio-

mass, for maize and wheat in Switzerland. Taghizadeh-Toosi et al. [93] used long-term experi-

mental data to conclude that belowground biomass growth was independent of the crop. In

general, the literature overall shows that the type of crop influences belowground biomass (e.g.

[42,94,95]), but belowground C is also highly influenced by the year and farming system (e.g.

conventional or organic) [95]. The method used in this paper prevented us from simulating

intra-annual changes in crop residue C inputs from belowground as we use constant near-past

average monthly temperature and precipitation. Studies that, unlike this one, are interested in
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understanding the dynamics of SOC gains and losses due to climate change or other dynamic

processes should take into account that belowground biomass can be nearly uncorrelated with

the response of the aboveground biomass, which is typically easier to estimate.

Additionally, in order to simplify the calculation of C inputs, we also considered the same C

content of the crop, forest and grassland residues (i.e. 0.40 kg C/kg DM) and constant C/N

ratio of manure applied (i.e. 14 kg C/kg N). While there is good evidence for the C content of

living plant biomass [19], there are many types of manure with varying chemical compositions

[96]. Due to lack of data, we were unable to consider specific types of manure applied in each

UHTU, or their quantities. As future work, a sensitivity analysis should be performed for those

critical parameters.

Depiction of agricultural management practices. A remaining significant limitation is

that the model was unable to assess a wider variety of management practices. For example, this

work does not yet include an assessment of SOC changes in no-till systems or crop rotations,

as well as the influence of forest fires [97]. For woody crops, an evaluation of the differences

between bare soil and use of cover crops is also missing. All these effects are crucial and deserve

inclusion in future models or iterations of this work. Another limitation of this work is that

only one grassland class was included, despite the multitude of grazing systems and respective

management practices in the World. Follow-up work should involve multiple grassland clas-

ses, as well as the explicit modelling of one or more shrubland classes. Having multiple grass-

land types (and also grassland management) and expanding the scope of cropland

management practices should also enable more comprehensive comparisons of attainable

SOC stocks within and between LU classes. Within classes, it will produce results regarding

the most SOC-increasing practices in each UHTU. Between classes, it will produce updates

results regarding where in the world and for which combinations of practices particular crop-

land can accumulate more SOC than grassland or forest.

At the moment the IPCC [19] only provides SOC stock estimates (under native vegetation)

for a combination of 9 climate regions and 6 soil types. To calculate SOC stock for other classes

(e.g. long term cultivated land), the IPCC method applies simple management factors to the

estimated SOC stock under native vegetation depending on climate region, moisture regime

and tillage type. However, this procedure is not crop-specific and limited in biogeographical

differentiation. We thus consider that the use of the results provided in this study is a signifi-

cant step forward that can provide an alternative, more accurate quick assessment tool. These

results can be used for large-scale assessments of SOC change in the absence of local informa-

tion, such as Tier 2 IPCC defaults [19] involved in the calculation of C sequestration and C

emissions due to LUC.

Potential extensions of the work. The data in this paper also enables the historical assess-

ment of SOC gains and losses due to past land use change, as well as prospective studies for

scenario assessment of future land conversions. For example, studies that assess the effects of

land use in the recent past on SOC can use the data presented here to estimate the sign and

magnitude of the difference before and after changes. Average mineralization rates per LU

class and region can also be used for additional modelling exercises.

A different application of the work presented here is in Life Cycle Assessment (LCA) stud-

ies. There has been a push in recent years to produce accurate and meaningful LCA impact

assessment models determining the impacts of land use [98–102]. For the role of land use on

the loss of the soil’s biotic production potential, SOC depletion is commonly used as a proxy

indicator. After the original models based on IPCC data [103,104], more advanced models

using statistical interpretation of global SOC maps have been proposed [84,105]. These models

are very limited by data availability and end up depicting a very limited number of land classes

or miss critical biogeographical differences [105]. Process-based modelling of SOC can
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overcome those limitations and provide accurate and highly detailed LCA characterization fac-

tors. A demonstration of the potential of using RothC for this end was published for the region

of Alentejo, Portugal [33]. The data presented in this paper enables the extension of that work

for the World.

Conclusion

This work provides a new global SOC assessment enabled by process-based modelling rather

than conventional statistical upscaling of local measurements. Global modelling is not new,

but here we introduce important innovations in SOC modelling regarding the depth (number

of land classes) and reach (spatial representation) of the analysis. We calculated annual and

attainable SOC stocks for 80 combinations of LU and management practices in approximately

17,000 regions in the World. This study therefore significantly increases simultaneously the

number of LU classes and the spatial resolution of modelling, compared to other global estima-

tions of potential global SOC stocks.

We conclude that using aggregated “cropland”, “agriculture”, “arable land” or other similar

land use or land cover classes in global assessment is too coarse to produce meaningful results,

as demonstrated by the extreme variability of results for each cropland sub-class within the

same region and between regions. We showed that this approach to modelling can produced

novel results absent from past modelling exercises. For example, we also showed that, by per-

forming this differentiated, crop-specific analysis, some crops in particular regions of the

World can accumulate more SOC than forests and grasslands. This effect exists mostly when

crop residues are left on the field, which has a double effect: the amount of C entering the soil

is higher, and the soil remains covered for a longer period of time, reducing aeration and min-

eralization. These are particular cases that do not invalidate the generic observation that con-

versions to cropland overall reduce SOC, but they should be acknowledged as those exceptions

are relatively frequent and exist even for highly important and representative crops such as

maize.
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