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8.2 A coördinated evolution of z and p(z) ≡ ln z. . . . . . . . . . 205

8.3 A complex contour of integration in two segments. . . . . . . 210

8.4 A Cauchy contour integral. . . . . . . . . . . . . . . . . . . . 214

8.5 Majorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9.1 Integration by closed contour. . . . . . . . . . . . . . . . . . . 245

10.1 Vieta’s transform, plotted logarithmically. . . . . . . . . . . . 271

13.1 Fitting a line to measured data. . . . . . . . . . . . . . . . . 391

15.1 A point on a sphere. . . . . . . . . . . . . . . . . . . . . . . . 452

15.2 The dot product. . . . . . . . . . . . . . . . . . . . . . . . . . 458

15.3 The cross product. . . . . . . . . . . . . . . . . . . . . . . . . 461

15.4 The cylindrical basis. . . . . . . . . . . . . . . . . . . . . . . 464

15.5 The spherical basis. . . . . . . . . . . . . . . . . . . . . . . . 465

15.6 A vector projected onto a plane. . . . . . . . . . . . . . . . . 476

15.7 The parabola. . . . . . . . . . . . . . . . . . . . . . . . . . . 480

15.8 Locating a point by parabolic construction. . . . . . . . . . . 482

15.9 The parabolic coordinate grid in two dimensions. . . . . . . . 482

17.1 A square wave. . . . . . . . . . . . . . . . . . . . . . . . . . . 531

17.2 Superpositions of sinusoids. . . . . . . . . . . . . . . . . . . . 533

17.3 The basic nonanalytic pulses. . . . . . . . . . . . . . . . . . . 540

17.4 Rolloff pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 542



LIST OF FIGURES xxi

17.5 A closer look at the raised cosine-rolloff pulse. . . . . . . . . 544
17.6 The Gaussian pulse. . . . . . . . . . . . . . . . . . . . . . . . 545
17.7 A rectangular pulse train. . . . . . . . . . . . . . . . . . . . . 549
17.8 A Dirac delta pulse train. . . . . . . . . . . . . . . . . . . . . 550
17.9 Poisson’s ramp. . . . . . . . . . . . . . . . . . . . . . . . . . . 556
17.10 The sine-argument function. . . . . . . . . . . . . . . . . . . 559
17.11 The sine integral. . . . . . . . . . . . . . . . . . . . . . . . . . 560
17.12 The points at which t intersects tan t. . . . . . . . . . . . . . 562
17.13 A complex contour about which to integrate eiz/i2z. . . . . . 565
17.14 Gibbs’ phenomenon. . . . . . . . . . . . . . . . . . . . . . . . 569

18.1 A pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
18.2 The Fourier transform of the pulse of Fig. 18.1. . . . . . . . . 574

19.1 Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
19.2 An irregular triangular pulse. . . . . . . . . . . . . . . . . . . 611
19.3 A ramp and level. . . . . . . . . . . . . . . . . . . . . . . . . 612
19.4 Right-triangular pulses. . . . . . . . . . . . . . . . . . . . . . 614
19.5 An irregular step. . . . . . . . . . . . . . . . . . . . . . . . . 615
19.6 A level and ramp. . . . . . . . . . . . . . . . . . . . . . . . . 616

20.1 The normal distribution and its CDF. . . . . . . . . . . . . . 640

21.1 The gamma function. . . . . . . . . . . . . . . . . . . . . . . 672



xxii LIST OF FIGURES



Preface

I never meant to write this book. It emerged unheralded, unexpectedly.
The book began in 1983 when a high-school classmate challenged me to

prove the Pythagorean theorem on the spot. I lost the dare, but looking the
proof up later I recorded it on loose leaves, adding to it the derivations of
a few other theorems of interest to me. From such a kernel the notes grew
over time, until family and friends suggested that the notes might make the
material for the book you hold.

The book is neither a tutorial on the one hand nor a bald reference on
the other. The book is rather a study reference. In this book, you can look
up some particular result directly, or you can begin on page one and read—
with toil and commensurate profit—straight through to the end of the last
chapter.

The book as a whole surveys the general mathematical methods common
to engineering, architecture, chemistry and physics. As such, the book serves
as a marshal or guide. It concisely arrays and ambitiously reprises the
mathematics of the scientist and the engineer, deriving the mathematics it
reprises, filling gaps in one’s knowledge while extending one’s mathematical
reach.

Its focus on derivations is what principally distinguishes this book from
the few others1 of its class. No result is presented here but that it is
justified in a style engineers, scientists and other applied mathematicians
will recognize—not indeed the high style of the professional mathematician,
which serves other needs; but the long-established style of applications.

Plan

Following its introduction in chapter 1 the book comes in three parts. The
first part begins with a brief review of classical algebra and geometry and
develops thence the calculus of a single complex variable, this calculus being

1Other books of the class include [30][70][6].

xxiii
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the axle as it were about which higher mathematics turns. The second
part laboriously constructs the broadly useful mathematics of matrices and
vectors, without which so many modern applications (to the fresh incredulity
of each generation of college students) remain analytically intractable—the
jewel of this second part being the eigenvalue of chapter 14. The third and
final part, the most interesting but also the most advanced, introduces the
mathematics of the Fourier transform, probability and the wave equation—
each of which is enhanced by the use of special functions, the third part’s
unifying theme.

Thus, the book’s overall plan, though extensive enough to take several
hundred pages to execute, is straightforward enough to describe in a single
sentence. The plan is to derive as many mathematical results, useful to
scientists, engineers and the like, as possible in a coherent train, recording
and presenting the derivations together in an orderly manner in a single vol-
ume. What constitutes “useful” or “orderly” is a matter of perspective and
judgment, of course. My own peculiar, heterogeneous background in mil-
itary service, building construction, electrical engineering, electromagnetic
analysis and software development, my nativity, residence and citizenship in
the United States, undoubtedly bias the selection and presentation to some
degree. How other authors go about writing their books, I do not know,
but I suppose that what is true for me is true for many of them also: we
begin by organizing notes for our own use, then observe that the same notes
might prove useful to others, and then undertake to revise the notes and
to bring them into a form which actually is useful to others. Whether this
book succeeds in the last point is for the reader to judge.

Notation

The book deviates from—or cautiously improves, if you will endorse the
characterization—the conventional notation of applied mathematics in one
conspicuous respect which, I think, requires some defense here. The book
employs hexadecimal numerals.

Why not decimal only? There is nothing wrong with decimal numer-
als as such. I am for them, whether in the Roman or the Arabic style.
Decimal numerals are well in history and anthropology (man has ten fin-
gers), finance and accounting (dollars, cents, pounds, shillings, pence: the
base hardly matters), law and engineering (the physical units are arbitrary
anyway); but they are merely serviceable in mathematical theory, never
aesthetic. Custom is not always defaced, but sometimes adorned, by the
respectful attendance of a prudent discrimination. It is in this spirit alone
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that hexadecimal numerals are given place here.

Admittedly, one might judge the last to be more excuse than cause. Yet,
though a dreary train of sophists down the years, impatient of experience,
eager to innovate, has indisputably abused such causes—in ways which the
mature reader of a certain cast of mind will find all too familiar—such causes
would hardly merit abuse did they not sometimes hide a latent measure of
justice. It is to the justice, or at least to the aesthetic, rather than to the
sophistry that I affect to appeal here.

There unfortunately really is no gradual way to bridge the gap to hex-
adecimal (shifting to base eleven, thence to twelve, etc., is no use). If one
wishes to reach hexadecimal ground then one must leap. Thirty years of
keeping my own private notes in hex have persuaded me that the leap jus-
tifies the risk. In other matters, by contrast, the book leaps seldom. The
book in general walks a tolerably conventional applied mathematical line.

Audience

Besides those who have opened this book only to look up some particular
result (a numerous and honorable clan, but likely not reading this preface),
the book’s readers arrive in two principle corps. First come the engineers,
architects, chemists and physicists who seek ideas toward, and logic to back,
their analytical modeling of physical systems. Second come those ambitious
students of calculus that want a broader, demand a deeper, and venture a
terser treatment of the discipline than calculus textbooks usually afford.

There are also some others. In a third corps come the economist and
his brethren, who may find the book a little long on physics and, compar-
atively, slightly short on statistics, but still edifying perhaps. Whether a
few students of pure mathematics make a fourth corps, hunting sketches to
elaborate, remains to be seen.

Publication

The book belongs to the emerging tradition of open-source software where at
the time of this writing it fills a void. Nevertheless it is a book, not a program.
Lore among open-source developers holds that open development inherently
leads to superior work. Well, maybe. Often it does in fact. Personally with
regard to my own work, I should rather not make too many claims. It would
be vain to deny that professional editing and formal peer review, neither of
which the book enjoys, had substantial value. On the other hand, it does
not do to despise the amateur (literally, one who does for the love of it: not
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such a bad motive, after all2) on principle, either—unless one would on the
same principle despise a Socrates, a Washington, an Einstein or a Debian
Developer.3 Open source has a spirit to it which leads readers to be more
generous with their feedback than ever could be the case with a traditional,
proprietary book. Such readers, among whom a surprising concentration of
talent and expertise are found, enrich the work freely. This has value, too.

The book’s open-source publication implies that it can neither go out of
print nor grow hard to find. If desired you could, if expedient you should,
copy, archive and distribute the book yourself, without further permission
than the book’s license already grants4—though as a courtesy to your own
readers and to this writer you might publish the book’s electronic address,
derivations.org, along with the book. Naturally, merely to read the book
will quite satisfy most readers, but the point is this: the authors of other
works can refer their readers hither without thereby setting their readers off
on a quest for some obscure or costly quarry.

Edition

A few marks of edition want note.

First, the book is extensively footnoted. Some of the footnotes unremark-
ably cite sources but many are discursive in nature, offering nonessential ma-
terial which, though edifying, coheres insufficiently well to join the book’s
main narrative. The footnote is an imperfect messenger, of course. Catching
the reader’s eye, it can break the flow of otherwise good prose. Modern pub-
lishing promotes various alternatives to the footnote—numbered examples,
sidebars, special fonts, colored inks, etc. Some of these are merely trendy.
Others, like numbered examples, really do help the right kind of book; but
for this book the humble footnote, long sanctioned by an earlier era of pub-
lishing, extensively employed by such sages as Gibbon [53] and Shirer [117],
seems the most able messenger. In this book it shall have many messages
to bear.

Second, in typical science/engineering style, the book numbers its sec-
tions, tables, figures and formulas, but not its theorems, the last of which
it generally sets in italic type. Within the book, a theorem is referenced by
the number of the section that states it.

Third, the book subjoins an alphabetical index as a standard conve-
nience. Even so, the canny reader will avoid using the index (of this and

2The expression is derived from an observation I seem to recall George F. Will making.
3[37]
4[49]
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other books), which alone of the book’s pages is not to be regarded as a
proper part of the book. Such a reader will tend rather to consult the
book’s table of contents which is a proper part.

Fourth, the book includes a bibliography listing works to which I have
referred while writing. Mathematics promotes queer bibliographies, though.
Mathematical bibliographies (or at any rate the bibliography of this book)
can be queer insofar as it is derivation rather than authority that establishes
mathematical methods and truths. The bibliography of the book you are
reading thus less appeals to the works it lists than merely affords them due
credit.

Regarding the last matter, not every point in the book is backed by a
bibliographic citation of any kind. Some of the book consists of common
mathematical knowledge or even of proofs I have worked out with my own
pencil from various ideas gleaned—who knows from where?—over the years.
The latter proofs are perhaps original or semi-original from my personal
point of view but it is unlikely that many if any of them are truly new. To
the initiated, the mathematics itself often tends to suggest the form of the
proof: if to me, then surely also to others who came before; and even where
a proof is new the idea proved is probably not.

Philosophy

Speaking of ideas and proofs: an idea is one thing, but what precisely con-
stitutes a proof?

Modern pure mathematics tends to make one shy of the question. To me
at least, a mathematical proof remains what an earlier era once unsuspect-
ingly held it to be: it remains a morally convincing appeal to man’s faculty
of logic, geometry and number (though I study not to focus the reader’s
attention, unprofitably to the book’s purpose, on any such metadefinition).
Neither in this book nor elsewhere do I wish to deconstruct, reconstruct,
lay bare, replace, supersede or explain away the faculty so named. Indeed,
towering figures like Kant, Weierstrass and Hilbert notwithstanding, C. S.
Lewis (1898–1963) speaks for me when he writes:

You cannot go on “seeing through” things for ever. The whole
point of seeing through something is to see something through it.
It is good that the window should be transparent, because the
street or garden beyond it is opaque. How if you saw through the
garden too? It is no use trying to “see through” first principles.
If you see through everything, then everything is transparent.
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But a wholly transparent world is an invisible world. To “see
through” all things is the same as not to see. [85, chapter 3]

Such are my sympathies.

Would the Kantian era in which we live countenance it, the book should
sooner merely have let pure mathematics’ abstract foundations lie undis-
turbed. However, since the era probably will not countenance it, chapter 1
engages the question briefly but soberly, after which other chapters touch
the question as necessary. When philosophically put to it, the book tends
less to follow Kant, Weierstrass or Hilbert in spirit than Plato, Frege, Weyl
and Gödel5 (though there remains the peculiar matter of “the Courant-
Hilbert-Shilov perspective,” of which more will be said). That is in spirit.
In method, with little further apology, the book follows the time-honored
practice of the working scientist and engineer.

Reliance

I hope that the book harbors no more errors than do other books of the kind.
I hope that the book harbors fewer. Having revised the book’s manuscript
(or the notes from which the manuscript is drawn) over a period of 30 years,
I believe that the book’s results are correct in the main.

Nevertheless, the book gives reasons the reader can evaluate. The book
details steps the reader can check. The book illuminates patterns the reader
can study. The book teaches principles the reader can absorb. To look up a
result in the book without evaluating, checking, studying or absorbing might
not always be an unreasonable risk to run when stakes are small and time is
short, but application of the book’s results must remain the responsibility
of the applicationist.

5Readers who know the subject well may note the omission of the important name of
Richard Dedekind (1831–1916) from these two lists. However, in which of the two would
you name Dedekind? It is no easy question—nor is it a question this book will tackle. As
respectable as Dedekind is, this book does not especially follow him, anyway. [118][131]

One could further mention several other respectable names—Georg Cantor’s (1845–
1918), Bertrand Russell’s (1872–1970) and L. E. J. Brouwer’s (1881–1966), for instance,
after the name of the great Carl Friedrich Gauss (1777-1855)—and one could bring the
lists generally more up to date, but we will leave the matter there.

To date the names listed: Plato (428–348 B.C.); Immanuel Kant (1724–1804); Karl
Weierstrass (1815–1897); Gottlob Frege (1848–1925); David Hilbert (1862–1943); Her-
mann Weyl (1885–1955); Richard Courant (1888–1972); Kurt Gödel (1906–1978).
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Chapter 1

Introduction

The Pythagorean theorem holds that

a2 + b2 = c2, (1.1)

where a, b and c are the lengths of the legs and diagonal of a right triangle
as in Fig. 1.1. Many proofs of the theorem are known.

One such proof posits a square of side length a+b with a tilted square of
side length c inscribed as in Fig. 1.2. The area of each of the four triangles
in the figure is evidently ab/2. The area of the tilted inner square is c2.
The area of the large outer square is (a + b)2. But the large outer square
is comprised of the tilted inner square plus the four triangles, so the area
of the large outer square equals the area of the tilted inner square plus the

Figure 1.1: A right triangle.

a

b
c

1
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Figure 1.2: The Pythagorean theorem.

a

b

b

c

areas of the four triangles. In mathematical symbols, this is that

(a+ b)2 = c2 + 4

(
ab

2

)
,

which simplifies directly to (1.1).
If the foregoing appeals to you then you might read this book.
This book is a book of applied mathematical proofs. When you have

seen a mathematical result somewhere, if you want to know why the result
is so, then you can look for the proof here.

The book’s purpose is to convey the essential ideas underlying the deriva-
tions of a large number of mathematical results useful in the modeling
of physical systems. To this end, the book emphasizes main threads of
mathematical argument and the motivation underlying the main threads,
deëmphasizing formal mathematical rigor. It derives mathematical results
from the applied perspective of the scientist and the engineer.

The book’s chapters are topical. This first chapter explains the book’s
philosophy and otherwise treats a few introductory matters of general inter-
est.

1.1 Applied mathematics

What is applied mathematics?
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Applied mathematics is a branch of mathematics that concerns
itself with the application of mathematical knowledge to other
domains. . . . The question of what is applied mathematics does
not answer to logical classification so much as to the sociology
of professionals who use mathematics. [80]

That is about right, on both counts. In this book we shall define ap-
plied mathematics to be correct mathematics useful to scientists, engineers
and the like; proceeding not from reduced, well-defined sets of axioms but
rather directly from a nebulous mass of natural arithmetical, geometrical
and classical-algebraic idealizations of physical systems; demonstrable but
lacking the abstracted foundational rigor of the pure, professional mathe-
matician.

1.2 Rigor

Applied and pure mathematics differ principally and essentially in the layer
of abstract definitions the latter subimposes beneath the physical ideas the
former seeks to model. That subimposed layer, the disciplined use of it, and
the formal algebra associated with it may together be said to institute pure
mathematical rigor.

Such pure mathematical rigor tends to dwell more comfortably in lone
reaches of the professional mathematician’s realm than among the hills and
plats of applications, where it does not always travel so gracefully. If this
book will be a book of mathematical derivations, then it might speak a little
of rigor here at the start.

1.2.1 Axiom and definition

Whether explicitly or implicitly, the professional mathematician usually
founds his rigor upon what he calls the axiomatic method—an axiom, accord-
ing to Webster, being “a self-evident and necessary truth, or a proposition
whose truth is so evident at first sight that no reasoning or demonstration
can make it plainer; a proposition which it is necessary to take for granted.”1

For example, the following could be an axiom: “For every set A and
every set B, A = B if and only if for every set x, x is a member of A if and
only if x is a member of B.”2

1[104]
2The source quoted is [149, § 2.1], which however uses the symbol ∈ for “is a member

of.”



4 CHAPTER 1. INTRODUCTION

Axioms undergird the work of the professional mathematician. Indeed,
so fundamental are axioms to the professional mathematician’s work that—
ideally and at least in principle—it may be that the professional will derive
nothing until he has first declared the axioms upon which his derivations
will rely; that is, until he has stated the least premises upon which he will
argue. Conversely, aiming deeper—promoting the latter of Webster’s two
readings—the professional can illuminate the wisdom latent in his very ax-
ioms by their use in a suitable derivation.3 Irreducibility is a prime aesthetic
on either level: at best, no axiom should overlap the others or be specifi-
able in terms of the others. Nonaxiomatic geometrical argument—proof
by sketch if you like, as the Pythagorean with its figures at the head of
this chapter—is distrusted.4 The professional mathematical literature dis-
courages undue pedantry indeed, but its readers do implicitly demand a
convincing assurance that its writers could derive results in pedantic detail
if called upon to do so. Precise definition here is critically important, which
is why the professional mathematician tends not to accept blithe statements
such as that

1

0
=∞,

among others, without first inquiring as to exactly what is meant by symbols
like 0 and ∞.

The applied mathematician begins from a different base. His ideal lies
not in precise definition or irreducible axiom, but rather in the elegant mod-
eling of the essential features of some physical system. Here, mathematical
definitions tend to be made up ad hoc along the way, based on previous
experience solving similar problems, adapted implicitly to suit the model at
hand. If you ask the applied mathematician exactly what his axioms are,
which symbolic algebra he is using, he usually does not know; what he knows
is that the physical system he is analyzing, describing or planning—say, a
bridge—is to be founded in certain soils with observed tolerances, is to suffer
such-and-such a wind load, and so on. To avoid error, the applied mathe-
matician relies not on abstract formalism but rather on a thorough mental
grasp of the essential physical features of the phenomenon he is trying to
model. An equation like

1

0
=∞

may make perfect sense without further explanation to an applied mathe-
matical readership, depending on the physical context in which the equation

3[64, Einleitung][63, chapter 1]
4[139, chapters 1 and 2]
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is introduced. Nonaxiomatic geometrical argument—proof by sketch—is not
only trusted but treasured. Abstract definitions are wanted only insofar as
they smooth the analysis of the particular physical problem at hand; such
definitions are seldom promoted for their own sakes.

The irascible Oliver Heaviside (1850–1925), responsible for the applied
mathematical technique of phasor analysis,5 once said,

It is shocking that young people should be addling their brains
over mere logical subtleties, trying to understand the proof of
one obvious fact in terms of something equally . . . obvious. [93]

Exaggeration, perhaps, but from the applied mathematical perspective
Heaviside nevertheless had a point. The professional mathematicians
Richard Courant (1888–1972) and David Hilbert (1862–1943) put it more
soberly in 1924 when they wrote,

Since the seventeenth century, physical intuition has served as
a vital source for mathematical problems and methods. Recent
trends and fashions have, however, weakened the connection be-
tween mathematics and physics; mathematicians, turning away
from the roots of mathematics in intuition, have concentrated on
refinement and emphasized the postulational side of mathemat-
ics, and at times have overlooked the unity of their science with
physics and other fields. In many cases, physicists have ceased
to appreciate the attitudes of mathematicians. [30, Preface]

And what are these “attitudes” of which Courant and Hilbert speak? To
the mathematician Charles C. Pinter, they are not attitudes, but principles:

Since the middle of the nineteenth century, the axiomatic method
has been accepted as the only correct way of organizing mathe-
matical knowledge. [101, chapter 1]

But accepted by whom? The mathematician Georgi E. Shilov, less enthusi-
astic than Pinter for the axiomatic method, is not so sure:

There are other approaches to the theory . . . where things I
take as axioms are proved. . . . Both treatments have a key de-
ficiency, namely the absence of a proof of the compatibility of

5This book lacks occasion to treat phasor analysis as such but see chapter 5, which
introduces the complex exponential function upon which the phasor is based, and chap-
ter 18, which extends and generalizes phasors (without however mentioning the word)
under the umbrella of the Fourier transform.
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the axioms. . . . The whole question, far from being a mere tech-
nicality, involves the very foundations of mathematical thought.
In any event, this being the case, it is not very important where
one starts a general treatment. . . . [116, Preface]

Although the present book responds to “the attitudes of mathematicians”
with greater deference than some of Courant’s and Hilbert’s unnamed 1924
physicists might have done, though Shilov himself admittedly is more rigor-
ous than his own, seemingly casual words let on, still, Courant and Hilbert
could have been speaking for the engineers and other applied mathemati-
cians of our own day as well as for the physicists of theirs; and still, Shilov
like Heaviside has a point. To the applied mathematician, the mathemat-
ics is not principally meant to be developed and appreciated for its own
sake; it is meant to be used. This book adopts the Courant-Hilbert-Shilov
perspective.6

But why? Is the Courant-Hilbert-Shilov perspective really necessary,
after all? If unnecessary, is it desirable? Indeed, since the book you are
reading is a book of derivations, would it not be a more elegant book if
it began from the most primitive, pure mathematical fundamentals, and
proceeded to applications thence?

If Heaviside was so irascible, then wasn’t he just plain wrong?

6It is acknowledged that Hilbert at other times took what seems to be the opposite
perspective; and that there remains the historically important matter of what the early
twentieth century knew as “Hilbert’s program,” a subject this book will not address.
Hilbert however, perhaps the greatest of the mathematical formalists [43, chapter 1], was
a broad thinker, able to survey philosophical questions seriously from each of multiple
points of view. What Hilbert’s ultimate opinion might have been, and whether the words
quoted more nearly represent Hilbert’s own conviction or his student Courant’s, and how
the views of either had evolved before or would evolve after, are biographical questions
this book will not try to treat. The book would accept the particular passage recited
rather on its face.

Regarding Shilov, his formal mathematical rigor is easy and fluent, and his book [116]
makes a good read even for an engineer. The book you now hold however adopts not
Shilov’s methods—for one can read Shilov’s book for those—but only his perspective, as
expressed in the passage recited.

For a taste of Shilov’s actual methods, try this, the very first proof in his book: “Theo-
rem. The system [of real numbers] contains a unique zero element. Proof. Suppose [that
the system] contains two zero elements 01 and 02. Then it follows from [the axioms of
commutation and identity] that 02 = 02 + 01 = 01 + 02 = 01. Q.E.D.” [116, § 1.31].
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1.2.2 Mathematical Platonism

To appreciate the depth of the trouble in which the applied mathematician
may soon find himself mired, should he too casually reject the Courant-
Hilbert-Shilov perspective, consider John L. Bell’s and Herbert Korté’s dif-
ficult anecdote regarding Hilbert’s brilliant student and later cordial rival,
Hermann Weyl (1885–1955):

Weyl . . . considers the experience of seeing a pencil lying on a ta-
ble before him throughout a certain time interval. The position
of the pencil during this interval may be taken as a function of
the time, and Weyl takes it as a fact of observation that during
the time interval in question this function is continuous and that
its values fall within a definite range. And so, he says, “This
observation entitles me to assert that during a certain period
this pencil was on the table; and even if my right to do so is not
absolute, it is nevertheless reasonable and well-grounded. It is
obviously absurd to suppose that this right can be undermined
by ‘an expansion of our principles of definition’—as if new mo-
ments of time, overlooked by my intuition, could be added to
this interval; moments in which the pencil was, perhaps, in the
vicinity of Sirius or who knows where. . . .” [14]

In Weyl’s gentle irony lies a significant point, maybe, yet how should applied
mathematics advocate such a point, or dispute it? Is applied mathematics
even suited to such debates? What of engineering questions of a more mun-
dane cast—such as, for instance, how likely Weyl’s pencil might be to roll
off if his knee bumped the table? After all, there is a pencil, and there is
a table, and Sirius seems to have little immediately to do with either; and
whether the pencil rolls off might concern us, irrespective of any particular
substruction pure mathematics sought to build to support the technique we
had used to model and analyze the case. Indeed, Weyl himself—a great
mathematician, a consistent friend of the engineer and of the scientist, and
a wise man—warns,

The ultimate foundations and the ultimate meaning of mathe-
matics remain an open problem; we do not know in what direc-
tion it will find its solution, nor even whether a final objective
answer can be expected at all. [144]

Just so. Fascinating as it is, we shall not try to answer Weyl’s deep question
of mathematical philosophy in this book.
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To the extent to which a professional mathematician classified this book
as work of applied mathematics, he might call it a Platonist work—and that
is a fine adjective, is it not? The adjective is most subtle, most lofty; and
perhaps the author had better not be too eager to adorn his own work with
it; yet let us listen to what the professional mathematician Reuben Hersh
has to say:

Most writers on the subject seem to agree that the typical “work-
ing mathematician” is a Platonist on weekdays and a formalist on
Sundays. That is, when he is doing mathematics, he is convinced
that he is dealing with an objective reality whose properties he
is attempting to determine. But then, when challenged to give a
philosophical account of this reality, he finds it easiest to pretend
that he does not believe in it after all. . . .

The basis for Platonism is the awareness we all have that the
problems and concepts of mathematics exist independently of
us as individuals. The zeroes of the zeta function7 are where
they are, regardless of what I may think or know on the sub-
ject. . . .8 [62]

Your author inclines to Platonism9 on Sundays, too, yet even readers who
do not so incline should find the book edifying the other six days of the
week.

Hersh goes on with tact and feeling at some length in the article from
which his words are quoted, and it is fair to say that he probably would not
endorse the present writer’s approach in every respect. Notwithstanding,
the philosopher Thomas Tymoczko—who unlike Hersh but like the present
writer might fairly be described as a Platonist10—later writes of Hersh’s
article,

. . . In so far as [the working philosophy of the professional math-
ematician] is restricted to the usual mix of foundational ideas,

7This book stops short of treating Riemann’s zeta function, a rather interesting special
function that however seems to be of even greater interest in pure than in applied math-
ematics. If you want to know, the zeta function is ζ(z) ≡

∑∞
k=1 1/kz. [120, chapter 10]

8Hersh, who has thus so empathetically sketched mathematical Platonism, goes on
tactfully to confess that he believes mathematical Platonism a myth, and to report (ad-
mittedly probably correctly) that most professional mathematicians also believe as he does
on this point. The present writer however accepts the sketch, appreciates the tact, and
believes in the myth, for the reasons outlined in this introduction among others.

9[44, chapter 2]
10Tymoczko’s preferred term is not “Platonist” but “quasiëmpiricist,” a word Tymoczko

lends a subtly different emphasis. [133]
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Hersh charges, [this philosophy] is generally inconsistent, always
irrelevant and sometimes harmful in practice and teaching.

. . . Hersh suggests [that] the best explanation of foundational
concerns is in terms of the historical development of mathemat-
ics. . . . [H]e isolates some of the basic presuppositions of foun-
dation studies: “that mathematics must be provided with an ab-
solutely reliable foundation” and “that mathematics must be a
source of indubitable truth.” Hersh’s point is that it is one thing
to accept the assumption when, like Frege, Russell or Hilbert,
we feel that the foundation is nearly attained. But it is quite
another to go on accepting it, to go on letting it shape our phi-
losophy, long after11 we’ve abandoned any hope of attaining that
goal. . . . [132]

The applied mathematician who rejects the Courant-Hilbert-Shilov perspec-
tive and inserts himself into this debate12 may live to regret it. As the
mathematician Ludwig Wittgenstein illustrates,

[Bertrand] Russell [coäuthor of Principia Mathematica and arch-
exponent of one of the chief schools of pure mathematical
thought][145] gives us a calculus here. How this calculus of Rus-
sell’s is to be extended you wouldn’t know for your life, unless
you had ordinary arithmetic in your bones. Russell doesn’t even
prove 10× 100 = 1000.

What you’re doing is constantly taking for granted a particular
interpretation. You have mathematics and you have Russell; you
think mathematics is all right, and Russell is all right—more so;
but isn’t this a put-up job?13 That you can correlate them in
a way, is clear—not that one throws light on the other. [150,
lecture XVI]

The book you hold will not correlate them but will (except in some inessen-
tial side commentary) confine its attention to the applied mathematician’s
honorable, chief interest—which is to describe, quantify, model, plan and an-
alyze particular physical phenomena of concern; and to understand topically

11Emphasis in the original.
12See also, in no particular order, [25][30][43][51][57][58][62][77][79][84][101][116][118]

[131][132][133][138][139][140][144].
13For readers whose first language is other than English, colloquially, a “put-up job”

is a conspiratorially prearranged deception. The colloquialism is now somewhat outdated
but, judging by this quote, was apparently current at Cambridge in 1939.
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why the specific mathematical techniques brought to bear on such phenom-
ena should prosper; but not to place these techniques in the context of a
larger ontological or epistemological dispute—a dispute that, though impor-
tant in itself, does not directly move the applied mathematician’s interest
one way or the other.

Indeed, as the philosopher Alva Noë observes,

[T]here is no stable or deeply understood account of how these
autonomous domains fit together. The fact that we are getting
along with business as if there were such an account is, well,
a political or sociological fact about us that should do little to
reassure. [92]

Noë is writing here about the nature of consciousness but could as well,
with equal justice and for similar reasons, be writing about our problem of
mathematical foundations.

To conclude this subsection’s glance upon mathematical Platonism we
may well quote Plato himself:

Then this is a kind of knowledge which legislation may fitly pre-
scribe; and we must endeavour to persuade those who are to be
the principal men of our State to go and learn arithmetic, not as
amateurs, but they must carry on the study until they see the
nature of numbers with the mind only; nor again, like merchants
or retail-traders, with a view to buying or selling, but for the
sake of their military use, and of the soul herself; and because
this will be the easiest way for her to pass from becoming to
truth and being. . . . I must add how charming the science is! . . .
[A]rithmetic has a very great and elevating effect, compelling the
soul to reason about abstract number, and rebelling against the
introduction of visible or tangible objects into the argument. . . .
[T]his knowledge may be truly called necessary, necessitating as
it clearly does the use of the pure intelligence in the attainment
of pure truth. . . .

And next, shall we enquire whether the kindred science [of ge-
ometry] also concerns us? . . . [T]he question relates . . . to the
greater and more advanced part of geometry—whether that
tends in any degree to make more easy the vision of the idea
of good; and thither, as I was saying, all things tend which com-
pel the soul to turn her gaze towards that place, where is the full
perfection of being, which she ought, by all means, to behold. . . .
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[T]he knowledge at which geometry aims is knowledge of the eter-
nal, and not of aught perishing and transient. [G]eometry will
draw the soul towards truth, and create the spirit of philoso-
phy, and raise up that which is now unhappily allowed to fall
down. [103, book VII].

The vanity of modern man may affect to smile upon the ancient; but such
vanity less indulges the ancient, who hardly needs indulgence, than indicts
the modern.

Plato is not less right today than he was in the fourth century B.C.

1.2.3 Methods, notations, propositions and premises

The book purposely overlooks, and thus omits, several of the mathematics
profession’s pure methods and some of its more recondite notations, unsuited
to (or at any rate unintended for) applied use. Most notably, the book
overlooks and omits the profound methods and notations of the Zermelo-
Fraenkel and Choice set theory (ZFC)14 and its consequents. The book
inclines rather toward Weyl’s view:

[A set-theoretic approach] contradicts the essence of the contin-
uum, which by its very nature cannot be battered into a set of
separated elements. Not the relationship of an element to a set,
but that of a part to a whole should serve as the basis. . . . [112]

The years have brought many mathematical developments since Weyl wrote
these words in 1925 but the present author still tends to think as Weyl does.

This does not of course mean that the author or this book intended
to peddle nonintuitive mathematical propositions, unsupported, as fact.
The book could hardly call itself a book of derivations if it did. What
it does mean is that the book can assume without further foundation or
explication—and without extremes of formal definition—for example, that
a rotated square remains square; that a number like

√
3/2 occupies a definite

spot in a comprehensible continuum;15 that no numbers in the continuum
other than 0 and 1 enjoy these two numbers’ respective identifying proper-
ties;16 that one can impute an unobserved population against an observed

14See [127][149][32]. The ZFC is a near descendant of the work of the aforementioned
Bertrand Russell and, before Russell, of Georg Cantor.

15[143]
16See footnote 6.
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sample;17 that a continuous, differentiable,18 real function’s average slope
over a real interval equals the function’s instantaneous slope at at least one
point;19 and so on (and if you did not understand all of that, that is all
right, for to explain such things is what the rest of the book’s chapters are
for). This is what the book’s approach means.

The Pythagorean theorem at the chapter’s head examples the approach.
The theorem is proved briefly, without excessive abstraction, working upon
the implied, unstated premise that a rotated square remains square.

If you can accept the premise, then you can accept the proof. If you can
accept the kind of premise, then you can accept the book.

1.2.4 Rigor to forestall error

Aside from foundational concerns—whatever the ontological or epistemolog-
ical merits of formal mathematical rigor may be—some will laud such rigor
too for forestalling error, even in applications.20 Does the rigor deserve this
praise? Well, perhaps it does. Still, though the writer would not deny the
praise’s decorum in every instance, he does judge such praise to have been
oversold by a few.

Notwithstanding, formal mathematical rigor serves two, distinct pro-
grams. On the one hand, it embodies the pure mathematician’s noble at-

17[24, chapter 11]
18Are burdensome adjectives like “continuous, differentiable” necessary? Are they help-

ful? Do they sufficiently illuminate one’s understanding that they should be suffered to
clutter the text so?

Maybe they are indeed necessary. Maybe they are even helpful but, even if so, does the
discerning reader want them? Does the nondiscerning reader want them? If neither, then
whom do they serve? If the only answer is that they serve the investigator of foundational
concerns, then what does this tell us about the wisdom of injecting foundational concerns
into applications?

Regarding continuity and differentiability: the applicationist is inclined to wait until a
specific problem arises in which a particular, concrete discontinuity or undifferentiability
looms, when he will work around the discontinuity or undifferentiability as needed—
whether by handling it as a parameterized limit or by addressing it in some other conve-
nient way. None of this has much to do with foundations.

To treat every such point as a fundamental challenge to one’s principles of definition
just takes too long and anyway does not much help. The scientist or engineer wants to
save that time to wrestle with physical materialities.

19[116, § 7.4]
20To cite a specific source here might be more captious than helpful, so the reader is

free to disregard the assertion as unsourced. However, if you have heard the argument—
perhaps in conjunction with the example of a conditionally convergent sum or the like—
then the writer has heard it, too.
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tempt to establish, illuminate or discover the means and meaning of truth.21

On the other hand, it cross-checks intuitive logic in a nonintuitive way.
Neither hand holds absolute metaphysical guarantees; yet, even if the sole
use of formal mathematical rigor were to draw the mathematician’s atten-
tion systematically to certain species of questionable reasoning for further
examination, such rigor would merit the applicationist’s respect. As the
mathematician Richard W. Hamming writes,

When you yourself are responsible for some new application of
mathematics in your chosen field, then your reputation, possibly
millions of dollars and long delays in the work, and possibly
even human lives, may depend on the results you predict. It is
then that the need for mathematical rigor will become painfully
obvious to you. Before this time, mathematical rigor will often
seem to be needless pedantry. . . . [57, § 1.6]

Sobering words. Nevertheless, Hamming’s point is not a point this book will
pursue. The working scientist or engineer uses so many mathematical results
in his work that, if he pursued Hamming’s method for all of them, he might
never gain acquaintance with the reasons for any of them! He lacks time,
and the book is already long enough. Nevertheless, an applications-level
justification for a given formula, leveraging one’s physical intuition, unbur-
dened by excessive concern for recondite requirements of the mathematics
profession, is not too much for the working scientist or engineer to ask. If
this book conveys such a justification then it will have done what it set out
to do.

The introduction you are reading is not the right venue for a full essay on
why both kinds of mathematics, applied and pure, are needed at any rate.
Each kind has its place; and though it is a stylistic error to mix the two
indiscriminately, clearly the two have much to do with one another. However
that may be, this book is a book of derivations of applied mathematics. The
derivations here proceed by an applied approach.

21As courtesy to the reader, I should confess my own opinion in the matter, which
is that it is probably, fundamentally not given to mortal man to lay bare the ultimate
foundations of truth, as it is not given to the beasts, say, to grasp mathematics. Like the
beasts, we too operate within the ontological constraints of our nature.

That this should be my opinion will not perhaps surprise readers who have read the
preface and the chapter to this point. As far as I know, Aristotle, Aquinas and Gödel
were right. However, be that as it may, my opinion in the matter is not very relevant to
this book’s purpose. I do not peddle it but mention it only to preclude misunderstanding
regarding the sympathies and biases, such as they are, of the book’s author. —THB—
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Figure 1.3: Two triangles.
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1.3 Mathematical extension

Profound results in mathematics occasionally are achieved simply by ex-
tending results already known. For example, the negative integers and their
properties can be discovered by counting backward—3, 2, 1, 0—and then
asking what follows (precedes?) 0 in the countdown and what properties
this new, negative integer must have to interact smoothly with the already
known positives. The astonishing Euler’s formula (§ 5.4) is discovered by a
similar but more sophisticated mathematical extension.

More often however, the results achieved by extension are unsurprising
and not very interesting in themselves. Such extended results are the faithful
servants of mathematical rigor. Consider for example the triangle on the left
of Fig. 1.3. This triangle is evidently composed of two right triangles of areas

A1 =
b1h

2
,

A2 =
b2h

2

(each right triangle is exactly half a rectangle). Hence, the main triangle’s
area is

A = A1 +A2 =
(b1 + b2)h

2
=
bh

2
.

Very well. What about the triangle on the right? Its b1 is not shown on the
figure, and what is that −b2, anyway? Answer: the triangle is composed of
the difference of two right triangles, with b1 the base of the larger, overall
one: b1 = b + (−b2). The b2 is negative (whereby −b2 is positive) because
the sense of the small right triangle’s area in the proof is negative: the small
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area is subtracted from the large rather than added. By extension on this
basis, the main triangle’s area is seen again to be A = bh/2. The proof is the
same. In fact, once the central idea of adding two right triangles is grasped,
the extension is really rather obvious—too obvious to be allowed to burden
such a book as this.

Excepting the uncommon cases in which extension reveals something
interesting or new, this book generally leaves the mere extension of proofs—
including the validation of edge cases and over-the-edge cases—as an exercise
to the interested reader.

1.4 Deduction, adduction and the complex vari-
able

The English language derives from the Latin a nice counterpart to the tran-
sitive verb to deduce, a verb whose classical root means “to lead away.” The
counterpart is to adduce, “to lead toward.” Adduction, as the word is here
used, subtly reverses the sense of deduction: it establishes premises from
necessary conclusions rather than the other way around.22

Applied mathematics sometimes prefers adduction to deduction. Atten-
tion is drawn to this preference because the preference governs the book’s
approach to the complex number and the complex variable. The book will
speak much soon of the complex number and the complex variable, but we
mention them now for the following reason.

An overall view of relevant analytical methods—including complex meth-
ods—and of their use in the modeling of physical systems, marks the applied
mathematician more than does the abstract mastery of any received program
of pure logic.23 A feel for the math is the great thing. Formal definitions,
axioms, symbolic algebras and the like, though often useful, are esteemed
less as primary objects than as secondary supports. The book’s adductive,
rapidly staged development of the complex number and the complex variable
is planned on this sensibility.

Sections 2.11, 3.10, 3.11, 4.3.3, 4.4, 6.2, 9.6 and 9.7, plus all of chapters 5
and 8, constitute the book’s principal stages of complex development. In

22As § 1.2.1 has discussed, pure mathematics can occasionally, implicitly illuminate its
axioms in the light of necessary conclusions. Since axioms are by definition a restricted
kind of premise, one might arguably regard the illumination named as an elevated species
of adduction. However, that is not what this section is about.

23Pure logic is a worthy endeavor, though whether such logic is more properly received
or rather illuminated is a matter of long dispute. Besides Hilbert, of whom we have already
spoken, see also Frege [51], the primer [128], and the commentary [140].



16 CHAPTER 1. INTRODUCTION

these sections and throughout the book, the reader comes to appreciate that
most mathematical properties which apply for real numbers apply equally
for complex, that few properties concern real numbers alone.

Pure mathematics develops its own, beautiful, abstract theory of the
complex variable,24 a theory whose arc regrettably takes off too late and
flies too far from applications for such a book as this. Less beautiful, less
abstract, more practical, nonaxiomatic paths to the topic exist,25 and this
book leads the reader along one of these.

For supplemental reference, a bare sketch of the abstract theory of the
complex variable is found in appendix C.

1.5 On the text

The book gives numerals in hexadecimal. It denotes variables in Greek
letters as well as Roman. Readers unfamiliar with the hexadecimal notation
will find a brief orientation thereto in appendix A. Readers unfamiliar with
the Greek alphabet will find it in appendix B.

Licensed to the public under the GNU General Public License [49], ver-
sion 2, this book meets the Debian Free Software Guidelines [38] and the
Open Source Definition [94].

By its nature, a book of mathematical derivations can make strait, col-
orless reading. To delineate logic as it were in black and white is the book’s
duty. What then to tint? Is naught to be warm nor cool, naught ruddy
nor blue? Though mathematics at its best should serve the demands not
only of deduction but equally of insight, by the latter of which alone math-
ematics derives either feeling or use; though this book does occasionally try
(at some risk to strict consistency of tone) to add color in suitable shades,
to strike an appropriately lively balance between the opposite demands of
logical progress and literary relief; nonetheless, neither every sequence of
equations nor every conjunction of figures is susceptible to an apparent hue
the writer can openly paint upon it—but only to that abeyant hue, that
luster which reveals or reflects the fire of the reader’s own mathematical
imagination, which color remains otherwise unobserved.

The book begins by developing the calculus of a single variable.

24[7][116][47][120][65]
25See chapter 8’s footnote 8.
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The calculus of a single
variable
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Chapter 2

Classical algebra and
geometry

Probably every book must suppose something of its reader. This book sup-
poses, or affects to suppose, little other than that its reader reads English
and has a strong aptitude for mathematics, but it does assume that the
reader has learned the simplest elements of classical arithmetic, algebra and
geometry from his youth: that 1 + 1 = 2; why (2)(3) = 6; what it means
when a letter like x stands in the place of an unspecified number; the tech-
nique to solve that 3x − 2 = 7; how to read the functional notation f(x);
which quantity a square root

√
x is; what to make of the several congruent

angles that attend a line when the line intersects some parallels; and so on.
Even so, some basic points of algebra and geometry seem worth touching
briefly here. The book starts fast with these.

2.1 Basic arithmetic relationships

This section states some arithmetical rules.

2.1.1 Commutivity, associativity, distributivity, identity and
inversion

Table 2.1 lists several arithmetical rules,1 each of which applies not only to
real numbers but equally to the complex numbers of § 2.11. Most of the
rules are appreciated at once if the meaning of the symbols is understood. In
the case of multiplicative commutivity, one imagines a rectangle with sides

1[116, § 1.2][120, chapter 1]

19



20 CHAPTER 2. CLASSICAL ALGEBRA AND GEOMETRY

Table 2.1: Basic properties of arithmetic.

a+ b = b+ a Additive commutivity
a+ (b+ c) = (a+ b) + c Additive associativity

a+ 0 = 0 + a = a Additive identity
a+ (−a) = 0 Additive inversion

ab = ba Multiplicative commutivity
(a)(bc) = (ab)(c) Multiplicative associativity

(a)(1) = (1)(a) = a Multiplicative identity
(a)(1/a) = 1 Multiplicative inversion

(a)(b+ c) = ab+ ac Distributivity

Figure 2.1: Multiplicative commutivity.

a

b

b

a

of lengths a and b, then the same rectangle turned on its side, as in Fig. 2.1:
since the area of the rectangle is the same in either case, and since the area
is the length times the width in either case (the area is more or less a matter
of counting the little squares), evidently multiplicative commutivity holds.
A similar argument validates multiplicative associativity, except that here
one computes the volume of a three-dimensional rectangular box, which box
one turns various ways.

Multiplicative inversion lacks an obvious interpretation when a = 0.
Loosely,

1

0
=∞.

But since 3/0 = ∞ also, surely either the zero or the infinity, or both,
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somehow differ in the latter case.2

Looking ahead in the book, we note that the multiplicative properties
do not always hold for more general linear transformations. For example,
matrix multiplication is not commutative and vector cross-multiplication is
not associative. Where associativity does not hold and parentheses do not
otherwise group, right-to-left association is notationally implicit:3,4

A×B×C = A× (B×C).

The sense of it is that the thing on the left (A× ) operates on the thing on
the right (B ×C). (In the rare case in which the question arises, you may
wish to use parentheses anyway.)

2.1.2 Negative numbers

Consider that

(+a)(+b) = +ab,

(+a)(−b) = −ab,
(−a)(+b) = −ab,
(−a)(−b) = +ab.

The first three of the four equations probably are unsurprising, but the last
is interesting. Why would a negative count −a of a negative quantity −b

2Weierstrass, Kronecker, Dedekind and Frege, among others, spent much of the nine-
teenth century intensely debating the implications of this very question. The applied book
you are reading however will treat the matter in a more relaxed manner than did these
mathematical titans of yesteryear.

3The fine C and C++ programming languages unfortunately are stuck with the reverse
order of association, along with division inharmoniously on the same level of syntactic
precedence as multiplication. Standard mathematical notation is more elegant:

abc/uvw =
(a)(bc)

(u)(vw)
.

4The nonassociative cross product B×C is introduced in § 15.2.2.
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come to a positive product +ab? To see why, consider the progression

...

(+3)(−b) = −3b,

(+2)(−b) = −2b,

(+1)(−b) = −1b,

(0)(−b) = 0b,

(−1)(−b) = +1b,

(−2)(−b) = +2b,

(−3)(−b) = +3b,

...

The logic of arithmetic demands that the product of two negative numbers
be positive for this reason.

2.1.3 Inequality

If5

a < b,

then necessarily

a+ x < b+ x.

However, the relationship between ua and ub depends on the sign of u:

ua < ub if u > 0;

ua > ub if u < 0.

Also,

1

a
>

1

b
if a > 0 or b < 0;

1

a
<

1

b
if a < 0 and b > 0.

See further § 2.5.6.

5Few readers attempting this book will need to be reminded that < means “is less
than,” that > means “is greater than,” or that ≤ and ≥ respectively mean “is less than
or equal to” and “is greater than or equal to.”



2.2. QUADRATICS 23

2.1.4 The change of variable

The mathematician often finds it convenient to change variables, introducing
new symbols to stand in place of old. For this we have the change of variable
or assignment notation6

Q← P,

which means, “in place of P , put Q”; or, “let Q now equal P .” For example,
if a2 + b2 = c2, then the change of variable 2µ ← a yields the new form
(2µ)2 + b2 = c2.

Similar to the change of variable notation is the definition notation

Q ≡ P.

This means, “let the new symbol Q represent P .”7

The two notations logically mean about the same thing. Subjectively,
Q ≡ P identifies a quantity P sufficiently interesting to be given a permanent
name Q, whereas Q← P implies nothing especially interesting about P or Q
but just introduces a (perhaps temporary) new symbol Q to ease the algebra.
These concepts grow clearer as examples of the usage arise in the book.

2.2 Quadratics

Differences and sums of squares are conveniently factored as

a2 − b2 = (a+ b)(a− b),
a2 + b2 = (a+ ib)(a− ib),

a2 − 2ab+ b2 = (a− b)2,

a2 + 2ab+ b2 = (a+ b)2

(2.1)

6There appears to exist no broadly established standard applied mathematical notation
for the change of variable, other than the = equal sign, which regrettably does not always
fill the role well. One can indeed use the equal sign, but then what does the change of
variable k = k + 1 mean? It looks like an impossible assertion that k and k + 1 were
the same. The notation k ← k + 1 by contrast is unambiguous, incrementing k by one.
Nevertheless, admittedly, the latter notation has seen only scattered use in the literature.

The C and C++ programming languages use == for equality and = for assignment
(change of variable), as the reader may be aware.

7One would never write, k ≡ k + 1. Even k ← k + 1 can confuse readers inasmuch as
it appears to imply two different values for the same symbol k, but the latter notation is
sometimes used anyway when new symbols are unwanted or because more precise alter-
natives (like kn = kn−1 + 1) seem overwrought. Still, usually it is better to introduce a
new symbol, as in j ← k + 1.

In some books, ≡ is printed as ,.
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(where i is the imaginary unit, a number defined such that i2 = −1, intro-
duced in § 2.11 below). Useful as these four forms are, however, none of
them can directly factor the more general quadratic8 expression9

z2 − 2βz + γ2.

To factor this, we complete the square, writing,

z2 − 2βz + γ2 = z2 − 2βz + γ2 + (β2 − γ2)− (β2 − γ2)

= z2 − 2βz + β2 − (β2 − γ2)

= (z − β)2 − (β2 − γ2).

The expression evidently has roots—that is, it has values of z that null the
expression—where

(z − β)2 = (β2 − γ2),

or in other words where10

z = β ±
√
β2 − γ2. (2.2)

This suggests the factoring that

z2 − 2βz + γ2 = (z − z1)(z − z2), (2.3)

where z1 and z2 are the two values of z given by (2.2).11 Substituting into
the equation the values of z1 and z2 and simplifying proves the suggestion
correct.

It follows that the two solutions of the quadratic equation

z2 = 2βz − γ2 (2.4)

8The adjective quadratic refers to the algebra of expressions in which no term has
greater than second order. Examples of quadratic expressions include x2, 2x2−7x+3 and
x2+2xy+y2. By contrast, the expressions x3−1 and 5x2y are cubic not quadratic because
they contain third-order terms. First-order expressions like x+ 1 are linear; zeroth-order
expressions like 3 are constant. Expressions of fourth and fifth order are quartic and
quintic, respectively. (If not already clear from the context, order basically refers to the
number of variables multiplied together in a term. The term 5x2y = 5[x][x][y] is of third
order, for instance.)

9The β and γ are Greek letters, the full roster of which you can find in appendix B.
10The symbol ± means “+ or −.” In conjunction with this symbol, the alternate

symbol ∓ occasionally also appears, meaning “− or +”—which is the same thing except
that, where the two symbols appear together, (±z) + (∓z) = 0.

11It suggests it because the expressions on the left and right sides of (2.3) are each
quadratic and because the two expressions appear to share the same roots.
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are those given by (2.2), which is called the quadratic formula.12 (Cubic and
quartic formulas also exist to extract the roots of polynomials respectively
of third and fourth order, but they are much harder. See chapter 10 and its
Tables 10.1 and 10.2.)

2.3 Integer and series notation

Sums and products of series arise so often in mathematical work that one
finds it convenient to define terse notations to express them. The summation
notation

b∑

k=a

f(k)

means to let k equal each of the integers a, a+ 1, a+ 2, . . . , b in turn, evalu-
ating the function f(k) at each k and then adding up the several f(k). For
example,13

6∑

k=3

k2 = 32 + 42 + 52 + 62 = 0x56.

The similar multiplication notation

b∏

j=a

f(j)

means to multiply the several f(j) rather than to add them. The symbols
∑

and
∏

are respectively the Greek letters for S and P, writ large, and may

12The form of the quadratic formula which usually appears in print is

x =
−b±

√
b2 − 4ac

2a
,

which solves the quadratic ax2 + bx + c = 0. However, this writer finds the form (2.2)
easier to remember. For example, by (2.2) in light of (2.4), the quadratic

z2 = 3z − 2

has the solutions

z =
3

2
±

√(
3

2

)2

− 2 = 1 or 2.

13What’s that 0x56? Answer: it is a hexadecimal numeral that represents the same
number the familiar, decimal numeral 86 represents. It is an eighty-six. The book’s
preface explains why the book gives such numbers in hexadecimal. Appendix A tells how
to read the numerals, if you do not already know.
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be regarded as standing for “Sum” and “Product.” The j or k is a dummy
variable, index of summation or loop counter—a variable with no indepen-
dent existence, used only to facilitate the addition or multiplication of the
series.14 (Nothing prevents one from writing

∏
k rather than

∏
j , inciden-

tally. For a dummy variable, one can use any letter one likes. However, the
general habit of writing

∑
k and

∏
j proves convenient at least in § 4.5.2 and

chapter 8, so we start now.)

The product shorthand

n! ≡
n∏

j=1

j,

n!/m! ≡
n∏

j=m+1

j,

is very frequently used. The notation n! is pronounced “n factorial.” Re-
garding the notation n!/m!, this can of course be regarded correctly as n!
divided by m!, but it usually proves more amenable to regard the notation
as a single unit.15

Because multiplication in its more general sense as linear transformation
(§ 11.1.1) is not always commutative, we specify that

b∏

j=a

f(j) = [f(b)][f(b− 1)][f(b− 2)] · · · [f(a+ 2)][f(a+ 1)][f(a)]

rather than the reverse order of multiplication.16 Multiplication proceeds
from right to left. In the event that the reverse order of multiplication is
needed, we will use the notation

b∐

j=a

f(j) = [f(a)][f(a+ 1)][f(a+ 2)] · · · [f(b− 2)][f(b− 1)][f(b)].

14Section 7.3 speaks further of the dummy variable.
15One reason among others for this is that factorials rapidly multiply to extremely large

sizes, overflowing computer registers during numerical computation. If you can avoid
unnecessary multiplication by regarding n!/m! as a single unit, it helps.

16The extant mathematical literature seems to lack an established standard on the order
of multiplication implied by the “

∏
” symbol, but this is the order we will use in this book.
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Note that for the sake of definitional consistency,

N∑

k=N+1

f(k) = 0 +
N∑

k=N+1

f(k) = 0,

N∏

j=N+1

f(j) = (1)

N∏

j=N+1

f(j) = 1.

This means among other things that

0! = 1. (2.5)

Context tends to make the notation

N, j, k ∈ Z

unnecessary, but if used (as here and in § 2.5) it states explicitly that N , j
and k are integers. (The symbol Z represents17 the set of all integers: Z ≡
{. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}. The symbol ∈ means “belongs
to” or “is a member of.” Integers conventionally get the letters18 i, j, k,
m, n, M and N when available—though i sometimes is avoided because the
same letter represents the imaginary unit of § 2.11. Where additional letters
are needed `, p and q, plus the capitals of these and the earlier listed letters,
can be pressed into service, occasionally joined even by r and s. Greek
letters are avoided, as—ironically in light of the symbol Z—are the Roman
letters x, y and z. Refer to appendix B.)

On first encounter, the
∑

and
∏

notation seems a bit overwrought,
whether or not the ∈ Z notation also is used. Admittedly it is easier for the
beginner to read “f(1)+f(2)+ · · ·+f(N)” than “

∑N
k=1 f(k).” However, ex-

perience shows the latter notation to be extremely useful in expressing more
sophisticated mathematical ideas. We will use such notation extensively in
this book.

17The letter Z recalls the transitive and intransitive German verb zählen, “to count.”
18Though Fortran is perhaps less widely used a computer programming language than it

once was, it dominated applied-mathematical computer programming for decades, during
which the standard way to declare an integral variable to the Fortran compiler was simply
to let its name begin with I, J, K, L, M or N; so, this alphabetical convention is fairly well
cemented in practice.
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2.4 The arithmetic series

A simple yet useful application of the series sum of § 2.3 is the arithmetic19

series
b∑

k=a

k = a+ (a+ 1) + (a+ 2) + · · ·+ b.

Pairing a with b, then a+1 with b−1, then a+2 with b−2, etc., the average
of each pair is [a+b]/2; thus the average of the entire series is [a+b]/2. (The
pairing may or may not leave an unpaired element at the series midpoint
k = [a + b]/2, but this changes nothing.) The series has b − a + 1 terms.
Hence,

b∑

k=a

k = (b− a+ 1)
a+ b

2
. (2.6)

Success with this arithmetic series leads one to wonder about the geo-
metric series

∑∞
k=0 z

k. Section 2.6.4 addresses that point.

2.5 Powers and roots

This necessarily tedious section discusses powers and roots. It offers no
surprises. Table 2.2 summarizes its definitions and results. Readers seeking
more rewarding reading may prefer just to glance at the table and then to
skip directly to the start of the next section.

In this section, the exponents

j, k,m, n, p, q, r, s ∈ Z

are integers, but the exponents a and b are arbitrary real numbers. (What is
a real number? Section 2.11 will explain; but, meanwhile, you can think of
a real number as just a number, like 4, −5/2 or

√
3. There are also complex

numbers like 7 + i4, for which this section’s results—and, indeed, most of
the chapter’s and book’s results—turn out to be equally valid; but except
in eqn. 2.1 we have not met this i yet, so you need not worry about it for
now.)

2.5.1 Notation and integral powers

The power notation
zn

19As an adjective, the word is pronounced “arithMETic.”
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Table 2.2: Power properties and definitions.

zn ≡
n∏

j=1

z, n ≥ 0

z = (z1/n)n = (zn)1/n

√
z ≡ z1/2

(uv)a = uava

zp/q = (z1/q)p = (zp)1/q

zab = (za)b = (zb)a

za+b = zazb

za−b =
za

zb

z−b =
1

zb

j, n, p, q ∈ Z

indicates the number z, multiplied by itself n times. More formally, when
the exponent n is a nonnegative integer,20

zn ≡
n∏

j=1

z. (2.7)

For example,21

z3 = (z)(z)(z),

z2 = (z)(z),

z1 = z,

z0 = 1.

20The symbol “≡” means “=”, but further usually indicates that the expression on its
right serves to define the expression on its left. Refer to § 2.1.4.

21The case 00 is interesting because it lacks an obvious interpretation. The specific
interpretation depends on the nature and meaning of the two zeros. For interest, if E ≡
1/ε, then

lim
ε→0+

εε = lim
E→∞

(
1

E

)1/E

= lim
E→∞

E−1/E = lim
E→∞

e−(lnE)/E = e0 = 1.
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Notice that in general,

zn−1 =
zn

z
.

This leads us to extend the definition to negative integral powers with

z−n =
1

zn
. (2.8)

From the foregoing it is plain that

zm+n = zmzn,

zm−n =
zm

zn
,

(2.9)

for any integral m and n. For similar reasons,

zmn = (zm)n = (zn)m. (2.10)

On the other hand, from multiplicative associativity and commutivity,

(uv)n = unvn. (2.11)

2.5.2 Roots

Fractional powers are not something we have defined yet, so for consistency
with (2.10) we let

(u1/n)n = u.

This has u1/n as the number which, raised to the nth power, yields u. Setting

v = u1/n,

it follows by successive steps that

vn = u,

(vn)1/n = u1/n,

(vn)1/n = v.

Taking the u and v formulas together, then,

(z1/n)n = z = (zn)1/n (2.12)

for any z and integral n.
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The number z1/n is called the nth root of z—or in the very common case
that n = 2, the square root of z, often written as

√
z.

When z is real and nonnegative, the last notation usually implicitly is taken
to mean the real, nonnegative square root. In any case, the power and root
operations mutually invert one another.

What about powers expressible neither as n nor as 1/n, such as the 3/2
power? If z and w are numbers related by

wq = z,

then
wpq = zp.

Taking the qth root,
wp = (zp)1/q.

But w = z1/q, so this has that

(z1/q)p = (zp)1/q,

which is to say that it does not matter whether one applies the power or the
root first: the result is the same. Extending (2.10) therefore, we define zp/q

such that
(z1/q)p = zp/q = (zp)1/q. (2.13)

Since one can arbitrarily closely approximate any real number by a ratio of
integers, (2.13) implies a power definition for all real exponents.

Equation (2.13) is this subsection’s main result. However, § 2.5.3 will
find it useful if we can also show here that

(z1/q)1/s = z1/qs = (z1/s)1/q. (2.14)

The proof is straightforward. If

w ≡ z1/qs,

then raising to the qs power yields that

(ws)q = z.

Successively taking the qth and sth roots gives that

w = (z1/q)1/s.

By identical reasoning,
w = (z1/s)1/q.

But since w ≡ z1/qs, the last two equations imply (2.14), as we have sought.
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2.5.3 Powers of products and powers of powers

Per (2.11),

(uv)p = upvp.

Raising this equation to the 1/q power, we have that

(uv)p/q = [upvp]1/q

=
[
(up)q/q(vp)q/q

]1/q

=
[
(up/q)q(vp/q)q

]1/q

=
[
(up/q)(vp/q)

]q/q

= up/qvp/q.

But as argued already in § 2.5.2, some ratio p/q of integers exists to approach
any real number a with arbitrary precision, so the last means that

(uv)a = uava (2.15)

for any real a.

On the other hand, per (2.10),

zpr = (zp)r.

Raising this equation to the 1/qs power and applying (2.10), (2.13) and
(2.14) to reorder the powers, we have that

z(p/q)(r/s) = (zp/q)r/s.

By identical reasoning,

z(p/q)(r/s) = (zr/s)p/q.

Again as before, p/q and r/s approximate real numbers, so

(za)b = zab = (zb)a (2.16)

for any real a and b.
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2.5.4 Sums of exponents

With (2.9), (2.15) and (2.16), one can reason that

z(p/q)+(r/s) = (zps+rq)1/qs = (zpszrq)1/qs = zp/qzr/s,

or in other words that
za+b = zazb. (2.17)

In the case that a = −b,

1 = z−b+b = z−bzb,

which implies that

z−b =
1

zb
. (2.18)

But then replacing −b← b in (2.17) leads to

za−b = zaz−b,

which according to (2.18) is that

za−b =
za

zb
. (2.19)

2.5.5 Summary and remarks

Table 2.2 on page 29 summarizes the section’s definitions and results.
Looking ahead to § 2.11, § 3.11 and chapter 5, we observe that nothing

in the foregoing analysis requires the base variables z, w, u and v to be
real numbers; if complex (§ 2.11), the formulas remain valid. Still, the
analysis does imply that the various exponents m, n, p/q, a, b and so on
are real numbers. We shall remove this restriction later, purposely defining
the action of a complex exponent to comport with the results found here.
With such a definition the results apply not only for all bases but also for
all exponents, real or complex.

2.5.6 Power-related inequality

If
0 < x < y

are real numbers (for this subsection alone of the section does not apply to
the complex numbers of § 2.11), then inductively—since 0 < (x)(x) < (y)(y),
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0 < (x)(x2) < (y)(y2), and so on—we have that 0 < xp < yp for positive,
real, integral p. Moreover, the implication is reversible, so 0 < x1/q < y1/q,
too. Combining these with a = p/q and recalling § 2.1.3,

0 < xa < ya if a > 0,

0 < xa = ya if a = 0,

0 < ya < xa if a < 0.

Similar reasoning has further that

1 < x < xa if x > 1 and a > 1,

1 < xa < x if x > 1 and 0 < a < 1,

0 < xa < x < 1 if 0 < x < 1 and a > 1,

0 < x < xa < 1 if 0 < x < 1 and 0 < a < 1,

among others.

2.6 Multiplying and dividing power series

A power series22 is a weighted sum of integral powers:

A(z) =
∞∑

k=−∞
akz

k, (2.20)

22Another name for the power series is polynomial. The word “polynomial” usually
connotes a power series with a finite number of terms, but the two names in fact refer to
essentially the same thing.

Professional mathematicians use the terms more precisely. Equation (2.20), they call—
or at any rate some of them call—a “power series” only if ak = 0 for all k < 0—in other
words, technically, not if it includes negative powers of z. They call it a “polynomial”
only if it is a “power series” with a finite number of terms. They call (2.20) in general a
Laurent series.

The name “Laurent series” is a name we shall meet again in § 8.14. In the meantime
however we admit that the professionals have vaguely daunted us by adding to the name
some pretty sophisticated connotations, to the point that we applied mathematicians (at
least in the author’s country) seem to feel somehow unlicensed actually to use the name.
We tend to call (2.20) a “power series with negative powers,” or just “a power series.”

This book follows the last usage. You however can call (2.20) a Laurent series if
you prefer (and if you pronounce it right: “lor-ON”). That is after all exactly what it
is. Nevertheless, if you do use the name “Laurent series,” be prepared for some people
subjectively—for no particular reason—to expect you to establish complex radii of con-
vergence, to sketch some annulus in the Argand plane, and/or to engage in other maybe
unnecessary formalities. If that is not what you seek, then you may find it better just to
call the thing by the less lofty name of “power series”—or better, if it has a finite number
of terms, by the even humbler name of “polynomial.”

Semantics. All these names mean about the same thing, but one is expected most
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in which the several weights ak are arbitrary constants. This section dis-
cusses the multiplication and division of power series.

2.6.1 Multiplying power series

Given two power series

A(z) =

∞∑

k=−∞
akz

k,

B(z) =

∞∑

k=−∞
bkz

k,

(2.21)

the product of the two series is evidently

P (z) ≡ A(z)B(z) =

∞∑

k=−∞






∞∑

j=−∞
ajbk−j


 zk


 . (2.22)

2.6.2 Dividing power series

The quotient Q(z) = B(z)/A(z) of two power series is a little harder to
calculate, and there are at least two ways to do it. Section 2.6.3 below will
do it by matching coefficients, but this subsection does it by long division.
For example,

2z2 − 3z + 3

z − 2
=

2z2 − 4z

z − 2
+
z + 3

z − 2
= 2z +

z + 3

z − 2

= 2z +
z − 2

z − 2
+

5

z − 2
= 2z + 1 +

5

z − 2
.

carefully always to give the right name in the right place. What a bother! (Someone
once told the writer that the Japanese language can give different names to the same
object, depending on whether the speaker is male or female. The power-series terminology
seems to share a spirit of that kin.) If you seek just one word for the thing, the writer
recommends that you call it a “power series” and then not worry too much about it
until someone objects. When someone does object, you can snow him with the big word
“Laurent series,” instead.

The experienced scientist or engineer may notice that the above vocabulary omits the
name “Taylor series.” The vocabulary omits the name because that name fortunately
remains unconfused in usage—it means quite specifically a power series without negative
powers and tends to connote a representation of some particular function of interest—as
we shall see in chapter 8.
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The strategy is to take the dividend23 B(z) piece by piece, purposely choos-
ing pieces easily divided by A(z).

If you feel that you understand the example, then that is really all there
is to it, and you can skip over several pages of thick notation straight to
§ 2.6.4 if you like. Indeed, to skip is recommended to many or most readers—
though, if you do skip, you might nonetheless glance along the way at Ta-
bles 2.3 and 2.4, which summarize and formalize the procedure the example
has used and which also include the clever, alternate procedure of § 2.6.3.

Formally, we prepare the long division B(z)/A(z) by writing,

B(z) = A(z)Qn(z) +Rn(z), (2.23)

where Rn(z) is a remainder (being the part of B[z] remaining to be divided);
and

A(z) =
K∑

k=−∞
akz

k, aK 6= 0,

B(z) =

N∑

k=−∞
bkz

k,

RN (z) = B(z),

QN (z) = 0,

Rn(z) =
n∑

k=−∞
rnkz

k,

Qn(z) =
N−K∑

k=n−K+1

qkz
k,

(2.24)

where K and N identify the greatest orders k of zk present in A(z) and
B(z), respectively.

Well, that is a lot of symbology. What does it mean? The key to
understanding it lies in understanding (2.23), which is not one but several
equations—one equation for each value of n, where n = N,N−1, N−2, . . . .
The dividend B(z) and the divisor A(z) stay the same from one n to the
next, but the quotient Qn(z) and the remainder Rn(z) change. At start,
QN (z) = 0 while RN (z) = B(z), but the thrust of the long division process

23If Q(z) is a quotient and R(z) a remainder, then B(z) is a dividend (or numerator)
and A(z) a divisor (or denominator). Such are the Latin-derived names of the parts of a
long division.
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is to build Qn(z) up by wearing Rn(z) down. The goal is to grind Rn(z)
away to nothing, to make it disappear as n→ −∞.

As in the example, we pursue the goal by choosing from Rn(z) an easily
divisible piece containing the whole high-order term of Rn(z). The piece
we choose is (rnn/aK)zn−KA(z), which we add and subtract from (2.23) to
obtain the form

B(z) = A(z)

[
Qn(z) +

rnn
aK

zn−K
]

+

[
Rn(z)− rnn

aK
zn−KA(z)

]
.

Matching this equation against the desired iterate

B(z) = A(z)Qn−1(z) +Rn−1(z)

and observing from the definition of Qn(z) that Qn−1(z) = Qn(z) +
qn−Kz

n−K , we find that

qn−K =
rnn
aK

,

Rn−1(z) = Rn(z)− qn−Kzn−KA(z),
(2.25)

where no term remains in Rn−1(z) higher than a zn−1 term.

To begin the actual long division, we initialize

RN (z) = B(z),

for which (2.23) is trivially true if QN (z) = 0. Then we iterate per (2.25) as
many times as desired. If an infinite number of times, then so long as Rn(z)
tends to vanish as n→ −∞, it follows from (2.23) that

B(z)

A(z)
= Q−∞(z). (2.26)

Iterating only a finite number of times leaves a remainder,

B(z)

A(z)
= Qn(z) +

Rn(z)

A(z)
, (2.27)

except that it may happen that Rn(z) = 0 for sufficiently small n.

Table 2.3 summarizes the long-division procedure.24 In its qn−K equa-
tion, the table includes also the result of § 2.6.3 below.

24[123, § 3.2]
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Table 2.3: Dividing power series through successively smaller powers.

B(z) = A(z)Qn(z) +Rn(z)

A(z) =

K∑

k=−∞
akz

k, aK 6= 0

B(z) =
N∑

k=−∞
bkz

k

RN (z) = B(z)

QN (z) = 0

Rn(z) =

n∑

k=−∞
rnkz

k

Qn(z) =

N−K∑

k=n−K+1

qkz
k

qn−K =
rnn
aK

=
1

aK

(
bn −

N−K∑

k=n−K+1

an−kqk

)

Rn−1(z) = Rn(z)− qn−Kzn−KA(z)

B(z)

A(z)
= Q−∞(z)
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The foregoing algebra is probably punishing enough; but if not, then one
can further observe in light of Table 2.3 that if25

A(z) =

K∑

k=Ko

akz
k,

B(z) =
N∑

k=No

bkz
k,

then

Rn(z) =

n∑

k=n−(K−Ko)+1

rnkz
k for all n < No + (K −Ko). (2.28)

That is, the remainder has residual order one less than the divisor has. The
reason for this, of course, is that we have strategically planned the long-
division iteration precisely to cause the divisor’s leading term to cancel the
remainder’s leading term at each step.26 (If not clear from the context, a
polynomial’s residual order is the difference between the least and greatest
orders of its several terms. For example, the residual order of 9x5−7x4 +6x3

is two because 5 − 3 = 2—or, if you prefer, because 9x5 − 7x4 + 6x3 =
[x3][9x2 − 7x+ 6], where 9x2 − 7x+ 6 is of second order.27)

25The notations Ko, ak and zk are usually pronounced, respectively, as “K naught,” “a
sub k” and “z to the k” (or, more fully, “z to the kth power”)—at least in the author’s
country.

26If a more formal demonstration of (2.28) is wanted, then consider per (2.25) that

Rm−1(z) = Rm(z)− rmm
aK

zm−KA(z).

If the least-order term of Rm(z) is a zNo term (as clearly is the case at least for the
initial remainder RN [z] = B[z]), then according to the equation so also must the least-
order term of Rm−1(z) be a zNo term, unless an even lower-order term is contributed
by the product zm−KA(z). But that very product’s term of least order is a zm−(K−Ko)

term. Under these conditions, evidently the least-order term of Rm−1(z) is a zm−(K−Ko)

term when m − (K − Ko) ≤ No; otherwise a zNo term. This is better stated after the
change of variable n+ 1← m: the least-order term of Rn(z) is a zn−(K−Ko)+1 term when
n < No + (K −Ko); otherwise a zNo term.

The greatest-order term of Rn(z) is by definition a zn term. So, in summary, when n <
No + (K −Ko), the terms of Rn(z) run from zn−(K−Ko)+1 through zn, which is exactly
the claim (2.28) makes.

27But what of 0x5 − 7x4 + 6x3 with its leading null coefficient? Is this polynomial’s
residual order also two?

Answer: that depends on what you mean. The strictly semantic question of what a
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Table 2.4: Dividing power series through successively larger powers.

B(z) = A(z)Qn(z) +Rn(z)

A(z) =
∞∑

k=K

akz
k, aK 6= 0

B(z) =

∞∑

k=N

bkz
k

RN (z) = B(z)

QN (z) = 0

Rn(z) =
∞∑

k=n

rnkz
k

Qn(z) =

n−K−1∑

k=N−K
qkz

k

qn−K =
rnn
aK

=
1

aK

(
bn −

n−K−1∑

k=N−K
an−kqk

)

Rn+1(z) = Rn(z)− qn−Kzn−KA(z)

B(z)

A(z)
= Q∞(z)

The long-division procedure of Table 2.3 extends the quotient Qn(z)
through successively smaller powers of z. Often, however, one prefers to
extend the quotient through successively larger powers of z, where a zK

term is A(z)’s term of least rather than greatest order. In this case, the long
division goes by the complementary rules of Table 2.4.

mere phrase ought to signify is not always very interesting. After all, an infinite number
of practically irrelevant semantic distinctions could be drawn. The applied mathematician
lacks the time.

Anyway, whatever semantics might eventually be settled upon, at least (2.28) and Ta-
ble 2.3 remain unambiguous.
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2.6.3 Dividing power series by matching coefficients

There is another, sometimes quicker way to divide power series than by the
long division of § 2.6.2. One can divide them by matching coefficients.28 If

Q∞(z) =
B(z)

A(z)
, (2.29)

where

A(z) =
∞∑

k=K

akz
k, aK 6= 0,

B(z) =
∞∑

k=N

bkz
k

are known and

Q∞(z) =
∞∑

k=N−K
qkz

k

is to be calculated, then one can rearrange (2.29) as that

A(z)Q∞(z) = B(z).

Expanding the rearranged equation’s left side according to (2.22) and chang-
ing indices suitably on both sides,

∞∑

n=N

[(
n−K∑

k=N−K
an−kqk

)
zn

]
=
∞∑

n=N

bnz
n.

But for this to hold for all z, the coefficients must match for each n:

n−K∑

k=N−K
an−kqk = bn, n ≥ N.

Transferring all terms but aKqn−K to the equation’s right side and dividing
by aK , we have that

qn−K =
1

aK

(
bn −

n−K−1∑

k=N−K
an−kqk

)
, n ≥ N. (2.30)

28[78][47, § 2.5]
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Equation (2.30) computes the coefficients of Q(z), each coefficient depending
not on any remainder but directly on the coefficients earlier computed.

The coefficient-matching technique of this subsection is easily adapted
to the division of series in decreasing, rather than increasing, powers of z.
Tables 2.3 and 2.4 incorporate the technique both ways.

Admittedly, the fact that (2.30) yields a sequence of coefficients does not
necessarily mean that the resulting power series Q∞(z) converges to some
definite value over a given domain. Consider for instance (2.34), which
diverges when29 |z| > 1, even though all its coefficients are known. At
least (2.30) is correct when Q∞(z) does converge. Even when Q∞(z) as
such does not converge, however, often what interest us are only the series’
first several terms

Qn(z) =

n−K−1∑

k=N−K
qkz

k.

In this case, in light of (2.23),

Q∞(z) =
B(z)

A(z)
= Qn(z) +

Rn(z)

A(z)
(2.31)

and convergence is not an issue. Solving (2.31) or (2.23) for Rn(z),

Rn(z) = B(z)−A(z)Qn(z). (2.32)

2.6.4 Common power-series quotients and the geometric se-
ries

Frequently encountered power-series quotients, calculated by the long di-
vision of § 2.6.2, computed by the coefficient matching of § 2.6.3, and/or
verified by multiplying, include30

1

1± z =





∞∑

k=0

(∓z)k, |z| < 1;

−
−1∑

k=−∞
(∓z)k, |z| > 1.

(2.33)

Equation (2.33) almost incidentally answers a question which has arisen
in § 2.4 and which often arises in practice: to what total does the infinite

29See footnote 30.
30The notation |z| represents the magnitude of z. For example, |5| = 5 and |8| = 8, but

also |−5| = 5 and |−8| = 8.



2.6. MULTIPLYING AND DIVIDING POWER SERIES 43

geometric series
∑∞

k=0 z
k, |z| < 1, sum? Answer: it sums exactly to 1/(1−

z). However, there is a simpler, more aesthetic, more instructive way to
demonstrate the same thing, as follows. Let

S0 ≡
∞∑

k=0

zk, |z| < 1.

Multiplying by z yields that

zS0 =
∞∑

k=1

zk.

Subtracting the latter equation from the former leaves that

(1− z)S0 = 1,

which, after dividing by 1− z, implies that

S0 ≡
∞∑

k=0

zk =
1

1− z , |z| < 1, (2.34)

as was to be demonstrated.

2.6.5 Variations on the geometric series

Besides being more aesthetic than the long division of § 2.6.2, the difference
technique of § 2.6.4 permits one to extend the basic geometric series in
several ways. For instance, one can compute the sum

S1 ≡
∞∑

k=0

kzk, |z| < 1

(which arises in, among others, Planck’s quantum blackbody radiation cal-
culation31) as follows. Multiply the unknown S1 by z, producing

zS1 =

∞∑

k=0

kzk+1 =

∞∑

k=1

(k − 1)zk.

Subtract zS1 from S1, leaving

(1− z)S1 =

∞∑

k=0

kzk −
∞∑

k=1

(k − 1)zk =

∞∑

k=1

zk = z

∞∑

k=0

zk =
z

1− z ,

31[90]
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where we have used (2.34) to collapse the last sum. Dividing by 1− z,

S1 ≡
∞∑

k=0

kzk =
z

(1− z)2
, |z| < 1, (2.35)

which was to be found.
Further series of the kind, such as

∑
k k

2zk, can be calculated in like
manner as the need for them arises. Introducing the derivative, though,
chapter 4 does it better:32

Sn ≡
∞∑

k=0

knzk = z
dSn−1

dz
, n ∈ Z, n > 0; (2.36)

except that you must first read chapter 4 or otherwise know about derivatives
to understand this.33 See also § 8.1.

2.7 Indeterminate constants, independent vari-
ables and dependent variables

Mathematical models use indeterminate constants, independent variables
and dependent variables. The three are best illustrated by example as fol-
lows. Consider the time t a sound needs to travel from its source to a distant
listener:

t =
∆r

vsound
,

where ∆r is the distance from source to listener and vsound is the speed of
sound. Here, vsound is an indeterminate constant (given particular atmo-
spheric conditions, it does not vary), ∆r is an independent variable, and t is
a dependent variable. The model gives t as a function of ∆r; so, if you tell
the model how far the listener sits from the sound source, then the model
returns the time the sound needs to propagate from one to the other. Re-
garding the third quantity, the indeterminate constant vsound, one conceives
of this as having a definite, fixed value; yet, oddly, notwithstanding that the
value is (or is thought of as) fixed, the model’s abstract validity may not

32It does not really matter, but you can regard kn to be unity—that is, kn = 1—when
n = 0 and k = 0, though n = 0 technically lies outside the domain of (2.36) as expressed.
See also footnote 21.

33This of course is a forward reference. Logically, (2.36) belongs in or after chapter 4,
but none of the earlier chapters use it, so it is kept here with the rest of the geometric-series
math. See chapter 4’s footnote 34.
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depend on whether one actually knows what the value is (if I tell you that
sound goes at 350 m/s, but later you find out that the real figure is 331 m/s,
this probably does not ruin the theoretical part of your analysis; you may
only have to recalculate numerically). Knowing the value is not the point.
The point is that conceptually there preëxists some correct figure for the
indeterminate constant; that sound goes at some constant speed—whatever
it is—and that one can calculate the delay in terms of this.34

Though the three kinds of quantity remain in some sense distinct, still,
which particular quantity one regards as an indeterminate constant, as an
independent variable, or as a dependent variable may depend less upon any
property of the quantity itself—or of the thing the quantity quantifies—than
upon the mathematician’s point of view. Moreover, the mathematician’s
point of view can waver. The same model in the example would remain
valid if atmospheric conditions were changing (vsound would then be an in-
dependent variable) or if the model were used in designing a musical concert
hall35 to suffer a maximum acceptable sound time lag from the stage to the

34Besides the quantities themselves, there is also the manner in which, or pattern by
which, the quantities relate to one another. The philosophy that attends this distinction
lies mostly beyond the book’s scope, but it still seems worth a footnote to quote Bertrand
Russell (1872–1970) on the subject:

Given any propositional concept, or any unity . . . , which may in the limit
be simple, its constituents are in general of two sorts: (1) those which may
be replaced by anything else whatever without destroying the unity of the
whole; (2) those which have not this property. Thus in “the death of Caesar,”
anything else may be substituted for Caesar, but a proper name must not
be substituted for death, and hardly anything can be substituted for of. Of
the unity in question, the former class of constituents will be called terms,
the latter concepts. . . . [Emphases in the original.][109, appendix A, § 482]

Sections 2.10 and 2.11, and a few later ones, glance upon the matter.
35As a child, were you ever let to read one of those trendy, second-rate arithmetic

textbooks that had you calculate such as the quantity of air in an astronaut’s round
helmet? One could have calculated the quantity of water in a kitchen’s mixing bowl just as
well, but astronauts’ helmets are so much more interesting than bowls, you see. (Whether
you will have endured the condescending frivolity specifically of the ersatz astronaut’s
textbook depends largely on when and where you were raised. Trends will come and go,
but maybe you will have met another year’s version of the same kind of thing.)

So, what of the concert hall? The chance that the typical reader will ever specify the
dimensions of a real musical concert hall is of course vanishingly small. However, it is
the idea of the example that matters here, because the chance that the typical reader will
ever specify something technical is quite large. Although sophisticated models with many
factors and terms do indeed play a large role in engineering, the great majority of practical
engineering calculations—for quick, day-to-day decisions where small sums of money and
negligible risk to life are at stake, or for proëmial or exploratory analysis—are done with
models hardly more sophisticated than the one shown here. So, maybe the concert-hall
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hall’s back row (t would then be an independent variable; ∆r, dependent).
Occasionally one goes so far as deliberately to shift one’s point of view in
mid-analysis—now regarding as an independent variable, for instance, that
which one a moment ago had regarded as an indeterminate constant (a typ-
ical case of such a shift arising in the solution of differential equations by
the method of unknown coefficients, § 9.5).

It matters which symbol represents which of the three kinds of quantity in
part because, in calculus, one analyzes how change in independent variables
affects dependent variables as indeterminate constants remain fixed.

(Section 2.3 has introduced the dummy variable, which the present sec-
tion’s threefold taxonomy seems to exclude. However, in fact, most dummy
variables are just independent variables—a few are dependent variables—
whose scope is restricted to a particular expression. Such a dummy variable
does not seem very “independent,” of course; but its dependence is on the
operator controlling the expression, not on some other variable within the
expression. Within the expression, the dummy variable fills the role of an
independent variable; without, it fills no role because logically it does not
exist there. Refer to §§ 2.3 and 7.3.)

2.8 Exponentials and logarithms

In § 2.5 we have considered the power operation za, where (in § 2.7’s lan-
guage) the independent variable z is the base and the indeterminate con-
stant a is the exponent. There is another way to view the power operation,
however. One can view it as the exponential operation

az,

where the variable z is the exponent and the constant a is the base.

2.8.1 The logarithm

The exponential operation follows the same laws the power operation follows;
but, because the variable of interest is now the exponent rather than the
base, the inverse operation is not the root but rather the logarithm:

loga(a
z) = z. (2.37)

For example, log2 8 = 3. The logarithm logaw answers the question, “To
what power must I raise a to get w?”

example is not so unreasonable, after all.
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Raising a to the power of the last equation, we have that

aloga(az) = az.

With the change of variable w ← az, this is that

aloga w = w. (2.38)

Thus, the exponential and logarithmic operations mutually invert one an-
other.

2.8.2 Properties of the logarithm

The basic properties of the logarithm include that

loga uv = loga u+ loga v, (2.39)

loga
u

v
= loga u− loga v, (2.40)

loga(w
z) = z logaw, (2.41)

wz = az loga w, (2.42)

logbw =
logaw

loga b
. (2.43)

Of these, (2.39) follows from the steps

(uv) = (u)(v),

(aloga uv) = (aloga u)(aloga v),

aloga uv = aloga u+loga v;

and (2.40) follows by similar reasoning. Equations (2.41) and (2.42) follow
from the steps

wz = (wz) = (w)z,

wz = aloga(wz) = (aloga w)z,

wz = aloga(wz) = az loga w.

Equation (2.43) follows from the steps

w = blogb w,

logaw = loga(b
logb w),

logaw = logbw loga b.
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Table 2.5: General properties of the logarithm.

loga uv = loga u+ loga v

loga
u

v
= loga u− loga v

loga(w
z) = z logaw

wz = az loga w

logbw =
logaw

loga b

loga(a
z) = z

w = aloga w

Among other purposes, (2.39) through (2.43) serve respectively to trans-
form products to sums, quotients to differences, powers to products, expo-
nentials to differently based exponentials, and logarithms to differently based
logarithms. Table 2.5 repeats the equations along with (2.37) and (2.38)
(which also emerge as restricted forms of eqns. 2.41 and 2.42), thus summa-
rizing the general properties of the logarithm.

2.9 The triangle

This section develops several facts about the triangle.36

2.9.1 Area

The area of a right triangle37 is half the area of the corresponding rectangle.
This is seen by splitting a rectangle down its diagonal into a pair of right
triangles of equal size. The fact that any triangle’s area is half its base
length times its height is seen by dropping a perpendicular from one point
of the triangle to the opposite side (see Fig. 1.3 on page 14), thereby dividing
the triangle into two right triangles, for each of which the fact is true. In

36Fashion seems to ask a writer to burden the plain word “triangle” with various accurate
but not-very-helpful adjectives like “planar” and “Euclidean.” We like planes and Euclid
(§ 2.9.5) but would resist the fashion. Readers already know what a triangle is.

37As the reader likely knows, a right triangle is a triangle, one of whose three angles is
perfectly square.
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algebraic symbols,

A =
bh

2
, (2.44)

where A stands for area, b for base length, and h for perpendicular height.

2.9.2 The triangle inequalities

Any two sides of a triangle together are longer than the third alone, which
itself is longer than the difference between the two. In symbols,

|a− b| < c < a+ b, (2.45)

where a, b and c are the lengths of a triangle’s three sides. These are the
triangle inequalities. The truth of the sum inequality, that c < a+ b, is seen
by sketching some triangle on a sheet of paper and asking: if c is the direct
route between two points and a+ b is an indirect route, then how can a+ b
not be longer? Of course the sum inequality is equally good on any of the
triangle’s three sides, so one can write that a < c+ b and b < c+ a just as
well as that c < a + b. Rearranging the a and b inequalities, we have that
a− b < c and b− a < c, which together say that |a− b| < c. The last is the
difference inequality, completing (2.45)’s proof.38

2.9.3 The sum of interior angles

A triangle’s three interior angles39 sum to 2π/2. One way to see the truth
of this fact is to imagine a small car rolling along one of the triangle’s sides.
Reaching the corner, the car turns to travel along the next side, and so on
round all three corners to complete a circuit, returning to the start. Since
the car again faces the original direction, we reason that it has turned a
total of 2π, a full revolution. But the angle φ the car turns at a corner
and the triangle’s inner angle ψ there together form the straight angle 2π/2
(the sharper the inner angle, the more the car turns: see Fig. 2.2). In

38Section 13.9 proves the triangle inequalities more generally, though regrettably with-
out recourse to this subsection’s properly picturesque geometrical argument.

39Most readers will already know the notation 2π and its meaning as the angle of full
revolution. The notation is properly introduced in §§ 3.1, 3.6 and 8.11 at any rate. Briefly
nevertheless, the symbol 2π represents a complete turn, a full circle, a spin to face the
same direction as before. Hence (for instance) 2π/4 represents a square turn or right
angle.

You may be used to the notation 360◦ in place of 2π; but, for the reasons explained in
appendix A and in footnote 17 of chapter 3, this book tends to avoid the notation 360◦.
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Figure 2.2: The sum of a triangle’s inner angles: turning at the corner.

φ
ψ

mathematical notation,

φ1 + φ2 + φ3 = 2π;

φk + ψk =
2π

2
, k ∈ {1, 2, 3};

where ψk and φk are respectively the triangle’s inner angles and the angles
through which the car turns; and where the set notation40 k ∈ {1, 2, 3}, met
in § 2.3, means that the last equation holds whether k = 1, 2 or 3. Solving
the latter equation for φk and substituting into the former yields that

ψ1 + ψ2 + ψ3 =
2π

2
, (2.46)

which was to be demonstrated.

Extending the same technique to the case of an n-sided polygon,

n∑

k=1

φk = 2π,

φk + ψk =
2π

2
.

Solving the latter equation for φk and substituting into the former, we have
that

n∑

k=1

(
2π

2
− ψk

)
= 2π,

40Applied mathematicians tend to less enthusiasm than professional mathematicians
do over set notation like the membership symbol ∈, but such notation still finds use in
applications now and again as, for example, it does in this instance.
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Figure 2.3: A right triangle subdivided.

c
t

b

s

a
h

or in other words that
n∑

k=1

ψk = (n− 2)
2π

2
. (2.47)

Equation (2.46) is then seen to be a special case of (2.47) with n = 3.

2.9.4 The Pythagorean theorem

Along with Euler’s formula (5.12), the fundamental theorem of calculus
(7.2), Cauchy’s integral formula (8.29), Fourier’s equation (18.1) and maybe
a few others, the Pythagorean theorem is one of the most famous results in
all of mathematics.

The introduction to chapter 1 has proved the theorem.41 Alternately
and less concisely, Fig. 2.3 too can prove it as follows. In the figure are three
right triangles: a small one sha on the left; a medium one htb on the right;
and, if the small and medium are joined together, a large one abc overall.
The small triangle shares an angle sa with the large which, in light of (2.46)
and of that both are right triangles, means that all three angles of the small

41The elegant proof of chapter 1 is simpler than the one famously given by the ancient
geometer Euclid, yet more appealing than alternate proofs often found in print. Whether
Euclid was acquainted with either of the two Pythagorean proofs the book you are reading
gives, or indeed was acquainted with both, this writer does not know; but it is possible
[146, “Pythagorean theorem,” 02:32, 31 March 2006] that Euclid chose his proof because it
comported better with the restricted set of geometrical elements with which he permitted
himself to work. Be that as it may, the present writer encountered the proof of chapter 1
somewhere years ago and has never seen it in print since (but has not looked for it, either),
so can claim no credit for originating it. Unfortunately the citation is now long lost. A
current, electronic source for the proof of chapter 1 is [146] as cited earlier in this footnote.
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triangle equal the corresponding three angles of the large, which in turn
means that the small and large triangles are similar to one another; that
is, the small triangle is merely a scaled, rotated, possibly reflected version
of the large. The medium triangle shares an angle tb with the large which
likewise means that the medium and large triangles are similar.

Insofar as triangles are similar (§ 2.9.5), corresponding ratios of their
sides must be equal:

a

c
=
s

a
;

b

c
=
t

b
.

Rearranging factors,
a2

c
= s;

b2

c
= t.

The sum of the last line’s two equations is that

a2 + b2

c
= s+ t;

or rather, because s+ t = c, that

a2 + b2

c
= c,

which, when multiplied by c, yields the Pythagorean theorem (1.1),

a2 + b2 = c2.

This paragraph’s proof has found no new conclusion but one is glad to
discover that the Pythagorean theorem seems to remain true no matter how
one reaches it.42

The Pythagorean theorem is readily extended into three dimensions as

a2 + b2 + h2 = r2, (2.48)

where h is an altitude perpendicular to both a and b and thus also to c; and
where r is the corresponding three-dimensional diagonal—the diagonal of
the right triangle whose legs are c and h. Inasmuch as (1.1) applies to any
right triangle, it follows that c2 + h2 = r2, which equation expands directly
to yield (2.48).

42The source of this proof is an otherwise forgotten book that stood on a shelf in the
writer’s high-school library in 1983. The writer still remembers the proof but has long
since lost the citation.
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Figure 2.4: Proportionality of similar triangles (or the AA criterion).
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2.9.5 Congruence and Euclid’s similar proportionality

The careful reader might have noticed the presence of an unproved assertion
in the last subsection. The assertion was this: that, if each of a triangle’s
angles equals the corresponding angle of another triangle, then the one tri-
angle is a scaled, rotated, possibly reflected version of the other; or, stated
another way, that, if the respective angles are equal, then the respective
sides though maybe not equal are at least proportionate.

Does such an assertion not require proof?

Whether such an assertion requires proof depends on the vividness of
one’s geometrical intuition and/or on one’s attitude toward the kind of as-
sertion the assertion is. If one’s attitude is an applied attitude and if intu-
ition finds the assertion obvious enough, then the assertion may not require
proof.

Even given an applied attitude, though, it’s a borderline case, isn’t it?
Fortunately, the ancient geometer Euclid has supplied us a proof in book VI
of his Elements [42]. Though we will not fully detail Euclid’s proof we can
digest it as follows.

Fig. 2.4 arranges two triangles pqr and stu whose respective angles are
equal. Extending the indicated sides and exploiting the equal angles, the
figure extrudes a parallelogram from the two triangles. Being opposite sides
of a parallelogram,

q1 = q; u1 = u. (2.49)
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Because43 q runs parallel to q1 + t,

r

u1
=
p

s
.

Applying (2.49),
r

u
=
p

s
.

Rearranging factors,
r

p
=
u

s
. (2.50)

By the same kind of argument,

t

s
=
q

p
,

or, reversed and inverted,
p

q
=
s

t
. (2.51)

Multiplying (2.50) by (2.51),
r

q
=
u

t
. (2.52)

Together, (2.50), (2.51) and (2.52) complete Euclid’s proof. Proceeding
nevertheless if you wish, one may further rearrange the three equations
respectively to read,

r

u
=
p

s
,

p

s
=
q

t
,

q

t
=
r

u
;

or, in other words,
p

s
=
q

t
=
r

u
, (2.53)

which, using this book’s modern applied notation (which Euclid lacked)
condenses Euclid’s elegant finding into a single line.

The finding is indeed elegant. However, as earlier asked, to an applica-
tionist, is the finding’s proof necessary? Could one not instead just look at

43The pure mathematician who loves Euclid can abhor such shortcuts! “Because”?!
Where is the proof that the lines are parallel, the purist wants to know? Where is the
proof that opposite sides of a parallelogram are equal in length? Notwithstanding, busily
rushing ahead, we applicationists fail to notice the purist’s consternation.
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Fig. 2.4 and see that the triangles are proportionate?44 (By see, we do not
precisely mean, “see with the eyes.” The eyes do help but what we here
mean is to perceive mentally as in chapter 1.)

After all, if these triangles were not proportionate, then how else should
they be?

Until Euclid’s proof had been given, would any mathematician (whether
applied or professional) who had sketched a triangle on a sheet of paper
really have conjectured a different result? Was the investigation’s outcome
ever in doubt? To put it another way: suppose that the investigation had
found that the triangles were disproportionate; would its finding have been
believed? Or is the proof merely a salutary logical exercise, a noble sport
whose object is to hunt down and annihilate every premise one can possibly
do without?

Effort and mental energy are not unlimited resources. Time spent in
speculative foundational investigations may be regretted, if that time is as a
consequence later unavailable to devote to the acquisition of more advanced,
more practical mathematical techniques. Mathematics is after all far too
vast for a single mathematician to master the whole of it during a single
lifetime. One must prioritize.

The question is left for the reader to contemplate.

Meanwhile, a pair of definitions: as § 2.9.4 has already suggested, two
triangles are similar if their respective angles are equal, as, for example, in
Fig. 2.4; and two triangles are congruent (this definition is new) if they are
similar and are equal in size. Note that every triangle is congruent to its
own reflection (as in a mirror). Regarding similarity, the three triangles of
Fig. 2.3 are mutually similar but not congruent.

Two triangles are congruent to one another if they meet any of the
following criteria:

• SSS (side-side-side);

• SAS (side-angle-side);

• ASA (angle-side-angle);

44The modern professional mathematician might answer, “Sure, if you are an engineer
or the like, then go ahead. However, if you wish to be a proper analyst, then no. We have
a theory of metric spaces. We have theories of other things, too. You needn’t just skip all
that.”

This book, a book of applied mathematics, will not go the route of metric spaces.
However, [116] (which though not open source has long been available in an inexpensive
paperback edition) offers the interested reader a comparatively accessible account of such.
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• AAS (angle-angle-side).

The SSS criterion requires that each of the triangles have three sides as
long as the other triangle’s (for example, a triangle whose sides are 5, 6
and 8 cm long and a triangle whose sides are 6, 5 and 8 cm long together
satisfy the criterion). The SAS criterion requires that each of the triangles
have two sides as long as the other triangle’s and, where a triangle’s two
sides meet, one equal angle (for example, two triangles, each of whose sides
of 6 and 8 cm meet to form a two-hour or 30◦ angle, together satisfy the
criterion). The ASA criterion requires that each of the triangles have two
equal angles joined by one equal side. The AAS criterion requires that each
of the triangles have two equal angles plus one equal side, this side however
being another than the side that joins the two angles.

As Euclid has proved earlier in the subsection, two triangles are similar
(though not necessarily congruent) if they meet this criterion:

• AA (angle-angle).

Why is the criterion not AAA? Answer: because AA suffices, for, according
to (2.46), AA implies AAA.

The criterion

• SSA (side-side-angle),

depicted in Fig. 2.4, is tricky: it does not quite establish congruence in and
of itself, but if three triangles mutually meet the SSA criterion then at least
two of them are congruent.

Besides SSA, Fig. 2.4 also illustrates the AAS criterion. Illustration of
criteria besides SSA and AAS is left as an exercise.

See also § 3.7.

2.10 Functions

Briefly, a function is a mapping from one number (or vector of several num-
bers, §§ 11.1 and 8.16) to another. This book is not the place for a gentle
introduction to the concept of the function; but as an example, f(x) ≡ x2−1
is a function which maps 1 to 0 and −3 to 8, among others.

When discussing functions, one often speaks of domains and ranges. The
domain of a function is the set of numbers one can put into it. The range
of a function is the corresponding set of numbers one can get out of it. In
the example, if the domain is restricted to real x such that |x| ≤ 3—that is,
such that −3 ≤ x ≤ 3—then the corresponding range is −1 ≤ f(x) ≤ 8.
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Figure 2.5: The SSA and AAS criteria.
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If y = f(x), then the notation f−1(·) indicates the inverse of the function
f(·) such that

f−1[f(x)] = x,

f [f−1(y)] = y,
(2.54)

thus swapping the function’s range with its domain. In the example,
f(−3) = 8, so f−1(8) = −3. Unfortunately, f−1(8) = 3 as well, making
the example’s function f(x) strictly noninvertible over its given domain;
but, fortunately, various attendant considerations (whether these be theo-
retical considerations, as in § 8.4, or merely practical considerations) tend
in concrete circumstances to distinguish between candidates like the exam-
ple’s −3 and 3, rendering many such functions as f(x) effectively invertible
in context. Therefore, the applied mathematician may not always have to
worry too much about strict invertibility.

Inconsistently, inversion’s notation f−1(·) clashes with the similar-look-
ing but different-meaning notation f2(·) ≡ [f(·)]2, whereas f−1(·) 6= [f(·)]−1.
Both notations are conventional and both are used in this book.

Other terms that arise when discussing functions are root (or zero), sin-
gularity and pole. A root (or zero) of a function is a domain point at which
the function evaluates to zero (the example has roots at x = ±1). A singu-
larity of a function is a domain point at which the function’s output diverges;
that is, where the function’s output goes infinite.45 A pole is a singularity
that behaves locally like 1/x (rather than, for example, like 1/

√
x). A singu-

larity that behaves as 1/xN is a multiple pole, which (§ 9.7.2) can be thought

45Here is one example of the book’s deliberate lack of formal mathematical rigor. A
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of as N poles. The example’s function f(x) has no singularities for finite x;
however, the function h(x) ≡ 1/(x2 − 1) has poles at x = ±1.

(Besides the root, the singularity and the pole, there is also the trouble-
some branch point, an infamous example of which is z = 0 in the function
g[z] ≡ √z. Branch points are important, but the book must lay a more
extensive foundation before introducing them properly in § 8.5.46)

2.11 Complex numbers (introduction)

Section 2.5.2 has introduced square roots. What it has not done is to tell
us how to regard a quantity like

√
−1. Since there exists no real number i

such that

i2 = −1 (2.55)

and since the quantity i thus defined is found to be critically important
across broad domains of higher mathematics, we accept (2.55) as the defi-
nition of a fundamentally new kind of quantity, the imaginary number.47

more precise formalism to say that “the function’s output goes infinite” might be that

lim
x→xo

|f(x)| =∞,

and yet preciser formalisms than this are conceivable, and occasionally even are useful.
Be that as it may, the applied mathematician tends to avoid such formalisms where there
seems no immediate need for them.

46There is further the essential singularity, an example of which is z = 0 in p(z) ≡
exp(1/z), but typically the best way to handle so unreasonable a singularity is to change a
variable, as w ← 1/z, or otherwise to frame the problem such that one need not approach
the singularity. Except tangentially much later when it treats asymptotic series, this book
will have little to say of the essential singularity.

47The English word imaginary is evocative, but perhaps not of quite the right concept
in this usage. Imaginary numbers are not to mathematics as, say, imaginary elfs are to the
physical world. In the physical world, imaginary elfs are (presumably) not substantial ob-
jects. However, in the mathematical realm, imaginary numbers are substantial. The word
imaginary in the mathematical sense is thus more of a technical term than a descriptive
adjective.

The number i is just a concept, of course, but then so is the number 1 (though you and
I have often met one of something—one apple, one chair, one summer afternoon, etc.—
neither of us has ever met just 1). In Platonic [44, chapter 2] or Fregean [51] terms, i
is literally no less valid a form than 1 is. The reason imaginary numbers have been
called “imaginary” probably has to do with the fact that they emerge from mathematical
operations only, never directly from counting things. Notice, however, that the number
1/2 never emerges directly from counting things, either. If for some reason the iyear
were offered as a unit of time, then the period separating your fourteenth and twenty-first
birthdays could have been measured as −i7 iyears. Madness? No, let us not call it that;
let us call it a useful formalism, rather.
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Figure 2.6: The complex (or Argand) plane, and a complex number z = 2+i1
therein.
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Imaginary numbers are given their own number line, plotted at right
angles to the familiar real number line as in Fig. 2.6. The sum of a real
number x and an imaginary number iy is the complex number

z = x+ iy.

The conjugate z∗ of this complex number is defined to be48

z∗ = x− iy.

The magnitude (or modulus, or absolute value) |z| of the complex number is
defined to be the length ρ in Fig. 2.6, which per the Pythagorean theorem
(§ 2.9.4) is such that

|z|2 = x2 + y2. (2.56)

The unpersuaded reader is asked to suspend judgment a while. He will soon see the
use.

48For some inscrutable reason, in the author’s country at least, professional mathe-
maticians seem universally to write z instead of z∗, whereas rising engineers take the
mathematicians’ courses at school and then, having passed those courses, promptly start
writing z∗ for the rest of their lives. The writer has his preference between the two nota-
tions and this book reflects it, but the curiously absolute character of the notational split
is interesting as a social phenomenon.
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The phase arg z of the complex number is defined to be the angle φ in the
figure, which in terms of the trigonometric functions of § 3.149 is such that

tan(arg z) =
y

x
. (2.57)

Specifically to extract the real and imaginary parts of a complex number,
the notations

<(z) = x,

=(z) = y,
(2.58)

are conventionally recognized (although often the symbols <[·] and =[·] are
written Re[·] and Im[·], particularly when printed by hand). For example, if
z = 2 + i1, then <(z) = 2, =(z) = 1, |z| =

√
5, and arg z = arctan(1/2).

2.11.1 Multiplication and division of complex numbers in
rectangular form

Several elementary properties of complex numbers are readily seen if the
fact that i2 = −1 is kept in mind, including that

z1z2 = (x1x2 − y1y2) + i(y1x2 + x1y2), (2.59)

z1

z2
=

x1 + iy1

x2 + iy2
=

(
x2 − iy2

x2 − iy2

)
x1 + iy1

x2 + iy2

=
(x1x2 + y1y2) + i(y1x2 − x1y2)

x2
2 + y2

2

. (2.60)

It is a curious fact that
1

i
= −i. (2.61)

It is a useful fact that
z∗z = x2 + y2 = |z|2 (2.62)

(the curious fact, eqn. 2.61, is useful, too). Sometimes convenient are the
forms

<(z) =
z + z∗

2
,

=(z) =
z − z∗
i2

,

(2.63)

49This is a forward reference, returned by footnote 5 of chapter 3. If the equation does
not make sense to you yet for this reason, skip it for now. The important point is that
arg z is the angle φ in the figure.
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trivially proved. Surprising and significant is that, though
√
−1 = i has

revealed a previously unknown class of quantity in i, nevertheless,
√
i =

(1 + i)/
√

2 reveals no further new class of quantity, but only a quantity
expressible50 in terms of 1 and i, as (2.59) verifies (and upon which § 3.11
will shed a clearer light).

2.11.2 Complex conjugation

An important property of complex numbers descends subtly from the fact
that

i2 = −1 = (−i)2.

If one defined some number j ≡ −i, asserting that j not i were the true
imaginary unit,51 then one would find that

(−j)2 = −1 = j2,

and thus that all the basic properties of complex numbers in the j system
held just as well as they did in the i system. The units i and j would differ
indeed, but would perfectly mirror one another in every respect.

That is the basic idea. To establish it symbolically needs a page or so of
slightly abstract algebra as follows, the goal of which will be to show that
[f(z)]∗ = f(z∗) for some unspecified function f(z) with specified properties.
To begin with, if

z = x+ iy,

then
z∗ = x− iy

by definition. Proposing that (zk−1)∗ = (z∗)k−1 (which may or may not be
true but for the moment we assume it), we can write,

zk−1 = sk−1 + itk−1,

(z∗)k−1 = sk−1 − itk−1,

where sk−1 and tk−1 are symbols introduced respectively to represent the real
and imaginary parts of zk−1. Multiplying the former equation by z = x+ iy
and the latter by z∗ = x− iy, we have that

zk = (xsk−1 − ytk−1) + i(ysk−1 + xtk−1),

(z∗)k = (xsk−1 − ytk−1)− i(ysk−1 + xtk−1).

50[46, § I:22-5]
51[36][46, § I:22-5]
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With the definitions that sk ≡ xsk−1 − ytk−1 and tk ≡ ysk−1 + xtk−1, this
is written more succinctly,

zk = sk + itk,

(z∗)k = sk − itk.

In other words, if (zk−1)∗ = (z∗)k−1, then it necessarily follows that (zk)∗ =
(z∗)k. Solving the definitions of sk and tk for sk−1 and tk−1 yields the reverse
definitions that sk−1 = (xsk +ytk)/(x

2 +y2) and tk−1 = (−ysk +xtk)/(x
2 +

y2). Therefore, except when z = x+iy happens to be null or infinite, the im-
plication is reversible by reverse reasoning, so by mathematical induction52

we have that

(zk)∗ = (z∗)k (2.64)

for all integral k. We have also from (2.59) that

(z1z2)∗ = z∗1z
∗
2 (2.65)

for any complex z1 and z2.

Consequences of (2.64) and (2.65) include that if

f(z) ≡
∞∑

k=−∞
(ak + ibk)(z − zo)k, (2.66)

f∗(z) ≡
∞∑

k=−∞
(ak − ibk)(z − z∗o)k, (2.67)

where ak and bk are real and imaginary parts of the coefficients peculiar to
the function f(·), then

[f(z)]∗ = f∗(z∗). (2.68)

In the common case in which bk = 0 for all k and in which zo = xo is a
real number, f(·) and f∗(·) are the same function, so (2.68) reduces to the
desired form

[f(z)]∗ = f(z∗), (2.69)

which says that the effect of conjugating the function’s input is merely to
conjugate its output.

52Mathematical induction is an elegant old technique for the construction of mathemat-
ical proofs. Section 8.1 elaborates on the technique and offers a more extensive example.
Beyond the present book, a very good introduction to mathematical induction is found
in [57].
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Equation (2.69) expresses a significant, general rule of complex numbers
and complex variables which is better explained in words than in mathemat-
ical symbols. The rule is this: for most equations and systems of equations
used to model physical systems, one can produce an equally valid alter-
nate model simply by simultaneously conjugating all the complex quantities
present.53

2.11.3 Power series and analytic functions (preview)

Equation (2.66) expresses a general power series54 in z − zo. Such power
series have broad application.55 It happens in practice that most functions
of interest in modeling physical phenomena can conveniently be constructed
(at least over a local domain) as power series with suitable choices of ak, bk
and zo.

56

The property (2.68) applies to all such functions, with (2.69) also apply-
ing to those for which bk = 0 and zo = xo. The property the two equations
represent is called the conjugation property. Basically, it says that if one
replaces all the i in some mathematical model with −i, then the resulting
conjugate model is equally as valid as the original.57

Such functions, whether bk = 0 and zo = xo or not, are analytic functions
(§ 8.4). In the formal mathematical definition, a function is analytic which is
infinitely differentiable (chapter 4) in the immediate domain neighborhood of
interest. However, for applications a fair working definition of the analytic
function might be “a function expressible as a power series.” Chapter 8
elaborates. All power series are infinitely differentiable except at their poles.

There nevertheless exist one common group of functions which cannot be

53[57][120]
54[65, § 10.8]
55That is a pretty impressive-sounding statement: “Such power series have broad appli-

cation.” However, molecules, air and words also have “broad application”; merely stating
the fact does not tell us much. In fact the general power series is a sort of one-size-fits-all
mathematical latex glove, which can be stretched to fit around almost any function of
interest. Admittedly nevertheless, what grips one’s attention here is not so much in the
general form (2.66) of the series as it is in the specific choice of ak and bk, which this
section does not discuss.

Observe that the Taylor series (which this section also does not discuss: see § 8.3) is a
power series with ak = bk = 0 for k < 0.

56But see also the Fourier series of chapter 17 which, by a different approach, can
construct many functions over nonlocal domains.

57To illustrate, from the fact that (1 + i2)(2 + i3) + (1− i) = −3 + i6, the conjugation
property infers immediately that (1 − i2)(2 − i3) + (1 + i) = −3 − i6. Observe however
that no such property holds for the real parts: (−1 + i2)(−2 + i3) + (−1− i) 6= 3 + i6.
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constructed as power series. These all have to do with the parts of complex
numbers and have been introduced in this very section: the magnitude |·|;
the phase arg(·); the conjugate (·)∗; and the real and imaginary parts <(·)
and =(·). These functions are not analytic and do not in general obey the
conjugation property. Also not analytic are the Heaviside unit step u(t) and
the Dirac delta δ(t) (§ 7.7), used to model discontinuities explicitly.

We shall have more to say about analytic functions in chapter 8. We
shall have more to say about complex numbers in §§ 3.11, 4.3.3, and 4.4,
and much more yet in chapter 5.



Chapter 3

Trigonometry

Trigonometry is that branch of mathematics which relates angles to lengths.
This chapter introduces the functions of trigonometry and derives several of
these functions’ properties.

3.1 Definitions

Consider the circle-inscribed right triangle of Fig. 3.1.
In considering the triangle and its circle in the figure, we shall find some

terminology useful. The angle φ in the figure is measured in radians, where
a radian is that angle which, when centered in a unit circle, describes or
intercepts an arc of unit length as measured—not in a straight line—but
along the curve of the circle’s perimeter. A unit circle is a circle whose
radius is ρ = 1. Similarly, a unit length is a length of 1 (not one centimeter
or one mile, or anything like that, but just an abstract 1). In the more
general circle of radius ρ (where the radius is the distance from the circle’s
center to its perimeter) as in the figure, an angle φ describes or intercepts
an arc of length ρφ along the curve.

An angle in radians is a dimensionless number, so one need not write,
“φ = 2π/4 radians”; but it suffices to write, “φ = 2π/4.” In mathematical
theory, we express angles in radians.

The angle of full revolution is given the symbol 2π—which thus is the
unit circle’s circumference.1 A quarter revolution, 2π/4, is then the right
angle or square angle.

The trigonometric functions sinφ and cosφ, the sine and cosine of φ,
relate the angle φ to the lengths in the figure. The tangent function is then

1Section 8.11 computes the numerical value of 2π.

65
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Figure 3.1: The sine and the cosine (shown on a circle-inscribed right trian-
gle, with the circle centered at the triangle’s point).
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defined to be

tanφ ≡ sinφ

cosφ
, (3.1)

which is the vertical rise per unit horizontal run, this ratio being the slope,
of the triangle’s diagonal.2 Inverses of the three trigonometric functions can
also be defined:

arcsin (sinφ) = φ;

arccos (cosφ) = φ;

arctan (tanφ) = φ.

When the last of these is written,

arctan
y

x
,

it normally implied that x and y are to be interpreted as rectangular coor-
dinates3 and that the arctan function is to return φ in the correct quad-

2Often seen in print is the additional notation secφ ≡ 1/ cosφ, cscφ ≡ 1/ sinφ and
cotφ ≡ 1/ tanφ; respectively the “secant,” “cosecant” and “cotangent.” This book does
not use that notation.

3Rectangular coordinates are pairs of numbers (x, y) which uniquely specify points in
a plane. Conventionally, the x coordinate indicates distance eastward as it were; the y
coordinate, northward. For instance, the coordinates (3,−4) mean the point three units
eastward and four units southward (that is, −4 units northward) of the origin (0, 0). When
needed, a third rectangular coordinate can moreover be added—(x, y, z)—the z indicating
distance upward, above the plane of the x and y. (Consistency with the book’s general
style should have suggested the spelling “coördinates” except that no mathematics book
this writer knows spells the word that way, nor even as “co-ordinates” which is how the
word after all is pronounced.)
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Figure 3.2: The sine function.
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rant −π < φ ≤ π (for example, arctan[1/(−1)] = [+3/8][2π], whereas
arctan[(−1)/1] = [−1/8][2π]). This is similarly the usual interpretation
when an equation like

tanφ =
y

x

is written.

By the Pythagorean theorem (§ 2.9.4 and the introduction to chapter 1),
it is seen that4

cos2 φ+ sin2 φ = 1 (3.2)

for any φ.

Fig. 3.2 plots the sine function. The shape in the plot is called a sinu-
soid.5

3.2 Simple properties

Inspecting Fig. 3.1 and observing (3.1) and (3.2), one discovers the trigono-
metric properties of Table 3.1. (Observe in the table as usually elsewhere in
the book that n ∈ Z, § 2.3.)

4The notation cos2 φ means (cosφ)2.
5This section completes the forward reference of § 2.11. See chapter 2’s footnote 49.
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Table 3.1: Simple properties of the trigonometric functions.

sin(−φ) = − sinφ cos(−φ) = + cosφ
sin(2π/4− φ) = + cosφ cos(2π/4− φ) = + sinφ
sin(2π/2− φ) = + sinφ cos(2π/2− φ) = − cosφ
sin(φ± 2π/4) = ± cosφ cos(φ± 2π/4) = ∓ sinφ
sin(φ± 2π/2) = − sinφ cos(φ± 2π/2) = − cosφ
sin(φ+ n2π) = sinφ cos(φ+ n2π) = cosφ

tan(−φ) = − tanφ
tan(2π/4− φ) = +1/ tanφ
tan(2π/2− φ) = − tanφ
tan(φ± 2π/4) = −1/ tanφ
tan(φ± 2π/2) = + tanφ
tan(φ+ n2π) = tanφ

sinφ

cosφ
= tanφ

cos2 φ+ sin2 φ = 1

1 + tan2 φ =
1

cos2 φ

1 +
1

tan2 φ
=

1

sin2 φ
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Figure 3.3: A two-dimensional vector u = x̂x + ŷy, shown with its rectan-
gular components.
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3.3 Scalars, vectors, and vector notation

In applied mathematics, a geometrical vector—whose name the narrative
will hereinafter usually abbreviate as vector—is an amplitude of some kind
coupled with a direction.6,7 For example, “55 miles per hour northwestward”
is a vector, as is the entity u depicted in Fig. 3.3. The entity v depicted in
Fig. 3.4 is also a vector, in this case a three-dimensional one.

Many readers will already find the basic vector concept familiar, but for

6The same word vector also is used to indicate an ordered set of N scalars (§ 8.16) or
an N ×1 matrix (chapter 11), but those are not the uses of the word meant here. See also
the introduction to chapter 15.

7The word “amplitude” is sometimes used interchangeably with “magnitude,” even
by this writer. However, used more precisely, an amplitude unlike a magnitude can be
negative or positive, as for example the A in f(t) ≡ A cosωt. Indeed, this A makes a
typical example of the usage, for the word “amplitude” is especially applied to measure
the extent to which a wave deviates from its neutral position.

In practice, the last usage typically connotes that the quantity whose amplitude the
amplitude is is a linear quantity like displacement, force, electric current or electric tension
(voltage). A squared quantity—that is, a quantity developed as the product of two other,
linear quantities—is not usually said to possess an amplitude. Especially, energy and
power are not usually said to possess amplitudes, whereas displacement and force (whose
product is an energy) are each amplitudinous; and, likewise, current and tension (whose
product is a power) are each amplitudinous.
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Figure 3.4: A three-dimensional vector v = x̂x+ ŷy + ẑz.
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those who do not, a brief review: vectors such as the

u = x̂x+ ŷy,

v = x̂x+ ŷy + ẑz,

of the figures are composed of multiples of the unit basis vectors x̂, ŷ and ẑ,
which are themselves vectors of unit length pointing in the cardinal direc-
tions their respective symbols suggest.8 Any vector a can be factored into
an amplitude a and a unit vector â, as

a = âa = â |a| ,

where the â represents direction only and has unit magnitude by definition,
and where the a or |a| represents amplitude only and carries the physical
units if any.9 For example, a = 55 miles per hour, â = northwestward. The

8Printing by hand, one customarily writes a general vector like u as “ ~u ” or just “u ”,
and a unit vector like x̂ as “ x̂ ”.

9The word “unit” here is unfortunately overloaded. As an adjective in mathematics,
or in its nounal form “unity,” it refers to the number one (1)—not one mile per hour,
one kilogram, one Japanese yen or anything like that; just an abstract 1. The word
“unit” itself as a noun however usually signifies a physical or financial reference quantity
of measure, like a mile per hour, a kilogram or even a Japanese yen. There is no inherent
logical unity to 1 mile per hour (otherwise known as 0.447 meters per second, among other
names). By contrast, a “unitless 1”—a 1 with no physical unit attached, also known as a
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unit vector â itself can be expressed in terms of the unit basis vectors; for
example, if x̂ points east and ŷ points north, then â = −x̂(1/

√
2)+ ŷ(1/

√
2)

means “northwestward,” where per the Pythagorean theorem (−1/
√

2)2 +
(1/
√

2)2 = 12.
A single number which is not a vector or a matrix (chapter 11) is called

a scalar. In the example, a = 55 miles per hour is a scalar. Though the
scalar a in the example happens to be real, scalars can be complex, too—
which might surprise one, since scalars by definition lack direction and the
Argand phase φ of Fig. 2.6 so strongly resembles a direction. However,
phase is not an actual direction in the vector sense (the real number line
in the Argand plane cannot be said to run west-to-east, or anything like
that). The x, y and z of Fig. 3.4 are each (possibly complex) scalars; v =
x̂x+ ŷy + ẑz is a vector. If x, y and z are complex, then10

|v|2 = |x|2 + |y|2 + |z|2 = x∗x+ y∗y + z∗z

= [<(x)]2 + [=(x)]2 + [<(y)]2 + [=(y)]2

+ [<(z)]2 + [=(z)]2 . (3.3)

A point is often identified by the vector expressing its distance from and
direction relative to the origin (0, 0) of a coordinate system. That is, the
point (x, y) can be, and frequently is, identified with the vector x̂x + ŷy.
[Likewise, the origin (0, 0) itself can be identified with the null vector x̂0 +
ŷ0 = 0.] However, not every vector need be associated with an origin, for
vectors in the more general sense represent relative distances and directions,
whether the thing to which they are relative happens to be an origin or
something else.

Notice incidentally our mathematical use of the word “distance.” A
mathematical distance may or may not represent a distance in the literal,

“dimensionless 1”—does represent a logical unity.
Consider the ratio r = h1/ho of your height h1 to my height ho. Maybe you are taller

than I am and so r = 1.05 (not 1.05 cm or 1.05 feet, just 1.05). Now consider the ratio
h1/h1 of your height to your own height. That ratio is of course unity, exactly 1.

There is nothing ephemeral in the concept of mathematical unity, nor in the concept
of unitless quantities in general. The concept is quite straightforward and is entirely
practical. That r > 1 means neither more nor less than that you are taller than I am.
In applications, one often puts physical quantities in ratio precisely to strip the physical
units from them, comparing the ratio to unity without regard to physical units.

Incidentally, a more general term to comprise physical units, financial units and other
such quantities is units of measure.

10Some books print |v| as ‖v‖ or even ‖v‖2 to emphasize that it represents the real,
scalar magnitude of a complex vector. The reason the last notation subscripts a numeral 2
is obscure, having to do with the professional mathematician’s generalized definition of a
thing he calls the “norm.” This book just renders it |v|.
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physical sense, but it will at least represent a quantity one might propor-
tionably diagram as though it were a distance. If such a quantity also has
direction, then it can be a vector. This is why “55 miles per hour northwest-
ward” is a vector despite that the mile per hour is a unit of speed rather
than of distance. This is also why “55 kilograms,” which lacks direction, is
not a vector.

Observe the relative orientation of the axes of Fig. 3.4. The axes are ori-
ented such that if you point your flat right hand in the x direction, bend your
fingers in the y direction, and extend your thumb, then the thumb points
in the z direction. This is orientation by the right-hand rule. A left-handed
orientation is equally possible, of course, but since neither orientation owns
a natural advantage over the other, mathematicians arbitrarily but conven-
tionally accept the right-handed one as standard.11

Sections 3.4 and 3.9 and chapters 15 and 16 will speak further of the
geometrical vector.

3.4 Rotation

A fundamental problem in trigonometry arises when a vector

u = x̂x+ ŷy (3.4)

must be expressed in terms of alternate unit vectors x̂′ and ŷ′, where x̂′

and ŷ′ stand at right angles to one another and lie in the plane12 of x̂
and ŷ, but are rotated from the latter pair by an angle φ as depicted in
Fig. 3.5.13 In terms of the trigonometric functions of § 3.1, evidently,

11The writer does not know the etymology for certain, but verbal lore in American
engineering has it that the name “right-handed” comes from experience with a standard
right-handed wood screw or machine screw. If you hold the screwdriver in your right hand
and turn the screw in the natural manner clockwise, turning the screw slot from the x
orientation toward the y, then the screw advances away from you in the z direction into
the bore. If somehow you came across a left-handed screw, you’d probably find it easier
to drive that screw with the screwdriver in your left hand.

12A plane, as the reader on this tier undoubtedly knows, is a flat (but not necessarily
level) surface, infinite in extent unless otherwise specified. Space is three-dimensional. A
plane is two-dimensional. A line is one-dimensional. A point is zero-dimensional. The
plane belongs to this geometrical hierarchy.

13The “ ′ ” mark is pronounced “prime” or “primed” (for no especially good reason of
which the author is aware, but anyway, that’s how it’s pronounced). Mathematical writing
employs the mark for a variety of purposes. Here, the mark merely distinguishes the new
unit vector x̂′ from the old x̂.
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Figure 3.5: Vector basis rotation.
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x̂

ŷ

x̂′
ŷ′

u

x̂′ = +x̂ cosφ+ ŷ sinφ,

ŷ′ = −x̂ sinφ+ ŷ cosφ;
(3.5)

and by appeal to symmetry it stands to reason that

x̂ = +x̂′ cosφ− ŷ′ sinφ,

ŷ = +x̂′ sinφ+ ŷ′ cosφ.
(3.6)

Substituting (3.6) into (3.4) yields that

u = x̂′(x cosφ+ y sinφ) + ŷ′(−x sinφ+ y cosφ), (3.7)

which was to be derived.
Equation (3.7) finds general application where rotations in rectangular

coordinates are involved. If the question is asked, “what happens if I rotate
not the unit basis vectors but rather the vector u instead?” the answer is
that it amounts to the same thing, except that the sense of the rotation is
reversed:

u′ = x̂(x cosφ− y sinφ) + ŷ(x sinφ+ y cosφ). (3.8)

Whether it is the basis or the vector which rotates thus depends on your
point of view.14

14This is only true, of course, with respect to the vectors themselves. When one actually
rotates a physical body, the body experiences forces during rotation which might or might
not change the body internally in some relevant way.
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Much later in the book, § 15.1 will extend rotation in two dimensions to
reorientation in three dimensions.

3.5 Trigonometric functions of sums and differ-
ences of angles

With the results of § 3.4 in hand, we now stand in a position to consider
trigonometric functions of sums and differences of angles. Let

â ≡ x̂ cosα+ ŷ sinα,

b̂ ≡ x̂ cosβ + ŷ sinβ,

be vectors of unit length in the xy plane, respectively at angles α and β
from the x axis. If we wanted b̂ to cöıncide with â, we would have to rotate
it by φ = α − β. According to (3.8) and the definition of b̂, if we did this
we would obtain that

b̂′ = x̂[cosβ cos(α− β)− sinβ sin(α− β)]
+ ŷ[cosβ sin(α− β) + sinβ cos(α− β)].

Since we have deliberately chosen the angle of rotation such that b̂′ = â, we
can separately equate the x̂ and ŷ terms in the expressions for â and b̂′ to
obtain the pair of equations

cosα = cosβ cos(α− β)− sinβ sin(α− β),

sinα = cosβ sin(α− β) + sinβ cos(α− β).

Solving the last pair simultaneously15 for sin(α − β) and cos(α − β) and
observing that sin2(·) + cos2(·) = 1 yields that

sin(α− β) = sinα cosβ − cosα sinβ,

cos(α− β) = cosα cosβ + sinα sinβ.
(3.9)

15The easy way to do this is

• to subtract sinβ times the first equation from cosβ times the second and then to
solve the result for sin(α− β);

• to add cosβ times the first equation to sinβ times the second and then to solve the
result for cos(α− β).

This shortcut technique for solving a pair of equations simultaneously for a pair of variables
is well worth mastering. In this book alone, it proves useful many times.
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With the change of variable β ← −β and the observations from Table 3.1
that sin(−φ) = − sinφ and cos(−φ) = + cos(φ), eqns. (3.9) become

sin(α+ β) = sinα cosβ + cosα sinβ,

cos(α+ β) = cosα cosβ − sinα sinβ.
(3.10)

Equations (3.9) and (3.10) are the basic formulas for trigonometric functions
of sums and differences of angles.

3.5.1 Variations on the sums and differences

Several useful variations on (3.9) and (3.10) are achieved by combining the
equations in various straightforward ways.16 These include that

sinα sinβ =
cos(α− β)− cos(α+ β)

2
,

sinα cosβ =
sin(α− β) + sin(α+ β)

2
,

cosα cosβ =
cos(α− β) + cos(α+ β)

2
.

(3.11)

With the change of variables δ ← α − β and γ ← α + β, (3.9) and (3.10)
become

sin δ = sin

(
γ + δ

2

)
cos

(
γ − δ

2

)
− cos

(
γ + δ

2

)
sin

(
γ − δ

2

)
,

cos δ = cos

(
γ + δ

2

)
cos

(
γ − δ

2

)
+ sin

(
γ + δ

2

)
sin

(
γ − δ

2

)
,

sin γ = sin

(
γ + δ

2

)
cos

(
γ − δ

2

)
+ cos

(
γ + δ

2

)
sin

(
γ − δ

2

)
,

cos γ = cos

(
γ + δ

2

)
cos

(
γ − δ

2

)
− sin

(
γ + δ

2

)
sin

(
γ − δ

2

)
.

16Refer to footnote 15 above for the technique.



76 CHAPTER 3. TRIGONOMETRY

Combining these in various ways, we have that

sin γ + sin δ = 2 sin

(
γ + δ

2

)
cos

(
γ − δ

2

)
,

sin γ − sin δ = 2 cos

(
γ + δ

2

)
sin

(
γ − δ

2

)
,

cos δ + cos γ = 2 cos

(
γ + δ

2

)
cos

(
γ − δ

2

)
,

cos δ − cos γ = 2 sin

(
γ + δ

2

)
sin

(
γ − δ

2

)
.

(3.12)

3.5.2 Trigonometric functions of double and half angles

If α = β, then eqns. (3.10) become the double-angle formulas

sin 2α = 2 sinα cosα,

cos 2α = 2 cos2 α− 1 = cos2 α− sin2 α = 1− 2 sin2 α.
(3.13)

Solving (3.13) for sin2 α and cos2 α yields the half-angle formulas

sin2 α =
1− cos 2α

2
,

cos2 α =
1 + cos 2α

2
.

(3.14)

3.6 Trigonometric functions of the hour angles

In general, one uses the Taylor series of chapter 8 to calculate trigonometric
functions of specific angles. We’re not ready for that yet. However, for angles
which happen to be integral multiples of an hour—there being twenty-four
or 0x18 hours in a circle, just as there are twenty-four or 0x18 hours in
a day17—for such angles simpler expressions exist. Figure 3.6 shows the
angles. Since such angles arise very frequently in practice, it seems worth
our while to study them specially.

Table 3.2 tabulates the trigonometric functions of these hour angles. To
see how the values in the table are calculated, look at the square and the

17Hence an hour is 15◦, but you weren’t going to write your angles in such inelegant
conventional notation as “15◦,” were you? Well, if you were, you’re in good company.

The author is fully aware of the barrier the unfamiliar notation poses for most first-time
readers of the book. The barrier is erected neither lightly nor disrespectfully. Consider:
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Figure 3.6: The 0x18 hours in a circle.
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Table 3.2: Trigonometric functions of the hour angles.

ANGLE φ
[radians] [hours] sinφ tanφ cosφ

0 0 0 0 1

2π

0x18
1

√
3− 1

2
√

2

√
3− 1√
3 + 1

√
3 + 1

2
√

2

2π

0x10

3

2

√
2−
√

2

2

√
2−
√

2

2 +
√

2

√
2 +
√

2

2

2π

0xC
2

1

2

1√
3

√
3

2

2π

8
3

1√
2

1
1√
2

2π

6
4

√
3

2

√
3

1

2

(3)(2π)

0x10

9

2

√
2 +
√

2

2

√
2 +
√

2

2−
√

2

√
2−
√

2

2

(5)(2π)

0x18
5

√
3 + 1

2
√

2

√
3 + 1√
3− 1

√
3− 1

2
√

2

2π

4
6 1 ∞ 0



3.6. TRIGONOMETRICS OF THE HOUR ANGLES 79

Figure 3.7: A square and an equilateral triangle for calculating trigonometric
functions of the hour angles.

1

1

√
2

1 1

1/2 1/2

√
3
2

equilateral triangle18 of Fig. 3.7. Each of the square’s four angles naturally
measures six hours; and, since a triangle’s angles always total twelve hours
(§ 2.9.3), by symmetry each of the angles of the equilateral triangle in the
figure measures four. Also by symmetry, the perpendicular splits the trian-
gle’s top angle into equal halves of two hours each and its bottom leg into
equal segments of length 1/2 each; and the diagonal splits the square’s cor-
ner into equal halves of three hours each. The Pythagorean theorem (§ 2.9.4

• There are 0x18 hours in a circle.

• There are 360 degrees in a circle.

Both sentences say the same thing, don’t they? But even though the “0x” hex prefix is
a bit clumsy, the first sentence nevertheless says the thing rather better. The reader is
urged to invest the attention and effort to master the notation.

There is a psychological trap regarding the hour. The familiar, standard clock face
shows only twelve hours not twenty-four, so the angle between eleven o’clock and twelve
on the clock face is not an hour of arc! That angle is two hours of arc. This is so because
the clock face’s geometry is artificial. If you have ever been to the Old Royal Observatory
at Greenwich, England, you may have seen the big clock face there with all twenty-four
hours on it. It’d be a bit hard to read the time from such a crowded clock face were it not
so big, but anyway, the angle between hours on the Greenwich clock is indeed an honest
hour of arc. [18]

The hex and hour notations are recommended mostly only for theoretical math work. It
is not claimed that they offered much benefit in most technical work of the less theoretical
kinds. If you wrote an engineering memorandum describing a survey angle as 0x1.80 hours
instead of 22.5 degrees, for example, you’d probably not like the reception the memo got.
Nonetheless, the improved notation fits a book of this kind so well that the author hazards
it. It is hoped that, after trying the notation a while, the reader will approve the choice.

18An equilateral triangle is, as the name and the figure suggest, a triangle whose three
sides all have the same length.
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Figure 3.8: The laws of sines and cosines.

a

α

h

b c

γ β

y

x

and the introduction to chapter 1) then supplies the various other lengths
in the figure, after which we observe from Fig. 3.1 that

• the sine of a non-right angle in a right triangle is the opposite leg’s
length divided by the diagonal’s,

• the tangent is the opposite leg’s length divided by the adjacent leg’s,
and

• the cosine is the adjacent leg’s length divided by the diagonal’s.

With this observation and the lengths in the figure, one can calculate the
sine, tangent and cosine of angles of two, three and four hours.

The values for one and five hours are found by applying (3.9) and (3.10)
against the values for two and three hours just calculated. The values for
zero and six hours are, of course, seen by inspection.19

Though quarters of a right angle are half-integral multiples of an hour,
quarters of a right angle arise often enough in engineering practice that
the table mentions them, too. The values for the quarters are found by
applying (3.14) against the values for three and nine hours.

3.7 The laws of sines and cosines

Refer to the triangle of Fig. 3.8. By the definition of the sine function, one
can write that

c sinβ = h = b sin γ,

19The creative reader may notice that he can extend the table to any angle by repeated
application of the various sum, difference and half-angle formulas from the preceding
sections to the values already in the table. However, the Taylor series (§ 8.9) offers a
cleaner, quicker way to calculate trigonometrics of non-hour angles.
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or in other words that
sinβ

b
=

sin γ

c
.

But there is nothing special about β and γ; what is true for them must be
true for α, too.20 Hence,

sinα

a
=

sinβ

b
=

sin γ

c
. (3.15)

This equation is known as the law of sines.
On the other hand, if one expresses a and b as vectors emanating from

the point γ,21

a = x̂a,

b = x̂b cos γ + ŷb sin γ,

then

c2 = |b− a|2

= (b cos γ − a)2 + (b sin γ)2

= a2 + (b2)(cos2 γ + sin2 γ)− 2ab cos γ.

Since cos2(·) + sin2(·) = 1, this is that

c2 = a2 + b2 − 2ab cos γ, (3.16)

known as the law of cosines.

3.8 Summary of properties

Table 3.2 on page 78 has listed the values of trigonometric functions of
the hour angles. Table 3.1 on page 68 has summarized simple properties
of the trigonometric functions. Table 3.3 on page 82 summarizes further
properties, gathering them from §§ 3.4, 3.5 and 3.7.

20“But,” it is objected, “there is something special about α. The perpendicular h drops
from it.”

True. However, the h is just a utility variable to help us to manipulate the equation
into the desired form; we’re not interested in h itself. Nothing prevents us from dropping
additional perpendiculars hβ and hγ from the other two corners and using those as utility
variables, too, if we like. We can use any utility variables we want.

21Here is another example of the book’s judicious relaxation of formal rigor, or at any
rate of formal nomenclature. Of course there is no “point γ”; γ is an angle not a point.
However, the writer suspects in light of Fig. 3.8 that few readers will be confused as to
which point is meant. The skillful applied mathematician does not multiply labels without
need!
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Table 3.3: Further properties of the trigonometric functions.

u = x̂′(x cosφ+ y sinφ) + ŷ′(−x sinφ+ y cosφ)

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sinα sinβ =
cos(α− β)− cos(α+ β)

2

sinα cosβ =
sin(α− β) + sin(α+ β)

2

cosα cosβ =
cos(α− β) + cos(α+ β)

2

sin γ + sin δ = 2 sin

(
γ + δ

2

)
cos

(
γ − δ

2

)

sin γ − sin δ = 2 cos

(
γ + δ

2

)
sin

(
γ − δ

2

)

cos δ + cos γ = 2 cos

(
γ + δ

2

)
cos

(
γ − δ

2

)

cos δ − cos γ = 2 sin

(
γ + δ

2

)
sin

(
γ − δ

2

)

sin 2α = 2 sinα cosα

cos 2α = 2 cos2 α− 1 = cos2 α− sin2 α = 1− 2 sin2 α

sin2 α =
1− cos 2α

2

cos2 α =
1 + cos 2α

2
sin γ

c
=

sinα

a
=

sinβ

b
c2 = a2 + b2 − 2ab cos γ
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3.9 Cylindrical and spherical coordinates

Section 3.3 has introduced the concept of the vector

v = x̂x+ ŷy + ẑz.

The coefficients (x, y, z) on the equation’s right side are coordinates—specif-
ically, rectangular coordinates—which given a specific, orthonormal22 set of
unit basis vectors [x̂ ŷ ẑ] uniquely identify a point (see Fig. 3.4 on page 70;
and also, much later in the book, refer to § 15.3). Such rectangular co-
ordinates are simple and general, and are convenient for many purposes.
However, there are at least two broad classes of conceptually simple prob-
lems for which rectangular coordinates tend to be inconvenient: problems
in which an axis or a point dominates. Consider for example an electric
wire’s magnetic field, whose intensity varies with distance from the wire (an
axis); or the illumination a lamp sheds on a printed page of this book, which
depends on the book’s distance from the lamp (a point).

To attack a problem dominated by an axis, the cylindrical coordinates
(ρ;φ, z) can be used instead of the rectangular coordinates (x, y, z). To
attack a problem dominated by a point, the spherical coordinates (r; θ;φ)
can be used.23 Refer to Fig. 3.9. Such coordinates are related to one another
and to the rectangular coordinates by the formulas of Table 3.4.

Cylindrical and spherical coordinates can greatly simplify the analyses of
the kinds of problems they respectively fit, but they come at a price. There
are no constant unit basis vectors to match them. That is,

v = x̂x+ ŷy + ẑz 6= ρ̂ρ+ φ̂φ+ ẑz 6= r̂r + θ̂θ + φ̂φ.

It doesn’t work that way. Nevertheless, variable unit basis vectors are de-
fined:

ρ̂ ≡ +x̂ cosφ+ ŷ sinφ,

φ̂ ≡ −x̂ sinφ + ŷ cosφ,

r̂ ≡ +ẑ cos θ + ρ̂ sin θ,

θ̂ ≡ −ẑ sin θ + ρ̂ cos θ;

(3.17)

22Orthonormal in this context means “of unit length and at right angles to the other
vectors in the set.” [146, “Orthonormality,” 14:19, 7 May 2006]

23Notice that the φ is conventionally written second in cylindrical (ρ;φ, z) but third in
spherical (r; θ;φ) coordinates. This odd-seeming convention is to maintain proper right-
handed coordinate rotation. (The explanation will seem clearer once chapters 15 and 16
are read.)
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Figure 3.9: A point on a sphere, in spherical (r; θ;φ) and cylindrical (ρ;φ, z)
coordinates. (The axis labels bear circumflexes in this figure only to disam-
biguate the ẑ axis from the cylindrical coordinate z.)

b

r
θ

φ

ρ

z

ẑ

ŷ

x̂

Table 3.4: Relations among the rectangular, cylindrical and spherical coor-
dinates.

ρ2 = x2 + y2

r2 = ρ2 + z2 = x2 + y2 + z2

tan θ =
ρ

z

tanφ =
y

x
z = r cos θ

ρ = r sin θ

x = ρ cosφ = r sin θ cosφ

y = ρ sinφ = r sin θ sinφ
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or, substituting identities from the table,

ρ̂ =
x̂x+ ŷy

ρ
,

φ̂ =
−x̂y + ŷx

ρ
,

r̂ =
ẑz + ρ̂ρ

r
=

x̂x+ ŷy + ẑz

r
,

θ̂ =
−ẑρ+ ρ̂z

r
.

(3.18)

Such variable unit basis vectors point locally in the directions in which their
respective coordinates advance.

Combining pairs of (3.17)’s equations appropriately, we have also that

x̂ = +ρ̂ cosφ − φ̂ sinφ,

ŷ = +ρ̂ sinφ + φ̂ cosφ,

ẑ = +r̂ cos θ − θ̂ sin θ,

ρ̂ = +r̂ sin θ + θ̂ cos θ.

(3.19)

Convention usually orients ẑ in the direction of a problem’s axis. Occa-
sionally however a problem arises in which it is more convenient to orient x̂
or ŷ in the direction of the problem’s axis (usually because ẑ has already
been established in the direction of some other pertinent axis). Changing
the meanings of known symbols like ρ, θ and φ would probably not be a
good idea, but you can use symbols like

(ρx)2 = y2 + z2, (ρy)2 = z2 + x2,

tan θx =
ρx

x
, tan θy =

ρy

y
,

tanφx =
z

y
, tanφy =

x

z
,

(3.20)

instead if needed.24

24Symbols like ρx are logical but, as far as this writer is aware, not standard. The writer
is not aware of any conventionally established symbols for quantities like these, but § 15.6
at least will use the ρx-style symbology.
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3.10 The complex triangle inequalities

If the real, two-dimensional vectors a, b and c represent the three sides of
a triangle such that a + b + c = 0, then per (2.45)

|a| − |b| ≤ |a + b| ≤ |a|+ |b| .

These are just the triangle inequalities of § 2.9.2 in vector notation.25 But
if the triangle inequalities hold for real vectors in a plane, then why not
equally for complex scalars? Consider the geometric interpretation of the
Argand plane of Fig. 2.6 on page 59. Evidently,

|z1| − |z2| ≤ |z1 + z2| ≤ |z1|+ |z2| (3.21)

for any two complex numbers z1 and z2. Extending the sum inequality, we
have that ∣∣∣∣∣

∑

k

zk

∣∣∣∣∣ ≤
∑

k

|zk| . (3.22)

(Naturally, the inequalities 3.21 and 3.22 hold as well for real numbers as
for complex. One may find the latter inequality useful for sums of real
numbers, for example, when some of the numbers summed are positive and
others negative.)26

An important consequence of (3.22) is that if
∑ |zk| converges, then∑

zk also converges. Such a consequence is important because mathematical
derivations sometimes need the convergence of

∑
zk established, which can

be hard to do directly. Convergence of
∑ |zk|, which per (3.22) implies

convergence of
∑
zk, is often easier to establish.

See also (9.19). Equation (3.22) will find use among other places in
§ 8.10.3.

3.11 De Moivre’s theorem

Compare the Argand-plotted complex number of Fig. 2.6 (page 59) against
the vector of Fig. 3.3 (page 69). Although complex numbers are scalars not
vectors, the figures do suggest an analogy between complex phase and vector
direction. With reference to Fig. 2.6 we can write,

z = (ρ)(cosφ+ i sinφ) = ρ cisφ, (3.23)

25Reading closely, one might note that § 2.9.2 uses the “<” sign rather than the “≤,”
but that’s all right. See § 1.3.

26Section 13.9 proves the triangle inequalities more generally.
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where
cisφ ≡ cosφ+ i sinφ. (3.24)

If z = x+ iy, then evidently

x = ρ cosφ,

y = ρ sinφ.
(3.25)

Per (2.59),

z1z2 = (x1x2 − y1y2) + i(y1x2 + x1y2).

Applying (3.25) to this equation yields that

z1z2

ρ1ρ2
= (cosφ1 cosφ2 − sinφ1 sinφ2) + i(sinφ1 cosφ2 + cosφ1 sinφ2).

But according to (3.10), this is just that

z1z2

ρ1ρ2
= cos(φ1 + φ2) + i sin(φ1 + φ2),

or in other words that

z1z2 = ρ1ρ2 cis(φ1 + φ2). (3.26)

Equation (3.26) is a significant result. It says that if you want to multiply
complex numbers, it suffices

• to multiply their magnitudes and

• to add their phases.

It follows by parallel reasoning (or by extension) that

z1

z2
=
ρ1

ρ2
cis(φ1 − φ2) (3.27)

and by extension that
za = ρa cis aφ. (3.28)

Equations (3.26), (3.27) and (3.28) are known as de Moivre’s theorem.27,28

27Also called de Moivre’s formula. Some authors apply the name of de Moivre directly
only to (3.28), or to some variation thereof; but, since the three equations express es-
sentially the same idea, if you refer to any of them as de Moivre’s theorem then you are
unlikely to be misunderstood.

28[120][146]
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We have not shown yet, but will in § 5.4, that

cisφ = exp iφ = eiφ,

where exp(·) is the natural exponential function and e is the natural loga-
rithmic base, both defined in chapter 5. De Moivre’s theorem is most useful
in this light.

Section 5.5 will revisit the derivation of de Moivre’s theorem.



Chapter 4

The derivative and its
incidents

The mathematics of calculus concerns a complementary pair of questions:1

• Given some function f(t), what is the function’s instantaneous rate of
change, or derivative, f ′(t)?

• Interpreting some function f ′(t) as an instantaneous rate of change,
what is the corresponding accretion, or integral, f(t)?

This chapter builds toward a basic understanding of the first question.

1Although once grasped the concept is relatively simple, to understand this pair of
questions—so briefly stated—is no trivial thing. They are the pair which eluded or con-
founded the most brilliant mathematical minds of the ancient world.

The greatest conceptual hurdle—the stroke of brilliance—probably lies in simply stating
the pair of questions clearly. Sir Isaac Newton and G. W. Leibnitz cleared this hurdle for
us in the seventeenth century, so now at least we know the right pair of questions to ask.
With the pair in hand, the calculus beginner’s first task is quantitatively to understand
the pair’s interrelationship, generality and significance. Such an understanding constitutes
the basic calculus concept.

It cannot be the role of a book like this to lead the beginner gently toward an appre-
hension of the basic calculus concept. Once grasped, the concept is simple and briefly
stated. Therefore, in this book, we shall take the concept as simple, briefly state it, and
then move along; whereas, of course, you would find it hard first to learn calculus like
that.

Many instructional textbooks have been written to lead the beginner gently. Worthy
examples of such a textbook include [57].

89
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4.1 Infinitesimals and limits

Calculus systematically treats numbers so large and so small, they lie beyond
the reach of our mundane number system.

4.1.1 The infinitesimal

A number ε is an infinitesimal if it is so small that

0 < |ε| < a

for all possible, mundane positive numbers a.

This is somewhat a difficult concept, so if it is not immediately clear
then let us approach the matter colloquially. Let me propose to you that I
have an infinitesimal.

“How big is your infinitesimal?” you ask.

“Very, very small,” I reply.

“How small?”

“Very small.”

“Smaller than 0x0.01?”

“Smaller than what?”

“Than 2−8. You said that we should use hexadecimal notation in this
book, remember?”

“Sorry. Yes, right, smaller than 0x0.01.”

“What about 0x0.0001? Is it smaller than that?”

“Much smaller.”

“Smaller than 0x0.0000 0000 0000 0001?”

“Smaller.”

“Smaller than 2−0x1 0000 0000 0000 0000?”

“Now that is an impressively small number. Nevertheless, my infinitesi-
mal is smaller still.”

“Zero, then.”

“Oh, no. Bigger than that. My infinitesimal is definitely bigger than
zero.”

This is the idea of the infinitesimal. It is a definite number of a certain
nonzero magnitude, but its smallness conceptually lies beyond the reach of
our mundane number system.
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If ε is an infinitesimal, then 1/ε can be regarded as an infinity: a very
large number much larger than any mundane number one can name.2

The principal advantage of using symbols like ε rather than 0 for in-
finitesimals is in that it permits us conveniently to compare one infinitesimal
against another, to add them together, to divide them, etc. For instance,
if δ = 3ε is another infinitesimal, then the quotient δ/ε is not some unfath-
omable 0/0; rather it is δ/ε = 3. In physical applications, the infinitesimals
often are not true mathematical infinitesimals but rather relatively very
small quantities such as the mass of a wood screw compared to the mass of
a wooden house frame, or the audio power of your voice compared to that
of a jet engine. The additional cost of inviting one more guest to the wed-
ding may or may not be infinitesimal, depending upon your point of view.
The key point is that the infinitesimal quantity be negligible by comparison,
whatever “negligible” might mean in the context.3

The second-order infinitesimal ε2 = (ε)(ε) is so small on the scale of
the common, first-order infinitesimal ε that the even latter cannot measure
it. The ε2 is an infinitesimal to the infinitesimals. Third- and higher-order
infinitesimals likewise are possible.

The notation u � v, or v � u, indicates that u is much less than v,
typically such that one can regard the quantity u/v to be an infinitesimal.
In fact, one common way to specify that ε be infinitesimal is to write that
ε� 1.

4.1.2 Limits

The notation limz→zo indicates that z draws as near to zo as it possibly can.
When written as limz→z+

o
, the implication is that z draws toward zo from

2Some professional mathematicians have deprecated talk of this sort. However, their
reasons are abstruse and appear to bear little on applications. See § 1.2.

The literature in this and related matters is vast, deep and inconclusive. It includes
[16][30][32][47][51][58][62][63][64][101][106][109][116][118][131][132][139][140][143][144][149]
among others.

3Among scientists and engineers who study wave phenomena, there is an old rule
of thumb that sinusoidal waveforms be discretized not less finely than ten points per
wavelength. In keeping with this book’s adecimal theme (appendix A) and the concept of
the hour of arc (§ 3.6), we should probably render the rule as twelve points per wavelength
here. In any case, even very roughly speaking, a quantity greater than 1/0xC of the
principal to which it compares probably cannot rightly be regarded as infinitesimal. On the
other hand, a quantity less than 1/0x10000 of the principal is indeed infinitesimal for most
practical purposes (but not all: for example, positions of spacecraft and concentrations of
chemical impurities must sometimes be accounted more precisely). For quantities between
1/0xC and 1/0x10000, it depends on the accuracy one seeks.
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the positive side such that z > zo. Similarly, when written as limz→z−o , the
implication is that z draws toward zo from the negative side.

The reason for the notation is to provide an orderly way to handle ex-
pressions like

f(z)

g(z)

as z vanishes or approaches some otherwise difficult value. For example, if
f(z) ≡ 3z + 5z3 and g(z) ≡ 2z + z2, then

lim
z→0

f(z)

g(z)
= lim

z→0

3z + 5z3

2z + z2
= lim

z→0

3 + 5z2

2 + z
=

3 + 0

2 + 0
=

3

2
,

which is preferable to writing näıvely that f(z)/g(z)|z=0 = 0/0 (the “|z=0”
meaning, “given that, or evaluated when, z = 0”). The symbol “limQ”
is short for “in the limit as Q,” so “limz→0” says, “in the limit as z ap-
proaches 0.”

Observe that lim is not a function like log or sin. Rather, it is a mere
reminder. It is a reminder that a quantity like z approaches some value,
used when saying that the quantity equaled the value would be inconvenient
or confusing.

4.2 Combinatorics

In its general form, the problem of selecting k specific items out of a set of n
available items belongs to probability theory (chapter 20). In its basic form
however, the same problem also applies to the handling of polynomials or
power series. This section treats the problem in its basic form.4

4.2.1 Combinations and permutations

Consider the following scenario. I have several small, wooden blocks of
various shapes and sizes, painted different colors so that you can readily tell
each block from the others. If I offer you the blocks and you are free to take
all, some or none of them at your option, if you can take whichever blocks
you like, then how many distinct choices of blocks confront you? Answer:
the symbol n representing the number of blocks I have, a total of 2n distinct
choices confront you, for you can accept or reject the first block, then accept
or reject the second, then the third, and so on.

4[57]
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Now, suppose that what you want are exactly k blocks, neither more nor
fewer. Desiring exactly k blocks, you select your favorite block first: there
are n options for this. Then you select your second favorite: for this, there
are n− 1 options (why not n options? because you have already taken one
block from me; I have only n − 1 blocks left). Then you select your third
favorite—for this there are n−2 options—and so on until you have k blocks.
There are evidently

P

(
n

k

)
≡ n!/(n− k)! (4.1)

ordered ways, or permutations, available for you to select exactly k blocks.

However, some of these distinct permutations would put exactly the
same combination of blocks in your hand; for instance, the permutations
red-green-blue and green-red-blue constitute the same combination, whereas
red-white-blue is a different combination entirely. For a single combination
of k blocks (red, green, blue), evidently k! permutations are possible (red-
green-blue, red-blue-green, green-red-blue, green-blue-red, blue-red-green,
blue-green-red). Thus, dividing the number of permutations (4.1) by k!
yields the number of combinations

(
n

k

)
≡ n!/(n− k)!

k!
. (4.2)

Table 4.1 repeats the definitions (4.1) and (4.2), and then proceeds to
list several properties of the number

(
n
k

)
of combinations. Among the several

properties, the property of the table’s third line results from changing the
variable k ← n − k in (4.2). The property of the table’s fourth line is
seen when an nth block—let us say that it is a black block—is added to
an existing set of n − 1 blocks: to choose k blocks then, you can choose
either k from the original set, or the black block plus k−1 from the original
set. The next four lines come directly from the definition (4.2); they relate
combinatoric coefficients to their neighbors in Pascal’s triangle (§ 4.2.2).
The last line merely observes, again as at the head of this section, that 2n

total combinations are possible if any k is allowed.

Because one can choose neither fewer than zero nor more than n from n
blocks, (

n

k

)
= 0 unless 0 ≤ k ≤ n. (4.3)

For
(
n
k

)
when n < 0, there is no obvious definition.5

5So, does that mean that
(
n
k

)
is not allowed when n < 0? Answer: probably. After
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Table 4.1: Combinatorical properties.

P

(
n

k

)
≡ n!/(n− k)!

(
n

k

)
≡ n!/(n− k)!

k!
=

1

k!
P

(
n

k

)

=

(
n

n− k

)

=

(
n− 1

k − 1

)
+

(
n− 1

k

)

=
n− k + 1

k

(
n

k − 1

)

=
k + 1

n− k

(
n

k + 1

)

=
n

k

(
n− 1

k − 1

)

=
n

n− k

(
n− 1

k

)

n∑

k=0

(
n

k

)
= 2n
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Figure 4.1: The plan for Pascal’s triangle.
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4.2.2 Pascal’s triangle

Consider the triangular layout in Fig. 4.1 of the various possible
(
n
k

)
. Eval-

uated, this yields Fig. 4.2, Pascal’s triangle. Notice that each entry in
the triangle is the sum of the two entries immediately above, as Table 4.1
predicts. (In fact, this is the easy way to fill out Pascal’s triangle: for each
entry, just add the two entries above.)

4.3 The binomial theorem

This section presents the binomial theorem and one of its significant conse-
quences.

all, it seems hard to imagine how one could allow such a quantity while retaining internal
consistency within Table 4.1, for a division by zero seems to be implied. However, the
question may not be the sort of question the applied mathematician is even likely to
ask. He is likely to ask, rather, what

(
n
k

)
, n < 0, would mean—if anything—in light of a

particular physical problem of interest. Only once the latter question has been answered
will the applied mathematician consider whether or how to treat the quantity.
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Figure 4.2: Pascal’s triangle (in hexadecimal notation).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 A A 5 1

1 6 F 14 F 6 1
1 7 15 23 23 15 7 1

1 8 1C 38 46 38 1C 8 1
1 9 24 54 7E 7E 54 24 9 1

...

Figure 4.3: Pascal’s triangle (in decimal notation).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126126 84 36 9 1

...
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4.3.1 Expanding the binomial

The binomial theorem holds that6

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk. (4.4)

In the common case that a = 1, b = ε, |ε| � 1, this is that

(1 + ε)n =

n∑

k=0

(
n

k

)
εk (4.5)

(actually, eqn. 4.5 holds for any ε, small or large; but the typical case of
interest has that |ε| � 1). In either form, the binomial theorem is a direct
consequence of the combinatorics of § 4.2. Since

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)(a+ b),

each (a+b) factor corresponds to one of the “wooden blocks,” where a means
rejecting the block and b, accepting it.

4.3.2 Powers of numbers near unity

Since
(
n
0

)
= 1 and

(
n
1

)
= n, it follows from (4.5) for

(m,n) ∈ Z, m > 0, n ≥ 0, |δ| � 1, |ε| � 1, |εo| � 1,

that7

1 +mεo ≈ (1 + εo)
m

to arbitrary precision as long as εo is small enough. Furthermore, raising
the equation to the 1/m power then changing δ ← mεo, we have that

(1 + δ)1/m ≈ 1 +
δ

m
.

6The author is given to understand that, by an heroic derivational effort, (4.4) can be
extended directly to nonintegral n. However, we shall have no immediate need for such an
extension. Later, in Table 8.1, we will compute the Taylor series for (1 + z)a−1, anyway,
which indirectly amounts to much the same thing as the extension, and has a more elegant
form to boot, and moreover (at least in the author’s experience) arises much more often
in applications.

7The symbol ≈ means “approximately equals.”
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Changing 1 + δ ← (1 + ε)n and observing from the (1 + εo)
m equation above

that this implies that δ ≈ nε, we have that

(1 + ε)n/m ≈ 1 +
n

m
ε.

Inverting this equation yields that

(1 + ε)−n/m ≈ 1

1 + (n/m)ε
=

[1− (n/m)ε]

[1− (n/m)ε][1 + (n/m)ε]
≈ 1− n

m
ε.

Taken together, the last two equations imply that

(1 + ε)x ≈ 1 + xε (4.6)

for any real x.
Obscurely, (4.6) is called the first-order Taylor expansion. The reason the

equation is called by such an unwieldy name will be explained in chapter 8,
but howsoever the equation may be called, it is an important result. The
equation offers a simple, accurate way of approximating any real power of
numbers in the near neighborhood of 1.

4.3.3 Complex powers of numbers near unity

Equation (4.6) is fine as far as it goes, but its very form suggests the question:
what if ε or x, or both, is complex? Changing the symbol z ← x and
observing that the infinitesimal ε also may be complex, one wants to know
whether

(1 + ε)z ≈ 1 + zε (4.7)

still holds. No work we have yet done in the book answers the question,
because though a complex infinitesimal ε poses no particular problem, the
action of a complex power z remains undefined. Still, for consistency’s sake,
one would like (4.7) to hold. In fact nothing prevents us from defining the
action of a complex power such that (4.7) does hold, which we now do,
logically extending the known result (4.6) into the new domain.

But we cannot just define that, can we? Surely we cannot glibly assert
that “nothing prevents us” and then go to define whatever we like!

Can we?
Actually, yes, in this case we can. Consider that, insofar as (4.7) holds,

(1 + ε)z1+z2 = (1 + ε)z1(1 + ε)z2 ≈ (1 + z1ε)(1 + z2ε)

= 1 + z1ε+ z2ε+ z1z2ε
2 ≈ 1 + (z1 + z2)ε;

(1 + ε)z1z2 = [(1 + ε)z1 ]z2 ≈ [1 + z1ε]
z2 ≈ 1 + z1z2ε;
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and so on. These alone do not of course conclusively prove that our new
definition is destined to behave well in every circumstance of future inter-
est. Experience will tell. Notwithstanding, in the meantime, since we seem
unable for the moment to identify a relevant circumstance in which our new
definition misbehaves, since our definition does seem a natural extension
of (4.6), since it does not seem to contradict anything we already know, and
since no obvious alternative presents itself, let us provisionally accept the
definition and find out to what results it leads.

Section 5.4 will investigate the extremely interesting effects which arise
when <(ε) = 0 and the power z in (4.7) grows large, but for the moment
we shall use the equation in a more ordinary manner to develop the concept
and basic application of the derivative, as follows.

4.4 The derivative

With (4.7) at least provisionally in hand, we can now turn to the chapter’s
subject proper, the derivative.

What is the derivative? The derivative is the instantaneous rate or
slope of a function. In mathematical symbols and for the moment using real
numbers,8

f ′(t) ≡ lim
ε→0+

f(t+ ε/2)− f(t− ε/2)

ε
. (4.8)

Alternately,

f ′(t) ≡ lim
ε→0+

f(t+ ε)− f(t)

ε
. (4.9)

Because ε is infinitesimal, either the balanced definition (4.8) or the unbal-
anced definition (4.9) should in theory yield the same result (where it does
not, you have a problem: the derivative does not exist at that value of t;
for example, given f [t] = 1/t, f ′[t]t=0 does not exist despite that it exists
at other values of t). Both definitions have their uses but applied mathe-
maticians tend to prefer the balanced (4.8) because it yields comparatively
accurate results in practical approximations in which ε, though small, is not
actually infinitesimal.9 Except where otherwise stated, this book will pre-
fer the balanced (4.8)—or rather, as we shall eventually see, will prefer its
generalized form, the balanced (4.13).

8Professional mathematicians tend to prefer another, more self-contained definition.
Section 4.4.9 will briefly present it. See too eqns. (4.13) and (4.14).

9[46, §§ I:9.6 and I:9.7][31, § 4.3.4]
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(Note: from this section through § 4.7, the mathematical notation nec-
essarily grows a little thick. This cannot be helped, so if you are reading
straight through, be prepared for a bit of a hard slog.)

4.4.1 The derivative of the power series

In the very common case that f(t) is the power series

f(t) =
∞∑

k=−∞
ckt

k, (4.10)

where the ck are in general complex coefficients, (4.8) says that

f ′(t) =
∞∑

k=−∞
lim
ε→0+

(ck)(t+ ε/2)k − (ck)(t− ε/2)k

ε

=
∞∑

k=−∞
lim
ε→0+

ckt
k (1 + ε/2t)k − (1− ε/2t)k

ε
.

Applying (4.7),

f ′(t) =

∞∑

k=−∞
lim
ε→0+

ckt
k (1 + kε/2t)− (1− kε/2t)

ε
,

which simplifies to

f ′(t) =
∞∑

k=−∞
ckkt

k−1, (4.11)

assuming of course that the sum converges.10 Equation (4.11) gives the
general derivative of the power series.11

4.4.2 The Leibnitz notation

The f ′(t) notation used above for the derivative is due to Sir Isaac Newton,
and is easier to start with. Usually better on the whole, however (but see

10The book will seldom again draw attention to such caveats of abstract rigor, even
in passing. For most concrete series to which one is likely to apply (4.11) in practice,
the series’ convergence or nonconvergence will be plain enough on its face, as abstract
considerations of theoretical sumworthiness fade into an expedient irrelevance. (For a
closer applied consideration of sumworthiness nevertheless, see [3].)

11Equation (4.11) has not admittedly, explicitly considered what happens when the
real t becomes the complex z, but § 4.4.7 will remedy the oversight.
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appendix C), is G. W. Leibnitz’s notation,

dt = ε,

df = f(t+ dt/2)− f(t− dt/2),

such that per (4.8),

f ′(t) =
df

dt
. (4.12)

Here, dt is the infinitesimal, and df is a dependent infinitesimal whose size
relative to dt depends on the independent variable t.

Conceptually, one can choose any sufficiently small size ε for the indepen-
dent infinitesimal dt; and, actually, though we have called dt “independent,”
what we really mean is that the variable t with which dt is associated is in-
dependent. The size of dt may be constant (this is typically easiest) but
may instead depend on t as dt = ε(t). Fortunately, one seldom needs to
say, or care, what the size of an independent infinitesimal like dt is. All
one normally needs to worry about are the sizes of other infinitesimals in
proportion to dt.

As an example of the infinitesimal’s use, if f(t) ≡ 3t3 − 5, then f(t ±
dt/2) = 3(t ± dt/2)3 − 5 = 3t3 ± (9/2)t2 dt + (9/4)t dt2 ± (3/8) dt3 − 5,
whence df = f(t+ dt/2)− f(t− dt/2) = 9t2 dt+ (3/4) dt3, and thus df/dt =
9t2+(3/4) dt2—which has that df/dt = 9t2 in the limit as dt tends to vanish.
The example is easier if (4.7) is used to approximate that f [(t)(1±dt/2t)] ≈
3t3 ± (9/2)t2 dt− 5, the details of which are left as an exercise.

Where two or more independent variables are simultaneously in play,
say s and t, the mathematician can have two, distinct independent infinites-
imals ds and dt—or, as one often styles them in such cases, ∂s and ∂t. The
size of ∂s may be constant but may depend on s, t, or both, as ∂s = δ(s, t)
where the δ is like ε an infinitesimal; and, likewise, the size of ∂t may be
constant but may depend on s, t, or both, as ∂t = ε(s, t). Fortunately, as
before, one seldom needs to say or care what the sizes are.

An applied mathematician ought to acquire, develop and retain a clear,
lively, flexible mental image of Leibnitz’s infinitesimal.

4.4.3 Considerations of the Leibnitz notation

The precise meaning of Leibnitz’s letter d subtly depends on its context.
In (4.12), the meaning is clear enough: d(·) signifies the amount by which (·)
changes while the independent variable t is increasing by dt. Indeed, so
essential is this point to the calculus concept that it bears repeating for
emphasis!
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Insofar as (·) depends on t, the notation d(·) signifies
the amount by which (·) changes while t is increasing
by dt.

The following notational anomaly intrudes to complicate the matter. Where
two or more independent variables are at work in the same equation or
model, for instance s and t, convention warps Leibnitz’s letter d into the
shape of Carl Jacobi’s letter ∂ (already seen in § 4.4.2). Convention warps
the letter, not for any especially logical reason, but as a visual reminder that
multiple independents are in play. For example, if f(s, t) ≡ s2 + 3st2 + t4,
then ∂sf = (2s + 3t2)∂s [which represents the change f undergoes while s
is increasing by an increment ∂s and t is held constant] but ∂tf = (6st +
4t3)∂t [which represents the change f undergoes while t is increasing by an
increment ∂t and s is held constant].

In practice, the style of ∂sf and ∂tf is usually overelaborate. Usually,
one abbreviates each as ∂f . Context normally clarifies.

A derivative like ∂f/∂s or ∂f/∂t (that is, like ∂sf/∂s or ∂tf/∂t) is called
a partial derivative because in it, only one of two or more independent vari-
ables is varying. An equation containing derivatives (whether partial or oth-
erwise), or containing infinitesimals like df or ∂f that represent the change
a dependent variable like f undergoes, is called a differential equation. A
differential equation whose derivatives or infinitesimals track more than one
independent variable is called a partial differential equation.12 A differen-
tial equation whose derivatives or infinitesimals track only one independent
variable is called an ordinary differential equation.

Observe incidentally that the notation ∂sf is nonstandard. For obscure
reasons (§§ 4.4.4 and 4.4.5), the style usually instead seen in print is that
of (∂f/∂s) ds, rather.

The symbol ∂ is merely a warped letter d. Chapter 7 will use the warped
letter a little, as will §§ 8.16 and 13.7. Chapter 16 will use the warped letter
a lot.

We have mentioned equations with two or more independent variables.
However, some equations with infinitesimals, such as the potential-kinetic
energy equation that madx = mv dv, do not explicitly include or refer
to any independent variable at all.13 Context can sometimes supply an
independent the equation does not mention, like t, upon which x and v

12Chapter 16 gives many examples of partial differential equations, for instance (16.27).
13The m stands for mass, the x for position, the v for speed, and the a for acceleration.

The model’s independent variable would probably be t for time but that variable does not
happen to appear in this equation.
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both depend; but it may be that the equation speaks only to how x and v
change conjointly, without suggesting that either change caused the other
and without explicit reference to an independent of any kind. Another
example of the sort would be the economist’s demand-elasticity equation,
e dP/P = dQ/Q, which speaks to how P and Q change conjointly.14 This
is all right. Moreover, even in the rare application in which the lack of an
independent does pose some trouble, one can often remedy the trouble by
introducing a purely formal parameter to serve as it were an independent.

Convention sports at least one other notational wrinkle we should men-
tion, a wrinkle that comes into view from chapter 7. Convention writes∫ t

0 f(τ) dτ rather than
∫ t

0 f(τ) ∂τ , which is to say that it eschews the
warped ∂ when writing chapter 7’s infinitesimal factor of integration. One
could explain this by observing that the true independent t acts as a con-
stant within the dummy’s scope, and thus that the dummy sees itself as a
lone independent within that scope; but whatever the explanation, that is
how mathematicians will write the thing.

4.4.4 Remarks on the Leibnitz notation

A deep mystery is implicated. None has wholly plumbed it. Perhaps none
ever will.

During antiquity, Thales, Anaximander, Anaximenes, Heraclitus, Par-
menides, Zeno of Elea, Melissus, Anaxagoras, Leucippus, Democritus, Eu-
doxus, Euclid, Archimedes, Epicurus, Zeno of Cition, Chrysippus, Plato
and Aristotle15 long debated—under various forms—whether material real-
ity and, more pertinently, immaterial reality16 are essentially continuous, as
geometry; or essentially discrete, as arithmetic. (Here we use “arithmetic”
in the ancient sense of the word.) We still do not know. Indeed, we do not
even know whether this is the right question to ask.

One feels obliged to salute the erudition of the professional mathemati-
cian’s ongoing effort to find the question and give the answer; and yet, after
twenty-five centuries, when the best efforts to give the answer seem to have

14The e (stated as a unitless negative number) stands for demand elasticity, the P for
price, and the Q for quantity demanded. Refer to [73, chapter 4].

15These names and others are marshaled and accounted by [12].
16An influential school of thought asserts that immaterial reality does not exist, or that

it might as well not exist. The school is acknowledged but the writer makes no further
comment except that that is not what this paragraph is about.

Meanwhile, mathematical ontology is something we can discuss but general ontology
lies beyond the writer’s expertise.
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succeeded chiefly to the extent to which they have tailored the question17 to
suit whatever answer is currently known and deemed best, why, the appli-
cationist’s interest in the matter may waver.

What the applicationist knows or believes is this: that the continuous
and the discrete—whether each separately or both together—appeal directly
to the mathematical intuition. If the mind’s eye already sees both, and
indeed sees them together in the same mental scene, then one may feel little
need further to deconstruct the two.18

One might, of course, inadvertently obscure the mental scene by elabo-
rating certain definitions, innocently having meant to place the whole scene
upon an indisputably unified basis; but, if one does elaborate certain defi-
nitions and this act indeed obscures the scene, then one might ask: is it not
the definitions which are suspect? Nowhere after all is it written that any
indisputably unified basis shall, even in principle, be accessible to the mind
of man.19 Such a basis might be accessible, or it might not. The search is
honorable and worthwhile, but it can utterly fail. We are not required to
abandon mathematics if it does.

To the applicationist meanwhile, during the modeling of a given physical
system, the choice of whether to employ the continuous or the discrete will
chiefly depend not on abstract considerations but rather on the idiosyncratic
demands of the problem at hand.

Such is the applicationist’s creed.

4.4.5 The professional’s creed; further remarks

Yet, what of the professional’s creed? May the professional not also be
heard? And, anyway, what do any of these things have to do with the
Leibnitz notation?

The professional may indeed be heard, and more eloquently elsewhere
than in this book; but, for this book’s purpose, the answers are a matter of

17Is this adverse criticism? No. Indeed, one can hardly see what else the best efforts
might have done, given the Herculean task those efforts had set for themselves. A task
may, however, be too large, or be inherently impossible, even for Hercules.

18The mind’s eye may be deceived where pure analysis does not err, of course, insofar
as pure analysis relies upon disciplined formalisms. This is not denied. What the mind’s
eye is, and how it is able to perceive the abstract, are great questions of epistemology
beyond the book’s scope.

19“But ZFC is such a basis!” comes the objection.
However, whether ZFC is truly a basis or is rather a clever contraption recently bolted

onto the side of preëxisting, even primordial mathematics is a question one can debate.
Wittgenstein debated it. See § 1.2.2.
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perspective. The professional mathematician L. E. J. Brouwer has memo-
rably described the truths of mathematics as “fascinating by their immov-
ability, but horrifying by their lifelessness, like stones from barren mountains
of disconsolate infinity.”20 Brouwer’s stones have not always appeared to the
professional to countenance Leibnitz’s infinitesimal.21 Though the profes-
sional may tolerate, though the professional may even indulge, the applica-
tionist’s use of Leibnitz’s infinitesimal as an expedient, the professional may
find himself unable to summon greater enthusiasm for the infinitesimal than
this.

Indeed, he may be even less enthusiastic. As the professional mathemati-
cian Bertrand Russell succinctly judges, “[I]nfinitesimals as explaining conti-
nuity must be regarded as unnecessary, erroneous, and self-contradictory.”22

The professional mathematician Georg Cantor recounts:

[A] great quarrel arose among the philosophers, of whom some
followed Aristotle, others Epicurus; still others, in order to re-
main aloof from this quarrel, declared with Thomas Aquinas that
the continuum consisted neither of infinitely many nor of a finite
number of parts, but of absolutely no parts. This last opinion
seems to me to contain less an explanation of the facts than a
tacit confession that one has not got to the bottom of the matter
and prefers to get genteelly out of its way.23

(The present writer has no opinion on St. Thomas’ declaration or on Can-
tor’s interpretation thereof but, were it possible, would concur in Thomas’
preference to get out of the way. Alas!)

On the opposite side, you have professional mathematicians like Her-
mann Weyl (as quoted in §§ 1.2.2 and 1.2.3) and Abraham Robinson, along
maybe with Brouwer himself,24 who have seemed to suggest that professional
mathematics might rearrange—or at least search out a more congenial per-
spective upon—Brouwer’s immovable stones to countenance the infinitesi-
mal nevertheless.25 All the while, scientists and engineers have cheerfully
kept plying the infinitesimal. Scientists and engineers appear to have been
obtaining good results, too: bridges; weather forecasts; integrated circuits;

20Source: [8]. Brouwer later changed his mind.
21[13]
22[12]
23Ibid.
24See footnote 20.
25[143][112][106][12]



106 CHAPTER 4. THE DERIVATIVE AND ITS INCIDENTS

space shots; etc. It seems that whether one approves the infinitesimal de-
pends chiefly on whether one’s focus is in applications or in foundations.

The present book’s focus is of course in applications. Fortunately, if you
are a Platonist as the author is, or even if you are an intuitionist as Brouwer
was, then this particular collision of foundations against applications need
not much disturb you. See § 1.2.2.

So, what of the infinitesimal, this concept which has exercised the great
philosophical minds of the ages? After all this, how shall the student of
applied mathematics now approach it?

Following twenty-five centuries of spirited debate and vacillating consen-
sus, the prudent student will remain skeptical of whatever philosophy the
latest consensus (or this book) might press him to adopt. Otherwise, at
the undergraduate level at any rate, many students though having learned
a little calculus have not quite learned how to approach the infinitesimal at
all. That is, they have never developed a clear intuition as to what Leibnitz
elements like df , dt, ∂g and ∂x individually might mean—especially when
these students have seen such elements heretofore only in certain, specific
combinations like df/dt, ∂g/∂x and

∫
f(t) dt. Often, these students have

developed positive misunderstandings regarding such elements. The vacilla-
tion of consensus may be blamed for this.

Therefore, in this book, having acknowledged that an opposing, merito-
rious school of thought exists, let us not hesitate between the two schools.
Though the writer acknowledges the cleverness of certain of Cantor’s results
(as for example in [116, §§ 1.8 and 2.4]) and allows Cantor’s ambition re-
garding the continuum its due, the author is an applicationist and thus his
book (you are reading it) esteems Leibnitz more highly than it does Can-
tor. The charge could be leveled that the author does not grasp Cantor and
there would be some truth in this charge, but the book’s esteem for Leibnitz
is more than a mere matter of preferred style. A mystery of mathematical
philosophy is involved and deeply entwined, touched upon in § 1.2 and again
in this section, as Cantor himself would undoubtedly have been the first to
insist. Also, remember, Weyl disputed Cantor, too.

Even setting aside foundational mysteries and the formidable Cantor,
there is at any rate significant practical benefit in learning how to handle the
Leibnitz notation correctly. Physicists, chemists, engineers and economists
have long been used to handling Leibnitz elements individually. For all these
reasons among others, the present section seeks to present each Leibnitz
element in its proper, individual light.

The chief recent source to which professional mathematicians seem to
turn to bridge the questions this section ponders is Robinson’s 1966 book
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Nonstandard Analysis [106]. To conclude the subsection, therefore, we may
hear Robinson’s words:

Suppose that we ask a well-trained mathematician for the mean-
ing of [the derivative]

lim
x→xo

f(x)− f(xo)

x− xo
= a.

Then we may rely on it that [he will explain it as § 4.4.9 below].
Let us now ask our mathematician whether he would not

accept the following more direct interpretation. . . .
For any x in the interval of definition of f(x) such that dx =

x−xo is infinitely close to 0 but not equal to 0, the ratio df/dx,
where

df = f(x)− f(xo),

is infinitely close to a.
To this question we may expect the answer that our defini-

tion may be simpler in appearance but unfortunately it is also
meaningless. If we then try to explain that two numbers are
infinitely close to one another if their distance . . . is infinitely
small, . . . we shall probably be faced with the rejoinder that this
is possible only if the numbers cöıncide. And, so we may be told
charitably, this obviously is not what we meant since it would
make our explanation trivially wrong.

However, in spite of this shattering rebuttal, the idea of in-
finitely small or infinitesimal quantities seems to appeal natu-
rally to our intuition. At any rate, the use of infinitesimals was
widespread during the formative stages of the Differential and
Integral Calculus. . . . [106, § 1.1].

Your author is an engineer. John Derbyshire quips26 that we “[e]ngineers
were a semi-civilized tribe on an adjacent island, beery oafs who played
hard rugby and never listened to concert music.” Thus it seems fitting—
whether your author be an oaf or not!—that in the book you are reading
the “shattering rebuttal” Robinson’s hypothetical interlocutor has delivered
shall not unduly discomfit us.

The book will henceforth ply the Leibnitz notation and its infinitesimals
vigorously, with little further hedge, cavil or equivocation.

26Derbyshire is author of [39] but this quip came, not written, but spoken by him
in 2015.
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4.4.6 Higher-order derivatives

Conventional shorthand for d(df) is d2f ; for (dt)2, dt2; so

d(df/dt)

dt
=
d2f

dt2

is a derivative of a derivative, or second derivative. By extension, the nota-
tion

dkf

dtk

represents the kth derivative. For example, if k = 3, then d[d(df)] = d3f , by
which one writes d3f/dt3 for the derivative of a derivative of a derivative, or
third derivative. So, if f(t) ≡ t4/8, then df/dt = t3/2, d2f/dt2 = 3t2/2 and
d3f/dt3 = 3t.

4.4.7 The derivative of a function of a complex variable

For (4.8) to be robust, one should like its ratio to approach a single, common
value for all sufficiently small ε, for only when ε grows beyond infinitesimal
size should the ratio of (4.8) become inexact. However, (4.8) considers only
real, positive ε. What if ε were not positive? Indeed, what if ε were not even
real?

This turns out to be an important question, so let us now revise (4.8) to
establish the slightly more general form

df

dz
≡ lim

ε→0

f(z + ε/2)− f(z − ε/2)

ε
(4.13)

and let us incidentally revise (4.9), also, to establish the corresponding un-
balanced form

df

dz
≡ lim

ε→0

f(z + ε)− f(z)

ε
, (4.14)

where as in the section’s introduction so here too applications tend to prefer
the balanced (4.13) over the unbalanced (4.14).

As in (4.8), so too in (4.13) one should like the ratio to approach a
single, common value27 for all sufficiently small ε. However, in (4.13) one
must consider not only the magnitude |ε| of the referential infinitesimal but

27One can construct apparent exceptions like f(z) = sin(1/z). If feeling obstreperous,
one can construct far more unreasonable exceptions such as the one found toward the end
of § 8.4. The applied mathematician can hardly be asked to expand his definitions to
accommodate all such mischief! He hasn’t the time.

When an apparent exception of the less unreasonable kinds arises in the context of a
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also its phase arg ε (§ 2.11). For example, supposing that the symbol δ
represented some positive, real infinitesimal, it should be equally valid to
let ε = δ, ε = −δ, ε = iδ, ε = −iδ, ε = (4 − i3)δ, or any other infinitesimal
value. The ratio df/dt of (4.13) ought to come out the same for all these. In
fact, for the sake of robustness, one normally demands that the ratio does
come out the same; and (4.13) rather than (4.8) is the definition we normally
use for the derivative for this reason. Specifically, where the limit (4.13) or
even (4.14) is sensitive to arg ε, there we normally say that the derivative
does not exist.

Where the derivative (4.13) does exist—that is, where the derivative
is finite and is insensitive to our choice of a complex, infinitesimal value
for ε—there we say that the function f(z) is differentiable.

Excepting the nonanalytic parts of complex numbers (|·|, arg[·], [·]∗, <[·]
and =[·]; see § 2.11.3), plus the Heaviside unit step u(t) and the Dirac
delta δ(t) (§ 7.7), most functions encountered in applications do meet the
criterion (4.13) except at isolated nonanalytic points (like z = 0 in h[z] ≡ 1/z
or g[z] ≡ √z). Meeting the criterion, such functions are fully differentiable
except at their poles (where the derivative goes infinite in any case) and
other nonanalytic points. Particularly, the key formula (4.7), written here
as

(1 + ε)w ≈ 1 + wε,

works without modification when ε is complex; so the derivative (4.11) of
the general power series,

d

dz

∞∑

k=−∞
ckz

k =
∞∑

k=−∞
ckkz

k−1 (4.15)

holds equally well for complex z as for real (but see also the next subsection).

4.4.8 The derivative of za

Inspection of the logic of § 4.4.1 in light of (4.7) reveals that nothing pre-
vents us from replacing the real t, real ε and integral k of that section with

particular physical model, rather than attempting to accommodate the exception under
the roof of an abstruse, universal rule, the applicationist is more likely to cook up a way
to work around the exception in the specific context of the physical model at hand (as for
example in the so-called Hadamard finite part of [5]).
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arbitrary, complex z, ε and a. That is,

d(za)

dz
= lim

ε→0

(z + ε/2)a − (z − ε/2)a

ε

= lim
ε→0

za
(1 + ε/2z)a − (1− ε/2z)a

ε

= lim
ε→0

za
(1 + aε/2z)− (1− aε/2z)

ε
,

which simplifies to
d(za)

dz
= aza−1 (4.16)

for any complex z and a.
How exactly to evaluate za or za−1 when a is complex is another matter,

treated in § 5.4 and its (5.13); but in any case you can use (4.16) for real a
right now.

4.4.9 An alternate definition of the derivative

Professional mathematicians tend to prefer a less picturesque, alternate def-
inition of the derivative (4.13) or (4.14): “For any positive number ε there
exists a positive number δ such that

∣∣∣∣
f(z)− f(zo)

z − zo
− a
∣∣∣∣ < ε (4.17)

for all z . . . for which

0 < |z − zo| < δ, (4.18)

[the quantity a being the derivative df/dz].”28

Equations (4.17) and (4.18) bring few practical advantages to applica-
tions but are at least more self-contained than (4.13) or (4.14) is. However
that may be, the derivative is such a pillar of mathematics that it behooves
the applied mathematician to learn at least to recognize the professional’s
preferred definition of it. See also §§ 4.4.4 and 4.4.5.

4.4.10 The logarithmic derivative

Sometimes one is more interested to know the rate of f(t) in proportion
to the value of f(t) than to know the absolute rate itself. For example, if

28The quoted original is [106, § 1.1], from which the notation has been adapted to this
book’s usage.
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you inform me that you earn $ 1000 a year on a bond you hold, then I may
commend you vaguely for your thrift but otherwise the information does not
tell me much. However, if you inform me instead that you earn 10 percent
a year on the same bond, then I might want to invest. The latter figure is
a proportional rate or logarithmic derivative,

df/dt

f(t)
=

d

dt
ln f(t). (4.19)

The investment principal grows at the absolute rate df/dt but the bond’s
proportional rate, also called (in the case of a bond) its interest rate, is
(df/dt)/f(t).

The natural logarithmic notation ln f(t) may not mean much to you yet,
for we’ll not introduce it formally until § 5.2, so you can ignore the right
side of (4.19) for the moment; but the equation’s left side at least should
make sense to you. It expresses the significant concept of a proportional
rate, like 10 percent annual interest on a bond.

4.5 Basic manipulation of the derivative

This section introduces the derivative chain and product rules.
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4.5.1 The derivative chain rule

If f is a function of w, which itself is a function of z, then29

df

dz
=

(
df

dw

)(
dw

dz

)
. (4.20)

Equation (4.20) is the derivative chain rule.30

4.5.2 The derivative product rule

In general per (4.13),

d


∏

j

fj(z)


 =

∏

j

fj

(
z +

dz

2

)
−
∏

j

fj

(
z − dz

2

)
.

But to first order,

fj

(
z ± dz

2

)
≈ fj(z)±

(
dfj
dz

)(
dz

2

)
= fj(z)±

dfj
2

;

29For example, one can rewrite

f(z) =
√

3z2 − 1

in the form

f(w) = w1/2,

w(z) = 3z2 − 1.

Then

df

dw
=

1

2w1/2
=

1

2
√

3z2 − 1
,

dw

dz
= 6z,

so by (4.20),
df

dz
=

(
df

dw

)(
dw

dz

)
=

6z

2
√

3z2 − 1
=

3z√
3z2 − 1

.

30It bears emphasizing to readers who may inadvertently have picked up unhelpful ideas
about the Leibnitz notation in the past: the dw factor in the denominator cancels the dw
factor in the numerator, and a thing divided by itself is 1. On an applied level, this more or
less is all there is to it (but see § 4.4). Other than maybe in degenerate cases like dw = 0,
cases the applied mathematician will treat individually as they come, there is hardly more
to the applied proof of the derivative chain rule than this (but see [120, Prob. 3.39]).
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so, in the limit,

d


∏

j

fj(z)


 =

∏

j

(
fj(z) +

dfj
2

)
−
∏

j

(
fj(z)−

dfj
2

)
.

Since the product of two or more dfj is negligible compared to the first-order
infinitesimals to which they are here added,31 this simplifies to

d


∏

j

fj(z)


 =


∏

j

fj(z)



[∑

k

dfk
2fk(z)

]
−


∏

j

fj(z)



[∑

k

−dfk
2fk(z)

]
,

or in other words

d
∏

j

fj =


∏

j

fj



[∑

k

dfk
fk

]
. (4.21)

In the common case of only two fj , this comes to

d(f1f2) = f2 df1 + f1 df2. (4.22)

On the other hand, if f1(z) = f(z) and f2(z) = 1/g(z), then by the derivative
chain rule (4.20), df2 = −dg/g2; so,

d

(
f

g

)
=
g df − f dg

g2
, (4.23)

and indeed

d

(
fa

gb

)
=
fa−1

gb+1
(ag df − bf dg). (4.24)

Similarly,

d (fa1
1 fa2

2 ) =
(
fa1−1

1 fa2−1
2

)
(a1f2 df1 + a2f1 df2)

=
(
fa1

1 fa2
2

)(a1 df1

f1
+
a2 df2

f2

)
.

(4.25)

Equation (4.21) is the derivative product rule.

31Unless dfj ≈ 0 to first order, in which case it contributes nothing to the derivative,
anyway.
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After studying the complex exponential in chapter 5, we shall stand in
a position to write (4.21) in the slightly specialized but often useful form32

d


∏

j

g
aj
j

∏

j

ebjhj
∏

j

ln cjpj




=


∏

j

g
aj
j

∏

j

ebjhj
∏

j

ln cjpj




×
[∑

k

ak
dgk
gk

+
∑

k

bk dhk +
∑

k

dpk
pk ln ckpk

]
. (4.26)

where the ak, bk and ck are arbitrary complex coefficients and the gk, hk
and pk are arbitrary functions.33

4.5.3 A derivative product pattern

According to (4.22) and (4.16), the derivative of the product zaf(z) with
respect to its independent variable z is

d

dz
[zaf(z)] = za

df

dz
+ aza−1f(z).

Swapping the equation’s left and right sides then dividing through by za

yields that
df

dz
+ a

f

z
=
d(zaf)

za dz
, (4.27)

a pattern worth committing to memory, emerging among other places in
§ 16.9.34

4.6 Extrema and higher derivatives

One problem which arises very frequently in applied mathematics is the
problem of finding a local extremum—that is, a local minimum or max-
imum—of a real-valued function f(x). Refer to Fig. 4.4. The almost dis-

32This paragraph is extra. You can skip it for now if you prefer.
33The subsection is sufficiently abstract that it is a little hard to understand unless one

already knows what it means. An example may help:

d

[
u2v3

z
e−5t ln 7s

]
=

[
u2v3

z
e−5t ln 7s

] [
2
du

u
+ 3

dv

v
− dz

z
− 5 dt+

ds

s ln 7s

]
.

34This section completes the forward reference of § 2.6.5. See chapter 2’s footnote 33.
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Figure 4.4: A local extremum.

b

xo

f(xo)

f(x)

x

y

tinctive characteristic of the extremum f(xo) is that35

df

dx

∣∣∣∣
x=xo

= 0. (4.28)

At the extremum, the slope is zero. The curve momentarily runs level there.
One solves (4.28) to find the extremum.

Whether the extremum be a minimum or a maximum depends on wheth-
er the curve turn from a downward slope to an upward, or from an upward
slope to a downward, respectively. If from downward to upward, then the
derivative of the slope is evidently positive; if from upward to downward,
then negative. But the derivative of the slope is just the derivative of the
derivative, or second derivative. Hence if df/dx = 0 at x = xo, then

d2f

dx2

∣∣∣∣
x=xo

> 0 implies a local minimum at xo;

d2f

dx2

∣∣∣∣
x=xo

< 0 implies a local maximum at xo.

Regarding the case
d2f

dx2

∣∣∣∣
x=xo

= 0,

35The notation P |Q means “P when Q,” “P , given Q,” or “P evaluated at Q.” Some-
times it is alternately written P |Q or [P ]Q.
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Figure 4.5: A level inflection.
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this might be either a minimum or a maximum but more probably is neither,
being rather a level inflection point as depicted in Fig. 4.5.36 (In general
the term inflection point signifies a point at which the second derivative is
zero. The inflection point of Fig. 4.5 is level because its first derivative is
zero, too.)

4.7 L’Hôpital’s rule

If z = zo is a root of both f(z) and g(z), or alternately if z = zo is a pole of
both functions—that is, if both functions go to zero or infinity together at
z = zo—then l’Hôpital’s rule holds that

lim
z→zo

f(z)

g(z)
=

df/dz

dg/dz

∣∣∣∣
z=zo

. (4.29)

36Of course if the first and second derivatives are zero not just at x = xo but everywhere,
then f(x) = yo is just a level straight line, but you knew that already. Whether one chooses
to call some arbitrary point on a level straight line an inflection point or an extremum, or
both or neither, would be a matter of definition, best established not by prescription but
rather by the needs of the model at hand.
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In the case in which z = zo is a root, l’Hôpital’s rule is proved by reasoning37

lim
z→zo

f(z)

g(z)
= lim

z→zo

f(z)− 0

g(z)− 0

= lim
z→zo

f(z)− f(zo)

g(z)− g(zo)
= lim

z→zo

df

dg
= lim

z→zo

df/dz

dg/dz
.

In the case in which z = zo is a pole, new functions F (z) ≡ 1/f(z) and
G(z) ≡ 1/g(z) of which z = zo is a root are defined, with which

lim
z→zo

f(z)

g(z)
= lim

z→zo

G(z)

F (z)
= lim

z→zo

dG

dF
= lim

z→zo

−dg/g2

−df/f2
,

where we have used the fact from (4.16) that d(1/u) = −du/u2 for any u.
Canceling the minus signs and multiplying by g2/f2, we have that

lim
z→zo

g(z)

f(z)
= lim

z→zo

dg

df
.

Inverting,

lim
z→zo

f(z)

g(z)
= lim

z→zo

df

dg
= lim

z→zo

df/dz

dg/dz
.

And if zo itself is infinite? Then, whether it represents a root or a pole, we
define the new variable Z ≡ 1/z and the new functions Φ(Z) ≡ f(1/Z) =
f(z) and Γ(Z) ≡ g(1/Z) = g(z), with which we apply l’Hôpital’s rule for
Z → 0 to obtain

lim
z→∞

f(z)

g(z)
= lim

Z→0

Φ(Z)

Γ(Z)
= lim

Z→0

dΦ/dZ

dΓ/dZ
= lim

Z→0

df/dZ

dg/dZ

= lim
z→∞,
Z→0

(df/dz)(dz/dZ)

(dg/dz)(dz/dZ)
= lim

z→∞

(df/dz)(−z2)

(dg/dz)(−z2)
= lim

z→∞

df/dz

dg/dz
.

Nothing in the derivation requires that z or zo be real. Nothing prevents
one from applying l’Hôpital’s rule recursively, should the occasion arise.38

37Partly with reference to [146, “L’Hopital’s rule,” 03:40, 5 April 2006].
38Consider for example the ratio limx→0(x3 + x)2/x2, which is 0/0. The easier way to

resolve this particular ratio would naturally be to cancel a factor of x2 from it; but just to
make the point let us apply l’Hôpital’s rule instead, reducing the ratio to limx→0 2(x3 +
x)(3x2 + 1)/2x, which is still 0/0. Applying l’Hôpital’s rule again to the result yields
limx→0 2[(3x2+1)2+(x3+x)(6x)]/2 = 2/2 = 1. Where expressions involving trigonometric
functions (chapters 3 and 5) or special functions (mentioned in part III) appear in ratio,
a recursive application of l’Hôpital’s rule can be just the thing one needs.

Observe that one must stop applying l’Hôpital’s rule once the ratio is no longer 0/0 or
∞/∞. In the example, applying the rule a third time would have ruined the result.
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L’Hôpital’s rule is used in evaluating indeterminate forms of the kinds
0/0 and∞/∞, plus related forms like (0)(∞) which can be recast into either
of the two main forms. Good examples of the use require mathematics from
chapter 5 and later, but if we may borrow from (5.8) the natural logarithmic
function and its derivative,39

d

dx
lnx =

1

x
,

then a typical l’Hôpital example is40

lim
x→∞

lnx√
x

= lim
x→∞

1/x

1/2
√
x

= lim
x→∞

2√
x

= 0.

The example incidentally shows that natural logarithms grow slower than
square roots, an instance of a more general principle we shall meet in § 5.3.

Section 5.3 will put l’Hôpital’s rule to work.

4.8 The Newton-Raphson iteration

The Newton-Raphson iteration is a powerful, fast converging, broadly appli-
cable method for finding roots numerically. Given a function f(z) of which
the root is desired, the Newton-Raphson iteration is

zk+1 =

[
z − f(z)

d
dzf(z)

]

z=zk

. (4.30)

One begins the iteration by guessing the root and calling the guess z0.
Then z1, z2, z3, etc., calculated in turn by the iteration (4.30), give suc-
cessively better estimates of the true root z∞.

To understand the Newton-Raphson iteration, consider the function y =
f(x) of Fig 4.6. The iteration approximates the curve f(x) by its tangent

39This paragraph is optional reading for the moment. You can read chapter 5 first, then
come back here and read the paragraph if you prefer.

40[115, § 10-2]
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Figure 4.6: The Newton-Raphson iteration.

b

xk xk+1

f(x)

x

y

line41 (shown as the dashed line in the figure):

f̃k(x) = f(xk) +

[
d

dx
f(x)

]

x=xk

(x− xk).

It then approximates the root xk+1 as the point at which f̃k(xk+1) = 0:

f̃k(xk+1) = 0 = f(xk) +

[
d

dx
f(x)

]

x=xk

(xk+1 − xk).

Solving for xk+1, we have that

xk+1 =

[
xk −

f(x)
d
dxf(x)

]

x=xk

,

which is (4.30) with x← z.
Although the illustration uses real numbers, nothing forbids complex z

and f(z). The Newton-Raphson iteration works just as well for these.

41A tangent line, also just called a tangent, is the line which most nearly approximates
a curve at a given point. The tangent touches the curve at the point, and in the neighbor-
hood of the point it goes in the same direction the curve goes. The dashed line in Fig. 4.6
is a good example of a tangent line.

The relationship between the tangent line and the trigonometric tangent function of
chapter 3 is slightly obscure, maybe more of linguistic interest than of mathematical. The
trigonometric tangent function is named from a variation on Fig. 3.1 in which the triangle’s
bottom leg is extended to unit length, leaving the rightward leg tangent to the circle.
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The principal limitation of the Newton-Raphson arises when the function
has more than one root, as most interesting functions do. The iteration often
converges on the root nearest the initial guess zo but does not always, and in
any case there is no guarantee that the root it finds is the one you wanted.
The most straightforward way to beat this problem is to find all the roots:
first you find some root α, then you remove that root (without affecting any
of the other roots) by dividing f(z)/(z −α), then you find the next root by
iterating on the new function f(z)/(z − α), and so on until you have found
all the roots. If this procedure is not practical (perhaps because the function
has a large or infinite number of roots), then you should probably take care
to make a sufficiently accurate initial guess if you can.

A second limitation of the Newton-Raphson is that, if you happen to
guess z0 especially unfortunately, then the iteration might never converge at
all. For example, the roots of f(z) = z2 + 2 are z = ±i

√
2, but if you guess

that z0 = 1 then the iteration has no way to leave the real number line, so
it never converges42 (and if you guess that z0 =

√
2—well, try it with your

pencil and see what z2 comes out to be). You can fix the problem with a
different, possibly complex initial guess.

A third limitation arises where there is a multiple root. In this case,
the Newton-Raphson normally still converges, but relatively slowly. For
instance, the Newton-Raphson converges relatively slowly on the triple root
of f(z) = z3. However, even the relatively slow convergence is still pretty
fast and is usually adequate, even for calculations by hand.

Usually in practice, the Newton-Raphson iteration works very well. For
most functions, once the Newton-Raphson finds the root’s neighborhood, it
converges on the actual root remarkably quickly. Figure 4.6 shows why: in
the neighborhood, the curve hardly departs from the straight line.

The Newton-Raphson iteration is a champion square-root calculator, in-
cidentally. Consider

f(x) = x2 − p,
whose roots are

x = ±√p.
Per (4.30), the Newton-Raphson iteration for this is

xk+1 =
1

2

[
xk +

p

xk

]
. (4.31)

If you start by guessing
x0 = 1

42It is entertaining to try this on a computer. Then try again with z0 = 1 + i2−0x10.
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and iterate several times, the iteration (4.31) converges on x∞ =
√
p fast.

To calculate the nth root x = p1/n, let

f(x) = xn − p

and iterate43,44

xk+1 =
1

n

[
(n− 1)xk +

p

xn−1
k

]
. (4.32)

Section 13.7 generalizes the Newton-Raphson iteration to handle vector-
valued functions.

This concludes the chapter. Chapter 8, treating the Taylor series, will
continue the general discussion of the derivative.

43Equations (4.31) and (4.32) work not only for real p but also usually for complex.
Given x0 = 1, however, they converge reliably and orderly only for real, nonnegative p.
(To see why, sketch f [x] in the fashion of Fig. 4.6.)

If reliable, orderly convergence is needed for complex p = u + iv = σ cisψ, σ ≥ 0, you
can decompose p1/n per de Moivre’s theorem (3.28) as p1/n = σ1/n cis(ψ/n), in which
cis(ψ/n) = cos(ψ/n) + i sin(ψ/n) is calculated by the Taylor series of Table 8.1. Then σ
is real and nonnegative, upon which (4.32) reliably, orderly computes σ1/n.

The Newton-Raphson iteration however excels as a practical root-finding technique, so
it often pays to be a little less theoretically rigid in applying it. If so, then don’t bother to
decompose; seek p1/n directly, using complex zk in place of the real xk. In the uncommon
event that the direct iteration does not seem to converge, start over again with some
randomly chosen complex z0. This saves effort and usually works.

44[115, § 4-9][91, § 6.1.1][142]
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Chapter 5

The complex exponential

The complex exponential, especially the complex natural exponential, is
ubiquitous in higher mathematics. There seems hardly a corner of calculus,
basic or advanced, in which the complex exponential does not strongly im-
press itself and frequently arise. Because the complex exponential emerges
(at least pedagogically) out of the real exponential—and, especially, because
the complex natural exponential emerges out of the real natural exponen-
tial—this chapter introduces first the real natural exponential and its in-
verse, the real natural logarithm; and then proceeds to show how the two
can operate on complex arguments.

This chapter develops the close relationship between the natural expo-
nential and chapter 3’s trigonometrics, showing that all these (including the
complex natural exponential) belong to a single exponential/trigonometric
family. After developing the relationship, the chapter works out the deriva-
tives of the family’s several functions. Also, the chapter treats the functions’
inverses and works out the derivatives of these inverses—the derivatives of
the inverses turning out to be particularly interesting.

5.1 The real exponential

Consider the factor

(1 + ε)N .

This is the overall factor by which a quantity grows after N iterative rounds
of multiplication1 by (1 + ε). What happens when ε is very small but N is

1For example, let a quantity A be multiplied by (1 + ε), then by (1 + ε) again, and
then by (1 + ε) a third time. The product (1 + ε)3A results from these three rounds of

123
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very large? The really interesting question is, what happens in the limit, as
ε → 0 and N → ∞, while x = εN remains a finite number? The answer is
that the factor becomes

expx ≡ lim
ε→0

(1 + ε)x/ε. (5.1)

Equation (5.1) defines the natural exponential function—commonly, more
briefly named the exponential function. Another way to write the same
definition is

expx = ex, (5.2)

e ≡ lim
ε→0

(1 + ε)1/ε. (5.3)

In whichever form we write it, the question remains as to whether the
limit actually exists; that is, whether 1 < e < ∞; whether in fact we can
put some concrete bound on e. To show that we can,2 we observe per (4.13)
and (4.6) that the derivative of the exponential function is

d

dx
expx = lim

δ→0

exp(x+ δ/2)− exp(x− δ/2)

δ

= lim
δ,ε→0

(1 + ε)(x+δ/2)/ε − (1 + ε)(x−δ/2)/ε

δ

= lim
δ,ε→0

(1 + ε)x/ε
(1 + ε)+δ/2ε − (1 + ε)−δ/2ε

δ

= lim
δ,ε→0

(1 + ε)x/ε
(1 + δ/2)− (1− δ/2)

δ

= lim
ε→0

(1 + ε)x/ε,

which is to say that
d

dx
expx = expx. (5.4)

This is a curious, important result: the derivative of the exponential function
is the exponential function itself; the slope and height of the exponential

multiplication. Overall, such a product is (1 + ε)3 times the quantity A with which we
started. In this example, N = 3.

2Excepting (5.4), the author would prefer to omit much of the rest of this section, but
even at the applied level cannot think of a logically permissible way to do it. It seems
nonobvious that the limit limε→0(1 + ε)1/ε actually does exist. The rest of this section
shows why it does.
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function are everywhere equal. For the moment, however, what interests us
is that

d

dx
expx

∣∣∣∣
x=0

= exp 0 = lim
ε→0

(1 + ε)0 = 1,

which says that the slope and height of the exponential function are both
unity at x = 0, implying that the straight line which best approximates
the exponential function in that neighborhood—the tangent line, which just
grazes the curve—is

y(x) = 1 + x.

With the tangent line y(x) found, the next step toward putting a concrete
bound on e is to show that y(x) ≤ expx for all real x, that the curve runs
nowhere below the line. To show this, we observe per (5.1) that the essential
action of the exponential function is to multiply repeatedly by 1 + ε as x
increases, to divide repeatedly by 1 + ε as x decreases. Since 1 + ε > 1, this
action means for real x that

expx1 ≤ expx2 if x1 ≤ x2.

However, a positive number remains positive no matter how many times one
multiplies or divides it by 1 + ε, so the same action also means that

0 ≤ expx

for all real x. In light of (5.4), the last two equations imply further that

d

dx
expx

∣∣∣∣
x=x1

≤ d

dx
expx

∣∣∣∣
x=x2

if x1 ≤ x2,

0 ≤ d

dx
expx.

But we have already established the tangent line y(x) = 1 + x such that

exp 0 = y(0) = 1,

d

dx
expx

∣∣∣∣
x=0

=
dy

dx

∣∣∣∣
x=0

= 1;

that is, such that the line just grazes the curve of expx at x = 0. Rightward,
at x > 0, the curve’s slope evidently only increases, bending upward away
from the line. Leftward, at x < 0, the curve’s slope evidently only decreases,
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Figure 5.1: The natural exponential.

x

expx

1

−1

again bending upward away from the line. Either way, the curve never
crosses below the line for real x. In symbols,

y(x) ≤ expx.

Figure 5.1 depicts.
Evaluating the last inequality at x = −1/2 and x = 1, we have that

1

2
≤ exp

(
−1

2

)
,

2 ≤ exp (1) .

But per (5.2) expx = ex, so

1

2
≤ e−1/2,

2 ≤ e1,

or in other words,
2 ≤ e ≤ 4, (5.5)

which in consideration of (5.2) puts the desired bound on the exponential
function. The limit does exist.

Dividing (5.4) by expx yields the logarithmic derivative (§ 4.4.10)

d(expx)

(expx) dx
= 1, (5.6)

a form which expresses or captures the deep curiosity of the natural expo-
nential maybe even better than does (5.4).
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By the Taylor series of Table 8.1, the value3

e ≈ 0x2.B7E1

can readily be calculated, but the derivation of that series does not come
until chapter 8.

5.2 The natural logarithm

In the general exponential expression bx one can choose any base b; for
example, b = 2 is an interesting choice. As we shall see in § 5.4, however, it
turns out that b = e, where e is the constant introduced in (5.3), is the most
interesting choice of all. For this reason among others, the base-e logarithm
is similarly interesting, such that we define for it the special notation

ln(·) = loge(·)

and call it the natural logarithm. Just as for any other base b, so also for
base b = e; thus the natural logarithm inverts the natural exponential and
vice versa:

ln expx = ln ex = x,

exp lnx = elnx = x.
(5.7)

Figure 5.2 plots the natural logarithm.
If

y = lnx,

then
x = exp y,

and per (5.4),
dx

dy
= exp y.

But this means that
dx

dy
= x,

the inverse of which is
dy

dx
=

1

x
.

In other words,
d

dx
lnx =

1

x
. (5.8)

3[119, sequence A004593]



128 CHAPTER 5. THE COMPLEX EXPONENTIAL

Figure 5.2: The natural logarithm.

x

lnx

−1

1

Like many of the equations in these early chapters, here is another rather
significant result.4

One can specialize Table 2.5’s logarithmic base-conversion identity to
read

logbw =
lnw

ln b
. (5.9)

This equation converts any logarithm to a natural logarithm. Base b = 2
logarithms are interesting, so we note here that5

ln 2 = − ln
1

2
≈ 0x0.B172,

which chapter 8 and its Table 8.1 will show how to calculate.

5.3 Fast and slow functions

The exponential expx is a fast function. The logarithm lnx is a slow func-
tion. These functions grow, diverge or decay respectively faster and slower
than xa.

4Besides the result itself, the technique which leads to the result is also interesting and
is worth mastering. We will use the technique more than once in this book.

5[119, sequence A002162]
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Such claims are proved by l’Hôpital’s rule (4.29). Applying the rule, we
have that

lim
x→∞

lnx

xa
= lim

x→∞

−1

axa
=

{
0 if a > 0,

+∞ if a ≤ 0,

lim
x→0

lnx

xa
= lim

x→0

−1

axa
=

{
−∞ if a ≥ 0,

0 if a < 0,

(5.10)

which reveals the logarithm to be a slow function. Since the exp(·) and ln(·)
functions are mutual inverses, we can leverage (5.10) to show also that

lim
x→∞

exp(±x)

xa
= lim

x→∞
exp

[
ln

exp(±x)

xa

]

= lim
x→∞

exp [±x− a lnx]

= lim
x→∞

exp

[
(x)

(
±1− a lnx

x

)]

= lim
x→∞

exp [(x) (±1− 0)]

= lim
x→∞

exp [±x] .

That is,

lim
x→∞

exp(+x)

xa
=∞,

lim
x→∞

exp(−x)

xa
= 0,

(5.11)

which reveals the exponential to be a fast function. Exponentials grow or
decay faster than powers; logarithms diverge slower.

Such conclusions are extended to bases other than the natural base e
simply by observing that logb x = lnx/ ln b and that bx = exp(x ln b). Thus
exponentials generally are fast and logarithms generally are slow, regardless
of the base.6

It is interesting and worthwhile to contrast the sequence

. . . ,− 3!

x4
,

2!

x3
,− 1!

x2
,

0!

x1
,
x0

0!
,
x1

1!
,
x2

2!
,
x3

3!
,
x4

4!
, . . .

6There are of course some degenerate edge cases like b = 0 and b = 1. The reader can
detail these as the need arises.
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against the sequence

. . . ,− 3!

x4
,

2!

x3
,− 1!

x2
,

0!

x1
, lnx,

x1

1!
,
x2

2!
,
x3

3!
,
x4

4!
, . . .

As x → +∞, each sequence increases in magnitude going rightward. Also,
each term in each sequence is the derivative with respect to x of the term to
its right—except left of the middle element in the first sequence and right of
the middle element in the second. The exception is peculiar. What is going
on here?

The answer is that x0 (which is just a constant) and lnx both are of
zeroth order in x. This seems strange at first because lnx diverges as x→∞
whereas x0 does not, but the divergence of the former is extremely slow—
so slow, in fact, that per (5.10) limx→∞(lnx)/xε = 0 for any positive ε no
matter how small.7 Figure 5.2 has plotted lnx only for x ∼ 1, but beyond the
figure’s window the curve (whose slope is 1/x) flattens rapidly rightward, to
the extent that it locally resembles the plot of a constant value; and indeed
because

0 = lim
u→∞

ln
x+ u

u
,

whence

0 = lim
u→∞

ln(x+ u)− lnu,

lim
u→∞

lnu = lim
u→∞

ln(x+ u),

1 = lim
u→∞

ln(x+ u)

lnu
,

one can write,

x0 = lim
u→∞

ln(x+ u)

lnu
,

which casts x0 as a logarithm greatly shifted and moderately scaled. Ad-
mittedly, one ought not strain such logic too far, because lnx is not in
fact a constant, but the point nevertheless remains that x0 and lnx often
play analogous roles in mathematics. The logarithm can in some situations
profitably be thought of as a “diverging constant” of sorts.

7One does not grasp how truly slow the divergence is until one calculates a few concrete
values. Consider for instance how far out x must run to make lnx = 0x100. It’s a long,
long way. The natural logarithm does indeed eventually diverge to infinity, in the literal
sense that there is no height it does not eventually reach, but it certainly does not hurry.
As we have seen, it takes practically forever just to reach 0x100.
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Less strange-seeming perhaps is the consequence of (5.11) that expx is
of infinite order in x, that x∞ and expx play analogous roles.

It befits an applied mathematician to internalize subjectively (5.10)
and (5.11), to remember that lnx resembles x0 and that expx resembles x∞.
A qualitative sense that logarithms are slow and exponentials, fast, helps
one to grasp mentally the essential features of many mathematical models
one encounters in practice.

Now leaving aside fast and slow functions for the moment, we turn our
attention in the next section to the highly important matter of the expo-
nential of a complex argument.

5.4 Euler’s formula

The result of § 5.1 leads to one of the central questions in all of mathematics.
How can one evaluate

exp iθ = lim
ε→0

(1 + ε)iθ/ε,

where i2 = −1 is the imaginary unit introduced in § 2.11?
To begin, one can take advantage of (4.7) to write the last equation in

the form
exp iθ = lim

ε→0
(1 + iε)θ/ε,

but from here it is not obvious where to go. The book’s development up
to the present point gives no obvious direction. In fact it appears that the
interpretation of exp iθ remains for us to define, if we can find a way to define
it which fits sensibly with our existing notions of the real exponential. So,
if we don’t quite know where to go with this yet, what do we know?

One thing we know is that if θ = ε, then

exp(iε) = (1 + iε)ε/ε = 1 + iε.

But per § 5.1, the essential operation of the exponential function is to multi-
ply repeatedly by some factor, the factor being not quite exactly unity and,
in this case, being 1 + iε. With such thoughts in mind, let us multiply a
complex number z = x+ iy by 1 + iε, obtaining

(1 + iε)(x+ iy) = (x− εy) + i(y + εx).

The resulting change in z is8

∆z = (1 + iε)(x+ iy)− (x+ iy) = (ε)(−y + ix),

8As the context implies, the notation ∆z means “the change in z.” We have briefly
met such notation already in § 2.7.
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Figure 5.3: The complex exponential and Euler’s formula.
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ℜ(z)

iℑ(z)

in which it is seen that

|∆z| = (ε)
√
y2 + x2 = ερ,

arg(∆z) = arctan
x

−y = φ+
2π

4
.

The ∆z, ρ = |z| and φ = arg z are as shown in Fig. 5.3. Whether in the
figure or in the equations, the change ∆z is evidently proportional to the
magnitude of z, but at a right angle to z’s radial arm in the Argand plane.

To travel about a circle wants motion always perpendicular to the circle’s
radial arm, which happens to be just the kind of motion ∆z represents.
Referring to the figure and the last equations, we have then that

∆ρ ≡ |z + ∆z| − |z| = 0,

∆φ ≡ arg(z + ∆z)− arg z =
|∆z|
ρ

=
ερ

ρ
= ε,

which results evidently are valid for infinitesimal ε → 0 and, importantly,
stand independently of the value of ρ. (But does ρ not grow at least a little,
as the last equations almost seem to suggest? The answer is no; or, if you
prefer, the answer is that ∆ρ ≈ {[

√
1 + ε2] − 1}ρ ≈ ε2ρ/2 ≈ 0, a second-

order infinitesimal inconsequential on the scale of ερ, utterly vanishing by
comparison in the limit ε→ 0. Remember that ∆z has a phase, a direction in
the Argand plane; and that, as the figure depicts, this phase points at a right
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angle to the phase of z. In mathematical symbols, arg[∆z]− arg z = 2π/4.
Now, if the difference between these phases were greater than 2π/4, that
would mean that ∆z pointed inward, which would cause |z + ∆z| < |z|,
wouldn’t it? And if the difference were less than 2π/4, that would mean
that ∆z pointed outward, which would cause |z+∆z| > |z|. So, what phase
differential exactly causes |z + ∆z| = |z|? Where indeed is the boundary
between the inward and outward domains? Answer: 2π/4. Such are the
paradoxes of calculus!) With such results in hand, now let us recall from
earlier in the section that—as we have asserted or defined—

exp iθ = lim
ε→0

(1 + iε)θ/ε,

and that this remains so for arbitrary real θ. Yet what does such an equation
do, mechanically, but to compute exp iθ by multiplying 1 by 1+iε repeatedly,
θ/ε times? The plain answer is that such an equation does precisely this and
nothing else.9 We have recently seen how each multiplication of the kind
the equation suggests increments the phase φ by ∆φ = ε while not changing
the magnitude ρ. Since the phase φ begins from arg 1 = 0 it must become

φ =
θ

ε
ε = θ

after θ/ε increments of ε each, while the magnitude must remain

ρ = 1.

Reversing the sequence of the last two equations and recalling that ρ ≡
|exp iθ| and that φ ≡ arg(exp iθ),

|exp iθ| = 1,

arg(exp iθ) = θ.

Moreover, had we known that θ were just φ ≡ arg(exp iθ), naturally we
should have represented it by the symbol φ from the start. Changing φ← θ
now, we have for real φ that

|exp iφ| = 1,

arg(exp iφ) = φ,

which equations together say neither more nor less than that

exp iφ = cosφ+ i sinφ = cisφ, (5.12)

9See footnote 1.
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where the notation cis(·) is as defined in § 3.11.
Along with the Pythagorean theorem (1.1), the fundamental theorem

of calculus (7.2), Cauchy’s integral formula (8.29) and Fourier’s equation
(18.1), eqn. (5.12) is one of the most famous results in all of mathematics.
It is called Euler’s formula,10,11 and it opens the exponential domain fully
to complex numbers, not just for the natural base e but for any base. How?
Consider in light of Fig. 5.3 and (5.12) that one can express any complex
number in the form

z = x+ iy = ρ exp iφ.

If a complex base w is similarly expressed in the form

w = u+ iv = σ exp iψ,

then it follows that

wz = exp[lnwz]

= exp[z lnw]

= exp[(x+ iy)(iψ + lnσ)]

= exp[(x lnσ − ψy) + i(y lnσ + ψx)].

Since exp(α+ β) = eα+β = expα expβ, the last equation is

wz = exp(x lnσ − ψy) exp i(y lnσ + ψx), (5.13)

where

x = ρ cosφ,

y = ρ sinφ,

σ =
√
u2 + v2,

tanψ =
v

u
.

Equation (5.13) serves to raise any complex number to a complex power.

10For native English speakers who do not speak German, Leonhard Euler’s name is
pronounced as “oiler.”

11An alternate derivation of Euler’s formula (5.12)—less intuitive and requiring slightly
more advanced mathematics, but briefer—constructs from Table 8.1 the Taylor series
for exp iφ, cosφ and i sinφ, then adds the latter two to show them equal to the first
of the three. Such an alternate derivation lends little insight, perhaps, but at least it
builds confidence that we actually knew what we were doing when we came up with the
incredible (5.12).
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Curious consequences of Euler’s formula (5.12) include that12

e±i2π/4 = ±i;
e±i2π/2 = −1;

ein2π = 1, n ∈ Z.
(5.14)

For the natural logarithm of a complex number in light of Euler’s formula,
we have that

lnw = ln
(
σeiψ

)
= lnσ + iψ. (5.15)

5.5 Complex exponentials and de Moivre’s theo-
rem

Euler’s formula (5.12) implies that complex numbers z1 and z2 can be written
as

z1 = ρ1e
iφ1 ,

z2 = ρ2e
iφ2 .

(5.16)

By the basic power properties of Table 2.2, then,

z1z2 = ρ1ρ2e
i(φ1+φ2) = ρ1ρ2 exp[i(φ1 + φ2)],

z1

z2
=

ρ1

ρ2
ei(φ1−φ2) =

ρ1

ρ2
exp[i(φ1 − φ2)],

za = ρaeiaφ = ρa exp[iaφ].

(5.17)

This is de Moivre’s theorem, introduced in § 3.11.

5.6 Complex trigonometrics

Applying Euler’s formula (5.12) to +φ then to −φ, we have that

exp(+iφ) = cosφ+ i sinφ,

exp(−iφ) = cosφ− i sinφ.

Adding the two equations and solving for cosφ yields that

cosφ =
exp(+iφ) + exp(−iφ)

2
. (5.18)

12Notes of the obvious, like n ∈ Z, are sometimes omitted by this book because they
clutter the page. However, the note is included in this instance.
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Subtracting the second equation from the first and solving for sinφ yields
that

sinφ =
exp(+iφ)− exp(−iφ)

i2
. (5.19)

Thus are the trigonometrics expressed in terms of complex exponentials.

5.6.1 The hyperbolic functions

The forms (5.18) and (5.19) suggest the definition of new functions

coshφ ≡ exp(+φ) + exp(−φ)

2
, (5.20)

sinhφ ≡ exp(+φ)− exp(−φ)

2
, (5.21)

tanhφ ≡ sinhφ

coshφ
. (5.22)

These are called the hyperbolic functions. Their inverses arccosh, etc., are de-
fined in the obvious way. The Pythagorean theorem for trigonometrics (3.2)
is that cos2 φ + sin2 φ = 1, verified by combining (5.18) and (5.19); and
from (5.20) and (5.21) one can derive the hyperbolic analog:

cos2 φ+ sin2 φ = 1,

cosh2 φ− sinh2 φ = 1.
(5.23)

Although Fig. 5.3 has visualized only real φ, complex φ can be con-
sidered, too. Nothing prevents one from taking (5.18) through (5.21), as
written, to define the trigonometrics of complex φ; so that’s what we now
do. From this it follows that (5.23) and others must likewise hold13 for
complex φ.

13Chapter 15 teaches that the dot product of a unit vector and its own conjugate is
unity—v̂∗ · v̂ = 1, in the notation of that chapter—which tempts one to suppose in-
correctly by analogy that (cosφ)∗ cosφ + (sinφ)∗ sinφ = 1 and that (coshφ)∗ coshφ −
(sinhφ)∗ sinhφ = 1 when the angle φ is complex. However, (5.18) through (5.21) can be
generally true only if (5.23) holds exactly as written for complex φ as well as for real.
Hence in fact (cosφ)∗ cosφ+ (sinφ)∗ sinφ 6= 1 and (coshφ)∗ coshφ− (sinhφ)∗ sinhφ 6= 1.

Fig. 3.1 is quite handy for real φ but what if anything the figure means when φ is com-
plex is not obvious. The φ of the figure cannot quite be understood to mean an actual
direction or bearing in the east-north-west-south sense. Therefore, visual analogies be-
tween geometrical vectors like v̂, on the one hand, and Argand-plotted complex numbers,
on the other, can analytically fail, especially in circumstances in which φ may be complex.
(The professional mathematician might smile at this, gently prodding us that this is why
one should rely on analysis rather than on mere geometrical intuition. If so, then we would
acknowledge the prod [25] without further comment in this instance.)
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The notation exp i(·) or ei(·) is sometimes felt to be too bulky. Although
less commonly seen than the other two, the notation

cis(·) ≡ exp i(·) = cos(·) + i sin(·)

is also conventionally recognized, as earlier seen in § 3.11. Also conven-
tionally recognized are sin−1(·) and occasionally asin(·) for arcsin(·), and
likewise for the several other trigs.

Replacing z ← φ in this section’s several equations implies a coherent
definition for trigonometric functions of a complex variable. Then, compar-
ing (5.18) and (5.19) respectively to (5.20) and (5.21), we have that

cosh z = cos iz,

i sinh z = sin iz,

i tanh z = tan iz,

(5.24)

by which one can immediately adapt the many trigonometric properties of
Tables 3.1 and 3.3 to hyperbolic use.

At this point in the development one begins to notice that the cos, sin,
exp, cis, cosh and sinh functions are each really just different facets of the
same mathematical phenomenon. Likewise their respective inverses: arccos,
arcsin, ln, −i ln, arccosh and arcsinh. Conventional names for these two
mutually inverse families of functions are unknown to the author, but one
might call them the natural exponential and natural logarithmic families.
Or, if the various tangent functions were included, then one might call them
the trigonometric and inverse trigonometric families.

5.6.2 Inverse complex trigonometrics

Since one can express the several trigonometric functions in terms of com-
plex exponentials one would like to know, complementarily, whether one
cannot express the several inverse trigonometric functions in terms of com-
plex logarithms. As it happens, one can.14

Let us consider the arccosine function, for instance. If per (5.18)

z = cosw =
eiw + e−iw

2
,

14[120, chapter 2]
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then by successive steps

eiw = 2z − e−iw,
[
eiw
]2

=
[
eiw
] [

2z − e−iw
]

= 2z
(
eiw
)
− 1,

eiw = z ±
√
z2 − 1,

the last step of which has used the quadratic formula (2.2). Taking the
logarithm, we have that

w =
1

i
ln
(
z ± i

√
1− z2

)
;

or, since by definition z = cosw, that

arccos z =
1

i
ln
(
z ± i

√
1− z2

)
. (5.25)

Similarly,

arcsin z =
1

i
ln
(
iz ±

√
1− z2

)
. (5.26)

The arctangent goes only a little differently:

z = tanw = −ie
iw − e−iw
eiw + e−iw

,

zeiw + ze−iw = −ieiw + ie−iw,

(i+ z)eiw = (i− z)e−iw,

ei2w =
i− z
i+ z

,

implying that

arctan z =
1

i2
ln
i− z
i+ z

. (5.27)

By the same means, one can work out the inverse hyperbolics to be

arccosh z = ln
(
z ±

√
z2 − 1

)
,

arcsinh z = ln
(
z ±

√
z2 + 1

)
,

arctanh z =
1

2
ln

1 + z

1− z .

(5.28)

5.7 Summary of properties

Table 5.1 gathers properties of the complex exponential from this chapter
and from §§ 2.11, 3.11 and 4.4.
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Table 5.1: Complex exponential properties.

i2 = −1 = (−i)2

1

i
= −i

eiφ = cosφ+ i sinφ

eiz = cos z + i sin z

z1z2 = ρ1ρ2e
i(φ1+φ2) = (x1x2 − y1y2) + i(y1x2 + x1y2)

z1

z2
=

ρ1

ρ2
ei(φ1−φ2) =

(x1x2 + y1y2) + i(y1x2 − x1y2)

x2
2 + y2

2

za = ρaeiaφ

wz = ex lnσ−ψyei(y lnσ+ψx)

lnw = lnσ + iψ

sin z =
eiz − e−iz

i2
sin iz = i sinh z sinh z =

ez − e−z
2

cos z =
eiz + e−iz

2
cos iz = cosh z cosh z =

ez + e−z

2

tan z =
sin z

cos z
tan iz = i tanh z tanh z =

sinh z

cosh z

arcsin z =
1

i
ln
(
iz ±

√
1− z2

)
arcsinh z = ln

(
z ±

√
z2 + 1

)

arccos z =
1

i
ln
(
z ± i

√
1− z2

)
arccosh z = ln

(
z ±

√
z2 − 1

)

arctan z =
1

i2
ln
i− z
i+ z

arctanh z =
1

2
ln

1 + z

1− z
cos2 z + sin2 z = 1 = cosh2 z − sinh2 z

z ≡ x+ iy = ρeiφ
d

dz
exp z = exp z

w ≡ u+ iv = σeiψ
d

dw
lnw =

1

w

exp z ≡ ez
df/dz

f(z)
=

d

dz
ln f(z)

cis z ≡ cos z + i sin z = eiz logbw =
lnw

ln b
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Figure 5.4: The derivatives of the sine and cosine functions.

z

dz

dt

ωt+ φo

ρ

ℜ(z)

ℑ(z)

5.8 Derivatives of complex exponentials

This section computes the derivatives of the various trigonometric and in-
verse trigonometric functions.

5.8.1 Derivatives of sine and cosine

One could compute derivatives of the sine and cosine functions from (5.18)
and (5.19). To do so is left as an exercise. Meanwhile, however, another,
more sporting way to find the derivatives is known: one can directly examine
the circle from which the sine and cosine functions come.

Refer to Fig. 5.4. Suppose that the point z in the figure is not fixed but
travels steadily about the circle such that15

z(t) = (ρ) [cos(ωt+ φo) + i sin(ωt+ φo)] . (5.29)

How fast then is the rate dz/dt, and in what Argand direction? Answer:

dz

dt
= (ρ)

[
d

dt
cos(ωt+ φo) + i

d

dt
sin(ωt+ φo)

]
. (5.30)

Evidently however, considering the figure,

15Observe the Greek letter ω, omega, which is not a Roman w. Refer to appendix B.
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• the speed |dz/dt| is also (ρ)(dφ/dt) = ρω;

• the direction is at right angles to the arm of ρ, which is to say that
arg(dz/dt) = φ+ 2π/4.

With these observations we can write that

dz

dt
= (ρω)

[
cos

(
ωt+ φo +

2π

4

)
+ i sin

(
ωt+ φo +

2π

4

)]

= (ρω) [− sin(ωt+ φo) + i cos(ωt+ φo)] . (5.31)

Matching the real and imaginary parts of (5.30) against those of (5.31), we
have that

d

dt
cos(ωt+ φo) = −ω sin(ωt+ φo),

d

dt
sin(ωt+ φo) = +ω cos(ωt+ φo).

(5.32)

If ω = 1 and φo = 0, these are that

d

dt
cos t = − sin t,

d

dt
sin t = + cos t.

(5.33)

5.8.2 Derivatives of the trigonometrics

Equations (5.4) and (5.33) give the derivatives of exp(·), sin(·) and cos(·).
From these, with the help of (5.23) and the derivative chain and product
rules (§ 4.5), we can calculate the several derivatives of Table 5.2.16

5.8.3 Derivatives of the inverse trigonometrics

Observe the pair

d

dz
exp z = exp z,

d

dw
lnw =

1

w
.

The natural exponential exp z belongs to the trigonometric family of func-
tions, as does its derivative. The natural logarithm lnw, by contrast, belongs

16[115, back endpaper]
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Table 5.2: Derivatives of the trigonometrics.

d

dz
exp z = + exp z

d

dz

1

exp z
= − 1

exp z

d

dz
sin z = + cos z

d

dz

1

sin z
= − 1

tan z sin z
d

dz
cos z = − sin z

d

dz

1

cos z
= +

tan z

cos z

d

dz
tan z = +

(
1 + tan2 z

)
= +

1

cos2 z
d

dz

1

tan z
= −

(
1 +

1

tan2 z

)
= − 1

sin2 z

d

dz
sinh z = + cosh z

d

dz

1

sinh z
= − 1

tanh z sinh z
d

dz
cosh z = + sinh z

d

dz

1

cosh z
= −tanh z

cosh z

d

dz
tanh z = 1− tanh2 z = +

1

cosh2 z
d

dz

1

tanh z
= 1− 1

tanh2 z
= − 1

sinh2 z
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to the inverse trigonometric family of functions; but its derivative is simpler,
not a trigonometric or inverse trigonometric function at all. In Table 5.2,
one notices that all the trigonometrics have trigonometric derivatives. By
analogy with the natural logarithm, do all the inverse trigonometrics have
simpler derivatives?

It turns out that they do. Refer to the account of the natural logarithm’s
derivative in § 5.2. Following a similar procedure, we have by successive steps
that

arcsinw = z,

w = sin z,

dw

dz
= cos z,

dw

dz
= ±

√
1− sin2 z,

dw

dz
= ±

√
1− w2,

dz

dw
=

±1√
1− w2

,

d

dw
arcsinw =

±1√
1− w2

. (5.34)

Similarly,

arctanw = z,

w = tan z,

dw

dz
= 1 + tan2 z,

dw

dz
= 1 + w2,

dz

dw
=

1

1 + w2
,

d

dw
arctanw =

1

1 + w2
. (5.35)

Derivatives of the other inverse trigonometrics are found in the same way.
Table 5.3 summarizes.

Table 5.3 may prove useful when the integration technique of § 9.1 is
applied.
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Table 5.3: Derivatives of the inverse trigonometrics.

d

dw
lnw =

1

w
d

dw
arcsinw =

±1√
1− w2

d

dw
arccosw =

∓1√
1− w2

d

dw
arctanw =

1

1 + w2

d

dw
arcsinhw =

±1√
w2 + 1

d

dw
arccoshw =

±1√
w2 − 1

d

dw
arctanhw =

1

1− w2

5.9 The actuality of complex quantities

Doing all this theoretically interesting complex mathematics, the applied
mathematician can lose sight of some questions he probably ought to keep
in mind: do complex quantities arise in nature? If they do not, then what
physical systems do we mean to model with them? Hadn’t we better avoid
these complex quantities, leaving them to the professional mathematical
theorists?

As developed by Oliver Heaviside in 1887,17 the answer depends on your
point of view. If I have 300 g of grapes and 100 g of grapes, then I have 400 g
altogether. Alternately, if I have 500 g of grapes and −100 g of grapes,
again I have 400 g altogether. (What does it mean to have −100 g of
grapes? Maybe that I ate some!) But what if I have 200 + i100 g of grapes
and 200− i100 g of grapes? Answer: again, 400 g.

Probably you would not choose to think of 200 + i100 g of grapes
and 200 − i100 g of grapes, but because of (5.18) and (5.19), one often
describes wave phenomena as linear superpositions (sums) of countervailing

17[93]
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complex exponentials. Consider for instance the propagating wave

A cos[ωt− kz] =
A

2
exp[+i(ωt− kz)] +

A

2
exp[−i(ωt− kz)].

The benefit of splitting the real cosine into two complex parts is that, while
the magnitude of the cosine changes with time t, the magnitude of either
exponential alone remains steady (see the circle in Fig. 5.3). It turns out
to be easier to analyze two complex wave quantities of constant magnitude
than to analyze one real wave quantity of varying magnitude. Better yet,
since each complex wave quantity is the complex conjugate of the other,
the analyses thereof are mutually conjugate, too (§ 2.11.2); so one normally
need not actually analyze the second. The one analysis suffices for both.18

Some authors have gently denigrated the use of imaginary parts in phys-
ical applications as a mere mathematical trick, as though the parts were not
actually there.19 Well, that is one way to treat the matter, but it is not the
way this book recommends. Nothing in the mathematics requires you to
regard the imaginary parts as physically nonexistent. One need not abuse
Ockham’s razor! (Ockham’s razor, “Do not multiply objects without neces-
sity,”20 is a sound philosophical indicator when properly used. However, the
razor is overused in some circles, particularly in circles in which Aristotle21

is believed—mistakenly, in this writer’s view—to be vaguely outdated; or

18If the point is not immediately clear, an example: suppose that by the Newton-
Raphson iteration (§ 4.8) you have found a root of the polynomial x3 + 2x2 + 3x + 4 at
x ≈ −0x0.2D + i0x1.8C. Where is there another root? Answer: there is a conjugate root
at x ≈ −0x0.2D − i0x1.8C. Because the polynomial’s coefficients are real, one need not
actually run the Newton-Raphson again to find the conjugate root.

Another example, this time with a wave: suppose that, when fed by a time-
varying electric current of (5.0 milliamps) exp{+i(60 sec−1)2πt}, an electric ca-
pacitor develops a voltage—that is, develops an electric tension or potential—
of (40 volts) exp{+i[(60 sec−1)2πt − 2π/4]}. It immediately follows, with-
out further analysis, that the same capacitor, if fed by a time-varying elec-
tric current of (5.0 milliamps) exp{−i(60 sec−1)2πt}, would develop a voltage of
(40 volts) exp{−i[(60 sec−1)2πt − 2π/4]}. The conjugate current gives rise to a conju-
gate voltage.

The reason to analyze an electric circuit in such a way is that, after analyzing it, one
can sum the two complex currents to get a real a.c. current like the current an electric wall
receptacle supplies. If one does this, then one can likewise sum the two complex voltages to
compute the voltage the capacitor would develop. Indeed, this is how electrical engineers
normally analyze a.c. systems (well, electrical engineers know some shortcuts, but this is
the idea), because exp(·) is so much easier a function to handle than cos(·) or sin(·) is.

19One who gently denigrates the use can nevertheless still apply the trick! They often
do.

20[125, chapter 12]
21[44]
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more likely in circles in which Aristotle has been altogether forgotten. More
often than one likes to believe, the necessity to multiply objects remains
hidden until one has ventured the multiplication, nor reveals itself to the
one who wields the razor, whose hand humility should stay.) It is true by
Euler’s formula (5.12) that a complex exponential exp iφ can be decomposed
into a sum of trigonometrics. However, it is equally true by the complex
trigonometric formulas (5.18) and (5.19) that a trigonometric can be decom-
posed into a sum of complex exponentials. So, if each can be decomposed
into the other, then which of the two is the true decomposition? Answer:
that depends on your point of view. Experience seems to recommend view-
ing the complex exponential as the basic element—as the element of which
the trigonometrics are composed—rather than the other way around. From
this point of view, it is (5.18) and (5.19) which are the true decomposition.
Euler’s formula (5.12) itself could be viewed in this sense as secondary.

The complex exponential method of offsetting imaginary parts offers an
elegant yet practical mathematical means to model physical wave phenom-
ena. It may find other uses, too, so go ahead: regard the imaginary parts
as actual. Aristotle would regard them so (or so the writer suspects). To
regard the imaginary parts as actual hurts nothing, and it helps with the
math.



Chapter 6

Primes, roots and averages

This chapter gathers a few significant topics, each of whose treatment seems
too brief for a chapter of its own.

6.1 Prime numbers

A prime number—or simply, a prime—is an integer greater than one, divis-
ible only by one and itself. A composite number is an integer greater than
one and not prime. A composite number can be composed as a product of
two or more prime numbers. All positive integers greater than one are either
composite or prime.

The mathematical study of prime numbers and their incidents consti-
tutes number theory, and it is a deep area of mathematics. The deeper
results of number theory seldom arise in applications,1 however, so we will
confine our study of number theory in this book to one or two of its simplest,
most broadly interesting results.

6.1.1 The infinite supply of primes

The first primes are evidently 2, 3, 5, 7, 0xB, . . . . Is there a last prime?

To show that there is no last prime, suppose that there were. More
precisely, suppose that there existed exactly N primes, with N finite, letting
p1, p2, . . . , pN represent these primes from least to greatest. Now consider

1The deeper results of number theory do arise in cryptography, or so the author has
been led to understand. Although cryptography is literally an application of mathematics,
its spirit is that of pure mathematics rather than of applied. If you seek cryptographic
derivations, this book is probably not the one you want.

147
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the product of all the primes,

C =
N∏

j=1

pj .

What of C + 1? Since p1 = 2 divides C, it cannot divide C + 1. Similarly,
since p2 = 3 divides C, it also cannot divide C + 1. The same goes for
p3 = 5, p4 = 7, p5 = 0xB, etc. Apparently none of the primes in the pj
series divides C + 1, which implies either that C + 1 itself is prime, or that
C + 1 is composed of primes not in the series. But the latter is assumed
impossible on the ground that the pj series includes all primes; and the
former is assumed impossible on the ground that C + 1 > C > pN , with pN
the greatest prime. The contradiction proves false the assumption that gave
rise to it. The false assumption: that there were a last prime.

Thus there is no last prime. No matter how great a prime number one
finds, a greater can always be found. The supply of primes is infinite.2

Attributed to the ancient geometer Euclid, the foregoing proof is a clas-
sic example of mathematical reductio ad absurdum, or as usually styled in
English, proof by contradiction.3

6.1.2 Compositional uniqueness

Occasionally in mathematics, plausible assumptions can hide subtle logical
flaws. One such plausible assumption is the assumption that every positive
integer has a unique prime factorization. It is readily seen that the first
several positive integers—1 = (), 2 = (21), 3 = (31), 4 = (22), 5 = (51),
6 = (21)(31), 7 = (71), 8 = (23), . . . —each have unique prime factorizations,
but is this necessarily true of all positive integers?

To show that it is true, suppose that it were not.4 More precisely, sup-
pose that there did exist positive integers factorable each in two or more
distinct ways, with the symbol C representing the least such integer. Noting
that C must be composite (prime numbers by definition are each factorable

2[122]
3[110, appendix 1][146, “Reductio ad absurdum,” 02:36, 28 April 2006]
4Unfortunately the author knows no more elegant proof than this, yet cannot even

cite this one properly. The author encountered the proof in some book in the library of
Hayward State University, California, during the 1990s. The identity of that book is now
long forgotten.
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only one way, like 5 = [51]), let

Cp ≡
Np∏

j=1

pj ,

Cq ≡
Nq∏

k=1

qk,

Cp = Cq = C,

pj ≤ pj+1,

qk ≤ qk+1,

p1 ≤ q1,

Np > 1,

Nq > 1,

where Cp and Cq represent two distinct prime factorizations of the same
number C and where the pj and qk are the respective primes ordered from
least to greatest. We see that

pj 6= qk

for any j and k—that is, that the same prime cannot appear in both
factorizations—because if the same prime r did appear in both then C/r
either would be prime (in which case both factorizations would be [r][C/r],
defying our assumption that the two differed) or would constitute an am-
biguously factorable composite integer less than C when we had already
defined C to represent the least such. Among other effects, the fact that
pj 6= qk strengthens the definition p1 ≤ q1 to read

p1 < q1.

Let us now rewrite the two factorizations in the form

Cp = p1Ap,

Cq = q1Aq,

Cp = Cq = C,

Ap ≡
Np∏

j=2

pj ,

Aq ≡
Nq∏

k=2

qk,
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where p1 and q1 are the least primes in their respective factorizations.
Since C is composite and since p1 < q1, we have that

1 < p1 < q1 ≤
√
C ≤ Aq < Ap < C,

which implies that

p1q1 < C.

The last inequality lets us compose the new positive integer

B = C − p1q1,

which might be prime or composite (or unity), but which either way enjoys
a unique prime factorization because B < C, with C the least positive
integer factorable two ways. Observing that some integer s which divides C
necessarily also divides C ± ns, we note that each of p1 and q1 necessarily
divides B. This means that B’s unique factorization includes both p1 and q1,
which further means that the product p1q1 divides B. But if p1q1 divides B,
then it divides B + p1q1 = C, also.

Let E represent the positive integer which results from dividing C
by p1q1:

E ≡ C

p1q1
.

Then,

Eq1 =
C

p1
= Ap,

Ep1 =
C

q1
= Aq.

That Eq1 = Ap says that q1 divides Ap. But Ap < C, so Ap’s prime factor-
ization is unique—and we see above that Ap’s factorization does not include
any qk, not even q1. The contradiction proves false the assumption that
gave rise to it. The false assumption: that there existed a least composite
number C prime-factorable in two distinct ways.

Thus no positive integer is ambiguously factorable. Prime factorizations
are always unique.

We have observed at the start of this subsection that plausible assump-
tions can hide subtle logical flaws. Indeed this is so. Interestingly however,
the plausible assumption of the present subsection has turned out absolutely
correct; we have just had to do some extra work to prove it. Such effects
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are typical on the shadowed frontier where applied shades into pure math-
ematics: with sufficient experience and with a firm grasp of the model at
hand, if you think that it’s true, then it probably is. Judging when to delve
into the mathematics anyway, seeking a more rigorous demonstration of a
proposition one feels pretty sure is correct, is a matter of applied mathe-
matical style. It depends on how sure one feels, and more importantly on
whether the unsureness felt is true uncertainty or is just an unaccountable
desire for more precise mathematical definition (if the latter, then unlike
the author you may have the right temperament to become a professional
mathematician). The author does judge the present subsection’s proof to
be worth the applied effort; but nevertheless, when one lets logical minutiae
distract him to too great a degree, one admittedly begins to drift out of the
applied mathematical realm that is the subject of this book.

6.1.3 Rational and irrational numbers

A rational number is a finite real number expressible as a ratio of integers5

x =
p

q
, (p, q) ∈ Z, q > 0.

The ratio is fully reduced if p and q have no prime factors in common. For
instance, 4/6 is not fully reduced, whereas 2/3 is.

An irrational number is a finite real number which is not rational. For
example,

√
2 is irrational. In fact any x =

√
n is irrational unless integral;

there is no such thing as a
√
n which is not an integer but is rational.

To prove6 the last point, suppose that there did exist a fully reduced

x =
p

q
=
√
n, (n, p, q) ∈ Z, n > 0, p > 0, q > 1.

Squaring the equation, we have that

p2

q2
= n,

which form is evidently also fully reduced. But if q > 1, then the fully
reduced n = p2/q2 is not an integer as we had assumed that it was. The
contradiction proves false the assumption which gave rise to it. Hence there
exists no rational, nonintegral

√
n, as was to be demonstrated. The proof is

readily extended to show that any x = nj/k is irrational if nonintegral, the

5Section 2.3 explains the ∈ Z notation.
6A proof somewhat like the one presented here is found in [110, appendix 1].
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extension by writing that pk/qk = nj then following similar steps as those
this paragraph outlines.

That’s all the number theory the book treats; but in applied math, so
little will take you pretty far. Now onward we go to other topics.

6.2 The existence and number of polynomial roots

This section shows that an Nth-order polynomial must have exactly N roots.

6.2.1 Polynomial roots

Consider the quotient B(z)/A(z), where

A(z) = z − α,

B(z) =
N∑

k=0

bkz
k, N > 0, bN 6= 0,

B(α) = 0.

In the long-division symbology of Table 2.3,

B(z) = A(z)Q0(z) +R0(z),

where Q0(z) is the quotient and R0(z), a remainder. In this case the divisor
A(z) = z−α has first order, and as § 2.6.2 has observed, first-order divisors
leave zeroth-order, constant remainders R0(z) = ρ. Thus substituting yields
that

B(z) = (z − α)Q0(z) + ρ.

When z = α, this reduces to

B(α) = ρ.

But B(α) = 0 by assumption, so

ρ = 0.

Evidently the division leaves no remainder ρ, which is to say that z − α
exactly divides every polynomial B(z) of which z = α is a root.7

Note that if the polynomial B(z) has order N , then the quotient Q(z) =
B(z)/(z − α) has exactly order N − 1. That is, the leading, zN−1 term of
the quotient is never null. The reason is that if the leading term were null, if
Q(z) had order less than N −1, then B(z) = (z−α)Q(z) could not possibly
have order N as we have assumed.

7See also [116, § 5.86], which reaches the same result in nearly the same way.
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6.2.2 The fundamental theorem of algebra

The fundamental theorem of algebra holds that any polynomial B(z) of or-
der N can be factored

B(z) =
N∑

k=0

bkz
k = bN

N∏

j=1

(z − αj), bN 6= 0, (6.1)

where the αk are the N roots of the polynomial.8

To prove the theorem, it suffices to show that all polynomials of order
N > 0 have at least one root; for if a polynomial of order N has a root αN ,
then according to § 6.2.1 one can divide the polynomial by z−αN to obtain
a new polynomial of order N − 1. To the new polynomial the same logic
applies: if it has at least one root αN−1, then one can divide it by z−αN−1 to
obtain yet another polynomial of order N −2; and so on, one root extracted
at each step, factoring the polynomial step by step into the desired form
bN
∏N
j=1(z − αj).

It remains however to show that there exists no polynomial B(z) of order
N > 0 lacking roots altogether. To show that there is no such polynomial,
consider the locus9 of all B(ρeiφ) in the Argand range plane (Fig. 2.6), where
z = ρeiφ, ρ is held constant, and φ is variable. Because ei(φ+n2π) = eiφ and
no fractional powers of z appear in (6.1), this locus forms a closed loop. At
very large ρ, the bNz

N term dominates B(z), so the locus there evidently
has the general character of bNρ

NeiNφ. As such, the locus is nearly but not
quite a circle at radius bNρ

N from the Argand origin B(z) = 0, revolving N
times at that great distance before exactly repeating. On the other hand,
when ρ = 0 the entire locus collapses on the single point B(0) = b0.

Now consider the locus at very large ρ again, but this time let ρ slowly
shrink. Watch the locus as ρ shrinks. The locus is like a great string or
rubber band, joined at the ends and looped in N great loops. As ρ shrinks
smoothly, the string’s shape changes smoothly. Eventually ρ disappears and
the entire string collapses on the point B(0) = b0. Since the string originally
has looped N times at great distance about the Argand origin, but at the
end has collapsed on a single point, then at some time between it must have
swept through the origin and every other point within the original loops.

8Professional mathematicians typically state the theorem in a slightly different form.
They also usually prove it in rather a different way. [65, chapter 10, Prob. 74][116, § 5.85]

9A locus is the geometric collection of points which satisfy a given criterion. For
example, the locus of all points in a plane at distance ρ from a point O is a circle; the
locus of all points in three-dimensional space equidistant from two points P and Q is a
plane; etc.
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After all, B(z) is everywhere differentiable, so the string can only sweep
as ρ decreases; it can never skip. The Argand origin lies inside the loops at
the start but outside at the end. If so, then the values of ρ and φ precisely
where the string has swept through the origin by definition constitute a
root B(ρeiφ) = 0. Thus as we were required to show, B(z) does have at
least one root, which observation completes the applied demonstration of
the fundamental theorem of algebra.

(The purist might object that we have failed to prove that some trick
does not exist whereby the N loops smoothly collapsed without passing
through every point within. The applicationist might reply that, on an
applied level, such an objection were less than wholly serious, but anyway,
here is at least one formal tactic by which one could rule out the possibility
of a trick: as ρ shrinks, observing arg{B[ρeiφ]− b0} as a function of φ, keep
count of the net number of times the loops wind counterclockwise about the
point B[0] = b0 as, given a particular value of ρ, φ is let to sweep the domain
−2π/2 < φ ≤ 2π/2. To fill details is left as an exercise to the interested
reader.)

The fact that the roots exist is one thing. Actually finding the roots nu-
merically is another matter. For a quadratic (second order) polynomial, (2.2)
gives the roots. For cubic (third order) and quartic (fourth order) polynomi-
als, formulas for the roots are known (see chapter 10) though seemingly not
so for quintic (fifth order) and higher-order polynomials;10 but the Newton-
Raphson iteration (§ 4.8) can be used to locate a root numerically in any
case. The Newton-Raphson is used to extract one root (any root) at each
step as described above, reducing the polynomial step by step until all the
roots are found.

The reverse problem, finding the polynomial given the roots, is much
easier: one just multiplies out

∏
j(z − αj), as in (6.1).

Incidentally, the reverse problem and its attendant multiplication show
that an Nth-order polynomial can have no other roots than the N roots
z = αj . Reason: the product

∏
j(z − αj) is nonzero for all other z.

10In a celebrated theorem of pure mathematics [141, “Abel’s impossibility theorem”], it
is said to be shown that no such formula even exists, given that the formula be constructed
according to certain rules. Undoubtedly the theorem is interesting to the professional
mathematician, but to the applied mathematician it probably suffices to observe merely
that no such formula is known.
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6.3 Addition and averages

This section discusses the two basic ways to add numbers and the three
basic ways to calculate averages of them.

6.3.1 Serial and parallel addition

Consider the following problem. There are three masons. The strongest
and most experienced of the three, Adam, lays 60 bricks per hour.11 Next
is Brian who lays 45. Charles is new; he lays only 30. Given eight hours,
how many bricks can the three men lay? Answer:

(8 hours)(60 + 45 + 30 bricks per hour) = 1080 bricks.

Now suppose that we are told that Adam can lay a brick every 60 seconds;
Brian, every 80 seconds; Charles, every 120 seconds. How much time do the
three men need to lay 1080 bricks? Answer:

1080 bricks(
1
60 + 1

80 + 1
120

)
bricks per second

= 28,800 seconds

(
1 hour

3600 seconds

)

= 8 hours.

The two problems are precisely equivalent. Neither is stated in simpler terms
than the other. The notation used to solve the second is less elegant, but
fortunately there exists a better notation:

(1080 bricks)(60 ‖ 80 ‖ 120 seconds per brick) = 8 hours,

where
1

60 ‖ 80 ‖ 120
=

1

60
+

1

80
+

1

120
.

The operator ‖ is called the parallel addition operator. It works according
to the law

1

a ‖ b =
1

a
+

1

b
, (6.2)

where the familiar operator + is verbally distinguished from the ‖ when
necessary by calling the + the serial addition or series addition operator.
With (6.2) and a bit of arithmetic, the several parallel-addition identities of
Table 6.1 are soon derived.

11The figures in the example are in decimal notation.
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Table 6.1: Parallel and serial addition identities.

1

a ‖ b =
1

a
+

1

b

1

a+ b
=

1

a
‖ 1

b

a ‖ b =
ab

a+ b
a+ b =

ab

a ‖ b

a ‖ 1

b
=

a

1 + ab
a+

1

b
=

a

1 ‖ ab

a ‖ b = b ‖ a a+ b = b+ a

a ‖ (b ‖ c) = (a ‖ b) ‖ c a+ (b+ c) = (a+ b) + c

a ‖∞ =∞‖ a = a a+ 0 = 0 + a = a

a ‖ (−a) = ∞ a+ (−a) = 0

(a)(b ‖ c) = ab ‖ ac (a)(b+ c) = ab+ ac

1∑
k ‖ ak

=
∑

k

1

ak

1∑
k ak

=
∑

k

‖ 1

ak
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The writer knows of no conventional notation for parallel sums of series,
but suggests that the notation which appears in the table,

b∑

k=a

‖ f(k) ≡ f(a) ‖ f(a+ 1) ‖ f(a+ 2) ‖ · · · ‖ f(b),

might serve if needed.
Assuming that none of the values involved is negative, one can readily

show that12

a ‖x ≤ b ‖x iff a ≤ b. (6.3)

This is intuitive. Counterintuitive, perhaps, is that

a ‖x ≤ a. (6.4)

Because we have all learned as children to count in the sensible man-
ner 1, 2, 3, 4, 5, . . .—rather than as 1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .—serial addition (+) seems

more natural than parallel addition (‖) does. The psychological barrier is
hard to breach, yet for many purposes parallel addition is in fact no less
fundamental. Its rules are inherently neither more nor less complicated, as
Table 6.1 illustrates; yet outside the electrical engineering literature the par-
allel addition notation is seldom seen.13 Now that you have seen it, you can
use it. There is profit in learning to think both ways. (Exercise: counting
from zero serially goes 0, 1, 2, 3, 4, 5, . . .; how does the parallel analog go?)14

Convention brings no special symbol for parallel subtraction, inciden-
tally. One merely writes

a ‖ (−b),
which means exactly what it appears to mean.

6.3.2 Averages

Let us return to the problem of the preceding section. Among the three
masons, what is their average productivity? The answer depends on how
you look at it. On the one hand,

(60 + 45 + 30) bricks per hour

3
= 45 bricks per hour.

12The word iff means, “if and only if.”
13In electric circuits, loads are connected in parallel as often as, in fact probably more

often than, they are connected in series. Parallel addition gives the electrical engineer a
neat way of adding the impedances of parallel-connected loads.

14[114, eqn. 1.27]
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On the other hand,

(60 + 80 + 120) seconds per brick

3
= 862

3 seconds per brick.

These two figures are not the same. That is, 1/(862
3 seconds per brick) 6=

45 bricks per hour. Yet both figures are valid. Which figure you choose
depends on what you want to calculate. Will the masons lay bricks at the
same time in different parts of the wall? Then choose the 45 bricks per hour.
Will the masons lay bricks at different times in the same part of the wall?
Then, especially if the masons have each equal numbers of bricks to lay,
choose the 862

3 seconds per brick.
When it is unclear which of the two averages is more appropriate, a third

average is available, the geometric mean

[(60)(45)(30)]1/3 bricks per hour.

The geometric mean does not have the problem either of the two averages
discussed above has. The inverse geometric mean

[(60)(80)(120)]1/3 seconds per brick

implies the same average productivity. The mathematically savvy sometimes
prefer the geometric mean over either of the others for this reason.

Generally, the arithmetic, geometric and harmonic means are defined to
be

µ ≡
∑

k wkxk∑
k wk

=

(∑

k

‖ 1

wk

)(∑

k

wkxk

)
, (6.5)

µΠ ≡


∏

j

x
wj
j




1/
∑
k wk

=


∏

j

x
wj
j




∑
k ‖ 1/wk

, (6.6)

µ‖ ≡
∑

k ‖xk/wk∑
k ‖ 1/wk

=

(∑

k

wk

)(∑

k

‖ xk
wk

)
, (6.7)

where the xk are the several samples and the wk are weights. For two
samples weighted equally, these are

µ =
a+ b

2
, (6.8)

µΠ =
√
ab, (6.9)

µ‖ = 2(a ‖ b). (6.10)
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If a ≥ 0 and b ≥ 0, then, by successive steps,15

0 ≤ (a− b)2,

0 ≤ a2 − 2ab+ b2,

4ab ≤ a2 + 2ab+ b2,

2
√
ab ≤ a+ b,

2
√
ab

a+ b
≤ 1 ≤ a+ b

2
√
ab
,

2ab

a+ b
≤
√
ab ≤ a+ b

2
,

2(a ‖ b) ≤
√
ab ≤ a+ b

2
.

That is,
µ‖ ≤ µΠ ≤ µ. (6.11)

The arithmetic mean is greatest and the harmonic mean, least; with the
geometric mean falling between.

Does (6.11) hold when there are several nonnegative samples of various
nonnegative weights? To show that it does, consider the case of N = 2m

nonnegative samples of equal weight. Nothing prevents one from dividing
such a set of samples in half, considering each subset separately, for if (6.11)
holds for each subset individually then surely it holds for the whole set (this
is so because the average of the whole set is itself the average of the two sub-
set averages, where the word “average” signifies the arithmetic, geometric
or harmonic mean as appropriate). But each subset can further be divided
in half, then each subsubset can be divided in half again, and so on until
each smallest group has two members only—in which case we already know
that (6.11) obtains. Starting there and recursing back, we have that (6.11)

15The steps are logical enough, but the motivation behind them remains inscrutable
until the reader realizes that the writer originally worked the steps out backward with his
pencil, from the last step to the first. Only then did he reverse the order and write the
steps formally here. The writer had no idea that he was supposed to start from 0 ≤ (a−b)2

until his pencil working backward showed him. “Begin with the end in mind,” the saying
goes. In this case the saying is right.

The same reading strategy often clarifies inscrutable math. When you can follow the
logic but cannot understand what could possibly have inspired the writer to conceive the
logic in the first place, try reading backward.
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obtains for the entire set. Now consider that a sample of any weight can
be approximated arbitrarily closely by several samples of weight 1/2m, pro-
vided that m is sufficiently large. By this reasoning, (6.11) holds for any
nonnegative weights of nonnegative samples, which was to be demonstrated.

6.4 The continued-fraction representation

Besides representing a number like

2π = 0x6.487F · · ·

in the usual way via a sequence of bits,16 one can represent it in the curious
form of a continued fraction,17

2π = 6 +
1

3 +
1

1 +
1

1 +
1

7 +
1

2 +
1

0x92 +
1

3 + · · ·

,

in which the “· · ·” means that, if truncated, the continued fraction is to be
truncated in the manner of

2π ≈ 6 +
1

3 +
1

1 +
1

1 +
1

7 +
1

2

=
0x2C6

0x71
.

In terser notation,18

2π = 6 +
1

3+

1

1+

1

1+

1

7+

1

2+
· · ·

16Or of decimal digits, but this book prefers hexadecimal/binary. See appendix A.
17[146, “Continued fraction,” 18:08, 7 Sept. 2019]
18The notation follows [1, eqn. 6.1.48].



Chapter 7

The integral

Chapter 4 has observed that the mathematics of calculus concerns a com-
plementary pair of questions:

• Given some function f(t), what is the function’s instantaneous rate of
change, or derivative, f ′(t)?

• Interpreting some function f ′(t) as an instantaneous rate of change,
what is the corresponding accretion, or integral, f(t)?

Chapter 4 has built toward a basic understanding of the first question. This
chapter builds toward a basic understanding of the second. The understand-
ing of the second question constitutes the concept of the integral, one of the
profoundest ideas in all of mathematics.

This chapter, which introduces the integral, is undeniably a hard chapter.
Experience knows no reliable way to teach the integral adequately to

the uninitiated except through dozens or hundreds of pages of suitable ex-
amples and exercises, yet the book you are reading cannot be that kind of
book. The sections of the present chapter concisely treat matters which
elsewhere rightly command chapters or whole books of their own. Concision
can be a virtue—and by design, nothing essential is omitted here—but the
bold novice who wishes to learn the integral from these pages alone faces a
daunting challenge. It can perhaps be done. Meanwhile, the less intrepid
who prefer a gentler initiation might first try a good tutorial like [57].

7.1 The concept of the integral

An integral is a finite accretion or sum of an infinite number of infinitesimal
elements. This section introduces the concept.

161
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Figure 7.1: Areas representing discrete sums.

τ

f1(τ)

S1

0x10

0x10

∆τ =1

τ

f2(τ)

S2

0x10

0x10

∆τ = 1
2

7.1.1 An introductory example

Consider the sums

S1 =

0x10−1∑

k=0

k,

S2 =
1

2

0x20−1∑

k=0

k

2
,

S4 =
1

4

0x40−1∑

k=0

k

4
,

S8 =
1

8

0x80−1∑

k=0

k

8
,

...

Sn =
1

n

(0x10)n−1∑

k=0

k

n
.

What do these sums represent? One way to think of them is in terms of the
shaded areas of Fig. 7.1. In the figure, S1 is composed1 of several tall, thin

1If the reader does not fully understand this paragraph’s illustration, if the relation of
the sum to the area seems unclear, then the reader is urged to pause and consider the
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rectangles of width 1 and height k; S2, of rectangles of width 1/2 and height
k/2. As n grows, the shaded region in the figure looks more and more like
a triangle of base length b = 0x10 and height h = 0x10. In fact it appears
that

lim
n→∞

Sn =
bh

2
= 0x80,

or more tersely

S∞ = 0x80,

is the area the increasingly fine stairsteps approach.

Notice how we have evaluated S∞, the sum of an infinite number of
infinitely narrow rectangles, without actually adding anything up. We have
taken a shortcut directly to the total.

In the equation

Sn =
1

n

(0x10)n−1∑

k=0

k

n
,

let us now change the variables

τ ← k

n
,

∆τ ← 1

n
,

to obtain the representation

Sn = ∆τ

(0x10)n−1∑

k=0

τ ;

or more properly,

Sn =

(k|τ=0x10)−1∑

k=0

τ ∆τ,

where the notation k|τ=0x10 indicates the value of k when τ = 0x10. Then

S∞ = lim
∆τ→0+

(k|τ=0x10)−1∑

k=0

τ ∆τ,

illustration carefully until he does understand it. If it still seems unclear, then the reader
should probably suspend reading here and go to study a good basic calculus text like [57].
The concept is important.
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Figure 7.2: An area representing an infinite sum of infinitesimals. (Observe
that the infinitesimal dτ is now too narrow to show on this scale. Compare
against ∆τ in Fig. 7.1.)

τ

f(τ)

S∞

0x10

0x10

in which it is conventional as ∆τ vanishes to change the symbol dτ ← ∆τ ,
where dτ is the infinitesimal of chapter 4:

S∞ = lim
dτ→0+

(k|τ=0x10)−1∑

k=0

τ dτ.

The symbol limdτ→0+

∑(k|τ=0x10)−1
k=0 is cumbersome, so we replace it with the

new symbol2
∫ 0x10

0 to obtain the form

S∞ =

∫ 0x10

0
τ dτ.

This means, “stepping in infinitesimal intervals of dτ , the sum of all τ dτ
from τ = 0 to τ = 0x10.” Graphically, it is the shaded area of Fig. 7.2.

2Like the Greek S,
∑

, denoting discrete summation, the seventeenth century-styled
Roman S,

∫
, stands for Latin “summa,” English “sum.” See [146, “Long s,” 14:54, 7 April

2006].



7.1. THE CONCEPT OF THE INTEGRAL 165

7.1.2 Generalizing the introductory example

Now consider a generalization of the example of § 7.1.1:

Sn =
1

n

bn−1∑

k=an

f

(
k

n

)
.

(In the example of § 7.1.1, f [τ ] was the simple f [τ ] = τ , but in general it
could be any function.) With the change of variables

τ ← k

n
,

∆τ ← 1

n
,

whereby

k|τ=a = an,

k|τ=b = bn,

(k, n) ∈ Z, n 6= 0,

(but a and b need not be integers), this is

Sn =

(k|τ=b)−1∑

k=(k|τ=a)

f(τ) ∆τ.

In the limit,

S∞ = lim
dτ→0+

(k|τ=b)−1∑

k=(k|τ=a)

f(τ) dτ =

∫ b

a
f(τ) dτ.

This is the integral of f(τ) in the interval a < τ < b. It represents the area
under the curve of f(τ) in that interval.

7.1.3 The balanced definition and the trapezoid rule

Actually, just as we have defined the derivative in the balanced form (4.8),
we do well to define the integral in balanced form, too:

∫ b

a
f(τ) dτ ≡ lim

dτ→0+




f(a) dτ

2
+

(k|τ=b)−1∑

k=(k|τ=a)+1

f(τ) dτ +
f(b) dτ

2



 . (7.1)
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Figure 7.3: Integration by the trapezoid rule (7.1). Notice that the shaded
and dashed areas total the same.

b

b
b

b

τ

f(τ)

a dτ b

Here, the first and last integration samples are each balanced “on the edge,”
half within the integration domain and half without.

Equation (7.1) is known as the trapezoid rule. Figure 7.3 depicts it. The
name “trapezoid” comes of the shapes of the shaded integration elements in
the figure. Observe however that it makes no difference whether one regards
the shaded trapezoids or the dashed rectangles as the actual integration
elements; the total integration area is the same either way.3 The important
point to understand is that the integral is conceptually just a sum. It is a
sum of an infinite number of infinitesimal elements as dτ tends to vanish,
but a sum nevertheless; nothing more.

3The trapezoid rule (7.1) is perhaps the most straightforward, general, robust way
to define the integral, but other schemes are possible, too. For example, taking the
trapezoids in adjacent pairs—such that a pair enjoys not only a sample on each end but
a third sample in the middle—one can for each pair fit a second-order curve f(τ) ≈
(c2)(τ − τmiddle)2 + (c1)(τ − τmiddle) + c0 to the function, choosing the coefficients c2, c1
and c0 to make the curve match the function exactly at the pair’s three sample points;
and then substitute the area under the pair’s curve (an area which, by the end of § 7.4,
we shall know how to calculate exactly) for the areas of the two trapezoids. Changing the
symbol ∆τ ← dτ on one side of the equation to suggest coarse sampling, the result is the
unexpectedly simple∫ b

a

f(τ) ∆τ ≈
[

1

3
f(a) +

4

3
f(a+ ∆τ) +

2

3
f(a+ 2 ∆τ)

+
4

3
f(a+ 3 ∆τ) +

2

3
f(a+ 4 ∆τ) + · · ·+ 4

3
f(b−∆τ) +

1

3
f(b)

]
∆τ,
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Nothing actually requires the integration element width dτ to remain
constant from element to element, incidentally. Constant widths are usually
easiest to handle but variable widths find use in some cases. The only
requirement is that dτ remain infinitesimal. (For further discussion of the
point, refer to the treatment of the Leibnitz notation in § 4.4.)

7.2 The antiderivative and the fundamental theo-
rem of calculus

If

S(x) ≡
∫ x

a
g(τ) dτ,

then what is the derivative dS/dx? After some reflection, one sees that the
derivative must be

dS

dx
= g(x).

This is so because the action of the integral is to compile or accrete the
area under a curve. The integral accretes area at a rate proportional to the
curve’s height f(τ): the higher the curve, the faster the accretion. In this
way one sees that the integral and the derivative are inverse operators; the
one inverts the other. The integral is the antiderivative.

More precisely, ∫ b

a

df

dτ
dτ = f(τ)|ba, (7.2)

where the notation f(τ)|ba or [f(τ)]ba means f(b)− f(a).

as opposed to the trapezoidal∫ b

a

f(τ) ∆τ ≈
[

1

2
f(a) + f(a+ ∆τ) + f(a+ 2 ∆τ)

+ f(a+ 3 ∆τ) + f(a+ 4 ∆τ) + · · ·+ f(b−∆τ) +
1

2
f(b)

]
∆τ

implied by (7.1). The curved scheme is called Simpson’s rule. It is clever and well known.
Simpson’s rule had real uses in the slide-rule era when, for practical reasons, one pre-

ferred to let ∆τ be sloppily large, sampling a curve only a few times to estimate its
integral; yet the rule is much less useful when a computer is available to do the arithmetic
over an adequate number of samples. At best Simpson’s rule does not help much with
a computer; at worst it can yield spurious results; and because it is easy to program it
tends to encourage thoughtless application. Other than in the footnote you are reading,
Simpson’s rule is not covered in this book.
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The importance of (7.2), fittingly named the fundamental theorem of
calculus,4 can hardly be overstated. As the formula which ties together the
complementary pair of questions asked at the chapter’s start, (7.2) is of
utmost importance in the practice of mathematics. The idea behind the
formula is indeed simple once grasped, but to grasp the idea firmly in the
first place is not entirely trivial.5 The idea is simple but big. The reader
is urged to pause now and ponder the formula thoroughly until he feels
reasonably confident that indeed he does grasp it and the important idea
it represents. One is unlikely to do much higher mathematics without this
formula.

As an example of the formula’s use, consider that because
(d/dτ)(τ3/6) = τ2/2, it follows that

∫ x

2

τ2 dτ

2
=

∫ x

2

d

dτ

(
τ3

6

)
dτ =

τ3

6

∣∣∣∣
x

2

=
x3 − 8

6
.

Gathering elements from (4.16) and from Tables 5.2 and 5.3, Table 7.1
lists a handful of the simplest, most useful derivatives for antiderivative use.
Section 9.1 speaks further of the antiderivative.

4[57, § 11.6][115, § 5-4][146, “Fundamental theorem of calculus,” 06:29, 23 May 2006]
5Having read from several calculus books and, like millions of others perhaps including

the reader, having sat years ago in various renditions of the introductory calculus lectures
in school, the author has never yet met a more convincing demonstration of (7.2) than the
formula itself. Somehow the underlying idea is too simple, too profound to explain. It’s like
trying to explain how to drink water, or how to count or to add. Elaborate explanations
and their attendant constructs and formalities are indeed possible to contrive, but the idea
itself is so simple that somehow such contrivances seem to obscure the idea more than to
reveal it.

One ponders the formula (7.2) a while, then the idea dawns on him.
If you want some help pondering, try this: sketch some arbitrary function f(τ) on a set

of axes at the bottom of a piece of paper—some squiggle of a curve like

a b

f(τ)

will do nicely—then on a separate set of axes directly above the first, sketch the cor-
responding slope function df/dτ . Mark two points a and b on the common horizontal
axis; then on the upper, df/dτ plot, shade the integration area under the curve. Now
consider (7.2) in light of your sketch.

There. Does the idea not dawn?
Another way to see the truth of the formula begins by canceling its (1/dτ) dτ to obtain

the form
∫ b
τ=a

df = f(τ)|ba. If this way works better for you, fine; but make sure that you
understand it the other way, too.



7.3. OPERATORS, LINEARITY AND MULTIPLE INTEGRALS 169

Table 7.1: Basic derivatives for the antiderivative.

∫ b

a

df

dτ
dτ = f(τ)|ba

τa−1 =
d

dτ

(
τa

a

)
, a 6= 0

1

τ
=

d

dτ
ln τ, ln 1 = 0

exp τ =
d

dτ
exp τ, exp 0 = 1

cos τ =
d

dτ
sin τ, sin 0 = 0

sin τ =
d

dτ
(− cos τ) , cos 0 = 1

7.3 Operators, linearity and multiple integrals

This section presents the operator concept, discusses linearity and its conse-
quences, treats the commutivity of the summational and integrodifferential
operators, and introduces the multiple integral.

7.3.1 Operators

An operator is a mathematical agent that combines several values of a func-
tion.

Such a definition, unfortunately, is extraordinarily unilluminating to
those who do not already know what it means. A better way to introduce
the operator is by giving examples. Operators include +, −, multiplication,
division,

∑
,
∏

,
∫

and ∂. The essential action of an operator is to take
several values of a function and combine them in some way. For example,

∏

is an operator in

5∏

j=1

(2j − 1) = (1)(3)(5)(7)(9) = 0x3B1.

Notice that the operator has acted to remove the variable j from the
expression 2j − 1. The j appears on the equation’s left side but not on its
right. The operator has used the variable up. Such a variable, used up by
an operator, is a dummy variable, as encountered earlier in § 2.3.



170 CHAPTER 7. THE INTEGRAL

7.3.2 A formalism

But then how are + and − operators? They don’t use any dummy variables
up, do they?

Well, that depends on how you look at it. Consider the sum S = 3 + 5.
One can write this as

S =
1∑

k=0

f(k),

where

f(k) ≡





3 if k = 0,

5 if k = 1,

undefined otherwise.

Then,

S =
1∑

k=0

f(k) = f(0) + f(1) = 3 + 5 = 8.

By such admittedly excessive formalism, the + operator can indeed be said
to use a dummy variable up. The point is that + is in fact an operator just
like the others.

Another example of the kind:

D = g(z)− h(z) + p(z) + q(z)

= g(z)− h(z) + p(z)− 0 + q(z)

= Φ(0, z)− Φ(1, z) + Φ(2, z)− Φ(3, z) + Φ(4, z)

=

4∑

k=0

(−)kΦ(k, z),

where

Φ(k, z) ≡





g(z) if k = 0,

h(z) if k = 1,

p(z) if k = 2,

0 if k = 3,

q(z) if k = 4,

undefined otherwise.

Such unedifying formalism is essentially useless in applications, except
as a vehicle for definition. Once you understand why + and − are operators
just as

∑
and

∫
are, you can forget the formalism. It doesn’t help much.
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7.3.3 Linearity

A function f(z) is linear iff (if and only if) it has the properties

f(z1 + z2) = f(z1) + f(z2),

f(αz) = αf(z),

f(0) = 0.

The functions f(z) = 3z, f(u, v) = 2u − v and f(z) = 0 are examples of
linear functions. Nonlinear functions include6 f(z) = z2, f(u, v) =

√
uv,

f(t) = cosωt, f(z) = 3z + 1 and even f(z) = 1.

An operator L is linear iff it has the properties

L(f1 + f2) = Lf1 + Lf2,

L(αf) = αLf,

L(0) = 0.

The operators
∑

,
∫

, +, − and ∂ are examples of linear operators. For
instance,7

d

dz
[f1(z) + f2(z)] =

df1

dz
+
df2

dz
.

Nonlinear operators include multiplication, division and the various trigono-
metric functions, among others.

Section 16.1.2 will have more to say about operators and their notation.

7.3.4 Summational and integrodifferential commutivity

Consider the sum

S1 =
b∑

k=a




q∑

j=p

xk

j!


 .

6If 3z + 1 is a linear expression, then how is not f(z) = 3z + 1 a linear function?
Answer: the matter is a matter partly of purposeful definition, partly of semantics. The
equation y = 3x + 1 plots a line, so the expression 3z + 1 is literally “linear” in this
sense; but the definition has more purpose to it than merely this. When you see the linear
expression 3z+ 1, think 3z+ 1 = 0, then g(z) = 3z = −1. The g(z) = 3z is linear; the −1
is the constant value it targets. That’s the sense of it.

7You don’t see d in the list of linear operators? But d in this context is really just
another way of writing ∂, so, yes, d is linear, too. See § 4.4.
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This is a sum of the several values of the expression xk/j!, evaluated at every
possible pair (j, k) in the indicated domain. Now consider the sum

S2 =

q∑

j=p

[
b∑

k=a

xk

j!

]
.

This is evidently a sum of the same values, only added in a different order.
Apparently S1 = S2. Reflection along these lines must soon lead the reader
to the conclusion that, in general,

∑

k

∑

j

f(j, k) =
∑

j

∑

k

f(j, k).

Now consider that an integral is just a sum of many elements, and that
a derivative is just a difference of two elements. Integrals and derivatives
must then have the same commutative property discrete sums have. For
example,

∫ ∞

v=−∞

∫ b

u=a
f(u, v) du dv =

∫ b

u=a

∫ ∞

v=−∞
f(u, v) dv du;

∫ ∑

k

fk(v) dv =
∑

k

∫
fk(v) dv;

∂

∂v

∫
f du =

∫
∂f

∂v
du.

In general,
LvLuf(u, v) = LuLvf(u, v), (7.3)

where L is any of the linear operators
∑

,
∫

or ∂.
Some convergent summations, like

∞∑

k=0

1∑

j=0

(−)j

2k + j + 1
,

diverge once reordered, as

1∑

j=0

∞∑

k=0

(−)j

2k + j + 1
.

One cannot blithely swap operators here. This is not because swapping is
wrong, but rather because the inner sum after the swap diverges, whence the
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outer sum after the swap has no concrete summand on which to work. (Why
does the inner sum after the swap diverge? Answer: 1 + 1/3 + 1/5 + · · · =
[1] + [1/3 + 1/5] + [1/7 + 1/9 + 1/0xB + 1/0xD] + · · · > 1[1/4] + 2[1/8] +
4[1/0x10] + · · · = 1/4 + 1/4 + 1/4 + · · · . See also § 8.10.5.) For a more
twisted example of the same phenomenon, consider8

1− 1

2
+

1

3
− 1

4
+ · · · =

(
1− 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+ · · · ,

which associates two negative terms with each positive, but still seems to
omit no term. Paradoxically, then,

1− 1

2
+

1

3
− 1

4
+ · · · =

(
1

2
− 1

4

)
+

(
1

6
− 1

8

)
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
,

or so it would seem, but cannot be, for it claims falsely that the sum is half
itself. A better way to have handled the example might have been to write
the series as

lim
n→∞

{
1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2n− 1
− 1

2n

}

in the first place, thus explicitly specifying equal numbers of positive and
negative terms.9 So specifying would have forestalled the error. In the
earlier example,

lim
n→∞

n∑

k=0

1∑

j=0

(−)j

2k + j + 1

8[3, § 1.2.3]
9Some students of pure mathematics would assert that the false conclusion had been

reached through lack of rigor. Well, maybe. This writer however does not feel sure that
rigor is quite the right word for what was lacking here. Pure mathematics does bring
an elegant notation and a set of formalisms which serve ably to spotlight certain limited
kinds of blunders, but these are blunders no less by the applied approach. The stalwart
Leonhard Euler—arguably the greatest series-smith in mathematical history—wielded his
heavy analytical hammer in thunderous strokes before modern professional mathematics
had conceived the notation or the formalisms. If the great Euler did without, then you
and I might not always be forbidden to follow his robust example. See also footnote 11.

On the other hand, the professional approach to pure mathematics is worth study if
you have the time. Recommended introductions include [77], preceded if necessary by [57]
and/or [3, chapter 1].
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would likewise have forestalled the error, or at least have made the error
explicit.

The conditional convergence10 of the last paragraph, which can occur in
integrals as well as in sums, seldom poses much of a dilemma in practice.
One can normally swap summational and integrodifferential operators with
little worry. The reader however should at least be aware that conditional
convergence troubles can arise where a summand or integrand varies in sign
or phase.

7.3.5 Multiple integrals

Consider the function

f(u,w) =
u2

w
.

Such a function would not be plotted as a curved line in a plane, but rather
as a curved surface in a three-dimensional space. Integrating the function
seeks not the area under the curve but rather the volume under the surface:

V =

∫ u2

u1

∫ w2

w1

u2

w
dw du.

This is a double integral. Inasmuch as it can be written in the form

V =

∫ u2

u1

g(u) du,

g(u) ≡
∫ w2

w1

u2

w
dw,

its effect is to cut the area under the surface into flat, upright slices, then
the slices crosswise into tall, thin towers. The towers are integrated over w
to constitute the slice, then the slices over u to constitute the volume.

In light of § 7.3.4, evidently nothing prevents us from swapping the
integrations: u first, then w. Hence

V =

∫ w2

w1

∫ u2

u1

u2

w
dudw.

And indeed this makes sense, doesn’t it? What difference should it make
whether we add the towers by rows first then by columns, or by columns first
then by rows? The total volume is the same in any case—albeit the integral

10[77, § 16]
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over w is potentially ill-behaved11 near w = 0; so that, if for instance w1

were negative, w2 were positive, and both were real, one might rather write
the double integral as12

V = lim
ε→0+

(∫ −ε

w1

+

∫ w2

+ε

)∫ u2

u1

u2

w
dudw.

Double integrations arise very frequently in applications. Triple integra-
tions arise about as often. For instance, if µ(r) = µ(x, y, z) represents the
position-dependent mass density of some soil,13 then the total soil mass in
some rectangular volume is

M =

∫ x2

x1

∫ y2

y1

∫ z2

z1

µ(x, y, z) dz dy dx.

As a concise notational convenience, the last is likely to be written,

M =

∫

V
µ(r) dr,

where the V stands for “volume” and is understood to imply a triple inte-
gration. Similarly for the double integral,

Q =

∫

S
f(ρ) dρ,

where the S stands for “surface” and is understood to imply a double inte-
gration.

Even more than three nested integrations are possible. If we integrated
over time as well as space, the integration would be fourfold. A spatial
Fourier transform (§ 19.6) implies a triple integration; and its inverse, an-
other triple: a sixfold integration altogether. Manifold nesting of integrals
is thus not just a theoretical mathematical topic; it arises in sophisticated
real-world engineering models. The topic concerns us here for this reason.

11A great deal of ink is spilled in the applied mathematical literature when summations
and/or integrations are interchanged. The author tends to recommend saving the ink, for
pure and applied mathematics want different styles. What usually matters in applications
is not whether a particular summation or integration satisfies some formal test but rather
whether one clearly understands the summand to be summed or the integrand to be
integrated. See also footnote 9.

12It is interesting to consider the effect of withdrawing the integral’s limit at −ε to −2ε,

as limε→0+

(∫ −2ε

w1
+
∫ w2

+ε

) ∫ u2

u1

u2

w
du dw; for, surprisingly—despite that the parameter ε is

vanishing anyway—the withdrawal does alter the integral unless the limit at +ε also is
withdrawn. The reason is that limε→0+

∫ 2ε

ε
(1/w) dw = ln 2 6= 0.

13Conventionally, the Greek letter ρ rather than µ is used for density. However, it
happens that we shall need the letter ρ for a different purpose later in the paragraph.
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Figure 7.4: The area within a parabola.

x

y

2ℓ

aℓ2

dx

7.4 Areas and volumes

By composing and solving appropriate integrals, one can calculate the peri-
meters, areas and volumes of interesting common shapes and solids.

7.4.1 The area within a parabola

Figure 7.4 depicts an element of the area within the parabola

y = ax2. (7.4)

The element—which is shaded in the figure—is nearly rectangular (or, if
you prefer, nearly trapezoidal), and indeed is the more nearly rectangular
(trapezoidal) the smaller dx is made to be. Evidently, therefore, the ele-
ment’s area is Arectangle = (a`2 − ax2) dx. Integrating the many rectangles,
we find the area within the parabola to be

Aparabola =

∫ `

x=−`
Arectangle =

∫ `

−`
(a`2 − ax2) dx

= a`2
∫ `

−`
dx− a

∫ `

−`
x2 dx

= a`2
[
x

]`

x=−`
− a
[
x3

3

]`

x=−`
.

But [x]`x=−` = (`) − (−`) = 2` and [x3/3]`x=−` = (`)3/3 − (−`)3/3 = 2`3/3,
so

Aparabola =
4a`3

3
. (7.5)
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7.4.2 The length of a parabola

Section 7.4.1 has computed the area within the parabola of Fig. 7.4, but
what if one wishes instead to compute the parabola’s length? According to
Pythagoras, (1.1),

(ds)2 = (dx)2 + (dy)2,

the ds being an element of the curve’s length. Taking the derivative of (7.4),

dy = 2ax dx,

so

(ds)2 = (dx)2 + (2ax dx)2,

or, solving for ds,

ds = dx
√

1 + (2ax)2.

Integrating,

s =

∫ `

x=−`
ds =

∫ `

−`
dx
√

1 + (2ax)2 = 2

∫ `

0
dx
√

1 + (2ax)2,

the last step of which observes that, symmetrically, the parabola’s left half
does not differ in length from its right. Defining

u ≡ 2ax,

whose derivative is

du = 2a dx,

permits s to be expressed in a slightly simpler form,

s =
1

a

∫ 2a`

0
du
√

1 + u2, (7.6)

but after this it is not obvious what should be done next.

Several techniques can be tried, most of which however seem to fail
against an integrand like

√
1 + u2. Paradoxically, a modified integrand like

u
√

1 + u2, which looks more complicated, would have been easier to handle,
for the technique of14 § 9.2 would have resolved it neatly; whereas neither the
technique of § 9.2 nor any of several others seems to make headway against

14This is a forward reference. It is given for information. You need not follow it for
now, for the present section’s logic does not depend on it.
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the simpler-looking
√

1 + u2. Nevertheless, after some trial and error, one
may recall Table 5.3 which affords a clue. From the table,15

d

du
arcsinhu =

1√
1 + u2

, (7.7)

the right side of which resembles our integrand
√

1 + u2. To the above
derivative we can append two more,

d

du

√
1 + u2 =

u√
1 + u2

, (7.8)

d

du
u
√

1 + u2 =
√

1 + u2 +
u2

√
1 + u2

, (7.9)

computed by the chain and product rules of § 4.5. The last includes the
expression u2/

√
1 + u2 which, after adding and subtracting 1/

√
1 + u2, one

can alternately write as u2/
√

1 + u2 = (1 + u2)/
√

1 + u2 − 1/
√

1 + u2 =√
1 + u2 − 1/

√
1 + u2. Thus,

d

du
u
√

1 + u2 = 2
√

1 + u2 − 1√
1 + u2

. (7.10)

Not all the derivatives of this paragraph turn out to be useful to the present
problem but (7.7) and (7.10) do. The average of those two is

d

du

(
u
√

1 + u2 + arcsinhu

2

)
=
√

1 + u2, (7.11)

whose right side matches our integrand.
Why should one care that the right side of the average (7.11) matches

our integrand? Because the match lets one use the fundamental theorem of
calculus, (7.2) of § 7.2. Applying the average, according to the fundamental
theorem, to (7.6),

s =
1

a

[
u
√

1 + u2 + arcsinhu

2

]2a`

u=0

.

15The table’s relevant entry includes a ± sign but only the + sign interests us here.
Why only? Because we shall have to choose one branch or the other of the hyperbolic
arcsine along which to work whether we will or nill. Nothing prevents us from choosing
the positive branch.

You can try the negative branch if you wish. After some signs have canceled, you will
find that the negative branch arrives at the same result.
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Figure 7.5: The area of a circle.

dφ

ρ

x

y

Evaluating,

s = `
√

1 + (2a`)2 +
1

2a
arcsinh 2a`, (7.12)

or, if you prefer, expanding arcsinh(·) according to Table 5.1,

s = `
√

1 + (2a`)2 +
1

2a
ln
[
2a`+

√
1 + (2a`)2

]
(7.13)

(in which we have chosen the + sign for the table’s ± because the − sign
would have returned a complex length). This is the parabola’s length, mea-
sured along its curve.

That wasn’t so easy. If you are not sure that you have followed it, that’s
all right, for you can return to study it again later. Also, you can learn more
about the parabola in § 15.7.1 and, in § 9.8, more too about the technique by
which the present subsection has evaluated (7.6). Meanwhile, fortunately,
the next subsection will be easier and also more interesting. It computes
the area of a circle.

7.4.3 The area of a circle

Figure 7.5 depicts an element of a circle’s area. The element has wedge
shape, but inasmuch as the wedge is infinitesimally narrow, the wedge is
indistinguishable from a triangle of base length ρ dφ and height ρ. The area



180 CHAPTER 7. THE INTEGRAL

Figure 7.6: The volume of a cone.

h

B

of such a triangle is Atriangle = ρ2 dφ/2. Integrating the many triangles, we
find the circle’s area to be

Acircle =

∫ π

φ=−π
Atriangle =

∫ π

−π

ρ2 dφ

2
=
ρ2φ

2

∣∣∣∣
π

φ=−π
.

Evaluated,

Acircle =
2πρ2

2
. (7.14)

(The numerical value of 2π—the circumference or perimeter of the unit
circle—we have not calculated yet. We will calculate it in § 8.11. The
reason to write 2π/2 rather than the deceptively simpler-looking π is that
the symbol π alone obscures the sense in which the circle resembles a rolled-
up triangle. See appendix A. Sometimes the book uses the symbol π alone,
anyway, just to reduce visual clutter; but that an alternate symbol like16

ππ = 2π is not current is unfortunate. If such a symbol were current, then
we could have written that Acircle = ππρ2/2.)

7.4.4 The volume of a cone

One can calculate the volume of any cone (or pyramid) if one knows its
base area B and its altitude h measured normally17 to the base. Refer to
Fig. 7.6. A cross-section of a cone, cut parallel to the cone’s base, has the
same shape the base has but a different scale. If coordinates are chosen such
that the altitude h runs in the ẑ direction with z = 0 at the cone’s vertex,

16The symbol ππ has no name of which the writer is aware. One might provisionally call
it “palais” after the mathematician who has suggested it. [95]

17Normally here means “at right angles.”
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then the cross-sectional area is evidently18 (B)(z/h)2. For this reason, the
cone’s volume is

Vcone =

∫ h

0
(B)

( z
h

)2
dz =

B

h2

∫ h

0
z2 dz =

B

h2

[
z3

3

]h

z=0

=
B

h2

(
h3

3

)

Evaluating,

Vcone =
Bh

3
. (7.15)

7.4.5 The surface area and volume of a sphere

Of a sphere, Fig. 7.7, one wants to calculate both the surface area and
the volume. For the surface area, the sphere’s surface is sliced vertically
down the z axis into narrow, constant-φ, tapered strips (each strip broadest
at the sphere’s equator, tapering to points at the sphere’s ±z poles) and
horizontally across the z axis into narrow, constant-θ rings, as in Fig. 7.8. A
surface element so produced (seen as shaded in the latter figure) evidently
has the area19

dS = (r dθ)(ρ dφ) = r2 sin θ dθ dφ.

18The fact may admittedly not be evident to the reader at first glance. If it is not yet
evident to you, then ponder Fig. 7.6 a moment. Consider what it means to cut parallel
to a cone’s base a cross-section of the cone, and how cross-sections cut nearer a cone’s
vertex are smaller though the same shape. What if the base were square? Would the
cross-sectional area not be (B)(z/h)2 in that case? What if the base were a right triangle
with equal legs—in other words, half a square? What if the base were some other strange
shape like the base depicted in Fig. 7.6? Could such a strange shape not also be regarded
as a definite, well-characterized part of a square? (With a pair of scissors one can cut any
shape from a square piece of paper, after all.) Thinking along such lines must soon lead
one to the insight that the parallel-cut cross-sectional area of a cone can be nothing other
than (B)(z/h)2, regardless of the base’s shape.

19It can be shown, incidentally—the details are left as an exercise—that dS = −r dz dφ
also. The subsequent integration arguably goes a little easier if dS is accepted in this
mildly clever form. The form is interesting in any event if one visualizes the specific,
annular area the expression

∫ π
φ=−π dS = −2πr dz represents: evidently, unexpectedly, an

equal portion of the sphere’s surface corresponds to each equal step along the z axis,
pole to pole; so, should you slice an unpeeled apple into parallel slices of equal thickness,
though some slices will be bigger across and thus heavier than others, each slice curiously
must take an equal share of the apple’s skin. (This is true, anyway, if you judge Fig. 7.8
to represent an apple. The author’s children judge it to represent “the Death Star with a
square gun” [89], so maybe it depends on your point of view.)



182 CHAPTER 7. THE INTEGRAL

Figure 7.7: A sphere.
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ẑ

ŷ
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The sphere’s total surface area then is the sum of all such elements over the
sphere’s entire surface:

Ssphere =

∫ π

φ=−π

∫ π

θ=0
dS

=

∫ π

φ=−π

∫ π

θ=0
r2 sin θ dθ dφ

= r2

∫ π

φ=−π
[− cos θ]π0 dφ

= r2

∫ π

φ=−π
[2] dφ

= 4πr2, (7.16)

where we have used the fact from Table 7.1 that sin τ = (d/dτ)(− cos τ).

Having computed the sphere’s surface area, one can find its volume just
as § 7.4.3 has found a circle’s area—except that instead of dividing the circle
into many narrow triangles, one divides the sphere into many narrow cones,
each cone with base area dS and altitude r, with the vertices of all the cones
meeting at the sphere’s center. Per (7.15), the volume of one such cone is
Vcone = r dS/3. Hence,

Vsphere =

∮

S
Vcone =

∮

S

r dS

3
=
r

3

∮

S
dS =

r

3
Ssphere,

where the useful symbol ∮

S

indicates integration over a closed surface. In light of (7.16), the total volume
is

Vsphere =
4πr3

3
. (7.17)

(One can compute the same spherical volume more prosaically, without ref-
erence to cones, by writing dV = r2 sin θ dr dθ dφ then integrating

∫
V dV .

The derivation given above, however, is preferred because it lends the addi-
tional insight that a sphere can sometimes be viewed as a great cone rolled
up about its own vertex. The circular area derivation of § 7.4.3 lends an
analogous insight: that a circle can sometimes be viewed as a great triangle
rolled up about its own vertex.)
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7.5 Checking an integration

Dividing 0x46B/0xD = 0x57 with a pencil, how does one check the result?20

Answer: by multiplying (0x57)(0xD) = 0x46B. Multiplication inverts divi-
sion. Easier than division, multiplication provides a quick, reliable check.

Likewise, integrating

∫ b

a

τ2

2
dτ =

b3 − a3

6

with a pencil, how does one check the result? Answer: by differentiating

[
∂

∂b

(
b3 − a3

6

)]

b=τ

=
τ2

2
.

Differentiation inverts integration. Easier than integration, differentiation
like multiplication provides a quick, reliable check.

More formally, according to (7.2),

S ≡
∫ b

a

df

dτ
dτ = f(b)− f(a). (7.18)

Differentiating (7.18) with respect to b and a,

∂S

∂b

∣∣∣∣
b=τ

=
df

dτ
,

∂S

∂a

∣∣∣∣
a=τ

= − df
dτ
.

(7.19)

Either line of (7.19) can be used to check an integration. Evaluating (7.18)
at b = a yields that

S|b=a = 0, (7.20)

which can be used to check further.21

As useful as (7.19) and (7.20) are, they nevertheless serve only inte-
grals with variable limits. They are of little use to check definite integrals

20Admittedly, few readers will ever have done much such multidigit hexadecimal arith-
metic with a pencil, but, hey, go with it. In decimal, it’s 1131/13 = 87.

Actually, hexadecimal is just proxy for binary (see appendix A), and long division in
straight binary is kind of fun. If you have never tried it, you might. It is simpler than
decimal or hexadecimal division, and it’s how computers divide. The insight gained is
worth the trial.

21Using (7.20) to check the example, (b3 − a3)/6|b=a = 0.
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like (9.18) below, which lack variable limits to differentiate. However, many
or most integrals one meets in practice have or can be given variable limits.
Equations (7.19) and (7.20) do serve such indefinite integrals.

It is a rare irony of mathematics that, though numerically differentiation
is indeed harder than integration, analytically the opposite is true. Analyt-
ically, differentiation is the easier. So far, mostly, the integrals the book has
introduced have been easy ones (§ 7.4.2 excepted), but chapter 9 will bring
harder ones. Even experienced mathematicians are apt to err in analyzing
these. Reversing an integration by taking a relatively easy derivative is thus
an excellent way to check a hard-earned integration result.

7.6 Contour integration

To this point we have considered only integrations in which the variable
of integration advances in a straight line from one point to another: for
instance,

∫ b
a f(τ) dτ , in which the function f(τ) is evaluated at τ = a, a +

dτ, a+ 2dτ, . . . , b. The integration variable is a real-valued scalar which can
do nothing but make a straight line from a to b.

Such is not the case when the integration variable is a vector. Consider
the integral

S =

∫ ŷρ

r=x̂ρ
(x2 + y2) d`,

where d` is the infinitesimal length of a step along the path of integration.
What does this integral mean? Does it mean to integrate from r = x̂ρ to
r = 0, then from there to r = ŷρ? Or does it mean to integrate along the
arc of Fig. 7.9? The two paths of integration begin and end at the same
points, but they differ in between, and the integral certainly does not come
out the same both ways. Yet many other paths of integration from x̂ρ to ŷρ
are possible, not just these two.

Because multiple paths are possible, we must be more specific:

S =

∫

C
(x2 + y2) d`,

where C stands for “contour” and means in this example the specific contour
of Fig. 7.9. In the example, x2 +y2 = ρ2 (by the Pythagorean theorem) and
d` = ρ dφ, so

S =

∫

C
ρ2 d` =

∫ 2π/4

0
ρ3 dφ =

2π

4
ρ3.
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Figure 7.9: A contour of integration.
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In the example the contour is open, but closed contours which begin and
end at the same point are also possible, indeed common. The useful symbol

∮

indicates integration over a closed contour. It means that the contour ends
where it began: the loop is closed. The contour of Fig. 7.9 would be closed,
for instance, if it continued to r = 0 and then back to r = x̂ρ.

Besides applying where the variable of integration is a vector, contour
integration applies equally where the variable of integration is a complex
scalar. In the latter case some interesting mathematics emerge, as we shall
see in §§ 8.8 and 9.6.

7.7 Discontinuities

The polynomials and trigonometrics studied to this point in the book of-
fer flexible means to model many physical phenomena of interest, but one
thing they do not model gracefully is the simple discontinuity. Consider a
mechanical valve opened at time t = to. The flow x(t) past the valve is

x(t) =

{
0, t < to;

xo, t > to.
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Figure 7.10: The Heaviside unit step u(t).

t

u(t)

1

One can write this more concisely in the form

x(t) = u(t− to)xo,

where u(t) is the Heaviside unit step,

u(t) ≡





0, t < 0;

1/2, t = 0;

1, t > 0;

(7.21)

plotted in Fig. 7.10.
Incidentally, the value u(0) = 1/2 of u(t) on the edge is a matter of

definition. Equation (7.21) has defined u(0) = 1/2 for symmetry’s sake
but22

u1(t) ≡
{

0, t < 0;

1, t ≥ 0;
(7.22)

is also possible. This book generally prefers (7.21) except for the purpose of
the Laplace transform of chapter 19, which instead uses (7.22).

The derivative of the Heaviside unit step is the curious Dirac delta

δ(t) ≡ d

dt
u(t), (7.23)

also called23 the impulse function, plotted in Fig. 7.11. This function is zero
everywhere except at t = 0, where it is infinite, with the property that

∫ ∞

−∞
δ(t) dt = 1, (7.24)

22[82]
23[71, § 19.5]
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Figure 7.11: The Dirac delta δ(t).

t

δ(t)

and the interesting consequence that

∫ ∞

−∞
δ(t− to)f(t) dt = f(to) (7.25)

for any function f(t), eqn. (7.25) being the Dirac delta’s sifting property.24

24It seems inadvisable for the narrative to digress at this point to explore u(z) and
δ(z), the unit step and delta of a complex argument, though by means of Fourier analysis
(chapter 18) or by conceiving the Dirac delta as an infinitely narrow Gaussian pulse (§ 18.4)
it could perhaps do so. The book has more pressing topics to treat. For the book’s present
purpose the interesting action of the two functions is with respect to the real argument t.

In the author’s country at least, a sort of debate seems to have run for decades between
professional and applied mathematicians over the Dirac delta δ(t). Some professional
mathematicians seem to have objected that δ(t) is not a function inasmuch as it lacks
certain properties common to functions as they define them [99, § 2.4][40]. From the
applied point of view the objection is admittedly a little hard to understand until one
realizes that it is more a dispute over methods and definitions than over facts. What the
professionals seem to be saying is that δ(t) does not fit as neatly as they would like into
the abstract mathematical framework they had established for functions in general before
Paul Dirac came along in 1930 [146, “Paul Dirac,” 05:48, 25 May 2006] and slapped his
disruptive δ(t) down on the table. The objection is not so much that δ(t) is not allowed
as it is that professional mathematics for years after 1930 lacked a fully coherent theory
for it.

The objection, if it is an objection, might tell one more about shortcomings of the
abstract mathematical framework than it does about the uses of Dirac’s δ(t).

Whether the professional mathematician’s definition of the function specifically is flawed
is not, of course, for this writer to judge. Nevertheless, the fact of the Dirac delta dispute,
coupled with the difficulty we applied mathematicians experience in trying to understand
the reason the dispute even exists, has unfortunately surrounded the Dirac delta with a
kind of mysterious aura, an elusive sense that δ(t) hides subtle mysteries—when what it
really hides is an internal discussion of words and means among the professionals. The
professionals who had established the theoretical framework before 1930 justifiably felt
reluctant to throw the whole framework away because some scientists and engineers like
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Noteworthy is that

δ(αt) =
δ(t)

|α| , =(α) = 0, (7.26)

a formula that results from changing αt← t in (7.24).

The Dirac delta is defined for vectors, too, such that

∫

S
δ(ρ) dρ = 1, (7.27)

∫

V
δ(r) dr = 1, (7.28)

where dρ = dx dy = ρ dρ dφ is a surface infinitesimal and dr is likewise a
volume infinitesimal.

7.8 Remarks (and exercises)

The concept of the integral is relatively simple once grasped, but its im-
plications are broad, deep and hard. This chapter is short. One reason
introductory calculus texts run so long is that they include many pages
of integration examples and exercises. The reader who desires a gentler
introduction to the integral might consult among others the textbook the
chapter’s introduction has recommended.

Even if this book is not an instructional textbook, to let the book include
no exercises at all here would seem unmeet. Here are a few. Some of them
need material from later chapters, so you should not expect to be able to
complete them all now. The harder ones are marked with ∗asterisks. Work
the exercises if you like.

1. Evaluate (a)
∫ x

0 τ dτ ; (b)
∫ x

0 τ
2 dτ . (Answer: x2/2; x3/3.)

2. Evaluate (a)
∫ x

1 (1/τ2) dτ ; (b)
∫ x
a 3τ−2 dτ ; (c)

∫ x
a Cτ

n dτ ; (d)
∫ x

0
(a2τ

2 + a1τ) dτ ; ∗(e)
∫ x

1 (1/τ) dτ .

3. ∗Evaluate (a)
∫ x

0

∑∞
k=0 τ

k dτ ; (b)
∑∞

k=0

∫ x
0 τ

k dτ ; (c)
∫ x

0

∑∞
k=0(τk/k!)

dτ .

4. Evaluate
∫ x

0 expατ dτ .

us came along one day with a useful new function which didn’t quite fit, but that was
the professionals’ problem not ours. To us the Dirac delta δ(t) is just a function. The
internal discussion of words and means, we leave to the professionals, who know whereof
they speak.
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5. Evaluate (a)
∫ 5
−2(3τ2 − 2τ3) dτ ; (b)

∫ −2
5 (3τ2 − 2τ3) dτ . Work the

exercise by hand in hexadecimal and give the answer in hexadecimal.

6. Evaluate
∫∞

1 (3/τ2) dτ .

7. ∗Evaluate the integral of the example of § 7.6 along the alternate con-
tour suggested there, from x̂ρ to 0 to ŷρ.

8. Evaluate (a)
∫ x

0 cosωτ dτ ; (b)
∫ x

0 sinωτ dτ ; ∗(c)25
∫ x

0 τ sinωτ dτ .

9. ∗Evaluate26 (a)
∫ x

1

√
1 + 2τ dτ ; (b)

∫ a
x [(cos

√
τ)/
√
τ ] dτ.

10. ∗Evaluate27 (a)
∫ x

0 [1/(1 + τ2)] dτ (answer: arctanx); (b)
∫ x

0 [(4 +

i3)/
√

2− 3τ2] dτ (hint: the answer involves another inverse trigono-
metric); (c)

∫ x
0

√
1− τ2 dτ ; (d)

∫ x
0 τ
√

1− τ2 dτ (hint: use a different

technique than for part c); (e)
∫ x

0 τ
2
√

1− τ2 dτ (hint: use a similar
technique as for part c).

11. ∗∗Evaluate (a)
∫ x
−∞ exp[−τ2/2] dτ ; (b)

∫∞
−∞ exp[−τ2/2] dτ .

The last exercise in particular requires some experience to answer. Moreover,
it requires a developed sense of applied mathematical style to put the answer
in a pleasing form (the right form for part b is very different from that for
part a). Some of the easier exercises, of course, you should be able to work
right now.

The point of the exercises is to illustrate how hard integrals can be to
solve, and in fact how easy it is to come up with an integral which no one
really knows how to solve very well. Some solutions to the same integral
are better than others (easier to manipulate, faster to numerically calculate,
etc.) yet not even the masters can solve them all in practical ways. On the
other hand, integrals which arise in practice often can be solved very well
with sufficient cleverness—and the more cleverness you develop, the more
such integrals you can solve. The ways to solve them are myriad. The
mathematical art of solving diverse integrals is well worth cultivating.

Chapter 9 introduces some of the basic, most broadly useful integral-
solving techniques. Before addressing techniques of integration, however, as
promised earlier we turn our attention in chapter 8 back to the derivative,
applied in the form of the Taylor series.

25[115, § 8-2]
26[115, § 5-6]
27Parts (a) and (b) are sourced from [115, back endpaper].



Chapter 8

The Taylor series

The Taylor series is a power series that fits a function in a limited domain
neighborhood. Fitting a function in such a way brings at least two advan-
tages:

• it lets us take derivatives and integrals in the same straightforward
way (4.15) one can take them given any power series; and

• it implies a simple procedure to calculate values of the function nu-
merically.

This chapter introduces the Taylor series and some of its incidents. It also
derives Cauchy’s integral formula. The chapter’s early sections prepare the
ground for the treatment of the Taylor series proper in § 8.3.1

(The chapter’s early sections, §§ 8.1 and 8.2, are thick with tiny alge-
braic details. The reader who does not wish, for now, to pick through tiny
algebraic details can safely just skim the two sections and then turn ahead
to start reading in § 8.3. Notwithstanding, the reader who would not skip

1Because even at the applied level the proper derivation of the Taylor series involves
mathematical induction, analytic continuation and the matter of convergence domains,
no balance of rigor the chapter might strike seems wholly satisfactory. The chapter errs
maybe toward too much rigor; for, with a little less, most of §§ 8.1, 8.2, 8.4 and 8.6 would
cease to be necessary. For the impatient, to read only the following sections might not
be an unreasonable way to shorten the chapter: §§ 8.3, 8.5, 8.8, 8.9 and 8.11, plus the
introduction of § 8.1.

From another point of view, the chapter errs maybe toward too little rigor. Some
pretty constructs of pure mathematics serve the Taylor series and Cauchy’s integral for-
mula. However, such constructs drive the applied mathematician on too long a detour (a
detour appendix C briefly overviews). The chapter as written represents the most nearly
satisfactory compromise the writer has been able to strike.

191



192 CHAPTER 8. THE TAYLOR SERIES

details, howsoever tiny the details might be, can sharpen his pencil and
continue to § 8.1, next.)

8.1 The power-series expansion of 1/(1− z)n+1

Before approaching the Taylor series proper in § 8.3, we shall find it both
interesting and useful to demonstrate that

1

(1− z)n+1
=
∞∑

k=0

(
n+ k

n

)
zk, n ≥ 0. (8.1)

The demonstration comes in three stages. Of the three, it is the second
stage (§ 8.1.2) which actually proves (8.1). The first stage (§ 8.1.1) comes
up with the formula for the second stage to prove. The third stage (§ 8.1.3)
establishes the sum’s convergence. In all the section,

i, j, k,m, n,K ∈ Z.

8.1.1 The formula

In § 2.6.4 we found that

1

1− z =

∞∑

k=0

zk = 1 + z + z2 + z3 + · · ·

for |z| < 1. What about 1/(1−z)2, 1/(1−z)3, 1/(1−z)4, and so on? By the
long-division procedure of Table 2.4, one can calculate the first few terms of
1/(1− z)2 to be

1

(1− z)2
=

1

1− 2z + z2
= 1 + 2z + 3z2 + 4z3 + · · ·

whose coefficients 1, 2, 3, 4, . . . happen to be the numbers down the first
diagonal of Pascal’s triangle (Fig. 4.2 on page 96; see also Fig. 4.1). Dividing
1/(1− z)3 seems to produce the coefficients 1, 3, 6, 0xA, . . . down the second
diagonal; dividing 1/(1 − z)4, the coefficients down the third. A curious
pattern seems to emerge, worth investigating more closely. The pattern
recommends the conjecture (8.1).

To motivate the conjecture a bit more formally (though without actually
proving it yet), suppose that 1/(1−z)n+1, n ≥ 0, is expandable in the power
series

1

(1− z)n+1
=
∞∑

k=0

ankz
k, (8.2)
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where the ank are coefficients to be determined. Multiplying by 1 − z, we
have that

1

(1− z)n =
∞∑

k=0

[ank − an(k−1)]z
k.

This is to say that
a(n−1)k = ank − an(k−1),

or in other words that

an(k−1) + a(n−1)k = ank. (8.3)

Thinking of Pascal’s triangle, (8.3) reminds one of a formula of Table 4.1,
transcribed here in the symbols

(
m− 1

j − 1

)
+

(
m− 1

j

)
=

(
m

j

)
, (8.4)

except that (8.3) is not a(m−1)(j−1) + a(m−1)j = amj .
Various changes of variable are possible to make (8.4) better match (8.3).

We might try at first a few false ones, but eventually the change

n+ k ← m,

k ← j,

recommends itself. Thus changing in (8.4) gives
(
n+ k − 1

k − 1

)
+

(
n+ k − 1

k

)
=

(
n+ k

k

)
.

Transforming according to a rule of Table 4.1, this is
(
n+ [k − 1]

n

)
+

(
[n− 1] + k

n− 1

)
=

(
n+ k

n

)
, (8.5)

which fits (8.3) perfectly if

ank =

(
n+ k

n

)
. (8.6)

Hence we conjecture that (8.6), applied to (8.2), would make (8.1) true.
Equation (8.1) is thus suggestive. It works at least for the important

case of n = 0; this much is easy to test. In light of (8.3), it seems to imply
a relationship between the 1/(1− z)n+1 series and the 1/(1− z)n series for
any n. But to seem is not to be. At this point, all we can say is that (8.1)
seems right. We will establish that it is right in the next subsection.
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8.1.2 The proof by induction

Equation (8.1) is proved by induction as follows. Consider the sum

Sn ≡
∞∑

k=0

(
n+ k

n

)
zk. (8.7)

Multiplying by 1− z yields that

(1− z)Sn =
∞∑

k=0

[(
n+ k

n

)
−
(
n+ [k − 1]

n

)]
zk.

Per (8.5), this is

(1− z)Sn =

∞∑

k=0

(
[n− 1] + k

n− 1

)
zk. (8.8)

Now suppose that (8.1) is true for n = i− 1 (where i denotes an integer
rather than the imaginary unit):

1

(1− z)i =

∞∑

k=0

(
[i− 1] + k

i− 1

)
zk. (8.9)

In light of (8.8), this means that

1

(1− z)i = (1− z)Si.

Dividing by 1− z,
1

(1− z)i+1
= Si.

Applying (8.7),

1

(1− z)i+1
=

∞∑

k=0

(
i+ k

i

)
zk. (8.10)

Evidently (8.9) implies (8.10). In other words, if (8.1) is true for n = i− 1,
then it is also true for n = i. Thus by induction, if it is true for any one n,
then it is also true for all greater n.

The “if” in the last sentence is important. Like all inductions, this one
needs at least one start case to be valid (many inductions actually need a
consecutive pair of start cases). The n = 0 supplies the start case

1

(1− z)0+1
=
∞∑

k=0

(
k

0

)
zk =

∞∑

k=0

zk,

which per (2.34) we know to be true.



8.1. THE POWER-SERIES EXPANSION OF 1/(1− Z)N+1 195

8.1.3 Convergence

The question remains as to the domain over which the sum (8.1) converges.2

To answer the question, consider that per Table 4.1,

(
m

j

)
=

m

m− j

(
m− 1

j

)
, m > 0.

With the substitution n+ k ← m, n← j, this means that

(
n+ k

n

)
=
n+ k

k

(
n+ [k − 1]

n

)
,

or more tersely,

ank =
n+ k

k
an(k−1),

where

ank ≡
(
n+ k

n

)

are the coefficients of the power series (8.1). Rearranging factors,

ank
an(k−1)

=
n+ k

k
= 1 +

n

k
. (8.11)

2The meaning of the verb to converge may seem clear enough from the context and
from earlier references, but if explanation here helps: a series converges if and only if it
approaches a specific, finite value after many terms. A more rigorous way of saying the
same thing is as follows: the series

S =

∞∑
k=0

τk

converges iff (if and only if), for all possible positive constants ε, there exists a finite
K ≥ −1 such that ∣∣∣∣∣

n∑
k=K+1

τk

∣∣∣∣∣ < ε,

for all n ≥ K (of course it is also required that the τk be finite, but you knew that already).
The professional mathematical literature calls such convergence “uniform convergence,”

distinguishing it through a test devised by Weierstrass from the weaker “pointwise con-
vergence” [3, § 1.5]. The applied mathematician can profit by learning the professional
view in the matter but the effect of trying to teach the professional view in a book like
this would not be pleasing. Here, we avoid error by keeping a clear view of the physical
phenomena the mathematics is meant to model.

It is interesting nevertheless to consider an example of an integral for which convergence
is not so simple, such as Frullani’s integral of § 9.10.
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Multiplying (8.11) by zk/zk−1 gives the ratio

ankz
k

an(k−1)zk−1
=
(

1 +
n

k

)
z,

which is to say that the kth term of (8.1) is (1 + n/k)z times the (k − 1)th
term. So long as the criterion3

∣∣∣
(

1 +
n

k

)
z
∣∣∣ ≤ 1− δ

is satisfied for all sufficiently large k > K—where 0 < δ � 1 is a small posi-
tive constant—then the series evidently converges (see § 2.6.4 and eqn. 3.22).
But we can bind 1+n/k as close to unity as desired by making K sufficiently
large, so to meet the criterion it suffices that

|z| < 1. (8.12)

The bound (8.12) thus establishes a sure convergence domain for (8.1).

8.1.4 General remarks on mathematical induction

We have proven (8.1) by means of a mathematical induction. The virtue
of induction as practiced in § 8.1.2 is that it makes a logically clean, air-
tight case for a formula. Its vice is that it conceals the subjective process
which has led the mathematician to consider the formula in the first place.
Once you obtain a formula somehow, maybe you can prove it by induction;
but the induction probably does not help you to obtain the formula! A
good inductive proof usually begins by motivating the formula proven, as in
§ 8.1.1.

Richard W. Hamming once said of mathematical induction,

The theoretical difficulty the student has with mathematical in-
duction arises from the reluctance to ask seriously, “How could
I prove a formula for an infinite number of cases when I know
that testing a finite number of cases is not enough?” Once you

3Although one need not ask the question to understand the proof, the reader may
nevertheless wonder why the simpler |(1 + n/k)z| < 1 is not given as a criterion. The
surprising answer is that not all series

∑
τk with |τk/τk−1| < 1 converge! For example,

the extremely simple
∑

1/k does not converge. As we see however, all series
∑
τk with

|τk/τk−1| < 1− δ do converge. The distinction is subtle but rather important.
The really curious reader may now ask why

∑
1/k does not converge. Answer: it

majorizes
∫ x

1
(1/τ) dτ = lnx. See (5.8) and § 8.10.
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really face this question, you will understand the ideas behind
mathematical induction. It is only when you grasp the problem
clearly that the method becomes clear. [57, § 2.3]

Hamming also wrote,

The function of rigor is mainly critical and is seldom construc-
tive. Rigor is the hygiene of mathematics, which is needed to
protect us against careless thinking. [57, § 1.6]

The applied mathematician may tend to avoid rigor for which he finds no
immediate use, but he does not disdain mathematical rigor on principle.
The style lies in exercising rigor at the right level for the problem at hand.
Hamming, a professional mathematician who sympathized with the applied
mathematician’s needs, wrote further,

Ideally, when teaching a topic the degree of rigor should follow
the student’s perceived need for it. . . . It is necessary to require
a gradually rising level of rigor so that when faced with a real
need for it you are not left helpless. As a result, [one cannot
teach] a uniform level of rigor, but rather a gradually rising level.
Logically, this is indefensible, but psychologically there is little
else that can be done. [57, § 1.6]

Applied mathematics holds that the practice is defensible, on the ground
that the math serves the model; but Hamming nevertheless makes a perti-
nent point.

Mathematical induction is a broadly applicable technique for construct-
ing mathematical proofs. We will not always write inductions out as ex-
plicitly in this book as we have done in the present section—often we will
leave the induction as an implicit exercise for the interested reader—but this
section’s example at least lays out the general pattern of the technique.

8.2 Shifting a power series’ expansion point

One more question we should treat before approaching the Taylor series
proper in § 8.3 concerns the shifting of a power series’ expansion point.
How can the expansion point of the power series

f(z) =

∞∑

k=K

(ak)(z − zo)k, (8.13)

(k,K) ∈ Z, K ≤ 0,
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which may have terms of negative order, be shifted from z = zo to z = z1?
The first step in answering the question is straightforward: one rewrites

(8.13) in the form

f(z) =

∞∑

k=K

(ak)([z − z1]− [zo − z1])k,

then changes the variables

w ≡ z − z1

zo − z1
,

ck ≡ [−(zo − z1)]kak,

(8.14)

to obtain

f(z) =
∞∑

k=K

(ck)(1− w)k. (8.15)

Splitting the k < 0 terms from the k ≥ 0 terms in (8.15), we have that

f(z) = f−(z) + f+(z), (8.16)

f−(z) ≡
−(K+1)∑

k=0

c[−(k+1)]

(1− w)k+1
,

f+(z) ≡
∞∑

k=0

(ck)(1− w)k.

Of the two subseries, the f−(z) is expanded term by term using (8.1), after
which combining like powers of w yields the form

f−(z) =
∞∑

j=0

qjw
j ,

qj ≡
−(K+1)∑

n=0

(
c[−(n+1)]

)(n+ j

n

)
.

(8.17)

The f+(z) is even simpler to expand: one need only multiply the series out
term by term per (4.5), combining like powers of w to reach the form

f+(z) =

∞∑

j=0

pjw
j ,

pj ≡
∞∑

n=j

(−)j(cn)

(
n

j

)
.

(8.18)



8.2. SHIFTING A POWER SERIES’ EXPANSION POINT 199

Equations (8.13) through (8.18) serve to shift a power series’ expansion
point, calculating the coefficients of a power series for f(z) about z = z1,
given those of a power series about z = zo. Notice that—unlike the original,
z = zo power series—the new, z = z1 power series has terms (z − z1)k only
for k ≥ 0; it has no terms of negative order. At the price per (8.12) of
restricting the convergence domain to |w| < 1, our shift of the expansion
point away from the pole at z = zo has resolved the k < 0 terms. Moreover,
though one recognizes the price, we actually pay the price only to the extent
to which there are k < 0 terms—which often there aren’t.

The method fails if z = z1 happens to be a pole or other nonanalytic
point of f(z). The convergence domain vanishes as z1 approaches such
a forbidden point. (Examples of such forbidden points include z = 0 in
h[z] = 1/z and in g[z] =

√
z. See §§ 8.4 through 8.8.) Furthermore, even

if z1 does represent a fully analytic point of f(z), it also must lie within
the convergence domain of the original, z = zo series for the shift to be
trustworthy as derived.

The attentive reader might observe that we have formally established
the convergence neither of f−(z) in (8.17) nor of f+(z) in (8.18). Regarding
the former convergence, that of f−(z), we have strategically framed the
problem so that one needn’t worry about it, running the sum in (8.13)
from the finite k = K ≤ 0 rather than from the infinite k = −∞; and
since according to (8.12) each term of the original f−(z) of (8.16) converges
for |w| < 1, the reconstituted f−(z) of (8.17) safely converges in the same
domain. The latter convergence, that of f+(z), is harder to establish in the
abstract because that subseries has an infinite number of terms. As we will
see by pursuing a different line of argument in § 8.3, however, the f+(z)
of (8.18) can be nothing other than the Taylor series about z = z1 of the
function f+(z) in any event, enjoying the same convergence domain any such
Taylor series enjoys.4

4A rigorous argument can be constructed without appeal to § 8.3 if desired, from the
ratio n/(n − k) of Table 4.1, which ratio approaches unity with increasing n. A more
elegant rigorous argument can be made indirectly by way of a complex contour integral.
In applied mathematics, however, one does not normally try to shift the expansion point
of an unspecified function f(z), anyway. Rather, one shifts the expansion point of some
concrete function like sin z or ln(1 − z). The imagined difficulty (if any) vanishes in the
concrete case. Appealing to § 8.3, the important point is the one made in the narrative:
f+(z) can be nothing other than the Taylor series in any event.
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8.3 Expanding functions in Taylor series

Having prepared the ground, we now stand in position to treat the Taylor
series proper. The treatment begins with a question: if you had to express
some function f(z) by a power series

f(z) =
∞∑

k=0

(ak)(z − zo)k,

with terms of nonnegative order k ≥ 0 only, then how would you do it? The
procedure of § 8.1 worked well enough in the case of f(z) = 1/(1 − z)n+1,
but it is not immediately obvious that the same procedure would work more
generally. What if f(z) = sin z, for example?5

Fortunately a different way to attack the power-series expansion problem
is known. It works by asking the question: what power series, having terms
of nonnegative order only, most resembles f(z) in the immediate neighbor-
hood of z = zo? To resemble f(z), the desired power series should have
a0 = f(zo); otherwise it would not have the right value at z = zo. Then it
should have a1 = f ′(zo) for the right slope. Then, a2 = f ′′(zo)/2 for the
right second derivative, and so on. With this procedure,

f(z) =
∞∑

k=0

(
dkf

dzk

∣∣∣∣
z=zo

)
(z − zo)k

k!
. (8.19)

Equation (8.19) is the Taylor series. Where it converges, it has all the same
derivatives f(z) has, so if f(z) is infinitely differentiable then the Taylor
series exactly represents the function.6 (At the cost of abandoning applied
methods, appendix C elaborates for the benefit of readers that would like
elaboration. However, one might study the present chapter at least as far
as the end of § 8.9 before attempting the appendix.)

5The actual Taylor series for sin z is given in § 8.9.
6The professional mathematician demands greater rigor at this juncture [7][47][120]

[116][65][116][78]. An applicationist ordinarily impatient with professional scruples might
nevertheless pause to attend to the professional’s objection in this instance. Consider for
example the function

g(t) ≡ exp(−1/t2), =(t) = 0,

proposed by [4], a function whose derivatives are all null at t = 0 despite that function
(along with its derivatives) is nonnull elsewhere over the real domain. Is the Taylor series
of g(t) an exact representation?

Extension to the complex domain relieves the trouble but the writer has never encoun-
tered, nor been able to devise, a suitable applications-level proof of this fact. Appendix C
instead outlines a professional-style proof.
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The Taylor series is not guaranteed to converge outside some neighbor-
hood near z = zo, but where it does converge it is precise.

When zo = 0, the series is also called the Maclaurin series. By either
name, the series is a construct of great importance and tremendous practical
value, as we shall soon see.

8.4 Analytic continuation

As earlier mentioned in § 2.11.3, an analytic function is a function which is
infinitely differentiable in the domain neighborhood of interest—or, maybe
more appropriately for our applied purpose, a function expressible as a Tay-
lor series in that neighborhood. As we have seen, only one Taylor series
about zo is possible for a given function f(z):

f(z) =
∞∑

k=0

(ak)(z − zo)k.

However, nothing prevents one from transposing the series to a different
expansion point z = z1 by the method of § 8.2, except that the transposed
series may there enjoy a different convergence domain. As it happens, this
section’s purpose finds it convenient to swap symbols zo ↔ z1, transposing
rather from expansion about z = z1 to expansion about z = zo. In the
swapped notation, so long as the expansion point z = zo lies fully within
(neither outside nor right on the edge of) the z = z1 series’ convergence
domain, the two series evidently describe the selfsame underlying analytic
function.

Since an analytic function f(z) is infinitely differentiable and enjoys a
unique Taylor expansion fo(z−zo) = f(z) about each point zo in its domain,
it follows that if two Taylor series f1(z−z1) and f2(z−z2) find even a small
neighborhood |z − zo| < ε which lies in the domain of both, then the two can
both be transposed to the common z = zo expansion point. If the two are
found to have the same Taylor series there, then f1 and f2 both represent
the same function. Moreover, if a series f3 is found whose domain overlaps
that of f2, then a series f4 whose domain overlaps that of f3, and so on,
and if each pair in the chain matches at least in a small neighborhood in
its region of overlap, then the whole chain of overlapping series necessarily
represents the same underlying analytic function f(z). The series f1 and
the series fn represent the same analytic function even if their domains do
not directly overlap at all.
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This is a manifestation of the principle of analytic continuation. The
principle holds that if two analytic functions are the same within some do-
main neighborhood |z − zo| < ε, then they are the same everywhere.7 Ob-
serve however that the principle fails at poles and other nonanalytic points,
because the function is not differentiable there.

The result of § 8.2, which shows general power series to be expressible as
Taylor series except at their poles and other nonanalytic points, extends the
analytic continuation principle to cover power series in general, including
power series with terms of negative order.

Now, observe: though all convergent power series are indeed analytic,
one need not actually expand every analytic function in a power series.
Sums, products and ratios of analytic functions are hardly less differentiable
than the functions themselves—as also, by the derivative chain rule, is an
analytic function of analytic functions. For example, where g(z) and h(z) are
analytic, there also is f(z) ≡ g(z)/h(z) analytic (except perhaps at isolated
points where h[z] = 0). Besides, given Taylor series for g(z) and h(z) one
can make a power series for f(z) by long division if desired, so that is all
right. Section 8.15 speaks further on the point.

The subject of analyticity is rightly a matter of deep concern to the
professional mathematician. It is also a long wedge which drives pure and
applied mathematics apart. When the professional mathematician speaks
generally of a “function,” he means any function at all. One can construct
some pretty unreasonable functions if one wants to, such as

f([2k + 1]2m) ≡ (−)m, (k,m) ∈ Z;

f(z) ≡ 0 otherwise.

However, neither functions like this f(z) nor more subtly unreasonable func-
tions normally arise in the modeling of physical phenomena. When such
functions do arise, one transforms, approximates, reduces, replaces and/or
avoids them. The full theory which classifies and encompasses—or explicitly
excludes—such functions is thus of limited interest to the applied mathe-
matician, and this book does not cover it.8

7The writer hesitates to mention that he is given to understand [120] that the domain
neighborhood can technically be reduced to a domain contour of nonzero length but zero
width. Having never met a significant application of this extension of the principle, the
writer has neither researched the extension’s proof nor asserted its truth. He does not
especially recommend that the reader worry over the point. The domain neighborhood
|z − zo| < ε suffices.

8Many books do cover it in varying degrees, including [47][120][65][116] and numerous
others. The foundations of the pure theory of a complex variable, though abstract, are
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This does not mean that the scientist or engineer never encounters non-
analytic functions. On the contrary, he encounters several, but they are not
subtle: |z|; arg z; z∗; <(z); =(z); u(t); δ(t). Refer to §§ 2.11 and 7.7. Such
functions are nonanalytic either because they lack proper derivatives in the
Argand plane according to (4.13) or because one has defined them only over
a real domain.

8.5 Branch points

The function g(z) ≡ √z is an interesting, troublesome function. Its deriv-
ative is dg/dz = 1/2

√
z, so even though the function is finite at z = 0,

its derivative is not finite there. Evidently g(z) has a nonanalytic point at
z = 0, yet the point is not a pole. What is it?

We call it a branch point. The defining characteristic of the branch point
is that, given a function f(z) with such a point at z = zo, if one encircles9

the point once alone (that is, without also encircling some other branch
point) by a closed contour in the Argand domain plane, while simultaneously
tracking f(z) in the Argand range plane—and if one demands that z and
f(z) move smoothly, that neither of these suddenly skip from one spot to
another—then one finds that f(z) ends in a different place than it began,
even though z itself has returned precisely to its own starting point. The
range contour remains open even though the domain contour is closed.

In complex analysis, a branch point may be thought of informally
as a point zo at which a “multiple-valued function” changes val-
ues when one winds once around zo.

10

An analytic function like g(z) ≡ √z having a branch point evidently is
not single-valued. It is multiple-valued. For a single z more than one distinct
g(z) is possible, as Fig. 8.1 suggests. (Looking at the figure, incidentally,
the perceptive reader might ask why the figure does not merely plot g[z]

beautiful, and though they do not comfortably fit a book like this even an applied math-
ematician can profit substantially by studying them. The few pages of appendix C trace
only the pure theory’s main thread. However that may be, the pure theory is probably
best appreciated after one already understands its chief conclusions. Though not for the
explicit purpose of serving the pure theory, the present chapter does develop just such an
understanding.

9For readers whose native language is not English, “to encircle” means “to surround”
or “to enclose.” The verb does not require the boundary to have the shape of an ac-
tual, geometrical circle; any closed shape suffices. However, the circle is a typical shape,
probably the most fitting shape to imagine when thinking of the concept abstractly.

10[146, “Branch point,” 18:10, 16 May 2006]
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Figure 8.1: A coördinated evolution of z and g(z) ≡ √z.

ℜ{z}

ℑ{z}

b ℜ
{
g(z) ≡ √

z
}

ℑ
{
g(z) ≡ √

z
}

b

against z on a single pair of axes. Of course, the reader knows why, but the
question is worth asking, anyway. The answer is that the figure would indeed
like to plot g[z] against z on a single pair of axes but cannot because four di-
mensions would be required for the visual! Three dimensions are sometimes
let to overburden two-dimensional paper—as in Fig. 7.7 for example—but
four dimensions are too many; so, instead, Fig. 8.1 coördinates a pair of plots
at two visual dimensions per plot. There is irony in this, for the real and
imaginary parts of a scalar together constitute only a single actual dimen-
sion, but no one seems to know how to display an imaginary part visually
without using an extra axis.)

An analytic function like h(z) ≡ 1/z, by contrast to g(z), is single-valued
even though it has a pole. This function does not suffer the syndrome
described. When a domain contour encircles a pole of h(z) or of any other
function that has a pole, the corresponding range contour is properly closed.
Poles do not cause their functions to be multiple-valued and, thus, poles are
not branch points.

Evidently f(z) ≡ (z − zo)a has a branch point at z = zo if and only if a
is not an integer. If f(z) does have a branch point—if a is not an integer—
then the mathematician must draw a distinction between z1 = zo + ρeiφ

and z2 = zo + ρei(φ+2π), even though the two are exactly the same number.
Indeed z1 = z2, but paradoxically f(z1) 6= f(z2).

This is difficult. It is confusing, too, until one realizes that the fact
of a branch point says nothing whatsoever about the argument z. As far
as z is concerned, there really is no distinction between z1 = zo + ρeiφ and
z2 = zo+ρei(φ+2π)—none at all. What draws the distinction is the multiple-



8.5. BRANCH POINTS 205

Figure 8.2: A coördinated evolution of z and p(z) ≡ ln z.

ℜ{z}
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ℑ {p(z) ≡ ln z}

b

valued function f(z) which uses the argument.
It is as though I had a mad colleague who called me Thaddeus H. Black,

until one day I happened to walk past behind his desk (rather than in front
as I usually did), whereupon for some reason he began calling me Gorbag J.
Pfufnik. I had not changed at all, but now the colleague calls me by a
different name. The change isn’t really in me, is it? It’s in my colleague,
who seems to suffer a branch point. If it is important to me to be sure that
my colleague really is addressing me when he cries, “Pfufnik!” then I had
better keep a running count of how many times I have turned about his
desk, hadn’t I, even though the number of turns is personally of no import
to me.

The usual analysis strategy when one encounters a branch point is simply
to avoid the point. Where an integral follows a closed contour as in § 8.8,
the strategy is to compose the contour to exclude the branch point, to shut
it out. Such a strategy of avoidance usually prospers.11

Curiously, the function p(z) ≡ ln z has a branch point at z = 0 de-
spite that the function’s order is zero (§ 5.3). By contrast, the order of
g(z) ≡ √z was 1/2, a noninteger, so a branch point was to be expected
there; whereas a branch point in a zeroth-order function like ln(·) comes
perhaps as a surprise—see Fig. 8.2. Fortunately, as § 8.8 will soon show,
the branch point of ln(·) is not a point one needs to avoid. On the contrary,
one often explicitly seeks out such a point. Before addressing that interest-

11Traditionally associated with branch points in complex variable theory are the notions
of branch cuts and Riemann sheets. These ideas are interesting, but are not central to the
analysis as developed in this book and are not covered here. The interested reader might
consult a book on complex variables or advanced calculus like [65], among many others.
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ing matter, though, let us turn attention briefly to the definitions of entire
and meromorphic functions, next, and after that to extrema over a complex
domain.

8.6 Entire and meromorphic functions

Though an applied mathematician is unwise to let abstract definitions en-
thrall his thinking, pure mathematics nevertheless brings some technical
definitions the applied mathematician can use. Two such are the definitions
of entire and meromorphic functions.12

A function f(z) which is analytic for all finite z is an entire function.13

Examples include f(z) = z2 and f(z) = exp z, but not f(z) = 1/z which
has a pole at z = 0.

A function f(z) which is analytic for all finite z except at isolated poles
(which can be n-fold poles if n is a finite, positive integer), which has no
branch points, of which no circle of finite radius in the Argand domain plane
encompasses an infinity of poles, is a meromorphic function.14 Examples
include f(z) = 1/z, f(z) = 1/(z + 2) + 1/(z − 1)3 + 2z2 and f(z) = tan z—
the last of which has an infinite number of poles, but of which the poles
nowhere cluster in infinite numbers. The function f(z) = tan(1/z) is not
meromorphic since it has an infinite number of poles within (for instance) the
Argand unit circle. Even the function f(z) = exp(1/z) is not meromorphic:
it has only the one, isolated nonanalytic point at z = 0, and that point is no
branch point; but the point is an essential singularity, having the character
of an infinitifold (∞-fold) pole.15

Incidentally, if it seems unclear that the singularities of tan z are actual
poles, then consider that

tan z =
sin z

cos z
= −cosw

sinw
,

wherein we have changed the variable

w ← z − (2n+ 1)
2π

4
, n ∈ Z.

12[142]
13[120, chapter 6]
14The definition follows [84, § 1.1]. At least one competent author [120, chapter 6]

however seems (inadvertently?) to exclude functions with an infinite number of poles like
the P (z) ≡

∑∞
k=0[−]k/[k!(z + k)] of [84]. Nevertheless, according to the book you are now

reading, a function like P (z) remains meromorphic because, though it has an infinity of
poles, it does not crowd this infinity into any finite domain.

15[78]
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Section 8.9 and its Table 8.1, below, give Taylor series for cos z and sin z,
with which

tan z =
−1 + w2/2− w4/0x18− · · ·
w − w3/6 + w5/0x78− · · · .

By long division,

tan z = − 1

w
+

w/3− w3/0x1E + · · ·
1− w2/6 + w4/0x78− · · · .

(On the other hand, if it is unclear that z = [2n + 1][2π/4] are the only
singularities tan z has—that it has no singularities of which =[z] 6= 0—then
consider that the singularities of tan z occur where cos z = 0, which by
Euler’s formula, eqn. 5.18, occurs where exp[+iz] = exp[−iz]. This in turn
is possible only if |exp[+iz]| = |exp[−iz]|, which happens only for real z.)

Sections 8.14, 8.15 and 9.7 speak further of the matter.

8.7 Extrema over a complex domain

If a function f(z) is expanded by (8.19) or by other means about an analytic
expansion point z = zo such that

f(z) = f(zo) +
∞∑

k=1

(ak)(z − zo)k;

and if

ak = 0 for k < K, but

aK 6= 0,

(k,K) ∈ Z, 0 < K <∞,
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such that aK is the series’ first nonzero coefficient; then, in the immediate
neighborhood of the expansion point,16

f(z) ≈ f(zo) + (aK)(z − zo)K , |z − zo| � 1.

Changing ρ′eiφ
′ ← z − zo, this is

f(z) ≈ f(zo) + aK
(
ρ′
)K

eiKφ
′
, 0 ≤ ρ′ � 1. (8.20)

Evidently one can shift the output of an analytic function f(z) slightly in
any desired Argand direction by shifting slightly the function’s input z.
Specifically according to (8.20), to shift f(z) by ∆f ≈ εeiψ, one can shift z
by ∆z ≈ (ε/aK)1/Kei(ψ+n2π)/K , n ∈ Z. Except at a nonanalytic point of
f(z) or in the trivial case that f(z) were everywhere constant, this always
works—even where [df/dz]z=zo = 0.

That by varying an analytic function’s input one can smoothly shift the
function’s output in any desired Argand direction has the significant conse-
quence that neither the real nor the imaginary part of the function—nor for
that matter any linear combination <[e−iωf(z)] of the real and imaginary
parts—can have an extremum within the interior of a domain over which
the function is fully analytic. That is, a function’s extrema over a bounded
analytic domain never lie within the domain’s interior but always on its
boundary17,18 (except, as earlier mentioned, in the trivial case of an f [z]
that is everywhere constant).

The last consequence is perhaps unexpected. It would not have been
so for a real domain bounded by a pair of end points, but for an analytic
domain bounded by a complex contour that is the way it is. When looking
for a complex function’s extrema, one need not search an analytic domain’s

16The pure logicist might prefer to express this in the δ-ε style of § 4.4.9, especially
since z and zo might have physical units of measure attached, in which case the inequality
that |z − zo| � 1 though suggestive would be strictly meaningless. However, the practical
applicationist is probably not so fussy.

What the notation intends to specify, and what the applied mathematician understands
it to mean, is that z lie infinitesimally close to zo, or at any rate that z lie sufficiently close
to zo to emphasize the behavior described. Just how close z should lie is not the point. If
in doubt, go closer!

In case the reader is still unsatisfied, here it is in δ-ε style: for any positive quantity ε
whose physical units of measure (if any) are compatible as follows, there exists a positive
quantity δ such that |[f(zo) + (aK)(z − zo)K − f(z)]/[z − zo]K | < ε for all |z − zo| < δ.
Nevertheless, in applications, the narrative’s briefer style, |z − zo| � 1, probably suffices.

17Professional mathematicians tend to define the domain and its boundary more care-
fully.

18[126][78]
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interior, for if the domain contains no poles nor any other nonanalytic points
then, apparently, the domain’s boundary is the only place an extremum can
exist.

8.8 Cauchy’s integral formula

In § 7.6 we considered the problem of vector contour integration, in which the
sum value of an integration depends not only on the integration’s endpoints
but also on the path, or contour, over which the integration is done, as in
Fig. 7.9. Because real scalars are confined to a single line, no alternate choice
of path is possible where the variable of integration is a real scalar, so the
contour problem does not arise in that case. It does however arise where
the variable of integration is a complex scalar, because there again different
paths are possible. Refer to the Argand plane of Fig. 2.6.

Consider the integral

Sn =

∫ z2

z1

zn−1 dz, n ∈ Z. (8.21)

If z were always a real number, then by the antiderivative (§ 7.2) this integral
would evaluate to (zn2 − zn1 )/n; or, in the case of n = 0, to ln(z2/z1) [though
complications could still arise if n < 0 and z2 differed in sign from z1].
Inasmuch as z is complex, however, the correct evaluation is less obvious.
To evaluate the integral sensibly in the latter case, one must consider some
specific path of integration in the Argand plane. One must also consider the
meaning of the symbol dz.

8.8.1 The meaning of the symbol dz

The symbol dz represents an infinitesimal step in some direction in the
Argand plane:

dz = [z + dz]− [z]

=
[
(ρ+ dρ)ei(φ+dφ)

]
−
[
ρeiφ

]

=
[
(ρ+ dρ)ei dφeiφ

]
−
[
ρeiφ

]

=
[
(ρ+ dρ)(1 + i dφ)eiφ

]
−
[
ρeiφ

]
.
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Figure 8.3: A contour of integration in the Argand plane, in two segments:
constant-ρ (za to zb); and constant-φ (zb to zc).

φ
ρ

za

zb

zc

x = ℜ(z)

y = ℑ(z)

Since the product of two infinitesimals is negligible even on an infinitesimal
scale, we can drop the dρ dφ term.19 After canceling finite terms, we are left
with the peculiar but fine formula

dz = (dρ+ iρ dφ)eiφ. (8.22)

8.8.2 Integrating along the contour

Now consider the integration (8.21) along the contour of Fig. 8.3. Integrat-

19The dropping of second-order infinitesimals like dρ dφ, added to first order infinites-
imals like dρ, is a standard calculus technique. One cannot always drop them, however.
Occasionally one encounters a sum in which not only do the finite terms cancel, but also
the first-order infinitesimals. In such a case, the second-order infinitesimals dominate and
cannot be dropped. An example of the type is

lim
ε→0

(1− ε)3 + 3(1 + ε)− 4

ε2
= lim
ε→0

(1− 3ε+ 3ε2) + (3 + 3ε)− 4

ε2
= 3.

One typically notices that such a case has arisen when the dropping of second-order
infinitesimals has left an ambiguous 0/0. To fix the problem, you simply go back to the step
during which you dropped the infinitesimal and you restore it, and then you proceed from
there. Otherwise there isn’t much point in carrying second-order infinitesimals around. In
the relatively uncommon event that you need them, you’ll know it. The math itself will
tell you.
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ing along the constant-φ segment,
∫ zc

zb

zn−1 dz =

∫ ρc

ρb

(ρeiφ)n−1(dρ+ iρ dφ)eiφ

=

∫ ρc

ρb

(ρeiφ)n−1(dρ)eiφ

= einφ
∫ ρc

ρb

ρn−1 dρ

=
einφ

n
(ρnc − ρnb )

=
znc − znb

n
.

Integrating along the constant-ρ arc,
∫ zb

za

zn−1 dz =

∫ φb

φa

(ρeiφ)n−1(dρ+ iρ dφ)eiφ

=

∫ φb

φa

(ρeiφ)n−1(iρ dφ)eiφ

= iρn
∫ φb

φa

einφ dφ

=
iρn

in

(
einφb − einφa

)

=
znb − zna

n
.

Adding the two, we have that
∫ zc

za

zn−1 dz =
znc − zna

n
,

surprisingly the same as for real z. Moreover, contrary to the diagram but
nevertheless fairly obviously, nothing prevents one from specifying an alter-
nate path from za to zc that reverses the sequence, traversing a constant-φ
segment first and then a constant-ρ arc afterward; as long as n 6= 0 and, if
n < 0, the path observes to avoid the point z = 0, such a change apparently
would not alter the last result. Either way, since any path of integration
between any two complex numbers z1 and z2 is approximated arbitrarily
closely per (8.22) by a succession of short constant-ρ and constant-φ ele-
ments, it follows generally that

∫ z2

z1

zn−1 dz =
zn2 − zn1

n
, n ∈ Z, n 6= 0. (8.23)
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The applied mathematician might reasonably ask, “Was (8.23) really
worth the trouble? We knew that already. It’s the same as for real numbers.”

Well, we really didn’t know it before deriving it, but the point is well
taken nevertheless. However, notice the exemption of n = 0. Equation (8.23)
does not hold in that case. Consider the n = 0 integral

S0 =

∫ z2

z1

dz

z
.

Following the same steps as before and using (5.8) and (2.40), we find that

∫ ρ2

ρ1

dz

z
=

∫ ρ2

ρ1

(dρ+ iρ dφ)eiφ

ρeiφ
=

∫ ρ2

ρ1

dρ

ρ
= ln

ρ2

ρ1
. (8.24)

This is always real-valued, but otherwise it brings no surprise. However,

∫ φ2

φ1

dz

z
=

∫ φ2

φ1

(dρ+ iρ dφ)eiφ

ρeiφ
= i

∫ φ2

φ1

dφ = i(φ2 − φ1). (8.25)

The odd thing about this is in what happens when the contour closes a
complete loop in the Argand plane about the z = 0 pole. In this case,
φ2 = φ1 + 2π, so

S0 = i2π

even though the integration ends where it begins.
Generalizing, we have that

∮
(z − zo)n−1 dz = 0, n ∈ Z, n 6= 0;

∮
dz

z − zo
= i2π;

(8.26)

where as in § 7.6 the symbol
∮

represents integration about a closed contour
that ends where it begins, and where it is implied that the contour loops
positively (counterclockwise, in the direction of increasing φ) exactly once
about the z = zo pole.

Notice that the formula’s i2π does not depend on the precise path of
integration but only on the fact that the path loops once positively about
the pole. Notice also that nothing in the derivation of (8.23) actually requires
that n be an integer, so one can write,

∫ z2

z1

za−1 dz =
za2 − za1

a
, a 6= 0. (8.27)
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However, (8.26) does not hold in the latter case; its integral comes to zero
for nonintegral a only if the contour does not enclose the branch point at
z = zo.

For a closed contour which encloses no pole or other nonanalytic point,
(8.27) has that

∮
za−1 dz = 0, or with the change of variable z − zo ← z,

∮
(z − zo)a−1 dz = 0.

But because any analytic function can be expanded in the form f(z) =∑
k(ck)(z − zo)

ak−1 (which is just a Taylor series if the ak happen to be
positive integers), this means that

∮
f(z) dz = 0 (8.28)

if f(z) is everywhere analytic within the contour.20

8.8.3 The formula

The combination of (8.26) and (8.28) is powerful. Consider the closed con-
tour integral ∮

f(z)

z − zo
dz,

where the contour encloses no nonanalytic point of f(z) itself but does en-
close the pole of f(z)/(z − zo) at z = zo. If the contour were a tiny circle
of infinitesimal radius about the pole, then the integrand would reduce to
f(zo)/(z − zo); and then per (8.26),

∮
f(z)

z − zo
dz = i2πf(zo). (8.29)

But if the contour were not an infinitesimal circle but rather the larger
contour of Fig. 8.4? In this case, if the dashed detour which excludes the

20The careful reader will observe that (8.28)’s derivation does not explicitly handle
an f(z) represented by a Taylor series with an infinite number of terms and a finite
convergence domain (for example, f [z] = ln[1− z]). However, by § 8.2 one can transpose
such a series from zo to an overlapping convergence domain about z1. Let the contour’s
interior be divided into several cells, each of which is small enough to enjoy a single
convergence domain. Integrate about each cell. Because the cells share boundaries within
the contour’s interior, each interior boundary is integrated twice, once in each direction,
canceling. The original contour—each piece of which is an exterior boundary of some
cell—is integrated once piecewise. This is the basis on which a more rigorous proof is
constructed.
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Figure 8.4: A Cauchy contour integral.

zo

ℜ(z)

ℑ(z)

pole is taken, then according to (8.28) the resulting integral totals zero;
but the two straight integral segments evidently cancel; and similarly as
we have just reasoned, the reverse-directed integral about the tiny detour
circle is −i2πf(zo); so to bring the total integral to zero the integral about
the main contour must be i2πf(zo). Thus, (8.29) holds for any positively-
directed contour which once encloses a pole and no other nonanalytic point,
whether the contour be small or large. Equation (8.29) is Cauchy’s integral
formula.

If the contour encloses multiple poles (§§ 2.10 and 9.7.2), then by the
principle of linear superposition (§ 7.3.3),

∮ [
fo(z) +

∑

k

fk(z)

z − zk

]
dz = i2π

∑

k

fk(zk), (8.30)

where the fo(z) is a regular part ;21 and again, where neither fo(z) nor any
of the several fk(z) has a pole or other nonanalytic point within (or on) the
contour. The values fk(zk), which represent the strengths of the poles, are
called residues. In words, (8.30) says that an integral about a closed contour
in the Argand plane comes to i2π times the sum of the residues of the poles
(if any) thus enclosed. (Note however that eqn. 8.30 does not handle branch
points. If there is a branch point, the contour must exclude it or the formula

21[84, § 1.1]
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will not work.)

As we shall see in § 9.6, whether in the form of (8.29) or of (8.30) Cauchy’s
integral formula is an extremely useful result.22

8.8.4 Enclosing a multiple pole

When a complex contour of integration encloses a double, triple or other
n-fold pole, the integration can be written,

S =

∮
f(z)

(z − zo)m+1
dz, m ∈ Z, m ≥ 0,

where m+ 1 = n. Expanding f(z) in a Taylor series (8.19) about z = zo,

S =

∮ ∞∑

k=0

(
dkf

dzk

∣∣∣∣
z=zo

)
dz

(k!)(z − zo)m−k+1
.

But according to (8.26), only the k = m term contributes, so

S =

∮ (
dmf

dzm

∣∣∣∣
z=zo

)
dz

(m!)(z − zo)

=
1

m!

(
dmf

dzm

∣∣∣∣
z=zo

)∮
dz

(z − zo)

=
i2π

m!

(
dmf

dzm

∣∣∣∣
z=zo

)
,

where the integral is evaluated in the last step according to (8.29). Alto-
gether,

∮
f(z)

(z − zo)m+1
dz =

i2π

m!

(
dmf

dzm

∣∣∣∣
z=zo

)
, m ∈ Z, m ≥ 0. (8.31)

Equation (8.31) evaluates a contour integral about an n-fold pole as (8.29)
does about a single pole. (When m = 0, the two equations are the same.)23

22[65, § 10.6][120][146, “Cauchy’s integral formula,” 14:13, 20 April 2006]
23[78][120]
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8.9 Taylor series for specific functions

With the general Taylor series formula (8.19), the derivatives of Tables 5.2
and 5.3, and the observation from (4.16) that

d(za)

dz
= aza−1,

one can calculate Taylor series for many functions. For instance, expanding
about z = 1,

ln z|z=1 = ln z|z=1 = 0,

d

dz
ln z

∣∣∣∣
z=1

=
1

z

∣∣∣∣
z=1

= 1,

d2

dz2
ln z

∣∣∣∣
z=1

=
−1

z2

∣∣∣∣
z=1

= −1,

d3

dz3
ln z

∣∣∣∣
z=1

=
2

z3

∣∣∣∣
z=1

= 2,

...
dk

dzk
ln z

∣∣∣∣
z=1

=
−(−)k(k − 1)!

zk

∣∣∣∣
z=1

= −(−)k(k − 1)!, k > 0.

With these derivatives, the Taylor series about z = 1 is

ln z =
∞∑

k=1

[
−(−)k(k − 1)!

] (z − 1)k

k!
= −

∞∑

k=1

(1− z)k
k

,

evidently convergent for |1− z| < 1. (And if z lies outside the convergence
domain? Several strategies are then possible. One can expand the Taylor
series about a different point; but cleverer and easier is to take advantage
of some convenient relationship like lnw = − ln[1/w]. Section 8.10.4 elab-
orates.) Using such Taylor series, one can relatively efficiently calculate
actual numerical values for ln z and many other functions.

Table 8.1 lists Taylor series for a few functions of interest. All the se-
ries converge for |z| < 1. The exp z, sin z and cos z series converge for all
complex z. Among the several series, the series for arctan z is computed
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Table 8.1: Taylor series.

f(z) =
∞∑

k=0

(
dkf

dzk

∣∣∣∣
z=zo

)
k∏

j=1

z − zo
j

(1 + z)a−1 =
∞∑

k=0

k∏

j=1

(
a

j
− 1

)
z

exp z =
∞∑

k=0

k∏

j=1

z

j
=
∞∑

k=0

zk

k!

sin z =

∞∑

k=0


z

k∏

j=1

−z2

(2j)(2j + 1)




cos z =
∞∑

k=0

k∏

j=1

−z2

(2j − 1)(2j)

sinh z =
∞∑

k=0


z

k∏

j=1

z2

(2j)(2j + 1)




cosh z =
∞∑

k=0

k∏

j=1

z2

(2j − 1)(2j)

− ln(1− z) =

∞∑

k=1

1

k

k∏

j=1

z =

∞∑

k=1

zk

k

arctan z =

∞∑

k=0

1

2k + 1


z

k∏

j=1

(−z2)


 =

∞∑

k=0

(−)kz2k+1

2k + 1
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indirectly24 by way of Table 5.3 and (2.33):

arctan z =

∫ z

0

1

1 + w2
dw

=

∫ z

0

∞∑

k=0

(−)kw2k dw

=
∞∑

k=0

(−)kz2k+1

2k + 1
.

It is interesting to observe from Table 8.1 the useful first-order approxi-
mations that

lim
z→0

exp z = 1 + z,

lim
z→0

sin z = z,
(8.32)

among others.
Professional mathematicians tend to prefer a different, terser, more ab-

stract development of the Taylor series and its incidents than this chapter’s.
Appendix C outlines it. We lacked the theoretical preparation to tackle
appendix C when the chapter began but we have it now. Some will find
appendix C more persuasive. You can read appendix C now if you wish.

8.10 Error bounds

One naturally cannot actually sum a Taylor series to an infinite number of
terms. One must add some finite number of terms and then quit—which
raises the question: how many terms are enough? How can one know that
one has added adequately many terms; that the remaining terms, which
constitute the tail of the series, are sufficiently insignificant? How can one
set error bounds on the truncated sum?

8.10.1 Examples

Some series alternate sign. For these it is easy if the numbers involved
happen to be real. For example, from Table 8.1,

ln
3

2
= ln

(
1 +

1

2

)
=

1

(1)(21)
− 1

(2)(22)
+

1

(3)(23)
− 1

(4)(24)
+ · · ·

24[115, § 11-7]
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Each term is smaller in magnitude than the last, so the true value of ln(3/2)
necessarily lies between the sum of the series to n terms and the sum to
n + 1 terms. The last and next partial sums bound the result. Up to but
not including the fourth-order term, for instance,

S4 −
1

(4)(24)
< ln

3

2
< S4,

S4 =
1

(1)(21)
− 1

(2)(22)
+

1

(3)(23)
.

Other series however do not alternate sign. For example,

ln 2 = − ln
1

2
= − ln

(
1− 1

2

)
= S5 +R5,

S5 =
1

(1)(21)
+

1

(2)(22)
+

1

(3)(23)
+

1

(4)(24)
,

R5 =
1

(5)(25)
+

1

(6)(26)
+ · · ·

The basic technique in such a case is to find a replacement series (or inte-
gral) R′n which one can collapse analytically, each of whose terms equals or
exceeds in magnitude the corresponding term of Rn. For the example, one
might choose

R′5 =
1

5

∞∑

k=5

1

2k
=

2

(5)(25)
,

wherein (2.34) had been used to collapse the summation. Then,

S5 < ln 2 < S5 +R′5.

For real 0 ≤ x < 1 generally,

Sn < − ln(1− x) < Sn +R′n,

Sn ≡
n−1∑

k=1

xk

k
,

R′n ≡
∞∑

k=n

xk

n
=

xn

(n)(1− x)
.

Many variations and refinements are possible, some of which we will meet
in the rest of the section, but that is the basic technique: to add several terms
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of the series to establish a lower bound, then to overestimate the remainder
of the series to establish an upper bound. The overestimate R′n majorizes
the series’ true remainder Rn. Notice that the R′n in the example is a fairly
small number, and that it would have been a lot smaller yet had we included
a few more terms in Sn (for instance, n = 0x40 would have bound ln 2 tighter
than the limit of a computer’s typical double-type floating-point accuracy).
The technique usually works well in practice for this reason.

8.10.2 Majorization

To majorize in mathematics is to be, or to replace by virtue of being, ev-
erywhere at least as great as. This is best explained by example. Consider
the summation

S =
∞∑

k=1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

The exact value this summation totals to is unknown to us, but the sum-
mation does rather resemble the integral (refer to Table 7.1)

I =

∫ ∞

1

dx

x2
= −1

x

∣∣∣∣
∞

1

= 1.

Figure 8.5 plots S and I together as areas—or more precisely, plots S − 1
and I together as areas (the summation’s first term is omitted). As the plot
shows, the unknown area S − 1 cannot possibly be as great as the known
area I. In symbols, S − 1 < I = 1; or,

S < 2.

The integral I majorizes the summation S − 1, thus guaranteeing the ab-
solute upper limit on S. (Of course S < 2 is a very loose limit, but that
isn’t the point of the example. In practical calculation, one would let a com-
puter add many terms of the series first numerically, and only then majorize
the remainder. Even so, cleverer ways to majorize the remainder of this
particular series will occur to the reader, such as in representing the terms
graphically—not as flat-topped rectangles—but as slant-topped trapezoids,
shifted in the figure a half unit rightward.)

Majorization serves surely to bound an unknown quantity by a larger,
known quantity. Reflecting, minorization25 serves surely to bound an un-
known quantity by a smaller, known quantity. The quantities in question

25The author does not remember ever encountering the word minorization heretofore
in print, but as a reflection of majorization the word seems logical. This book at least will
use the word where needed. You can use it too if you like.
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Figure 8.5: Majorization. The area I between the dashed curve and the x
axis majorizes the area S − 1 between the stairstep curve and the x axis,
because the height of the dashed curve is everywhere at least as great as
that of the stairstep curve.

x

y

y = 1/x21/22

1/32

1/42

1

1 2 3

are often integrals and/or series summations, the two of which are akin as
Fig. 8.5 illustrates. The choice of whether to majorize a particular unknown
quantity by an integral or by a series summation depends on the convenience
of the problem at hand.

The series S of this subsection is interesting, incidentally. It is a har-
monic series rather than a power series, because though its terms do de-
crease in magnitude it has no zk factor (or seen from another point of view,
it does have a zk factor, but z = 1), and the ratio of adjacent terms’ mag-
nitudes approaches unity as k grows. Harmonic series can be hard to sum
accurately, but clever majorization can help.

Incidentally, a much faster method to sum the series S of this particular
subsection happens to be known. We are not yet ready to investigate it but
shall reach it in § 17.5.3.

8.10.3 Geometric majorization

Harmonic series can be hard to sum as § 8.10.2 has observed, but more
common than harmonic series are true power series, easier to sum in that
they include a zk factor in each term. There is no one, ideal bound that
works equally well for all power series. However, the point of establishing
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a bound is not to sum a power series exactly but rather to fence the sum
within some sufficiently (rather than optimally) small neighborhood. A
simple, general bound which works quite adequately for most power series
encountered in practice, including among many others all the Taylor series
of Table 8.1, is the geometric majorization

|εn| <
|τn|

1− |ρn|
. (8.33)

Here, τn represents the power series’ nth-order term (in Table 8.1’s series for
exp z, for example, τn = zn/[n!]). The |ρn| is a positive real number chosen,
preferably as small as possible, such that∣∣∣∣

τk+1

τk

∣∣∣∣ ≤ |ρn| for all k ≥ n, (8.34)

∣∣∣∣
τk+1

τk

∣∣∣∣ < |ρn| for at least one k ≥ n,

0 < |ρn| < 1; (8.35)

which is to say, more or less, such that each term in the series’ tail is smaller
than the last by at least a factor of |ρn|. Given these definitions, if26

Sn ≡
n−1∑

k=0

τk,

εn ≡ S∞ − Sn,
(8.36)

where S∞ represents the true, exact (but uncalculatable, unknown) infinite
series sum, then (2.34) and (3.22) imply the geometric majorization (8.33).

If the last paragraph seems abstract, a pair of concrete examples should
serve to clarify. First, if the Taylor series

− ln(1− z) =

∞∑

k=1

zk

k

of Table 8.1 is truncated before the nth-order term, then

− ln(1− z) ≈
n−1∑

k=1

zk

k
,

|εn| <
|zn| /n
1− |z| ,

26Some scientists and engineers—as, for example, the authors of [97] and even this
writer in earlier years—prefer to define εn ≡ Sn − S∞, oppositely as we define it here.
This choice is a matter of taste. Professional mathematicians—as, for example, the author
of [135]—seem to tend toward the εn ≡ S∞ − Sn of (8.36).
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where εn is the error in the truncated sum.27 Here, |τk+1/τk| = [k/(k +
1)] |z| < |z| for all k ≥ n > 0, so we have chosen |ρn| = |z|.

Second, if the Taylor series

exp z =
∞∑

k=0

k∏

j=1

z

j
=
∞∑

k=0

zk

k!

also of Table 8.1 is truncated before the nth-order term, and if we choose to
stipulate that

n+ 1 > |z| ,
then

exp z ≈
n−1∑

k=0

k∏

j=1

z

j
=

n−1∑

k=0

zk

k!
,

|εn| <
|zn| /n!

1− |z| /(n+ 1)
.

Here, |τk+1/τk| = |z| /(k + 1), whose maximum value for all k ≥ n occurs
when k = n, so we have chosen |ρn| = |z| /(n+ 1).

8.10.4 Calculation outside the fast convergence domain

Used directly, the Taylor series of Table 8.1 tend to converge slowly for some
values of z and not at all for others. The series for − ln(1−z) and (1+z)a−1

for instance each converge for |z| < 1 (though slowly for |z| ≈ 1); whereas
each series diverges when asked to compute a quantity like − ln 3 or 3a−1

directly. To shift the series’ expansion points per § 8.2 is one way to seek
convergence, but for nonentire functions (§ 8.6) like these a more probably
profitable strategy is to find and exploit some property of the functions to
transform their arguments, such as

− ln γ = ln
1

γ
,

γa−1 =
1

(1/γ)a−1
,

which leave the respective Taylor series to compute quantities like − ln(1/3)
and (1/3)a−1 they can handle.

27This particular error bound fails for n = 0, but that is no flaw. There is no reason
to use the error bound for n = 0 when, merely by taking one or two more terms into the
truncated sum, one can quite conveniently let n = 1 or n = 2.
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Let f(1 + ζ) be a function whose Taylor series about ζ = 0 converges for
|ζ| < 1 and which obeys properties of the forms28

f(γ) = g

[
f

(
1

γ

)]
,

f(αγ) = h [f(α), f(γ)] ,

(8.37)

where g[·] and h[·, ·] are functions we know how to compute like g[·] = −[·]
or g[·] = 1/[·]; and like h[·, ·] = [·] + [·] or h[·, ·] = [·][·]. Identifying

1

γ
= 1 + ζ,

γ =
1

1 + ζ
,

1− γ
γ

= ζ,

(8.38)

we have that

f(γ) = g

[
f

(
1 +

1− γ
γ

)]
, (8.39)

whose convergence domain |ζ| < 1 is |1− γ| / |γ| < 1, which is |γ − 1| < |γ|
or in other words

<(γ) >
1

2
.

Although the transformation from ζ to γ has not lifted the convergence
limit altogether, we see that it has apparently opened the limit to a broader
domain.

For example, if f(γ) = ln γ and <(γ) > 1/2, then29 g[·] = −[·] and thus,
according to (8.39),

ln γ = − ln

(
1 +

1− γ
γ

)

= − ln(1− z), z ≡ γ − 1

γ
,

a formulation that lets one apply Table 8.1 to calculate, say, ln 3.

28This paragraph’s notation is necessarily abstract. To make it seem more concrete,
consider that the function f(1+ζ) = − ln(1−z) has ζ = −z, f(γ) = g[f(1/γ)] = −f(1/γ)
and f(αγ) = h[f(α), f(γ)] = f(α) + f(γ); and that the function f(1 + ζ) = (1 + z)a−1 has
ζ = z, f(γ) = g[f(1/γ)] = 1/f(1/γ) and f(αγ) = h[f(α), f(γ)] = f(α)f(γ).

29See footnote 28.
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Though this writer knows no way to lift the convergence limit altogether
that does not cause more problems than it solves, one can take advantage of
the h[·, ·] property of (8.37) to sidestep the limit, computing f(ω) indirectly
for any ω 6= 0 by any of several tactics. One nonoptimal but entirely effective
tactic is represented by the equations

ω ≡ in2mγ,

|=(γ)| ≤ <(γ),

1 ≤ <(γ) < 2,

m, n ∈ Z,

(8.40)

whereupon the formula

f(ω) = h[f(in2m), f(γ)] (8.41)

calculates f(ω) fast for any ω 6= 0—provided only that we have other means
to compute f(in2m), which not infrequently we do.30

Notice how (8.40) fences γ within a comfortable zone, keeping γ mod-
erately small in magnitude but never too near the <(γ) = 1/2 frontier in
the Argand plane. In theory all finite γ rightward of the frontier let the
Taylor series converge, but extreme γ of any kind let the series converge
only slowly (and due to compound floating-point rounding error perhaps in-
accurately) inasmuch as they imply that |ζ| ≈ 1. Besides allowing all ω 6= 0,
the tactic (8.40) also thus significantly speeds series convergence.

The method and tactic of (8.37) through (8.41) are useful in themselves
and also illustrative generally. Of course, most nonentire functions lack
properties of the specific kinds that (8.37) demands, but such functions may
have other properties one can analogously exploit.31

30Equation (8.41) admittedly leaves open the question of how to compute f(in2m),
but at least for the functions this subsection has used as examples this is not hard.
For the logarithm, − ln(in2m) = m ln(1/2) − in(2π/4). For the power, (in2m)a−1 =
cis[(n2π/4)(a − 1)]/[(1/2)a−1]m. The sine and cosine in the cis function are each calcu-
lated directly by Taylor series (possibly with the help of Table 3.1), as are the numbers
ln(1/2) and (1/2)a−1. The number 2π, we have not calculated yet, but will in § 8.11.

31To draw another example from Table 8.1, consider that

arctanω = α+ arctan ζ,

ζ ≡ ω cosα− sinα

ω sinα+ cosα
,

where arctanω is interpreted as the geometrical angle the vector x̂ + ŷω makes with x̂.
Axes are rotated per (3.7) through some angle α to reduce the tangent from ω to ζ, where
arctan ζ is interpreted as the geometrical angle the vector x̂ + ŷω = x̂′(ω sinα+ cosα) +
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8.10.5 Divergent series

Variants of this section’s techniques can be used to prove that a series does
not converge at all. For example,

∞∑

k=1

1

k

does not converge because

1

k
>

∫ k+1

k

dτ

τ
;

hence,
∞∑

k=1

1

k
>
∞∑

k=1

∫ k+1

k

dτ

τ
=

∫ ∞

1

dτ

τ
= ln∞.

8.10.6 Remarks

The study of error bounds is not a matter of rules and formulas so much
as of ideas, suggestions and tactics. As far as the writer knows, there is
no such thing as an optimal error bound—with sufficient cleverness, some
tighter bound can usually be discovered—but often easier and more effec-
tive than cleverness is simply to add a few extra terms into the series before
truncating it (that is, to increase n a little). To eliminate the error entirely
usually demands adding an infinite number of terms, which is impossible;
but since eliminating the error entirely also requires recording the sum to
infinite precision, which is impossible anyway, eliminating the error entirely
is not normally a goal one seeks. To eliminate the error to the 0x34-bit
(sixteen-decimal place) precision of a computer’s double-type floating-point
representation typically requires something like 0x34 terms—if the series be
wisely composed and if care be taken to keep z moderately small and reason-
ably distant from the edge of the series’ convergence domain. Besides, few
engineering applications really use much more than 0x10 bits (five decimal
places) in any case. Perfect precision is impossible, but adequate precision
is usually not hard to achieve.

ŷ′(ω cosα − sinα) makes with x̂′, thus causing the Taylor series to converge faster or
indeed to converge at all.

Any number of further examples and tactics of the kind will occur to the creative reader,
shrinking a function’s argument by some convenient means before feeding the argument
to the function’s Taylor series.
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Occasionally nonetheless a series arises for which even adequate precision
is quite hard to achieve. An infamous example is

S = −
∞∑

k=1

(−)k√
k

= 1− 1√
2

+
1√
3
− 1√

4
+ · · · ,

which obviously converges, but sum it if you can! It is not easy to do.
Before closing the section, we ought to arrest one potential agent of

terminological confusion. The “error” in a series summation’s error bounds
is unrelated to the error of probability theory (chapter 20). The English
word “error” is thus overloaded here. A series sum converges to a definite
value, and to the same value every time the series is summed; no chance
is involved. It is just that we do not necessarily know exactly what that
value is. What we can do, by this section’s techniques or perhaps by other
methods, is to establish a definite neighborhood in which the unknown value
is sure to lie; and we can make that neighborhood as tight as we want, merely
by including a sufficient number of terms in the sum.

The topic of series error bounds is what G. S. Brown refers to as “trick-
based.”32 There is no general answer to the error-bound problem, but there
are several techniques which help, some of which this section has introduced.
Other techniques, we shall meet later in the book as the need for them arises.

8.11 Calculating 2π

The Taylor series for arctan z in Table 8.1 implies a neat way of calculating
the constant 2π. We already know that tan(2π/8) = 1, or in other words
that

arctan 1 =
2π

8
.

Applying the Taylor series, we have that

2π = 8

∞∑

k=0

(−)k

2k + 1
. (8.42)

The series (8.42) is simple but converges extremely slowly. Much faster con-
vergence is given by angles smaller than 2π/8. For example, from Table 3.2,

arctan

√
3− 1√
3 + 1

=
2π

0x18
.

32[23]
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Applying the Taylor series at this angle, we have that33,34

2π = 0x18
∞∑

k=0

(−)k

2k + 1

(√
3− 1√
3 + 1

)2k+1

≈ 0x6.487F. (8.43)

8.12 Odd and even functions

An odd function is one for which f(−z) = −f(z). Any function whose
Taylor series about zo = 0 includes only odd-order terms is an odd function.
Examples of odd functions include z3 and sin z.

An even function is one for which f(−z) = f(z). Any function whose
Taylor series about zo = 0 includes only even-order terms is an even function.
Examples of even functions include z2 and cos z.

Odd and even functions are interesting because of the symmetry they
bring—the plot of a real-valued odd function being symmetric about a point,
the plot of a real-valued even function being symmetric about a line. Many
functions are neither odd nor even, of course, but one can always split an
analytic function into two components—one odd, the other even—by the
simple expedient of sorting the odd-order terms from the even-order in the
function’s Taylor series. For example, exp z = sinh z + cosh z. Alternately,

f(z) = fodd(z) + feven(z),

fodd(z) =
f(z)− f(−z)

2
,

feven(z) =
f(z) + f(−z)

2
,

(8.44)

the latter two lines of which are verified by substituting −z ← z and ob-
serving the definitions at the section’s head of odd and even, and then the
first line of which is verified by adding the latter two.

Section 18.2.9 will have more to say about odd and even functions.

33[119, sequence A004601]
34The writer is given to understand that clever mathematicians have invented subtle,

still much faster-converging iterative schemes toward 2π. However, there is fast and there is
fast. The relatively straightforward series this section gives converges to the best accuracy
of your computer’s floating-point register within a paltry fourteen (0xE) iterations—and,
after all, you only need to compute the numerical value of 2π once.

Admittedly, the writer supposes that useful lessons lurk in the clever mathematics
underlying the subtle schemes, but such schemes are not covered here.
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8.13 Trigonometric poles

The singularities of the trigonometric functions are single poles of residue ±1
or ±i. For the circular trigonometrics, all the poles lie along the real number
line; for the hyperbolic trigonometrics, along the imaginary. Specifically, of
the eight trigonometric functions

1

sin z
,

1

cos z
,

1

tan z
, tan z,

1

sinh z
,

1

cosh z
,

1

tanh z
, tanh z,

the poles and their respective residues are

z − kπ
sin z

∣∣∣∣
z = kπ

= (−)k,

z − (k − 1/2)π

cos z

∣∣∣∣
z = (k − 1/2)π

= (−)k,

z − kπ
tan z

∣∣∣∣
z = kπ

= 1,

[z − (k − 1/2)π] tan z|z = (k − 1/2)π = −1,

z − ikπ
sinh z

∣∣∣∣
z = ikπ

= (−)k,

z − i(k − 1/2)π

cosh z

∣∣∣∣
z = i(k − 1/2)π

= (−)ki,

z − ikπ
tanh z

∣∣∣∣
z = ikπ

= 1,

[z − i(k − 1/2)π] tanh z|z = i(k − 1/2)π = 1,

k ∈ Z.

(8.45)

To support (8.45)’s claims, we shall marshal the identities of Tables 5.1
and 5.2 plus l’Hôpital’s rule (4.29). Before calculating residues and such,
however, we should like to verify that the poles (8.45) lists are in fact the
only poles that there are; that we have forgotten no poles. Consider for
instance the function 1/ sin z = i2/(eiz−e−iz). This function evidently goes
infinite only when eiz = e−iz, which is possible only for real z; but for real z,
the sine function’s very definition establishes the poles z = kπ (refer to
Fig. 3.1). With the observations from Table 5.1 that i sinh z = sin iz and
cosh z = cos iz, similar reasoning for each of the eight trigonometrics forbids
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poles other than those (8.45) lists. Satisfied that we have forgotten no poles,
therefore, we finally apply l’Hôpital’s rule to each of the ratios

z − kπ
sin z

,
z − (k − 1/2)π

cos z
,
z − kπ
tan z

,
z − (k − 1/2)π

1/ tan z
,

z − ikπ
sinh z

,
z − i(k − 1/2)π

cosh z
,
z − ikπ
tanh z

,
z − i(k − 1/2)π

1/ tanh z

to reach (8.45).

Trigonometric poles evidently are special only in that a trigonometric
function has an infinite number of them. The poles are ordinary, single
poles, with residues, subject to Cauchy’s integral formula and so on. The
trigonometrics are meromorphic functions (§ 8.6) for this reason.35

The six simpler trigonometrics, sin z, cos z, sinh z, cosh z, cis z and
exp z—conspicuously excluded from this section’s gang of eight—have no
poles for finite z because e±iz and e±z are finite. These simpler trigono-
metrics are not only meromorphic but also entire. Observe however that
the inverse trigonometrics are multiple-valued and have branch points, and
thus are not meromorphic at all.

8.14 The Laurent series

Any analytic function can be expanded in a Taylor series, but never about
a pole or branch point of the function. Sometimes one nevertheless wants
to expand at least about a pole. Consider for example expanding

f(z) =
e−z

1− cos z
(8.46)

about the function’s pole at z = 0. Expanding dividend and divisor sepa-
rately,

f(z) =
1− z + z2/2− z3/6 + · · ·
z2/2− z4/0x18 + · · ·

=

∑∞
j=0

[
(−)jzj/j!

]

−∑∞k=1(−)kz2k/(2k)!

=

∑∞
k=0

[
−z2k/(2k)! + z2k+1/(2k + 1)!

]
∑∞

k=1(−)kz2k/(2k)!
.

35[78]
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By long division,

f(z) =
2

z2
− 2

z
+

{[
− 2

z2
+

2

z

] ∞∑

k=1

(−)kz2k

(2k)!

+
∞∑

k=0

[
− z2k

(2k)!
+

z2k+1

(2k + 1)!

]}/ ∞∑

k=1

(−)kz2k

(2k)!

=
2

z2
− 2

z
+

{ ∞∑

k=1

[
−(−)k2z2k−2

(2k)!
+

(−)k2z2k−1

(2k)!

]

+
∞∑

k=0

[
− z2k

(2k)!
+

z2k+1

(2k + 1)!

]}/ ∞∑

k=1

(−)kz2k

(2k)!

=
2

z2
− 2

z
+

{ ∞∑

k=0

[
(−)k2z2k

(2k + 2)!
− (−)k2z2k+1

(2k + 2)!

]

+

∞∑

k=0

[
− z2k

(2k)!
+

z2k+1

(2k + 1)!

]}/ ∞∑

k=1

(−)kz2k

(2k)!

=
2

z2
− 2

z
+

∞∑

k=0

[−(2k + 1)(2k + 2) + (−)k2

(2k + 2)!
z2k

+
(2k + 2)− (−)k2

(2k + 2)!
z2k+1

]/ ∞∑

k=1

(−)kz2k

(2k)!
.

The remainder’s k = 0 terms now disappear as intended; so, factoring z2/z2

from the division leaves

f(z) =
2

z2
− 2

z
+

∞∑

k=0

[
(2k + 3)(2k + 4) + (−)k2

(2k + 4)!
z2k

− (2k + 4) + (−)k2

(2k + 4)!
z2k+1

]/ ∞∑

k=0

(−)kz2k

(2k + 2)!
.

(8.47)

One can continue dividing to extract further terms if desired, and if all the
terms

f(z) =
2

z2
− 2

z
+

7

6
− z

2
+ · · ·

are extracted the result is the Laurent series proper,

f(z) =
∞∑

k=K

(ak)(z − zo)k, (k,K) ∈ Z, K ≤ 0. (8.48)
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However for many purposes (as in eqn. 8.47) the partial Laurent series

f(z) =

−1∑

k=K

(ak)(z − zo)k +

∑∞
k=0(bk)(z − zo)k∑∞
k=0(ck)(z − zo)k

, (8.49)

(k,K) ∈ Z, K ≤ 0, c0 6= 0,

suffices and may even be preferable. In either form,

f(z) =

−1∑

k=K

(ak)(z − zo)k + fo(z − zo), (k,K) ∈ Z, K ≤ 0, (8.50)

where, unlike f(z), fo(z − zo) is analytic at z = zo. The fo(z − zo) of (8.50)
is f(z)’s regular part at z = zo.

The ordinary Taylor series diverges at a function’s pole. Handling the
pole separately, the Laurent series remedies this defect.36,37

Sections 9.6 and 9.7 tell more about poles generally, including multiple
poles like the one in the example here.

8.15 Taylor series in 1/z

A little imagination helps the Taylor series a lot. The Laurent series of
§ 8.14 represents one way to extend the Taylor series. Several other ways
are possible. The typical trouble one has with the Taylor series is that
a function’s poles and branch points limit the series’ convergence domain.
Thinking flexibly, however, one can often evade the trouble.

Consider the function

f(z) =
sin(1/z)

cos z
.

This function has a nonanalytic point of a most peculiar nature at z = 0.
The point is an essential singularity, and one cannot expand the function
directly about it. One could expand the function directly about some other
point like z = 1, but calculating the Taylor coefficients would take a lot
of effort and, even then, the resulting series would suffer a straitly limited

36The professional mathematician’s treatment of the Laurent series usually seems to
begin by defining an annular convergence domain (a convergence domain bounded without
by a large circle and within by a small) in the Argand plane. From an applied point of view
however what interests us is the basic technique to remove the poles from an otherwise
analytic function.

37[65, § 10.8][47, § 2.5]
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convergence domain. All that however tries too hard. Depending on the
application, it may suffice to write,

f(z) =
sinw

cos z
, w ≡ 1

z
.

This is

f(z) =
z−1 − z−3/3! + z−5/5!− · · ·

1− z2/2! + z4/4!− · · · ,

which is all one needs to calculate f(z) numerically—and may be all one
needs for analysis, too.

As an example of a different kind, consider

g(z) =
1

(z − 2)2
.

Most often, one needs no Taylor series to handle such a function (one sim-
ply does the indicated arithmetic). Suppose however that a Taylor series
specifically about z = 0 were indeed needed for some reason. Then by (8.1)
and (4.2),

g(z) =
1/4

(1− z/2)2
=

1

4

∞∑

k=0

(
1 + k

1

)[
z

2

]k
=
∞∑

k=0

k + 1

2k+2
zk,

That expansion is good only for |z| < 2, but for |z| > 2 we also have that

g(z) =
1/z2

(1− 2/z)2
=

1

z2

∞∑

k=0

(
1 + k

1

)[
2

z

]k
=
∞∑

k=2

2k−2(k − 1)

zk
,

which expands in negative rather than positive powers of z. Note that
we have computed the two series for g(z) without ever actually taking a
derivative.

Neither of the section’s examples is especially interesting in itself, but
their point is that it often pays to think flexibly in extending and applying
the Taylor series. One is not required immediately to take the Taylor series
of a function as it presents itself; one can first change variables or otherwise
rewrite the function in some convenient way, and then take the Taylor series
either of the whole function at once or of pieces of it separately. One can
expand in negative powers of z equally validly as in positive powers. And,
though taking derivatives per (8.19) may be the canonical way to determine
Taylor coefficients, any effective means to find the coefficients suffices.
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8.16 The multidimensional Taylor series

Equation (8.19) has given the Taylor series for functions of a single variable.
The idea of the Taylor series does not differ where there are two or more
independent variables, only the details are a little more complicated. For
example, consider the function f(z1, z2) = z2

1 +z1z2+2z2, which has terms z2
1

and 2z2—these we understand—but also has the cross-term z1z2 for which
the relevant derivative is the cross-derivative ∂2f/∂z1 ∂z2. Where two or
more independent variables are involved, one must account for the cross-
derivatives, too.

With this idea in mind, the multidimensional Taylor series is

f(z) =
∑

k

(
∂kf

∂zk

∣∣∣∣
z=zo

)
(z− zo)

k

k!
. (8.51)

Well, that’s neat. What does it mean?

• The z is a vector38 incorporating the several independent variables
z1, z2, . . . , zN .

• The k is a nonnegative integer vector of N counters—k1, k2, . . . , kN—
one for each of the independent variables. Each of the kn runs indepen-
dently from 0 to ∞, and every permutation is possible. For example,
if N = 2 then

k = (k1, k2)

= (0, 0), (0, 1), (0, 2), (0, 3), . . . ;

(1, 0), (1, 1), (1, 2), (1, 3), . . . ;

(2, 0), (2, 1), (2, 2), (2, 3), . . . ;

(3, 0), (3, 1), (3, 2), (3, 3), . . . ;

. . .

• The ∂kf/∂zk represents the kth cross-derivative of f(z), meaning that

∂kf

∂zk
≡
(

N∏

n=1

∂kn

(∂zn)kn

)
f.

38In this generalized sense of the word, a vector is an ordered set of N elements. The
geometrical vector v = x̂x+ ŷy+ ẑz of § 3.3, then, is a vector with N = 3, v1 = x, v2 = y
and v3 = z. (Generalized vectors of arbitrary N will figure prominently in the book from
chapter 11 onward.)
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• The (z− zo)
k represents

(z− zo)
k ≡

N∏

n=1

(zn − zon)kn .

• The k! represents

k! ≡
N∏

n=1

kn!.

With these definitions, the multidimensional Taylor series (8.51) yields all
the right derivatives and cross-derivatives at the expansion point z = zo.
Thus within some convergence domain about z = zo, the multidimensional
Taylor series (8.51) represents a function f(z) as accurately as the simple
Taylor series (8.19) represents a function f(z), and for the same reason.
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Chapter 9

Integration techniques

Equation (4.13) implies a general technique for calculating a derivative sym-
bolically. Its counterpart (7.1), unfortunately, implies a general technique
only for calculating an integral numerically—and even for this purpose it is
imperfect; for, when it comes to adding an infinite number of infinitesimal
elements, how is one actually to do the sum?

It turns out that there is no one general answer to this question. Some
functions are best integrated by one technique, some by another. It is hard
to guess in advance which technique might work best.

This chapter surveys several weapons of the intrepid mathematician’s
arsenal against the integral.

9.1 Integration by antiderivative

The simplest way to solve an integral is just to look at it, recognizing its
integrand to be the derivative of something already known:1

∫ z

a

df

dτ
dτ = f(τ)|za. (9.1)

For instance, ∫ x

1

1

τ
dτ = ln τ |x1 = lnx.

One merely looks at the integrand 1/τ , recognizing it to be the derivative
of ln τ , and then directly writes down the solution ln τ |x1 . Refer to § 7.2.

1The notation f(τ)|za or [f(τ)]za means f(z)− f(a).

237
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Again for instance,
∫ x

1/2

1√
1− τ2

dτ = arcsin τ |x1/2 = arcsinx− 2π

0xC
,

or, if you prefer decimal notation,
∫ x

1/2

1√
1− τ2

dτ = arcsin τ |x1/2 = arcsinx− 2π

12
.

Refer to Table 3.2 and, more importantly, to Table 5.3.
The technique by itself is pretty limited. However, the frequent object of

other integration techniques is to transform an integral into a form to which
this basic technique can be applied.

Besides the essential

τa−1 =
d

dτ

(
τa

a

)
, (9.2)

Tables 7.1, 5.2, 5.3 and 9.1 provide several further good derivatives this
antiderivative technique can use.

One particular, nonobvious, useful variation on the antiderivative tech-
nique seems worth calling out specially here. If z = ρeiφ, then (8.24)
and (8.25) have that

∫ z2

z1

dz

z
= ln

ρ2

ρ1
+ i(φ2 − φ1). (9.3)

This helps, for example, when z1 and z2 are real but negative numbers.

9.2 Integration by substitution

Consider the integral

S ≡
∫ x2

x1

x dx

1 + x2
.

This integral is not in a form one immediately recognizes. However, with
the change of variable

u← 1 + x2,

whose differential by successive steps is

d(u) = d(1 + x2),

du = 2x dx,



9.3. REVERSAL AND SCALING 239

the integral is

S =

∫ x2

x=x1

x dx

u

=

∫ x2

x=x1

2x dx

2u

=

∫ 1+x2
2

u=1+x2
1

du

2u

=
1

2
lnu

∣∣∣∣
1+x2

2

u=1+x2
1

=
1

2
ln

1 + x2
2

1 + x2
1

.

To check the result, we can take the derivative per § 7.5 of the final expression
with respect to x2:

∂

∂x2

1

2
ln

1 + x2
2

1 + x2
1

∣∣∣∣
x2=x

=

[
1

2

∂

∂x2

{
ln
(
1 + x2

2

)
− ln

(
1 + x2

1

)}]

x2=x

=
x

1 + x2
,

which indeed has the form of the integrand with which we started.
The technique is integration by substitution. It does not solve all inte-

grals but it does solve many, whether alone or in combination with other
techniques.

9.3 Reversal and scaling of the independent vari-
able

Section 9.2 has introduced integration by substitution. Many substitutions
are possible but the simple change of variable

−u← x,

−du = dx,
(9.4)

is so easy a substitution, and is so often helpful, that it merits a section of
its own.

If

S ≡
∫ b

x=a
f(x) dx, (9.5)
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where f(x) is a function one wishes to integrate, then changing variables
according to (9.4) gives that

S =

∫ b

−u=a
f(−u)(−du) = −

∫ −b

u=−a
f(−u) du,

which is that

S =

∫ −a

u=−b
f(−u) du. (9.6)

Even easier is the case that a = −∞, b =∞, in which

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
f(−u) du. (9.7)

The technique of reversal of the independent variable seldom solves an
integral on its own but can put an integral in a form to which other tech-
niques can be applied, as for example in § 18.2.6.

Related is the change of variable

ku← x,

k du = dx,

=(k) = 0,

(9.8)

by which

S = k

∫ b/k

u=a/k
f(ku) du. (9.9)

In the case that a = −∞, b =∞,

∫ ∞

−∞
f(x) dx = |k|

∫ ∞

−∞
f(ku) du. (9.10)

9.4 Integration by parts

Integration by parts is a curious but very broadly applicable technique which
begins with the derivative product rule (4.22),

d(uv) = u dv + v du,

where u(τ) and v(τ) are functions of an independent variable τ . Reordering
terms,

u dv = d(uv)− v du.
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Integrating, ∫ b

τ=a
u dv = uv|bτ=a −

∫ b

τ=a
v du. (9.11)

Equation (9.11) is the rule of integration by parts.
For an example of the rule’s operation, consider the integral

S(x) =

∫ x

0
τ cosατ dτ.

Unsure how to integrate this, we can begin by integrating part of it. We can
begin by integrating the cosατ dτ part. Letting

u← τ,

dv ← cosατ dτ,

we find that2

du = dτ,

v =
sinατ

α
.

According to (9.11), then,

S(x) =
τ sinατ

α

∣∣∣∣
x

0

−
∫ x

0

sinατ

α
dτ =

x

α
sinαx+ cosαx− 1.

Though integration by parts is a powerful technique, one should under-
stand clearly what it does and does not do. The technique does not just
integrate each part of an integral separately. It isn’t that simple. What
it does is to integrate one part of an integral separately—whichever part
one has chosen to identify as dv—while contrarily differentiating the other
part u, upon which it rewards the mathematician only with a new integral∫
v du. The new integral may or may not be easier to integrate than was

the original
∫
u dv. The virtue of the technique lies in that one can often

find a part dv which does yield an easier
∫
v du. The technique is powerful

for this reason.
For another kind of example of the rule’s operation, see § 21.3 in the

chapter on the gamma function.

2The careful reader will observe that v = (sinατ)/α + C matches the chosen dv for
any value of C, not just for C = 0. This is true. However, nothing in the technique of
integration by parts requires us to consider all possible v. Any convenient v suffices. In
this case, we choose v = (sinατ)/α.
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9.5 Integration by unknown coefficients

One of the more powerful integration techniques is relatively inelegant, yet
it easily cracks some integrals that give other techniques trouble. The tech-
nique is the method of unknown coefficients, and it is based on the antideriva-
tive (9.1) plus intelligent guessing. It is best illustrated by example.

Consider the integral (which arises in probability theory)

S(x) =

∫ x

0
e−(ρ/σ)2/2ρ dρ. (9.12)

If one does not know how to solve the integral in a more elegant way, one
can guess a likely-seeming antiderivative form, such as

e−(ρ/σ)2/2ρ =
d

dρ
ae−(ρ/σ)2/2,

where the a is an unknown coefficient. Having guessed, one has no guarantee
that the guess is right, but see: if the guess were right, then the antiderivative
would have the form

e−(ρ/σ)2/2ρ =
d

dρ
ae−(ρ/σ)2/2

= −aρ
σ2
e−(ρ/σ)2/2,

implying that

a = −σ2

(evidently the guess is right, after all). Using this value for a, one can write
the specific antiderivative

e−(ρ/σ)2/2ρ =
d

dρ

[
−σ2e−(ρ/σ)2/2

]
,

with which one can solve the integral, concluding that

S(x) =
[
−σ2e−(ρ/σ)2/2

]x
0

=
(
σ2
) [

1− e−(x/σ)2/2
]
. (9.13)

The same technique solves differential equations, too. Consider for ex-
ample the differential equation

dx = (Ix− P ) dt, x|t=0 = xo, x|t=T = 0, (9.14)
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which conceptually represents3 the changing balance x of a bank loan ac-
count over time t, where I is the loan’s interest rate and P is the borrower’s
payment rate. If it is desired to find the correct payment rate P which pays
the loan off in the time T , then (perhaps after some bad guesses) we guess
the form

x(t) = Aeαt +B,

where α, A and B are unknown coefficients. The guess’ derivative is

dx = αAeαt dt.

Substituting the last two equations into (9.14) and dividing by dt yields that

αAeαt = IAeαt + IB − P,

which at least is satisfied if both of the equations

αAeαt = IAeαt,

0 = IB − P,

are satisfied. Evidently good choices for α and B, then, are

α = I,

B =
P

I
.

Substituting these coefficients into the x(t) equation above yields the general
solution

x(t) = AeIt +
P

I
(9.15)

to (9.14). The constants A and P , we establish by applying the given bound-
ary conditions x|t=0 = xo and x|t=T = 0. For the former condition, (9.15)
is

xo = Ae(I)(0) +
P

I
= A+

P

I
;

and for the latter condition,

0 = AeIT +
P

I
.

3Real banks (in the author’s country, at least) by law or custom actually use a needlessly
more complicated formula—and not only more complicated, but mathematically slightly
incorrect, too.
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Solving the last two equations simultaneously, we have that

A =
−e−ITxo
1− e−IT ,

P =
Ixo

1− e−IT .
(9.16)

Applying these to the general solution (9.15) yields the specific solution

x(t) =
xo

1− e−IT
[
1− e(I)(t−T )

]
(9.17)

to (9.14) meeting the boundary conditions, with the payment rate P required
of the borrower given by (9.16).

The virtue of the method of unknown coefficients lies in that it permits
one to try an entire family of candidate solutions at once, with the family
members distinguished by the values of the coefficients. If a solution exists
anywhere in the family, the method usually finds it.

The method of unknown coefficients is an elephant. Slightly inelegant the
method may be, but it is pretty powerful, too—and it has surprise value (for
some reason people seem not to expect it). Such are the kinds of problems
the method can solve.

9.6 Integration by closed contour

We pass now from the elephant to the falcon, from the inelegant to the
sublime. Consider the definite integral4

S ≡
∫ ∞

0

τa

τ + 1
dτ, −1 < a < 0.

This is a hard integral. No obvious substitution, no evident factoring into
parts, seems to solve the integral; but there is a way. The integrand has
a pole at τ = −1. Observing that τ is only a dummy integration variable,
if one writes the same integral using the complex variable z in place of the
real variable τ , then Cauchy’s integral formula (8.29) has that integrating
once counterclockwise about a closed complex contour, with the contour
enclosing the pole at z = −1 but shutting out the branch point at z = 0,
yields that

I =

∮
za

z + 1
dz = i2πza|z=−1 = i2π

(
ei2π/2

)a
= i2πei2πa/2.

4[84, § 1.2]
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Figure 9.1: Integration by closed contour.

z = −1

ℜ(z)

ℑ(z)

I1

I2

I3I4

The trouble, of course, is that the integral S does not go about a closed
complex contour. One can however construct a closed complex contour I of
which S is a part, as in Fig 9.1. If the outer circle in the figure is of infinite
radius and the inner, of infinitesimal, then the closed contour I is composed
of the four parts

I = I1 + I2 + I3 + I4

= (I1 + I3) + I2 + I4.

The figure tempts one to make the mistake of writing that I1 = S = −I3,
but besides being incorrect this defeats the purpose of the closed contour
technique. More subtlety is needed. One must take care to interpret the
four parts correctly. The integrand za/(z + 1) is multiple-valued; so, in
fact, the two parts I1 + I3 6= 0 do not cancel. The integrand has a branch
point at z = 0, which, in passing from I3 through I4 to I1, the contour has
circled. Even though z itself takes on the same values along I3 as along I1,
the multiple-valued integrand za/(z + 1) does not. Indeed,

I1 =

∫ ∞

0

(ρei0)a

(ρei0) + 1
dρ =

∫ ∞

0

ρa

ρ+ 1
dρ = S,

−I3 =

∫ ∞

0

(ρei2π)a

(ρei2π) + 1
dρ = ei2πa

∫ ∞

0

ρa

ρ+ 1
dρ = ei2πaS.
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Therefore,

I = I1 + I2 + I3 + I4

= (I1 + I3) + I2 + I4

= (1− ei2πa)S + lim
ρ→∞

∫ 2π

φ=0

za

z + 1
dz − lim

ρ→0

∫ 2π

φ=0

za

z + 1
dz

= (1− ei2πa)S + lim
ρ→∞

∫ 2π

φ=0
za−1 dz − lim

ρ→0

∫ 2π

φ=0
za dz

= (1− ei2πa)S + lim
ρ→∞

za

a

∣∣∣∣
2π

φ=0

− lim
ρ→0

za+1

a+ 1

∣∣∣∣
2π

φ=0

.

Since a < 0, the first limit vanishes; and because a > −1, the second
limit vanishes, too, leaving

I = (1− ei2πa)S.

But by Cauchy’s integral formula we have already found an expression for I.
Substituting this expression into the last equation yields, by successive steps,

i2πei2πa/2 = (1− ei2πa)S,

S =
i2πei2πa/2

1− ei2πa ,

S =
i2π

e−i2πa/2 − ei2πa/2 ,

S = − 2π/2

sin(2πa/2)
.

That is, ∫ ∞

0

τa

τ + 1
dτ = − 2π/2

sin(2πa/2)
, −1 < a < 0, (9.18)

an astonishing result.5 Section 21.6 will use it.
Another example6 is

T ≡
∫ 2π

0

dθ

1 + a cos θ
, =(a) = 0, |<(a)| < 1.

5So astonishing is the result, that one is unlikely to believe it at first encounter. How-
ever, straightforward (though computationally highly inefficient) numerical integration
per (7.1) confirms the result, as the interested reader and his computer can check. Such
results vindicate the effort we have spent in deriving Cauchy’s integral formula (8.29).

6[78]
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As in the previous example, here again the contour is not closed. The
previous example closed the contour by extending it, excluding the branch
point. In this example there is no branch point to exclude, nor need one
extend the contour. Rather, one changes the variable

z ← eiθ

and takes advantage of the fact that z, unlike θ, begins and ends the inte-
gration at the same point. One thus obtains the equivalent integral

T =

∮
dz/iz

1 + (a/2)(z + 1/z)
= − i2

a

∮
dz

z2 + 2z/a+ 1

= − i2
a

∮
dz[

z −
(
−1 +

√
1− a2

)
/a
] [
z −

(
−1−

√
1− a2

)
/a
] ,

whose contour is the unit circle in the Argand plane. The integrand evidently
has poles at

z =
−1±

√
1− a2

a
,

whose magnitudes are such that

|z|2 =
2− a2 ∓ 2

√
1− a2

a2
.

One of the two magnitudes is less than unity and one is greater, meaning
that one of the two poles lies within the contour and one lies without, as is
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seen by the successive steps7

a2 < 1,

0 < 1− a2,

(−a2)(0) > (−a2)(1− a2),

0 > −a2 + a4,

1− a2 > 1− 2a2 + a4,

1− a2 >
(
1− a2

)2
,

√
1− a2 > 1− a2,

−
√

1− a2 < −(1− a2) <
√

1− a2,

1−
√

1− a2 < a2 < 1 +
√

1− a2,

2− 2
√

1− a2 < 2a2 < 2 + 2
√

1− a2,

2− a2 − 2
√

1− a2 < a2 < 2− a2 + 2
√

1− a2,

2− a2 − 2
√

1− a2

a2
< 1 <

2− a2 + 2
√

1− a2

a2
.

Per Cauchy’s integral formula (8.29), integrating about the pole within the
contour yields that

T = i2π
−i2/a

z −
(
−1−

√
1− a2

)
/a

∣∣∣∣∣∣
z=(−1+

√
1−a2)/a

=
2π√

1− a2
.

Observe that by means of a complex variable of integration, each example
has indirectly evaluated an integral whose integrand is purely real. If it seems
unreasonable to the reader to expect so flamboyant a technique actually
to work, this seems equally unreasonable to the writer—but work it does,
nevertheless. It is a great technique.

The technique, integration by closed contour, is found in practice to solve
many integrals other techniques find almost impossible to crack. The key
to making the technique work lies in closing a contour one knows how to
treat. The robustness of the technique lies in that any contour of any shape
will work, so long as the contour encloses appropriate poles in the Argand
domain plane while shutting branch points out.

7These steps are perhaps best read from bottom to top. See chapter 6’s footnote 15.
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The extension ∣∣∣∣
∫ z2

z1

f(z) dz

∣∣∣∣ ≤
∫ z2

z1

|f(z) dz| (9.19)

of the complex triangle sum inequality (3.22) from the discrete to the con-
tinuous case sometimes proves useful in evaluating integrals by this section’s
technique, as in § 17.6.4.

9.7 Integration by partial-fraction expansion

This section treats integration by partial-fraction expansion. It introduces
the expansion itself first.8 Throughout the section,

j, j′, k, `,m, n, p, p(·),M,N ∈ Z.

9.7.1 Partial-fraction expansion

Consider the function

f(z) =
−4

z − 1
+

5

z − 2
.

Combining the two fractions over a common denominator9 yields that

f(z) =
z + 3

(z − 1)(z − 2)
.

Of the two forms, the former is probably the more amenable to analysis.
For example, using (9.3),

∫ 0

−1
f(τ) dτ =

∫ 0

−1

−4

τ − 1
dτ +

∫ 0

−1

5

τ − 2
dτ

= [−4 ln(1− τ) + 5 ln(2− τ)]0−1 .

The trouble is that one is not always given the function in the amenable
form.

Given a rational function

f(z) =

∑N−1
k=0 bkz

k

∏N
j=1(z − αj)

(9.20)

8[99, appendix F][65, §§ 2.7 and 10.12]
9Terminology (you probably knew this already): a fraction is the ratio of two numbers

or expressions B/A. In the fraction, B is the numerator and A is the denominator. The
quotient is Q = B/A.
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in which no two of the several poles αj are the same, the partial-fraction
expansion has the form

f(z) =
N∑

k=1

Ak
z − αk

, (9.21)

where multiplying each fraction of (9.21) by

[∏N
j=1(z − αj)

]
/(z − αk)

[∏N
j=1(z − αj)

]
/(z − αk)

puts the several fractions over a common denominator, yielding (9.20). Di-
viding (9.20) by (9.21) gives the ratio

1 =

∑N−1
k=0 bkz

k

∏N
j=1(z − αj)

/
N∑

k=1

Ak
z − αk

.

In the immediate neighborhood of z = αm, the mth term Am/(z − αm)
dominates the summation of (9.21). Hence,

1 = lim
z→αm

∑N−1
k=0 bkz

k

∏N
j=1(z − αj)

/
Am

z − αm
.

Rearranging factors, we have that

Am =

∑N−1
k=0 bkz

k

[∏N
j=1(z − αj)

]
/(z − αm)

∣∣∣∣∣∣
z=αm

= lim
z→αm

[(z − αm)f(z)] , (9.22)

where Am, the value of f(z) with the pole canceled, is called the residue
of f(z) at the pole z = αm. Equations (9.21) and (9.22) together give the
partial-fraction expansion of (9.20)’s rational function f(z).

9.7.2 Repeated poles

The weakness of the partial-fraction expansion of § 9.7.1 is that it cannot
directly handle repeated poles. That is, if αn = αj , n 6= j, then the residue
formula (9.22) finds an uncanceled pole remaining in its denominator and
thus fails for An = Aj (it still works for the other Am). The conventional
way to expand a fraction with repeated poles is presented in § 9.7.6 below;
but because at least to this writer that way does not lend much applied
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insight, the present subsection treats the matter in a different way. Here,
we separate the poles.

Consider the function

g(z) ≡
N−1∑

k=0

Cei2πk/N

z − εei2πk/N , N > 1, 0 < ε� 1, (9.23)

where C is a real-valued constant. This function evidently has a small circle
of poles in the Argand plane at αk = εei2πk/N . Factoring,

g(z) =
C

z

N−1∑

k=0

ei2πk/N

1− (εei2πk/N )/z
.

Using (2.34) to expand the fraction,

g(z) =
C

z

N−1∑

k=0


ei2πk/N

∞∑

j=0

(
εei2πk/N

z

)j


= C
N−1∑

k=0

∞∑

j=1

εj−1ei2πjk/N

zj

= C

∞∑

j=1

εj−1

zj

N−1∑

k=0

(
ei2πj/N

)k
.

But10

N−1∑

k=0

(
ei2πj/N

)k
=

{
N if j = mN,

0 otherwise,

so

g(z) = NC
∞∑

m=1

εmN−1

zmN
.

For |z| � ε—that is, except in the immediate neighborhood of the small
circle of poles—the first term of the summation dominates. Hence,

g(z) ≈ NC ε
N−1

zN
, |z| � ε.

10If you don’t see why, then for N = 8 and j = 3 plot the several (ei2πj/N )k in the
Argand plane. Do the same for j = 2 then j = 8. Only in the j = 8 case do the terms
add coherently; in the other cases they cancel.

This effect—reinforcing when j = nN , canceling otherwise—is a classic manifestation
of Parseval’s principle, which § 17.1 will formally introduce later in the book.
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Having achieved this approximation, if we strategically choose

C =
1

NεN−1
,

then

g(z) ≈ 1

zN
, |z| � ε.

But given the chosen value of C, (9.23) is

g(z) =
1

NεN−1

N−1∑

k=0

ei2πk/N

z − εei2πk/N , N > 1, 0 < ε� 1.

Joining the last two equations together, changing z − zo ← z, and writing
more formally, we have that

1

(z − zo)N
= lim

ε→0

1

NεN−1

N−1∑

k=0

ei2πk/N

z −
[
zo + εei2πk/N

] , N > 1. (9.24)

The significance of (9.24) is that it lets one replace an N -fold pole with
a small circle of ordinary poles, which per § 9.7.1 we already know how to
handle. Notice incidentally that 1/NεN−1 is a large number not a small.
The poles are close together but very strong.
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9.7.3 An example

An example to illustrate the technique, separating a double pole:

f(z) =
z2 − z + 6

(z − 1)2(z + 2)

= lim
ε→0

z2 − z + 6

(z − [1 + εei2π(0)/2])(z − [1 + εei2π(1)/2])(z + 2)

= lim
ε→0

z2 − z + 6

(z − [1 + ε])(z − [1− ε])(z + 2)

= lim
ε→0

{(
1

z − [1 + ε]

)[
z2 − z + 6

(z − [1− ε])(z + 2)

]

z=1+ε

+

(
1

z − [1− ε]

)[
z2 − z + 6

(z − [1 + ε])(z + 2)

]

z=1−ε

+

(
1

z + 2

)[
z2 − z + 6

(z − [1 + ε])(z − [1− ε])

]

z=−2

}

= lim
ε→0

{(
1

z − [1 + ε]

)[
6 + ε+ ε2

6ε+ 2ε2

]

+

(
1

z − [1− ε]

)[
6− ε+ ε2

−6ε+ 2ε2

]

+

(
1

z + 2

)[
0xC

9− ε2
]}

As usual when handling infinitesimals like ε, we can drop from each sum its
insignificant terms in the limit, but which terms are insignificant depends
on the ratio in which each sum is:

lim
ε→0

6± ε+ ε2

±6ε+ 2ε2
= lim

ε→0

{
6

±6ε+ 2ε2
+
±ε
±6ε

}
= lim

ε→0

{ ±1/ε

1± ε/3 +
1/6

1

}

= lim
ε→0

{(
± 1

ε

)(
1∓ ε

3
+ · · ·

)
+

1

6

}

= ±1

ε
− 1

3
+

1

6
= ±1

ε
− 1

6
.

Thus,

f(z) = lim
ε→0

{
1/ε− 1/6

z − [1 + ε]
+
−1/ε− 1/6

z − [1− ε] +
4/3

z + 2

}

gives the partial-fraction expansion of f(z).
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Incidentally, one can recombine terms to reach the alternate form

f(z) = lim
ε→0

{
1/ε

z − [1 + ε]
+

−1/ε

z − [1− ε] +
−1/3

z − 1
+

4/3

z + 2

}
.

This alternate form is valid and, for many purposes (as in § 9.7.4), is even
handy; but one should interpret it cautiously: counting terms in the alter-
nate form, you would think that f(z) had four poles whereas it has in fact
only three. The pole of the ratio (−1/3)/(z − 1)—infinitely weaker than,
yet lying infinitely near to, the poles of the two ratios (1/ε)(z − [1± ε])—is
indeed a pole of the ratio (−1/3)/(z − 1), but it is not a proper, distinct
pole of f(z). It can be understood as a sort of shadow pole, if you like, that
lurks near or hides under the twin dominant poles that loom over it. To see
the proper, distinct poles of f(z), refer rather to the earlier form.

However one might choose to account for and to describe the shadow
pole, one cannot merely omit it. If one did omit it, then recombining the
remaining partial fractions over a common denominator (try it!) would fail
to recover our original expression for f(z).

9.7.4 Integrating a rational function

If one can find the poles of a rational function of the form (9.20), then one
can use (9.21) and (9.22)—and, if needed, (9.24)—to expand the function
into a sum of partial fractions, each of which one can integrate individually.



9.7. INTEGRATION BY PARTIAL-FRACTION EXPANSION 255

Continuing the example of § 9.7.3, for 0 ≤ x < 1,
∫ x

0
f(τ) dτ =

∫ x

0

τ2 − τ + 6

(τ − 1)2(τ + 2)
dτ

= lim
ε→0

∫ x

0

{
1/ε

τ − [1 + ε]
+

−1/ε

τ − [1− ε] +
−1/3

τ − 1
+

4/3

τ + 2

}
dτ

= lim
ε→0

{
1

ε
ln([1 + ε]− τ)− 1

ε
ln([1− ε]− τ)

− 1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

= lim
ε→0

{
1

ε
ln

(
[1 + ε]− τ
[1− ε]− τ

)
− 1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

= lim
ε→0

{
1

ε
ln

(
[1− τ ] + ε

[1− τ ]− ε

)
− 1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

= lim
ε→0

{
1

ε
ln

(
1 +

2ε

1− τ

)
− 1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

= lim
ε→0

{
1

ε

(
2ε

1− τ

)
− 1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

= lim
ε→0

{
2

1− τ −
1

3
ln(1− τ) +

4

3
ln(τ + 2)

}x

0

=
2

1− x − 2− 1

3
ln(1− x) +

4

3
ln

(
x+ 2

2

)
.

To check per § 7.5 that the result is correct, we can take the derivative of
the final expression:

[
d

dx

{
2

1− x − 2− 1

3
ln(1− x) +

4

3
ln

(
x+ 2

2

)}]

x=τ

=
2

(τ − 1)2
+
−1/3

τ − 1
+

4/3

τ + 2

=
τ2 − τ + 6

(τ − 1)2(τ + 2)
,

which indeed has the form of the integrand with which we started, confirm-
ing the result. (Notice incidentally how much easier it is symbolically to
differentiate than to integrate!)

Section 19.4 exercises the technique in a more sophisticated way, ap-
plying it in the context of chapter 18’s Laplace transform to solve a linear
differential equation.
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9.7.5 The derivatives of a rational function

Not only the integral of a rational function interests us; its derivatives in-
terest us, too. One needs no special technique to compute such derivatives,
of course, but the derivatives do bring some noteworthy properties.

First of interest is the property that a function in the general rational
form

Φ(w) =
wph0(w)

g(w)
, g(0) 6= 0, (9.25)

enjoys derivatives in the general rational form

dkΦ

dwk
=
wp−khk(w)

[g(w)]k+1
, 0 ≤ k ≤ p, (9.26)

where g and hk are polynomials in nonnegative powers of w. The property
is proved by induction. When k = 0, (9.26) is (9.25), so (9.26) is good at
least for this case. Then, using the product rule (4.24), if (9.26) holds for
k = n− 1.

dnΦ

dwn
=

d

dw

[
dn−1Φ

dwn−1

]
=

d

dw

[
wp−n+1hn−1(w)

[g(w)]n

]
=
wp−nhn(w)

[g(w)]n+1 ,

hn(w) ≡ wg
dhn−1

dw
− nwhn−1

dg

dw
+ (p− n+ 1)ghn−1, 0 < n ≤ p,

which makes hn (like hn−1) a polynomial in nonnegative powers of w. By
induction on this basis, (9.26) holds for all 0 ≤ k ≤ p, as was to be demon-
strated.

A related property is that

dkΦ

dwk

∣∣∣∣
w=0

= 0 for 0 ≤ k < p. (9.27)

That is, the function and its first p−1 derivatives are all zero at w = 0. The
reason is that (9.26)’s denominator is [g(w)]k+1 6= 0, whereas its numerator
has a wp−k = 0 factor, when 0 ≤ k < p and w = 0.

9.7.6 Repeated poles (the conventional technique)

Though the technique of §§ 9.7.2 and 9.7.4 affords extra insight, it is not
the conventional technique to expand in partial fractions a rational function
having a repeated pole. The conventional technique is worth learning not
only because it is conventional but also because it is usually quicker to apply
in practice. This subsection derives it.
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A rational function with repeated poles,

f(z) =

∑N−1
k=0 bkz

k

∏M
j=1(z − αj)pj

, (9.28)

N ≡
M∑

j=1

pj ,

pj ≥ 0,

αj′ 6= αj for all j′ 6= j,

where j, k, M , N and the several pj are integers, cannot be expanded solely
in the first-order fractions of § 9.7.1, but can indeed be expanded if higher-
order fractions are allowed:

f(z) =

M∑

j=1

pj−1∑

`=0

Aj`

(z − αj)pj−`
. (9.29)

What the partial-fraction expansion (9.29) lacks are the values of its several
coefficients Aj`.

One can determine the coefficients with respect to one (possibly re-
peated) pole at a time. To determine them with respect to the pm-fold
pole at z = αm, 1 ≤ m ≤M , one multiplies (9.29) by (z − αm)pm to obtain
the form

(z − αm)pmf(z) =

M∑

j=1,
j 6=m

pj−1∑

`=0

(Aj`)(z − αm)pm

(z − αj)pj−`
+

pm−1∑

`=0

(Am`)(z − αm)`.

But (9.27) with w = z − αm reveals the double summation and its first
pm − 1 derivatives all to be null at z = αm; that is,

dk

dzk

M∑

j=1,
j 6=m

pj−1∑

`=0

(Aj`)(z − αm)pm

(z − αj)pj−`

∣∣∣∣∣∣∣∣
z=αm

= 0, 0 ≤ k < pm;

so, the (z − αm)pmf(z) equation’s kth derivative reduces at that point to

dk

dzk

[
(z − αm)pmf(z)

]∣∣∣∣
z=αm

=

pm−1∑

`=0

dk

dzk

[
(Am`)(z − αm)`

]∣∣∣∣
z=αm

= k!Amk, 0 ≤ k < pm.
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Changing j ← m and ` ← k and solving for Aj` then produces the coeffi-
cients

Aj` =

(
1

`!

)
d`

dz`

[
(z − αj)pjf(z)

]∣∣∣∣
z=αj

, 0 ≤ ` < pj , (9.30)

to weight the expansion (9.29)’s partial fractions. In case of a repeated pole,
these coefficients evidently depend not only on the residual function itself
but also on its several derivatives, one derivative per repetition of the pole.

9.7.7 The existence and uniqueness of solutions

Equation (9.30) has solved (9.28) and (9.29). A professional mathematician
might object however that it has done so without first proving that a unique
solution actually exists.

Comes from us the reply, “Why should we prove that a solution exists,
once we have actually found it?”

Ah, but the hypothetical professional’s point is that we have found the
solution only if in fact it does exist, and uniquely; otherwise what we have
found is a phantom. A careful review of § 9.7.6’s logic discovers no guaran-
tee that all of (9.30)’s coefficients actually come from the same expansion.
Maybe there exist two distinct expansions, and some of the coefficients come
from the one, some from the other. On the other hand, maybe there exists
no expansion at all, in which event it is not even clear what (9.30) means.

“But these are quibbles, cavils and nitpicks!” we are inclined to grumble.
“The present book is a book of applied mathematics.”

Well, yes, but on this occasion let us nonetheless follow the professional’s
line of reasoning, if only a short way.

Uniqueness is proved by positing two solutions

f(z) =

M∑

j=1

pj−1∑

`=0

Aj`

(z − αj)pj−`
=

M∑

j=1

pj−1∑

`=0

Bj`

(z − αj)pj−`

and computing the difference

M∑

j=1

pj−1∑

`=0

Bj` −Aj`
(z − αj)pj−`

between them. Logically this difference must be zero for all z if the two
solutions are actually to represent the same function f(z). This however
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is seen to be possible only if Bj` = Aj` for each (j, `). Therefore, the two
solutions are one and the same. (The professional might request a further
demonstration of orthogonality, § 13.8; but we will leave the point in that
form.)

Existence comes of combining the several fractions of (9.29) over a com-
mon denominator and comparing the resulting numerator against the numer-
ator of (9.28). Each coefficient bk is seen thereby to be a linear combination
of the several Aj`, where the combination’s weights depend solely on the
locations αj and multiplicities pj of f(z)’s several poles. From the N coeffi-
cients bk and the N coefficients Aj`, an N ×N system of N linear equations
in N unknowns results—which might for example (if, say, N = 3) look like

b0 = −2A00 +A01 + 3A10,

b1 = A00 +A01 +A10,

b2 = 2A01 − 5A10.

We will show in chapters 11 through 14 that when such a system has no
solution, there always exists an alternate set of bk for which the same system
has multiple solutions. But uniqueness, which we have already established,
forbids such multiple solutions in all cases. Therefore it is not possible for
the system to have no solution—which is to say, the solution necessarily
exists.

We will not often in this book prove existence and uniqueness explicitly,
but such proofs when desired tend to fit the pattern outlined here.

9.8 Integration by the manipulation of a Pythag-
orean expression

In context of the chapter you are reading, a Pythagorean expression is an
expression of the form of ±1 ± τ2. This section suggests ways to approach
integrands that contain Pythagorean expressions.

9.8.1 Pythagorean radicals

In applications, as for instance in the path-length computation of § 7.4.2,
one often meets integrands that contain Pythagorean expressions under a
radical sign, like

√
1− τ2,

√
τ2 − 1 or

√
τ2 + 1. An example would be

S1(x) ≡
∫ x

0

dτ√
1− τ2

,
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which contains the Pythagorean radical
√

1− τ2. Such a Pythagorean radi-
cal recalls the inverse trigonometrics of Table 5.3, whereby

S1(x) = arcsin τ |x0 = arcsinx.

Unfortunately, not every integrand that features such a radical appears in
the table; so, for example,

S2(x) ≡
∫ x

0
dτ τ

√
1− τ2

wants a substitution like u2
2 ← 1 − τ2, u2 du2 = −τ dτ , by which the tech-

nique of § 9.2 finds that

S2(x) = −
∫ √1−x2

1
du2 u

2
2 = − u3

2

3

∣∣∣∣

√
1−x2

1

=
1− (1− x2)3/2

3
.

That’s all relatively straightforward, but now try an integral like

S3(x) ≡
∫ x

0
dτ
√

1− τ2.

This doesn’t look harder. Indeed, if anything, it looks slightly easier than
S1(x) or S2(x). Notwithstanding, the techniques used to solve those some-
how don’t quite seem to work on S3(x) [try it!].

As it happens, we have already met, and solved, a similar integral in
§ 7.4.2. That subsection has illustrated the technique. Applying the same
technique here, we assemble by trial a small table of potentially relevant
antiderivatives,

d

dτ
arcsin τ =

1√
1− τ2

,

d

dτ

√
1− τ2 = − τ√

1− τ2
,

d

dτ
τ
√

1− τ2 =
√

1− τ2 − τ2

√
1− τ2

= 2
√

1− τ2 − 1√
1− τ2

.

wherein the pivotal step on the last line is to have manipulated the Pythag-
orean radical, observing that

τ2

√
1− τ2

= − 1− τ2

√
1− τ2

+
1√

1− τ2
= −

√
1− τ2 +

1√
1− τ2

.
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Using some of the above-computed derivatives, the desired integrand√
1− τ2 can now be built up by stages:

d

2 dτ
τ
√

1− τ2 =
√

1− τ2 − 1

2
√

1− τ2
;

d

2 dτ
arcsin τ +

d

2 dτ
τ
√

1− τ2 =
√

1− τ2.

Hence,

S3(x) =

[
1

2
arcsin τ +

1

2
τ
√

1− τ2

]x

0

=
1

2
arcsinx+

1

2
x
√

1− x2,

a result which can (and should) be checked by differentiating in the manner
of § 7.5.

Here is another example of integration by the manipulation of a Pythag-
orean radical:

S4(x) ≡
∫ x

1
dτ τ2

√
τ2 − 1;

d

dτ
arccosh τ =

1√
τ2 − 1

;

d

dτ
τ
√
τ2 − 1 =

√
τ2 − 1 +

τ2

√
τ2 − 1

= 2
√
τ2 − 1 +

1√
τ2 − 1

;

d

dτ
τ3
√
τ2 − 1 = 3τ2

√
τ2 − 1 +

τ4

√
τ2 − 1

= 4τ2
√
τ2 − 1 +

τ2

√
τ2 − 1

= (4τ2 + 1)
√
τ2 − 1 +

1√
τ2 − 1

;

d

4 dτ
τ3
√
τ2 − 1 =

(
τ2 +

1

4

)√
τ2 − 1 +

1

4
√
τ2 − 1

.

Having assembled the above small table of potentially relevant antideriva-
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tives, we proceed:

− d

8 dτ
τ
√
τ2 − 1 +

d

4 dτ
τ3
√
τ2 − 1

= τ2
√
τ2 − 1 +

1

8
√
τ2 − 1

;

− d

8 dτ
arccosh τ − d

8 dτ
τ
√
τ2 − 1 +

d

4 dτ
τ3
√
τ2 − 1

= τ2
√
τ2 − 1;

S4(x) =

[
−arccosh τ

8

+

(
τ2

4
− 1

8

)
τ
√
τ2 − 1

]x

1

;

= −arccoshx

8
+

(
x2

4
− 1

8

)
x
√
x2 − 1.

For yet more examples, consider

S5(x) ≡
∫ x

1

τ2 dτ√
τ2 − 1

=

∫ x

1
dτ
√
τ2 − 1 +

∫ x

1

dτ√
τ2 − 1

,

to complete whose evaluation is left as an exercise, and

S6(x) ≡
∫ x

0
dτ
√
a2 − τ2 = a2

∫ x/a

(τ/a)=0
d
(τ
a

)√
1−

(τ
a

)2
= a2S3

(x
a

)
.

9.8.2 Pythagorean nonradicals

Besides Pythagorean radicals, Pythagorean nonradicals occur, too. How-
ever, these tend to be easier to solve. For example,

S7(x) ≡
∫ x

0

τ2 dτ

1 + τ2
=

∫ x

0

(
1− 1

1 + τ2

)
dτ = x− arctanx;

S8(x) ≡
∫ x

0

τ3 dτ

1 + τ2
=

∫ x

0

(
τ − τ

1 + τ2

)
dτ =

x2

2
−
∫ x

0

τ dτ

1 + τ2
,

u2
8 ← 1 + τ2, u8 du8 = τ dτ,

S8(x) =
x2

2
−
∫ √1+x2

1

du8

u8
=
x2 − ln(1 + x2)

2
.
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9.9 Trial derivatives

Besides the technique of the Pythagorean radical, § 9.8.1 has also inciden-
tally demonstrated another, different technique, vaguer but more broadly
applicable. It has incidentally demonstrated the technique of trial deriva-
tives.11

Review the S3(x) and S4(x) of § 9.8.1. To solve each has required us
to develop a small table of potentially relevant antiderivatives. How did we
develop each small table? Well, we began by copying a relevant inverse-
trigonometric entry from Table 5.3; but then, to extend the table, we tried
taking the derivatives of various functions that resembled the integrand or
part of the integrand. Not all our trials gave useful antiderivatives but some
did.

To decide which derivatives to try during a given integration depends on
the mathematician’s creativity and experience. However, a typical theme is
to multiply the integrand (or part of the integrand) by τ , τ2 or maybe τ3,
taking the derivative of the product as § 9.8.1 has done. It is not usually
necessary, nor helpful, to build up a huge table but—well, when you read
§ 9.8.1, you saw how it went.

The reason to take trial derivatives, incidentally, is that one does not
generally know very well how to take trial antiderivatives! Analytically,
derivatives are the easier to take. To seek an antiderivative by taking de-
rivatives might (or might not) seem counterintuitive, but it’s a game of
feedback and educated guesses, like nineteenth-century artillery finding the
range to its target. It is a game that can prosper, as we have seen.

9.10 Frullani’s integral

One occasionally meets an integral of the form

S =

∫ ∞

0

f(bτ)− f(aτ)

τ
dτ,

where a and b are real, positive coefficients and f(τ) is an arbitrary complex
expression in τ . One wants to split such an integral in two as

∫
[f(bτ)/τ ] dτ−∫

[f(aτ)/τ ] dτ , except that each half-integral alone may diverge. Nonethe-
less, splitting the integral in two is the right idea, provided that one first

11See [65, § 1.5], which introduces the technique in another guise under a different name.
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relaxes the limits of integration as

S = lim
ε→0+

{∫ 1/ε

ε

f(bτ)

τ
dτ −

∫ 1/ε

ε

f(aτ)

τ
dτ

}
.

Changing σ ← bτ in the left integral and σ ← aτ in the right yields that

S = lim
ε→0+

{∫ b/ε

bε

f(σ)

σ
dσ −

∫ a/ε

aε

f(σ)

σ
dσ

}

= lim
ε→0+

{∫ bε

aε

−f(σ)

σ
dσ +

∫ a/ε

bε

f(σ)− f(σ)

σ
dσ +

∫ b/ε

a/ε

f(σ)

σ
dσ

}

= lim
ε→0+

{∫ b/ε

a/ε

f(σ)

σ
dσ −

∫ bε

aε

f(σ)

σ
dσ

}

(here on the face of it, we have split the integration as though a ≤ b, but in
fact it does not matter which of a and b is the greater, as is easy to verify).
So long as each of f(ε) and f(1/ε) approaches a constant value as ε vanishes,
this is

S = lim
ε→0+

{
f(+∞)

∫ b/ε

a/ε

dσ

σ
− f(0+)

∫ bε

aε

dσ

σ

}

= lim
ε→0+

{
f(+∞) ln

b/ε

a/ε
− f(0+) ln

bε

aε

}

= [f(τ)]∞0 ln
b

a
.

Thus we have Frullani’s integral,
∫ ∞

0

f(bτ)− f(aτ)

τ
dτ = [f(τ)]∞0 ln

b

a
, (9.31)

which, if a and b are both real and positive, works for any f(τ) which has
definite f(0+) and f(+∞).12

9.11 Integrating products of exponentials, powers
and logarithms

The products exp(ατ)τn (where n ∈ Z) and τa−1 ln τ tend to arise13 among
other places in integrands related to special functions (as in the book’s

12[84, § 1.3][3, § 2.5.1][142, “Frullani’s integral”]
13One could write the latter product more generally as τa−1 lnβτ . According to Ta-

ble 2.5, however, lnβτ = lnβ + ln τ ; wherein lnβ is just a constant.
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part III). The two occur often enough to merit investigation here.
Concerning exp(ατ)τn, by § 9.5’s method of unknown coefficients we

guess its antiderivative to fit the form

exp(ατ)τn =
d

dτ

n∑

k=0

ak exp(ατ)τk

=

n∑

k=0

αak exp(ατ)τk +

n∑

k=1

kak exp(ατ)τk−1

= αan exp(ατ)τn + exp(ατ)
n−1∑

k=0

[αak + (k + 1)ak+1] τk.

If so, then evidently

an =
1

α
;

ak = −k + 1

α
ak+1, 0 ≤ k < n.

That is,

ak =
1

α

n∏

j=k+1

(−jα) = − n!/k!

(−α)n−k+1
, 0 ≤ k ≤ n.

Therefore,14

exp(ατ)τn =
d

dτ

[
− exp(ατ)

n∑

k=0

n!/k!

(−α)n−k+1
τk

]
, n ∈ Z, n ≥ 0, α 6= 0.

(9.32)
The right form to guess for the antiderivative of τa−1 ln τ is less obvious.

Remembering however § 5.3’s observation that ln τ is of zeroth order in τ ,
after maybe some false tries we eventually do strike the right form

τa−1 ln τ =
d

dτ
τa[B ln τ + C]

= τa−1[aB ln τ + (B + aC)],

which demands that B = 1/a and that C = −1/a2. Therefore,15

τa−1 ln τ =
d

dτ

τa

a

(
ln τ − 1

a

)
, a 6= 0. (9.33)

14[121, eqn. 17.25.4][115, appendix 2, eqn. 73]
15[121, eqn. 17.26.3][115, appendix 2, eqn. 74]
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Table 9.1: Antiderivatives of products of exponentials, powers and loga-
rithms.

exp(ατ) =
d

dτ

[
exp(ατ)

(
1

α

)]

exp(ατ)τ =
d

dτ

[
exp(ατ)

(
τ

α
− 1

α2

)]

exp(ατ)τ2 =
d

dτ

[
exp(ατ)

(
τ2

α
− 2τ

α2
+

2

α3

)]

exp(ατ)τn =
d

dτ

[
− exp(ατ)

n∑

k=0

n!/k!

(−α)n−k+1
τk

]

n ∈ Z, n ≥ 0, α 6= 0

τa−1 ln τ =
d

dτ

τa

a

(
ln τ − 1

a

)
, a 6= 0

ln τ

τ
=

d

dτ

(ln τ)2

2

Antiderivatives of terms like τa−1(ln τ)2, exp(ατ)τn ln τ and so on can be
computed in like manner as the need arises.

Equation (9.33) fails when a = 0, but in this case with a little imagination
the antiderivative is not hard to guess:16

ln τ

τ
=

d

dτ

(ln τ)2

2
. (9.34)

Table 9.1 summarizes.

9.12 Integration by Taylor series

With sufficient cleverness the techniques of the foregoing sections solve many,
many integrals. But not all. When all else fails, as sometimes it does, the
Taylor series of chapter 8 and the antiderivative of § 9.1 together offer a
concise, practical way to integrate some functions, at the price of losing the

16[121, eqn. 17.26.4]
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functions’ known closed analytic forms. For example,

∫ x

0
exp

(
−τ

2

2

)
dτ =

∫ x

0

∞∑

k=0

(−τ2/2)k

k!
dτ

=

∫ x

0

∞∑

k=0

(−)kτ2k

2kk!
dτ

=

[ ∞∑

k=0

(−)kτ2k+1

(2k + 1)2kk!

]x

0

=
∞∑

k=0

(−)kx2k+1

(2k + 1)2kk!
= (x)

∞∑

k=0

1

2k + 1

k∏

j=1

−x2

2j
.

The result is no function one recognizes; it is just a series. This is not
necessarily bad, however. After all, when a Taylor series from Table 8.1
is used to calculate sin z, then sin z is just a series, too. The series above
converges just as accurately and just as fast.

Sometimes it helps to give the series a name like17

myf z ≡
∞∑

k=0

(−)kz2k+1

(2k + 1)2kk!
= (z)

∞∑

k=0

1

2k + 1

k∏

j=1

−z2

2j
.

Then, ∫ x

0
exp

(
−τ

2

2

)
dτ = myf x.

The myf z is no less a function than sin z is; it’s just a function you hadn’t
heard of before. You can plot the function, or take its derivative

d

dτ
myf τ = exp

(
−τ

2

2

)
,

or calculate its value, or do with it whatever else one does with functions.
It works just the same.

Beyond the several integration techniques this chapter has introduced,
a special-purpose technique of integration by cylindrical transformation will
surface in § 18.4.

17The myf = “my function,” but you can use any name for a function like this.
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Chapter 10

Cubics and quartics

Under the heat of noonday, between the hard work of the morning and the
heavy lifting of the afternoon, one likes to lay down one’s burden and rest a
spell in the shade. Chapters 2 through 9 have established the applied mathe-
matical foundations upon which coming chapters will build; and chapter 11,
hefting the weighty topic of the matrix, will indeed begin to build on those
foundations. But in this short chapter which rests between, we shall refresh
ourselves with an interesting but lighter mathematical topic: the topic of
cubics and quartics.

The expression
z + a0

is a linear polynomial, the lone root z = −a0 of which is plain to see. The
quadratic polynomial

z2 + a1z + a0

has of course two roots, which though not plain to see the quadratic for-
mula (2.2) extracts with little effort. So much algebra has been known since
antiquity. The roots of higher-order polynomials, the Newton-Raphson iter-
ation (4.30) locates swiftly, but that is an approximate iteration rather than
an exact formula like (2.2), and as we have seen in § 4.8 it can occasionally
fail to converge. One would prefer an actual formula to extract the roots.

No general formula to extract the roots of the nth-order polynomial
seems to be known.1 However, to extract the roots of the cubic and quartic
polynomials

z3 + a2z
2 + a1z + a0,

z4 + a3z
3 + a2z

2 + a1z + a0,

1Refer to chapter 6’s footnote 10.

269
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though the ancients never discovered how, formulas do exist. The 16th-
century algebraists Ferrari, Vieta, Tartaglia and Cardan have given us the
clever technique. This chapter explains.2

10.1 Vieta’s transform

There is a sense to numbers by which 1/2 resembles 2, 1/3 resembles 3,
1/4 resembles 4, and so forth. To capture this sense, one can transform a
function f(z) into a function f(w) by the change of variable3

w +
1

w
← z,

or, more generally,

w +
w2
o

w
← z. (10.1)

Equation (10.1) is Vieta’s transform.4

For |w| � |wo|, we have that z ≈ w; but as |w| approaches |wo| this
ceases to be true. For |w| � |wo|, z ≈ w2

o/w. The constant wo is the corner
value, in the neighborhood of which w transitions from the one domain to
the other. Figure 10.1 plots Vieta’s transform for real w in the case that
wo = 1.

An interesting alternative to Vieta’s transform is

w ‖ w
2
o

w
← z, (10.2)

which in light of § 6.3 might be named Vieta’s parallel transform.
Section 10.2 shows how Vieta’s transform can be used.

10.2 Cubics

The general cubic polynomial is too hard to extract the roots of directly, so
one begins by changing the variable

x+ h← z (10.3)

2[142, “Cubic equation”][142, “Quartic equation”][146, “Quartic equation,” 00:26,
9 Nov. 2006][146, “François Viète,” 05:17, 1 Nov. 2006][146, “Gerolamo Cardano,” 22:35,
31 Oct. 2006][123, § 1.5]

3This change of variable broadly recalls the sum-of-exponentials form (5.20) of the
cosh(·) function, inasmuch as exp[−φ] = 1/ expφ.

4Also called “Vieta’s substitution.” [142, “Vieta’s substitution”]
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Figure 10.1: Vieta’s transform (10.1) for wo = 1, plotted logarithmically.

lnw

ln z

to obtain the polynomial

x3 + (a2 + 3h)x2 + (a1 + 2ha2 + 3h2)x+ (a0 + ha1 + h2a2 + h3).

The choice
h ≡ −a2

3
(10.4)

casts the polynomial into the improved form

x3 +

[
a1 −

a2
2

3

]
x+

[
a0 −

a1a2

3
+ 2

(a2

3

)3
]
,

or better yet
x3 − px− q,

where

p ≡ −a1 +
a2

2

3
,

q ≡ −a0 +
a1a2

3
− 2

(a2

3

)3
.

(10.5)

The solutions to the equation

x3 = px+ q, (10.6)

then, are the cubic polynomial’s three roots.
So we have struck the a2z

2 term. That was the easy part; what to do
next is not so obvious. If one could strike the px term as well, then the
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roots would follow immediately, but no very simple substitution like (10.3)
achieves this—or rather, such a substitution does achieve it, but at the
price of reintroducing an unwanted x2 or z2 term. That way is no good.
Lacking guidance, one might try many, various substitutions, none of which
seems to help much; but after weeks or months of such frustration one might
eventually discover Vieta’s transform (10.1), with the idea of balancing the
equation between offsetting w and 1/w terms. This works.

Vieta-transforming (10.6) by the change of variable

w +
w2
o

w
← x (10.7)

we get the new equation

w3 + (3w2
o − p)w + (3w2

o − p)
w2
o

w
+
w6
o

w3
= q, (10.8)

which invites the choice

w2
o ≡

p

3
, (10.9)

reducing (10.8) to read

w3 +
(p/3)3

w3
= q.

Multiplying by w3 and rearranging terms, we have the quadratic equation

(w3)2 = 2
(q

2

)
w3 −

(p
3

)3
, (10.10)

which by (2.2) we know how to solve.

Vieta’s transform has reduced the original cubic to a quadratic.

The careful reader will observe that (10.10) seems to imply six roots,
double the three the fundamental theorem of algebra (§ 6.2.2) allows a cubic
polynomial to have. We shall return to this point in § 10.3. For the moment,
however, we should like to improve the notation by defining5

P ← −p
3
,

Q← +
q

2
,

(10.11)

5Why did we not define P and Q so to begin with? Well, before unveiling (10.10),
we lacked motivation to do so. To define inscrutable coefficients unnecessarily before the
need for them is apparent seems poor applied mathematical style.
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Table 10.1: A method to extract the three roots of the general cubic poly-
nomial. (In the definition of w3, one can choose either sign for the ±.)

0 = z3 + a2z
2 + a1z + a0

P ≡ a1

3
−
(a2

3

)2

Q ≡ 1

2

[
−a0 + 3

(a1

3

)(a2

3

)
− 2

(a2

3

)3
]

w3 ≡
{

2Q if P = 0,

Q±
√
Q2 + P 3 otherwise.

x ≡
{

0 if P = 0 and Q = 0,
w − P/w otherwise.

z = x− a2

3

with which (10.6) and (10.10) are written,

x3 = 2Q− 3Px, (10.12)

(w3)2 = 2Qw3 + P 3. (10.13)

Table 10.1 summarizes the complete cubic-polynomial root-extraction meth-
od6 in the revised notation—including a few fine points regarding superflu-
ous roots and edge cases, treated in §§ 10.3 and 10.4 below.

10.3 Superfluous roots

As § 10.2 has observed, the equations of Table 10.1 seem to imply six roots,
double the three the fundamental theorem of algebra (§ 6.2.2) allows a cubic
polynomial to have. However, what the equations really imply is not six
distinct roots but six distinct w. The definition x ≡ w − P/w maps two w
to any one x, so in fact the equations imply only three x and thus three
roots z. The question then is: of the six w, which three do we really need
and which three can we ignore as superfluous?

The six w naturally come in two groups of three: one group of three from
the one w3 and a second from the other. For this reason, we will guess—and

6[121, eqn. 5.3]
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logically it is only a guess—that a single w3 generates three distinct x and
thus (because z differs from x only by a constant offset) all three roots z. If
the guess is right, then the second w3 cannot but yield the same three roots,
which means that the second w3 is superfluous and can safely be overlooked.
But is the guess right? Does a single w3 in fact generate three distinct x?

To prove that it does, let us suppose that it did not. Let us suppose
that a single w3 did generate two w which led to the same x. Letting
the symbol w1 represent the third w, then (since all three w come from the
same w3) the two w are w = e±i2π/3w1. Because x ≡ w−P/w, by successive
steps,

e+i2π/3w1 −
P

e+i2π/3w1
= e−i2π/3w1 −

P

e−i2π/3w1
,

e+i2π/3w1 +
P

e−i2π/3w1
= e−i2π/3w1 +

P

e+i2π/3w1
,

e+i2π/3

(
w1 +

P

w1

)
= e−i2π/3

(
w1 +

P

w1

)
,

which can only be true if
w2

1 = −P.
Cubing7 the last equation,

w6
1 = −P 3;

but squaring the table’s w3 definition for w = w1,

w6
1 = 2Q2 + P 3 ± 2Q

√
Q2 + P 3.

Combining the last two on w6
1,

−P 3 = 2Q2 + P 3 ± 2Q
√
Q2 + P 3,

or, rearranging terms and halving,

Q2 + P 3 = ∓Q
√
Q2 + P 3.

Squaring,
Q4 + 2Q2P 3 + P 6 = Q4 +Q2P 3,

then canceling offsetting terms and factoring,

(P 3)(Q2 + P 3) = 0.

7The verb to cube in this context means “to raise to the third power,” as to change y
to y3, just as the verb to square means “to raise to the second power.”
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The last equation demands rigidly that either P = 0 or P 3 = −Q2. Some
cubic polynomials do meet the demand—§ 10.4 will treat these and the
reader is asked to set them aside for the moment—but most cubic polyno-
mials do not meet it. For most cubic polynomials, then, the contradiction
proves false the assumption which gave rise to it. The assumption: that the
three x descending from a single w3 were not distinct. Therefore, provided
that P 6= 0 and P 3 6= −Q2, the three x descending from a single w3 are
indeed distinct, as was to be demonstrated.

The conclusion: either, not both, of the two signs in the table’s quadratic
solution w3 ≡ Q ±

√
Q2 + P 3 demands to be considered. One can choose

either sign; it matters not which.8 The one sign alone yields all three roots
of the general cubic polynomial.

To calculate the three w from w3, one can apply the Newton-Raphson
iteration (4.32), the Taylor series of Table 8.1, or any other convenient root-
finding technique to find a single root w1 such that w3

1 = w3. The other two
roots then come easier. They are e±i2π/3w1; but e±i2π/3 = (−1± i

√
3)/2, so

w = w1,
−1± i

√
3

2
w1. (10.14)

10.4 Edge cases

Section 10.3 excepts the edge cases P = 0 and P 3 = −Q2. Mostly the book
does not worry much about edge cases, but the effects of these cubic edge
cases seem sufficiently nonobvious that the book might include here a few
words about them, if for no other reason than to offer the reader a model of
how to think about edge cases on his own. Table 10.1 gives the quadratic
solution

w3 ≡ Q±
√
Q2 + P 3,

in which § 10.3 generally finds it sufficient to consider either of the two signs.
In the edge case P = 0,

w3 = 2Q or 0.

In the edge case P 3 = −Q2,

w3 = Q.

Both edge cases are interesting. In this section, we shall consider first the
edge cases themselves, then their effect on the proof of § 10.3.

8Numerically, it can matter. As a simple rule, because w appears in the denominator
of x’s definition, when the two w3 differ in magnitude one might choose the larger.
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The edge case P = 0, Q 6= 0, like the general non-edge case, gives two
distinct quadratic solutions w3. One of the two however is w3 = Q−Q = 0,
which is awkward in light of Table 10.1’s definition that x ≡ w − P/w. For
this reason, in applying the table’s method when P = 0, one chooses the
other quadratic solution, w3 = Q+Q = 2Q. (A reader who wishes to take
extra care of the logic might here ask how one can be entirely sure that
w3 = 0 is not the w3 we want to use despite that x ≡ w − P/w. More
than one answer to this concern could be given. One answer would be that
the fundamental theorem of algebra, § 6.2.2, implies three finite roots; so,
since w3 = 0 can supply none of the three, it must be that w3 = 2Q supplies
all of them. A different answer is given later in the section.)

The edge case P 3 = −Q2 6= 0 gives only the one quadratic solution
w3 = Q; or, more precisely, it gives two quadratic solutions which happen
to have the same value. This is fine. One merely accepts that w3 = Q and
does not worry about choosing one w3 over the other.

Neither edge case yields more than one, distinct, usable value for w3,
evidently. It would seem that the two edge cases were not troubled by the
superfluous roots of § 10.3.

The double edge case, or corner case, arises where the two edges meet—
where P = 0 and P 3 = −Q2, or equivalently where P = 0 and Q = 0. At
the corner, the trouble is that w3 = 0 and that no alternate w3 is available.
However, according to (10.12), x3 = 2Q − 3Px, which in this case means
that x3 = 0 and thus that x = 0 absolutely, no other x being possible. This
implies the triple root z = −a2/3.

And how about merely double roots? Section 10.3 has already shown
that double roots cannot arise in non-edge cases. One can conclude that
all cases of double roots are edge cases. (To identify to which of the two
edge cases a double root corresponds is left as an exercise to the interested
reader.9)

Section 10.3 has excluded the edge cases from its proof of the sufficiency
of a single w3. Let us now add the edge cases to the proof. In the edge case
P 3 = −Q2, both w3 are the same, so the one w3 suffices by default because
the other w3 brings nothing different. The edge case P = 0 however does
give two distinct w3, one of which is w3 = 0, which puts an awkward 0/0 in
the table’s definition of x. We address this edge in the spirit of l’Hôpital’s
rule, by sidestepping it, changing P infinitesimally from P = 0 to P = ε.

9The writer has not had cause to investigate the matter.
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Then, choosing the − sign in the definition of w3,

w3 = Q−
√
Q2 + ε3 = Q− (Q)

(
1 +

ε3

2Q2

)
= − ε3

2Q
,

w = − ε

(2Q)1/3
,

x = w − ε

w
= − ε

(2Q)1/3
+ (2Q)1/3 = (2Q)1/3.

But choosing the + sign,

w3 = Q+
√
Q2 + ε3 = 2Q,

w = (2Q)1/3,

x = w − ε

w
= (2Q)1/3 − ε

(2Q)1/3
= (2Q)1/3.

Evidently the roots come out the same, either way. This completes the
proof.

10.5 Quartics

Having successfully extracted the roots of the general cubic polynomial, we
now turn our attention to the general quartic. The kernel of the cubic tech-
nique lay in reducing the cubic to a quadratic. The kernel of the quartic
technique lies likewise in reducing the quartic to a cubic. The details dif-
fer, though; and, strangely enough, in some ways the quartic reduction is
actually the simpler.10

As with the cubic, one begins solving the quartic by changing the variable

x+ h← z (10.15)

to obtain the equation
x4 = sx2 + px+ q, (10.16)

10Even stranger, historically Ferrari discovered it earlier [142, “Quartic equation”]. Ap-
parently Ferrari discovered the quartic’s resolvent cubic (10.22), which he could not solve
until Tartaglia applied Vieta’s transform to it. What motivated Ferrari to chase the quar-
tic solution while the cubic solution remained still unknown, this writer does not know,
but one supposes that it might make an interesting story.

The reason the quartic is simpler to reduce is perhaps related to the fact that (1)1/4 =
±1,±i, whereas (1)1/3 = 1, (−1±i

√
3)/2. The (1)1/4 brings a much neater result, the roots

lying nicely along the Argand axes. This may also be why the quintic is intractable—but
here we trespass the professional mathematician’s territory and stray from the scope of
this book. See chapter 6’s footnote 10.
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where

h ≡ −a3

4
,

s ≡ −a2 + 6
(a3

4

)2
,

p ≡ −a1 + 2a2

(a3

4

)
− 8

(a3

4

)3
,

q ≡ −a0 + a1

(a3

4

)
− a2

(a3

4

)2
+ 3

(a3

4

)4
.

(10.17)

To reduce (10.16) further, one must be cleverer. Ferrari11 supplies the clev-
erness. The clever idea is to transfer some but not all of the sx2 term to the
equation’s left side by

x4 + 2ux2 = (2u+ s)x2 + px+ q,

where u remains to be chosen; then to complete the square on the equation’s
left side as in § 2.2, but with respect to x2 rather than x, as

(
x2 + u

)2
= k2x2 + px+ j2, (10.18)

where

k2 ≡ 2u+ s,

j2 ≡ u2 + q.
(10.19)

Now, one must regard (10.18) and (10.19) properly. In these equations, s,
p and q have definite values fixed by (10.17), but not so u, j or k. The
variable u is completely free; we have introduced it ourselves and can assign
it any value we like. And though j2 and k2 depend on u, still, even after
specifying u we remain free at least to choose signs for j and k. As for u,
though no choice would truly be wrong, one supposes that a wise choice
might at least render (10.18) easier to simplify.

So, what choice for u would be wise? Well, look at (10.18). The left
side of that equation is a perfect square. The right side would be, too, if
it were that p = ±2jk; so, arbitrarily choosing the + sign, we propose the
constraint that

p = 2jk, (10.20)

or, better expressed,

j =
p

2k
. (10.21)

11[142, “Quartic equation”]
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Squaring (10.20) and substituting for j2 and k2 from (10.19), we have that

p2 = 4(2u+ s)(u2 + q);

or, after distributing factors, rearranging terms and scaling, that

0 = u3 +
s

2
u2 + qu+

4sq − p2

8
. (10.22)

Equation (10.22) is the resolvent cubic, which we know by Table 10.1 how
to solve for u, and which we now specify as a second constraint. If the
constraints (10.21) and (10.22) are both honored, then we can safely substi-
tute (10.20) into (10.18) to reach the form

(
x2 + u

)2
= k2x2 + 2jkx+ j2,

which is (
x2 + u

)2
=
(
kx+ j

)2
. (10.23)

The resolvent cubic (10.22) of course yields three u not one, but the
resolvent cubic is a voluntary constraint, so we can just pick one u and
ignore the other two. Equation (10.19) then gives k (again, we can just
pick one of the two signs), and (10.21) then gives j. With u, j and k
established, (10.23) implies the quadratic

x2 = ±(kx+ j)− u, (10.24)

which (2.2) solves as

x = ±k
2
±o

√(
k

2

)2

± j − u, (10.25)

wherein the two ± signs are tied together but the third, ±o sign is indepen-
dent of the two. Equation (10.25), with the other equations and definitions
of this section, reveals the four roots of the general quartic polynomial.

In view of (10.25), the change of variables

K ← k

2
,

J ← j,
(10.26)

improves the notation. Using the improved notation, Table 10.2 summarizes
the complete quartic-polynomial root-extraction method.
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Table 10.2: A method to extract the four roots of the general quartic poly-
nomial. (In the table, the resolvent cubic is solved for u by the method
of Table 10.1, where any one of the three resulting u serves. Either of the
two K similarly serves. Of the three ± signs in x’s definition, the ±o is inde-
pendent but the other two are tied together, the four resulting combinations
giving the four roots of the general quartic.)

0 = z4 + a3z
3 + a2z

2 + a1z + a0

s ≡ −a2 + 6
(a3

4

)2

p ≡ −a1 + 2a2

(a3

4

)
− 8

(a3

4

)3

q ≡ −a0 + a1

(a3

4

)
− a2

(a3

4

)2
+ 3

(a3

4

)4

0 = u3 +
s

2
u2 + qu+

4sq − p2

8

K ≡ ±
√

2u+ s

2

J ≡
{
±
√
u2 + q if K = 0,

p/4K otherwise.

x ≡ ±K ±o
√
K2 ± J − u

z = x− a3

4
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10.6 Guessing the roots

It is entertaining to put pencil to paper and use Table 10.1’s method to
extract the roots of the cubic polynomial

0 = [z − 1][z − i][z + i] = z3 − z2 + z − 1.

One finds that

z = w +
1

3
− 2

32w
,

w3 ≡
2
(

5 +
√

33
)

33
,

which says indeed that z = 1,±i, but just you try to simplify it! A more
baroque, more impenetrable way to write the number 1 is not easy to con-
ceive. One has found the number 1 but cannot recognize it. Figuring the
square and cube roots in the expression numerically, the root of the poly-
nomial comes mysteriously to 1.0000, but why? The root’s symbolic form
gives little clue.

In general no better way is known;12 we are stuck with the cubic baro-
quity. However, to the extent to which a cubic, a quartic, a quintic or any
other polynomial has real, rational roots, a trick is known to sidestep Ta-
bles 10.1 and 10.2 and guess the roots directly. Consider for example the
quintic polynomial

z5 − 7

2
z4 + 4z3 +

1

2
z2 − 5z + 3.

Doubling to make the coefficients all integers produces the polynomial

2z5 − 7z4 + 8z3 + 1z2 − 0xAz + 6,

which naturally has the same roots. If the roots are complex or irrational,
they are hard to guess; but if any of the roots happens to be real and rational,
it must belong to the set

{
±1,±2,±3,±6,±1

2
,±2

2
,±3

2
,±6

2

}
.

12At least, no better way is known to this author. If any reader can straightforwardly
simplify the expression without solving a cubic polynomial of some kind, the author would
like to hear of it.
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No other real, rational root is possible. Trying the several candidates on the
polynomial, one finds that 1, −1 and 3/2 are indeed roots. Dividing these
out leaves a quadratic which is easy to solve for the remaining roots.

The real, rational candidates are the factors of the polynomial’s trailing
coefficient (in the example, 6, whose factors are ±1, ±2, ±3 and ±6) divided
by the factors of the polynomial’s leading coefficient (in the example, 2,
whose factors are ±1 and ±2). The reason no other real, rational root is
possible is seen13 by writing z = p/q—where p, q ∈ Z are integers and the
fraction p/q is fully reduced—and then multiplying the nth-order polynomial
by qn to reach the form

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0,

where all the coefficients ak are integers. Moving the qn term to the equa-
tion’s right side, we have that

(
anp

n−1 + an−1p
n−2q + · · ·+ a1q

n−1
)
p = −a0q

n,

which implies that a0q
n is a multiple of p. But by demanding that the

fraction p/q be fully reduced, we have defined p and q to be relatively prime
to one another—that is, we have defined them to have no factors but ±1
in common—so, not only a0q

n but a0 itself is a multiple of p. By similar
reasoning, an is a multiple of q. But if a0 is a multiple of p, and an, a multiple
of q, then p and q are factors of a0 and an respectively. We conclude for this
reason, as was to be demonstrated, that no real, rational root is possible
except a factor of a0 divided by a factor of an.14

Such root-guessing is little more than an algebraic trick, of course, but it
can be a pretty useful trick if it saves us the embarrassment of inadvertently
expressing simple rational numbers in ridiculous ways.

One could write much more about higher-order algebra, but now that
the reader has tasted the topic he may feel inclined to agree that, though the
general methods this chapter has presented to solve cubics and quartics are
interesting, further effort were nevertheless probably better spent elsewhere.
The next several chapters turn to the topic of the matrix, harder but much
more profitable, toward which we mean to put substantial effort.

13The presentation here is quite informal. We do not want to spend many pages on
this.

14[123, § 3.2]
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Chapter 11

The matrix

Chapters 2 through 9 have solidly laid the basic foundations of applied
mathematics. This chapter begins to build on those foundations, demanding
some heavier mathematical lifting.

Taken by themselves, most of the foundational methods of the earlier
chapters have handled only one or at most a few numbers (or functions) at
a time. However, in practical applications the need to handle large arrays
of numbers at once arises often. Some nonobvious effects then emerge, as
for example the eigenvalue of chapter 14.

Regarding the eigenvalue: the eigenvalue was always there, but prior to
this point in the book it was usually trivial—the eigenvalue of 5 is just 5,
for instance—so we didn’t bother much to talk about it. It is when numbers
are laid out in orderly grids like

C =

 6 4 0
3 0 1
3 1 0


that nontrivial eigenvalues arise (though you cannot tell just by looking, the
eigenvalues of C happen to be −1 and [7±

√
0x49]/2). But, just what is an

eigenvalue? Answer: an eigenvalue is the value by which an object like C
scales an eigenvector without altering the eigenvector’s direction. Of course,
we have not yet said what an eigenvector is, either, or how C might scale
something, but it is to answer precisely such questions that this chapter and
the three which follow it are written.

So, we are getting ahead of ourselves. Let’s back up.

An object like C is called a matrix. It serves as a generalized coefficient or
multiplier. Where we have used single numbers as coefficients or multipliers

285
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heretofore, one can with sufficient care often use matrices instead. The
matrix interests us for this reason among others.

The technical name for the “single number” is the scalar. Such a number,
as for instance 5 or −4 + i3, is called a scalar because its action alone
during multiplication is simply to scale the thing it multiplies. Besides acting
alone, however, scalars can also act in concert—in orderly formations—thus
constituting any of three basic kinds of arithmetical object:

• the scalar itself, a single number like α = 5 or β = −4 + i3;

• the vector, a column of m scalars like

u =
[

5
−4 + i3

]
,

which can be written in-line with the notation u = [5 −4 + i3]T (here
there are two scalar elements, 5 and −4+i3, so in this example m = 2);

• the matrix, an m×n grid of scalars, or equivalently a row of n vectors,
like

A =
[

0 6 2
1 1 −1

]
,

which can be written in-line with the notation A = [0 6 2; 1 1 −1] or
the notation A = [0 1; 6 1; 2 −1]T (here there are two rows and three
columns of scalar elements, so in this example m = 2 and n = 3).

Several general points are immediately to be observed about these various
objects. First, despite the geometrical Argand interpretation of the com-
plex number, a complex number is not a two-element vector but a scalar;
therefore any or all of a vector’s or matrix’s scalar elements can be complex.
Second, an m-element vector does not differ for most purposes from an m×1
matrix; generally the two can be regarded as the same thing. Third, the
three-element (that is, three-dimensional) geometrical vector of § 3.3 is just
an m-element vector with m = 3. Fourth, m and n can be any nonnegative
integers, even one, even zero, even infinity.1

Where one needs visually to distinguish a symbol like A representing
a matrix, one can write it [A], in square brackets.2 Normally however a
simple A suffices.

1Fifth, though the progression scalar, vector, matrix suggests next a “matrix stack” or
stack of p matrices, such objects in fact are seldom used. As we shall see in § 11.1, the chief
advantage of the standard matrix is that it neatly represents the linear transformation of
one vector into another. “Matrix stacks” bring no such advantage. This book does not
treat them.

2Alternate notations seen in print include A and A.
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The matrix is a notoriously hard topic to motivate. The idea of the
matrix is deceptively simple. The mechanics of matrix arithmetic are de-
ceptively intricate. The most basic body of matrix theory, without which
little or no useful matrix work can be done, is deceptively extensive. The
matrix neatly encapsulates a substantial knot of arithmetical tedium and
clutter, but to understand the matrix one must first understand the tedium
and clutter the matrix encapsulates. As far as the author is aware, no one
has ever devised a way to introduce the matrix which does not seem shallow,
tiresome, irksome, even interminable at first encounter; yet the matrix is too
important to ignore. Applied mathematics brings nothing else quite like it.3

Chapters 11 through 14 treat the matrix and its algebra. This chapter,

3In most of its chapters, the book seeks a balance between terseness the determined
beginner cannot penetrate and prolixity the seasoned veteran will not abide. The matrix
upsets this balance.

Part of the trouble with the matrix is that its arithmetic is just that, an arithmetic,
no more likely to be mastered by mere theoretical study than was the classical arithmetic
of childhood. To master matrix arithmetic, one must drill it; yet the book you hold is
fundamentally one of theory not drill.

The reader who has previously drilled matrix arithmetic will meet here the essential
applied theory of the matrix. That reader will find this chapter and the next three te-
dious enough. The reader who has not previously drilled matrix arithmetic, however, is
likely to find these chapters positively hostile. Only the doggedly determined beginner
will learn the matrix here alone; others will find it more amenable to drill matrix arith-
metic first in the early chapters of an introductory linear algebra textbook, dull though
such chapters be (see [83] or better yet the fine, surprisingly less dull [61] for instance,
though the early chapters of almost any such book give the needed arithmetical drill.)
Returning here thereafter, the beginner can expect to find these chapters still tedious but
no longer impenetrable. The reward is worth the effort. That is the approach the author
recommends.

To the mathematical rebel, the young warrior with face painted and sword agleam,
still determined to learn the matrix here alone, the author salutes his honorable defiance.
Would the rebel consider alternate counsel? If so, then the rebel might compose a dozen
matrices of various sizes and shapes, broad, square and tall, decomposing each carefully
by pencil per the Gauss-Jordan method of § 12.3, checking results (again by pencil; using
a machine defeats the point of the exercise, and using a sword, well, it won’t work) by
multiplying factors to restore the original matrices. Several hours of such drill should build
the young warrior the practical arithmetical foundation to master—with commensurate
effort—the theory these chapters bring. The way of the warrior is hard, but conquest is
not impossible.

To the matrix veteran, the author presents these four chapters with grim enthusiasm.
Substantial, logical, necessary the chapters may be, but exciting they are not. At least, the
earlier parts are not very exciting (later parts are better). As a reasonable compromise,
the veteran seeking more interesting reading might skip directly to chapters 13 and 14,
referring back to chapters 11 and 12 as need arises.
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chapter 11, introduces the rudiments of the matrix itself.4

11.1 Provenance and basic use

It is in the study of linear transformations that the concept of the matrix
first arises. We begin there.

11.1.1 The linear transformation

Section 7.3.3 has introduced the idea of linearity. The linear transformation5

is the operation of an m× n matrix A, as in

Ax = b, (11.1)

to transform an n-element vector x into an m-element vector b, while re-
specting the rules of linearity

A(x1 + x2) = Ax1 +Ax2 = b1 + b2,

A(αx) = αAx = αb,

A(0) = 0.

(11.2)

For example,

A =
[

0 6 2
1 1 −1

]
is the 2 × 3 matrix which transforms a three-element vector x into a two-
element vector b such that

Ax =
[

0x1 + 6x2 + 2x3

1x1 + 1x2 − 1x3

]
= b,

where

x =

 x1

x2

x3

, b =
[
b1
b2

]
.

4[11][48][61][83]
5Professional mathematicians conventionally are careful to begin by drawing a clear

distinction between the ideas of the linear transformation, the basis set and the simul-
taneous system of linear equations—proving from suitable axioms that the three amount
more or less to the same thing, rather than implicitly assuming the fact. The professional
approach [11, chapters 1 and 2][83, chapters 1, 2 and 5] has much to recommend it, but
it is not the approach we will follow here.
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In general, the operation of a matrix A is that6,7

bi =
n∑

j=1

aijxj , (11.3)

where xj is the jth element of x, bi is the ith element of b, and

aij ≡ [A]ij

is the element at the ith row and jth column of A, counting from top left
(in the example for instance, a12 = 6).

Besides representing linear transformations as such, matrices can also
represent simultaneous systems of linear equations. For example, the system

0x1 + 6x2 + 2x3 = 2,

1x1 + 1x2 − 1x3 = 4,

is compactly represented as
Ax = b,

with A as given above and b = [2 4]T . Seen from this point of view, a
simultaneous system of linear equations is itself neither more nor less than
a linear transformation.

11.1.2 Matrix multiplication (and addition)

Nothing prevents one from lining several vectors xk up in a row, industrial
mass production-style, transforming them at once into the corresponding

6As observed in appendix B, there are unfortunately not enough distinct Roman and
Greek letters available to serve the needs of higher mathematics. In matrix work, the
Roman letters ijk conventionally serve as indices, but the same letter i also serves as the
imaginary unit, which is not an index and has nothing to do with indices. Fortunately,
the meaning is usually clear from the context: i in

∑
i or aij is an index; i in −4 + i3

or eiφ is the imaginary unit. Should a case arise in which the meaning is not clear, one
can use `jk or some other convenient letters for the indices.

7Whether to let the index j run from 0 to n−1 or from 1 to n is an awkward question of
applied mathematical style. In computers, the index normally runs from 0 to n−1, and in
many ways this really is the more sensible way to do it. In mathematical theory, however,
a 0 index normally implies something special or basic about the object it identifies. The
book you are reading tends to let the index run from 1 to n, following mathematical
convention in the matter for this reason.

Conceived more generally, an m × n matrix can be considered an ∞×∞ matrix with
zeros in the unused cells. Here, both indices i and j run from −∞ to +∞ anyway, so the
computer’s indexing convention poses no dilemma in this case. See § 11.3.
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vectors bk by the same matrix A. In this case,

X ≡ [ x1 x2 · · · xp ],
B ≡ [ b1 b2 · · · bp ],

AX = B,

bik =

n∑

j=1

aijxjk.

(11.4)

Equation (11.4) implies a definition for matrix multiplication. Such matrix
multiplication is associative since

[(A)(XY )]ik =

n∑

j=1

aij [XY ]jk

=

n∑

j=1

aij

[
p∑

`=1

xj`y`k

]

=

p∑

`=1

n∑

j=1

aijxj`y`k

= [(AX)(Y )]ik . (11.5)

Matrix multiplication is not generally commutative, however;

AX 6= XA, (11.6)

as one can show by a suitable counterexample like A = [0 1; 0 0], X =
[1 0; 0 0]. To multiply a matrix by a scalar, one multiplies each of the
matrix’s elements individually by the scalar:

[αA]ij = αaij . (11.7)

Evidently multiplication by a scalar is commutative: αAx = Aαx.

Matrix addition works in the way one would expect, element by element;
and as one can see from (11.4), under multiplication, matrix addition is
indeed distributive:

[X + Y ]ij = xij + yij ;

(A)(X + Y ) = AX +AY ;

(A+ C)(X) = AX + CX.

(11.8)
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11.1.3 Row and column operators

The matrix equation Ax = b represents the linear transformation of x
into b, as we have seen. Viewed from another perspective, however, the
same matrix equation represents something else; it represents a weighted
sum of the columns of A, with the elements of x as the weights. In this
view, one writes (11.3) as

b =
n∑

j=1

[A]∗jxj , (11.9)

where [A]∗j is the jth column of A. Here x is not only a vector; it is also an
operator. It operates on A’s columns. By virtue of multiplying A from the
right, the vector x is a column operator acting on A.

If several vectors xk line up in a row to form a matrix X, such that
AX = B, then the matrix X is likewise a column operator:

[B]∗k =

n∑

j=1

[A]∗jxjk. (11.10)

The kth column of X weights the several columns of A to yield the kth
column of B.

If a matrix multiplying from the right is a column operator, is a matrix
multiplying from the left a row operator? Indeed it is. Another way to write
that AX = B, besides (11.10), is

[B]i∗ =
n∑

j=1

aij [X]j∗. (11.11)

The ith row of A weights the several rows of X to yield the ith row of B.
The matrix A is a row operator. (Observe the notation. The ∗ here means
“any” or “all.” Hence [X]j∗ means “jth row, all columns of X”—that is,
the jth row of X. Similarly, [A]∗j means “all rows, jth column of A”—that
is, the jth column of A.)

Column operators attack from the right; row operators, from the left.
This rule is worth memorizing; the concept is important. In AX = B, the
matrix X operates on A’s columns; the matrix A operates on X’s rows.

Since matrix multiplication produces the same result whether one views
it as a linear transformation (11.4), a column operation (11.10) or a row
operation (11.11), one might wonder what purpose lies in defining matrix
multiplication three separate ways. However, it is not so much for the sake
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of the mathematics that we define it three ways as it is for the sake of
the mathematician. We do it for ourselves. Mathematically, the latter
two do indeed expand to yield (11.4), but as written the three represent
three different perspectives on the matrix. A tedious, nonintuitive matrix
theorem from one perspective can appear suddenly obvious from another
(see for example eqn. 11.63). Results hard to visualize one way are easy
to visualize another. It is worth developing the mental agility to view and
handle matrices all three ways for this reason.

11.1.4 The transpose and the adjoint

One function peculiar to matrix algebra is the transpose

C = AT ,

cij = aji,
(11.12)

which mirrors an m× n matrix into an n×m matrix. For example,

AT =

 0 1
6 1
2 −1

.
Similar and even more useful is the conjugate transpose or adjoint8

C = A∗,

cij = a∗ji,
(11.13)

which again mirrors an m× n matrix into an n×m matrix, but conjugates
each element as it goes.

The transpose is convenient notationally to write vectors and matrices in-
line and to express certain matrix-arithmetical mechanics; but algebraically
the transpose is artificial. It is the adjoint rather which mirrors a matrix
properly. (If the transpose and adjoint functions applied to words as to ma-
trices, then the transpose of “derivations” would be “snoitavired,” whereas
the adjoint would be “ derivations .” See the difference?) On real-valued
matrices like the A in the example, of course, the transpose and the adjoint
amount to the same thing.

8Alternate notations sometimes seen in print for the adjoint include A† (a notation
which in this book means something unrelated) and AH (a notation which recalls the
name of the mathematician Charles Hermite). However, the book you are reading writes
the adjoint only as A∗, a notation which better captures the sense of the thing in the
author’s view.
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If one needed to conjugate the elements of a matrix without transposing
the matrix itself, one could contrive notation like A∗T . Such a need seldom
arises, however.

Observe that

(A2A1)T = AT1 A
T
2 ,

(A2A1)∗ = A∗1A
∗
2,

(11.14)

and more generally that9

(∏

k

Ak

)T
=
∐

k

ATk ,

(∏

k

Ak

)∗
=
∐

k

A∗k.

(11.15)

11.2 The Kronecker delta

Section 7.7 has introduced the Dirac delta. The discrete analog of the Dirac
delta is the Kronecker delta10

δi ≡
{

1 if i = 0,

0 otherwise;
(11.16)

or

δij ≡
{

1 if i = j,

0 otherwise.
(11.17)

The Kronecker delta enjoys the Dirac-like properties that

∞∑

i=−∞
δi =

∞∑

i=−∞
δij =

∞∑

j=−∞
δij = 1 (11.18)

and that
∞∑

j=−∞
δijajk = aik, (11.19)

the latter of which is the Kronecker sifting property. The Kronecker equa-
tions (11.18) and (11.19) parallel the Dirac equations (7.24) and (7.25).

Chapters 11 and 14 will find frequent use for the Kronecker delta. Later,
§ 15.4.3 will revisit the Kronecker delta in another light.

9Recall from § 2.3 that
∏
k Ak = · · ·A3A2A1, whereas

∐
k Ak = A1A2A3 · · · .

10[146, “Kronecker delta,” 15:59, 31 May 2006]
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11.3 Dimensionality and matrix forms

An m× n matrix like

X =

 −4 0
1 2
2 −1


can be viewed as the ∞×∞ matrix

X =



. . .
...

...
...

...
...

...
...

· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 −4 0 0 0 0 · · ·
· · · 0 0 1 2 0 0 0 · · ·
· · · 0 0 2 −1 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
. . .


,

with zeros in the unused cells. As before, x11 = −4 and x32 = −1, but
now xij exists for all integral i and j; for instance, x(−1)(−1) = 0. For
such a matrix, indeed for all matrices, the matrix multiplication rule (11.4)
generalizes to

B = AX,

bik =

∞∑

j=−∞
aijxjk. (11.20)

For square matrices whose purpose is to manipulate other matrices or
vectors in place, merely padding with zeros often does not suit. Consider
for example the square matrix

A3 =

 1 0 0
5 1 0
0 0 1

.
This A3 is indeed a matrix, but when it acts A3X as a row operator on
some 3×p matrix X, its effect is to add to X’s second row, 5 times the first.
Further consider

A4 =


1 0 0 0
5 1 0 0
0 0 1 0
0 0 0 1

,
which does the same to a 4×p matrix X. We can also define A5, A6, A7, . . .,
if we want; but, really, all these express the same operation: “to add to the
second row, 5 times the first.”
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The ∞×∞ matrix

A =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 0 0 0 0 · · ·
· · · 0 1 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 5 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


expresses the operation generally. As before, a11 = 1 and a21 = 5, but now
also a(−1)(−1) = 1 and a09 = 0, among others. By running ones infinitely
both ways out the main diagonal, we guarantee by (11.20) that when A
acts AX on a matrix X of any dimensionality whatsoever, A adds to the
second row of X, 5 times the first—and affects no other row. (But what if X
is a 1× p matrix, and has no second row? Then the operation AX creates
a new second row, 5 times the first—or rather so fills in X’s previously null
second row.)

In the infinite-dimensional view, the matrices A and X differ essen-
tially.11 This section explains, developing some nonstandard formalisms
the derivations of later sections and chapters can use.12

11This particular section happens to use the symbols A and X to represent certain
specific matrix forms because such usage flows naturally from the usage Ax = b of § 11.1.
Such usage admittedly proves awkward in other contexts. Traditionally in matrix work
and elsewhere in the book, the letter A does not necessarily represent an extended operator
as it does here, but rather an arbitrary matrix of no particular form.

12The idea of infinite dimensionality is sure to discomfit some readers, who have studied
matrices before and are used to thinking of a matrix as having some definite size. There is
nothing wrong with thinking of a matrix as having some definite size, only that that view
does not suit the present book’s development. And really, the idea of an ∞× 1 vector or
an ∞×∞ matrix should not seem so strange. After all, consider the vector u such that

u` = sin `ε,

where 0 < ε� 1 and ` is an integer, which holds all values of the function sin θ of a real
argument θ. Of course one does not actually write down or store all the elements of an
infinite-dimensional vector or matrix, any more than one actually writes down or stores
all the bits (or digits) of 2π. Writing them down or storing them is not the point. The
point is that infinite dimensionality is all right; that the idea thereof does not threaten
to overturn the reader’s preëxisting matrix knowledge; that, though the construct seem
unfamiliar, no fundamental conceptual barrier rises against it.

Different ways of looking at the same mathematics can be extremely useful to the applied
mathematician. The applied mathematical reader who has never heretofore considered
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11.3.1 The null and dimension-limited matrices

The null matrix is just what its name implies:

0 =



. . .
...

...
...

...
...

· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·

...
...

...
...

...
. . .


;

or more compactly,

[0]ij = 0.

Special symbols like 0, 0 or O are possible for the null matrix, but usually a
simple 0 suffices. There are no surprises here; the null matrix brings all the
expected properties of a zero, like

0 +A = A,

[0][X] = 0.

The same symbol 0 used for the null scalar (zero) and the null matrix
is used for the null vector, too. Whether the scalar 0, the vector 0 and the
matrix 0 actually represent different things is a matter of semantics, but the
three are interchangeable for most practical purposes in any case. Basically,
a zero is a zero is a zero; there’s not much else to it.13

Now a formality: the ordinary m× n matrix X can be viewed, infinite-
dimensionally, as a variation on the null matrix, inasmuch as X differs from
the null matrix only in the mn elements xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Though
the theoretical dimensionality of X be∞×∞, one need record only the mn
elements, plus the values of m and n, to retain complete information about
such a matrix. So the semantics are these: when we call a matrix X an
m× n matrix, or more precisely a dimension-limited matrix with an m× n

infinite dimensionality in vectors and matrices would be well served to take the opportunity
to do so here. As we shall discover in chapter 12, dimensionality is a poor measure of a
matrix’s size in any case. What really counts is not a matrix’s m× n dimensionality but
rather its rank.

13Well, of course, there’s a lot else to it, when it comes to dividing by zero as in chapter 4,
or to summing an infinity of zeros as in chapter 7, but those aren’t what we were speaking
of here.
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active region, we will mean formally that X is an ∞ × ∞ matrix whose
elements are all zero outside the m× n rectangle:

xij = 0 except where 1 ≤ i ≤ m and 1 ≤ j ≤ n. (11.21)

By these semantics, every 3 × 2 matrix (for example) is also a formally a
4× 4 matrix; but a 4× 4 matrix is not in general a 3× 2 matrix.

11.3.2 The identity and scalar matrices and the extended
operator

The general identity matrix—or simply, the identity matrix—is

I =



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


,

or more compactly,
[I]ij = δij , (11.22)

where δij is the Kronecker delta of § 11.2. The identity matrix I is a matrix 1,
as it were,14 bringing the essential property one expects of a 1:

IX = X = XI. (11.23)

The scalar matrix is

λI =



. . .
...

...
...

...
...

· · · λ 0 0 0 0 · · ·
· · · 0 λ 0 0 0 · · ·
· · · 0 0 λ 0 0 · · ·
· · · 0 0 0 λ 0 · · ·
· · · 0 0 0 0 λ · · ·

...
...

...
...

...
. . .


,

or more compactly,
[λI]ij = λδij , (11.24)

14In fact you can write it as 1 if you like. That is essentially what it is. The I can be
regarded as standing for “identity” or as the Roman numeral I.
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If the identity matrix I is a matrix 1, then the scalar matrix λI is a matrix λ,
such that

[λI]X = λX = X[λI]. (11.25)

The identity matrix is (to state the obvious) just the scalar matrix with
λ = 1.

The extended operator A is a variation on the scalar matrix λI, λ 6= 0,
inasmuch as A differs from λI only in p specific elements, with p a finite
number. Symbolically,

aij =

{
(λ)(δij + αk) if (i, j) = (ik, jk), 1 ≤ k ≤ p,
λδij otherwise;

(11.26)

λ 6= 0.

The several αk control how the extended operator A differs from λI. One
need record only the several αk along with their respective addresses (ik, jk),
plus the scale λ, to retain complete information about such a matrix. For
example, for an extended operator fitting the pattern

A =



. . .
...

...
...

...
...

· · · λ 0 0 0 0 · · ·
· · · λα1 λ 0 0 0 · · ·
· · · 0 0 λ λα2 0 · · ·
· · · 0 0 0 λ(1 + α3) 0 · · ·
· · · 0 0 0 0 λ · · ·

...
...

...
...

...
. . .


,

one need record only the values of α1, α2 and α3, the respective addresses
(2, 1), (3, 4) and (4, 4), and the value of the scale λ; this information alone
implies the entire ∞×∞ matrix A.

When we call a matrix A an extended n × n operator, or an extended
operator with an n × n active region, we will mean formally that A is an
∞×∞ matrix and is further an extended operator for which

1 ≤ ik ≤ n and 1 ≤ jk ≤ n for all 1 ≤ k ≤ p. (11.27)

That is, an extended n × n operator is one whose several αk all lie within
the n× n square. The A in the example is an extended 4× 4 operator (and
also a 5× 5, a 6× 6, etc., but not a 3× 3).

(Often in practice for smaller operators—especially in the typical case
that λ = 1—one finds it easier just to record all the n × n elements of
the active region. This is fine. Large matrix operators however tend to be
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sparse, meaning that they depart from λI in only a very few of their many
elements. It would waste a lot of computer memory explicitly to store all
those zeros, so one normally stores just the few elements, instead.)

Implicit in the definition of the extended operator is that the identity
matrix I and the scalar matrix λI, λ 6= 0, are extended operators with 0×0
active regions (and also 1 × 1, 2 × 2, etc.). If λ = 0, however, the scalar
matrix λI is just the null matrix, which is no extended operator but rather
by definition a 0× 0 dimension-limited matrix.

11.3.3 The active region

Though maybe obvious, it bears stating explicitly that a product of dimen-
sion-limited and/or extended-operational matrices with n×n active regions
itself has an n×n active region.15 (Remember that a matrix with an m′×n′
active region also by definition has an n × n active region if m′ ≤ n and
n′ ≤ n.) If any of the factors has dimension-limited form then so does the
product; otherwise the product is an extended operator.16

11.3.4 Other matrix forms

Besides the dimension-limited form of § 11.3.1 and the extended-operational
form of § 11.3.2, other infinite-dimensional matrix forms are certainly pos-
sible. One could for example advantageously define a “null sparse” form,
recording only nonzero elements and their addresses in an otherwise null
matrix; or a “tridiagonal extended” form, bearing repeated entries not only
along the main diagonal but also along the diagonals just above and just
below. Section 11.9 introduces one worthwhile matrix which fits neither the
dimension-limited nor the extended-operational form. Still, the dimension-

15The section’s earlier subsections formally define the term active region with respect
to each of the two matrix forms.

16If symbolic proof of the subsection’s claims is wanted, here it is in outline:

aij = λaδij unless 1 ≤ (i, j) ≤ n,
bij = λbδij unless 1 ≤ (i, j) ≤ n;

[AB]ij =
∑
k

aikbkj

=

{∑
k(λaδik)bkj = λabij unless 1 ≤ i ≤ n∑
k aik(λbδkj) = λbaij unless 1 ≤ j ≤ n

= λaλbδij unless 1 ≤ (i, j) ≤ n.

It’s probably easier just to sketch the matrices and look at them, though.
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limited and extended-operational forms are normally the most useful, and
they are the ones we will principally be handling in this book.

One reason to have defined specific infinite-dimensional matrix forms is
to show how straightforwardly one can fully represent a practical matrix of
an infinity of elements by a modest, finite quantity of information. Further
reasons to have defined such forms will soon occur.

11.3.5 The rank-r identity matrix

The rank-r identity matrix Ir is the dimension-limited matrix for which

[Ir]ij =

{
δij if 1 ≤ i ≤ r and/or 1 ≤ j ≤ r,
0 otherwise,

(11.28)

where either the “and” or the “or” can be regarded (it makes no difference).
The effect of Ir is that

ImX = X = XIn,

Imx = x,
(11.29)

where X is an m×n matrix and x, an m×1 vector. Examples of Ir include

I3 =

 1 0 0
0 1 0
0 0 1

.
(Remember that in the infinite-dimensional view, I3, though a 3×3 matrix,
is formally an ∞×∞ matrix with zeros in the unused cells. It has only the
three ones and fits the 3× 3 dimension-limited form of § 11.3.1. The areas
of I3 not shown are all zero, even along the main diagonal.)

The rank r can be any nonnegative integer, even zero (though the rank-
zero identity matrix I0 is in fact the null matrix, normally just written 0).
If alternate indexing limits are needed (for instance for a computer-indexed
identity matrix whose indices run from 0 to r − 1), the notation Iba, where

[Iba]ij ≡
{
δij if a ≤ i ≤ b and/or a ≤ j ≤ b,
0 otherwise,

(11.30)

can be used; the rank in this case is r = b − a + 1, which is just the count
of ones along the matrix’s main diagonal.

The name “rank-r” implies that Ir has a “rank” of r, and indeed it does.
For the moment, however, we will discern the attribute of rank only in the
rank-r identity matrix itself. Section 12.5 defines rank for matrices more
generally.
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11.3.6 The truncation operator

The rank-r identity matrix Ir is also the truncation operator. Attacking
from the left, as in IrA, it retains the first through rth rows of A but
cancels other rows. Attacking from the right, as in AIr, it retains the first
through rth columns. Such truncation is useful symbolically to reduce an
extended operator to dimension-limited form.

Whether a matrix C has dimension-limited or extended-operational form
(though not necessarily if it has some other form), if it has an m× n active
region17 and

m ≤ r,
n ≤ r,

then
IrC = IrCIr = CIr. (11.31)

For such a matrix, (11.31) says at least two things:

• It is superfluous to truncate both rows and columns; it suffices to
truncate one or the other.

• The rank-r identity matrix Ir commutes freely past C.

Evidently big identity matrices commute freely where small ones cannot
(and the general identity matrix I = I∞−∞ commutes freely past everything).

11.3.7 The elementary vector and the lone-element matrix

The lone-element matrix Emn is the matrix with a one in the mnth cell and
zeros elsewhere:

[Emn]ij ≡ δimδjn =

{
1 if i = m and j = n,

0 otherwise.
(11.32)

By this definition, C =
∑

i,j cijEij for any matrix C. The vector analog of
the lone-element matrix is the elementary vector em, which has a one as the
mth element:

[em]i ≡ δim =

{
1 if i = m,

0 otherwise.
(11.33)

By this definition, [I]∗j = ej and [I]i∗ = eTi .

17Refer to the definitions of active region in §§ 11.3.1 and 11.3.2. That a matrix has
an m × n active region does not necessarily mean that it is all zero outside the m × n
rectangle. (After all, if it were always all zero outside, then there would be little point in
applying a truncation operator. There would be nothing there to truncate.)
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11.3.8 Off-diagonal entries

It is interesting to observe and useful to note that if

[C1]i∗ = [C2]i∗ = eTi ,

then also

[C1C2]i∗ = eTi ; (11.34)

and likewise that if

[C1]∗j = [C2]∗j = ej ,

then also

[C1C2]∗j = ej . (11.35)

The product of matrices has off-diagonal entries in a row or column only
if at least one of the factors itself has off-diagonal entries in that row or
column. Or, less readably but more precisely, the ith row or jth column of
the product of matrices can depart from eTi or ej, respectively, only if the
corresponding row or column of at least one of the factors so departs. The
reason is that in (11.34), C1 acts as a row operator on C2; that if C1’s ith
row is eTi , then its action is merely to duplicate C2’s ith row, which itself is
just eTi . Parallel logic naturally applies to (11.35).

11.4 The elementary operator

Section 11.1.3 has introduced the general row or column operator. De-
noted T , the elementary operator is a simple extended row or column oper-
ator from sequences of which more complicated extended operators can be
built. The elementary operator T comes in three kinds.18

• The first is the interchange elementary

T[i↔j] = I − (Eii + Ejj) + (Eij + Eji), (11.36)

which by operating T[i↔j]A or AT[i↔j] respectively interchanges A’s
ith row or column with its jth.19

18In § 11.3, the symbol A specifically represented an extended operator, but here and
generally the symbol represents any matrix.

19As a matter of definition, some authors [83] forbid T[i↔i] as an elementary operator,
where j = i, since after all T[i↔i] = I; which is to say that the operator doesn’t actually
do anything. There exist legitimate tactical reasons to forbid (as in § 11.6), but normally
this book permits.
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• The second is the scaling elementary

Tα[i] = I + (α− 1)Eii, α 6= 0, (11.37)

which by operating Tα[i]A or ATα[i] scales (multiplies) A’s ith row or
column, respectively, by the factor α.

• The third and last is the addition elementary

Tα[ij] = I + αEij , i 6= j, (11.38)

which by operating Tα[ij]A adds to the ith row of A, α times the jth
row; or which by operating ATα[ij] adds to the jth column of A, α
times the ith column.

Examples of the elementary operators include

T[1↔2] =



. . .
...

...
...

...
...

· · · 0 1 0 0 0 · · ·
· · · 1 0 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


,

T5[4] =



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 5 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


,

T5[21] =



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 5 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


.

Note that none of these, and in fact no elementary operator of any kind,
differs from I in more than four elements.
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11.4.1 Properties

Significantly, elementary operators as defined above are always invertible
(which is to say, reversible in effect), with

T−1
[i↔j] = T[j↔i] = T[i↔j],

T−1
α[i] = T(1/α)[i],

T−1
α[ij] = T−α[ij],

(11.39)

being themselves elementary operators such that

T−1T = I = TT−1 (11.40)

in each case.20 This means that any sequence of elementaries
∏
k Tk can

safely be undone by the reverse sequence
∐
k T
−1
k :

∐

k

T−1
k

∏

k

Tk = I =
∏

k

Tk
∐

k

T−1
k . (11.41)

The rank-r identity matrix Ir is no elementary operator,21 nor is the
lone-element matrix Emn; but the general identity matrix I is indeed an
elementary operator. The last can be considered a distinct, fourth kind of
elementary operator if desired; but it is probably easier just to regard it as
an elementary of any of the first three kinds, since I = T[i↔i] = T1[i] = T0[ij].

From (11.31), we have that

IrT = IrTIr = TIr if 1 ≤ i ≤ r and 1 ≤ j ≤ r (11.42)

for any elementary operator T which operates within the given bounds.
Equation (11.42) lets an identity matrix with sufficiently high rank pass
through a sequence of elementaries as needed.

In general, the transpose of an elementary row operator is the corre-
sponding elementary column operator. Curiously, the interchange elemen-
tary is its own transpose and adjoint:

T ∗[i↔j] = T[i↔j] = T T[i↔j]. (11.43)

20The addition elementary Tα[ii] and the scaling elementary T0[i] are forbidden precisely
because they are not generally invertible.

21If the statement seems to contradict statements of some other books, it is only a
matter of definition. This book finds it convenient to define the elementary operator in
infinite-dimensional, extended-operational form. The other books are not wrong; their
underlying definitions just differ slightly.
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11.4.2 Commutation and sorting

Elementary operators often occur in long chains like

A = T−4[32]T[2↔3]T(1/5)[3]T(1/2)[31]T5[21]T[1↔3],

with several elementaries of all kinds intermixed. Some applications demand
that the elementaries be sorted and grouped by kind, as

A =
(
T[2↔3]T[1↔3]

) (
T−4[21]T(1/0xA)[13]T5[23]

) (
T(1/5)[1]

)

or as

A =
(
T−4[32]T(1/0xA)[21]T5[31]

) (
T(1/5)[2]

) (
T[2↔3]T[1↔3]

)
,

among other possible orderings. Though you probably cannot tell just by
looking, the three products above are different orderings of the same ele-
mentary chain; they yield the same A and thus represent exactly the same
matrix operation. Interesting is that the act of reordering the elementaries
has altered some of them into other elementaries of the same kind, but has
changed the kind of none of them.

One sorts a chain of elementary operators by repeatedly exchanging
adjacent pairs. This of course supposes that one can exchange adjacent
pairs, which seems impossible since matrix multiplication is not commuta-
tive: A1A2 6= A2A1. However, at the moment we are dealing in elementary
operators only; and for most pairs T1 and T2 of elementary operators, though
indeed T1T2 6= T2T1, it so happens that there exists either a T ′1 such that
T1T2 = T2T

′
1 or a T ′2 such that T1T2 = T ′2T1, where T ′1 and T ′2 are elemen-

taries of the same kinds respectively as T1 and T2. The attempt sometimes
fails when both T1 and T2 are addition elementaries, but all other pairs
commute in this way. Significantly, elementaries of different kinds always
commute. And, though commutation can alter one (never both) of the two
elementaries, it changes the kind of neither.

Many qualitatively distinct pairs of elementaries exist; we will list these
exhaustively in a moment. First, however, we should like to observe a natural
hierarchy among the three kinds of elementary: (i) interchange; (ii) scaling;
(iii) addition.

• The interchange elementary is the strongest. Itself subject to alter-
ation only by another interchange elementary, it can alter any elemen-
tary by commuting past. When an interchange elementary commutes
past another elementary of any kind, what it alters are the other el-
ementary’s indices i and/or j (or m and/or n, or whatever symbols
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happen to represent the indices in question). When two interchange
elementaries commute past one another, only one of the two is al-
tered. (Which one? Either. The mathematician chooses.) Refer to
Table 11.1.

• Next in strength is the scaling elementary. Only an interchange ele-
mentary can alter it, and it in turn can alter only an addition elemen-
tary. Scaling elementaries do not alter one another during commuta-
tion. When a scaling elementary commutes past an addition elemen-
tary, what it alters is the latter’s scale α (or β, or whatever symbol
happens to represent the scale in question). Refer to Table 11.2.

• The addition elementary, last and weakest, is subject to alteration by
either of the other two, itself having no power to alter any elementary
during commutation. A pair of addition elementaries are the only pair
that can altogether fail to commute—they fail when the row index of
one equals the column index of the other—but when they do commute,
neither alters the other. Refer to Table 11.3.

Tables 11.1, 11.2 and 11.3 list all possible pairs of elementary operators, as
the reader can check. The only pairs that fail to commute are the last three
of Table 11.3.

11.5 Inversion and similarity (introduction)

If Tables 11.1, 11.2 and 11.3 exhaustively describe the commutation of one
elementary past another elementary, then what can one write of the com-
mutation of an elementary past the general matrix A? With some matrix
algebra,

TA = (TA)(I) = (TA)(T−1T ),

AT = (I)(AT ) = (TT−1)(AT ),

one can write that

TA = [TAT−1]T,

AT = T [T−1AT ],
(11.44)

where T−1 is given by (11.39). An elementary commuting rightward changes
A to TAT−1; commuting leftward, to T−1AT .
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Table 11.1: Inverting, commuting, combining and expanding elementary
operators: interchange. In the table, i 6= j 6= m 6= n; no two indices are
the same. Notice that the effect an interchange elementary T[m↔n] has in
passing any other elementary, even another interchange elementary, is simply
to replace m by n and n by m among the indices of the other elementary.

T[m↔n] = T[n↔m]

T[m↔m] = I

IT[m↔n] = T[m↔n]I

T[m↔n]T[m↔n] = T[m↔n]T[n↔m] = T[n↔m]T[m↔n] = I

T[m↔n]T[i↔n] = T[i↔n]T[m↔i] = T[i↔m]T[m↔n]

=
(
T[i↔n]T[m↔n]

)2

T[m↔n]T[i↔j] = T[i↔j]T[m↔n]

T[m↔n]Tα[m] = Tα[n]T[m↔n]

T[m↔n]Tα[i] = Tα[i]T[m↔n]

T[m↔n]Tα[ij] = Tα[ij]T[m↔n]

T[m↔n]Tα[in] = Tα[im]T[m↔n]

T[m↔n]Tα[mj] = Tα[nj]T[m↔n]

T[m↔n]Tα[mn] = Tα[nm]T[m↔n]
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Table 11.2: Inverting, commuting, combining and expanding elementary
operators: scaling. In the table, i 6= j 6= m 6= n; no two indices are the
same.

T1[m] = I

ITβ[m] = Tβ[m]I

T(1/β)[m]Tβ[m] = I

Tβ[m]Tα[m] = Tα[m]Tβ[m] = Tαβ[m]

Tβ[m]Tα[i] = Tα[i]Tβ[m]

Tβ[m]Tα[ij] = Tα[ij]Tβ[m]

Tβ[m]Tαβ[im] = Tα[im]Tβ[m]

Tβ[m]Tα[mj] = Tαβ[mj]Tβ[m]

Table 11.3: Inverting, commuting, combining and expanding elementary
operators: addition. In the table, i 6= j 6= m 6= n; no two indices are the
same. The last three lines give pairs of addition elementaries that do not
commute.

T0[ij] = I

ITα[ij] = Tα[ij]I

T−α[ij]Tα[ij] = I

Tβ[ij]Tα[ij] = Tα[ij]Tβ[ij] = T(α+β)[ij]

Tβ[mj]Tα[ij] = Tα[ij]Tβ[mj]

Tβ[in]Tα[ij] = Tα[ij]Tβ[in]

Tβ[mn]Tα[ij] = Tα[ij]Tβ[mn]

Tβ[mi]Tα[ij] = Tα[ij]Tαβ[mj]Tβ[mi]

Tβ[jn]Tα[ij] = Tα[ij]T−αβ[in]Tβ[jn]

Tβ[ji]Tα[ij] 6= Tα[ij]Tβ[ji]
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First encountered in § 11.4, the notation T−1 means the inverse of the
elementary operator T , such that

T−1T = I = TT−1.

Matrix inversion is not for elementary operators only, though. Many matri-
ces C that are more general also have inverses such that

C−1C = I = CC−1. (11.45)

(Do all matrices have such inverses? No. For example, the null matrix has
no such inverse.) The broad question of how to invert a general matrix C,
we leave for chapters 12 and 13 to address. For the moment however we
should like to observe three simple rules involving matrix inversion.

First, nothing in the logic leading to (11.44) actually requires the ma-
trix T there to be an elementary operator. Any matrix C for which C−1 is
known can fill the role. Hence,

CA = [CAC−1]C,

AC = C[C−1AC].
(11.46)

The transformation CAC−1 or C−1AC is called a similarity transformation.
Sections 12.2 and 14.9 speak further of this.

Second,

(
CT
)−1

= C−T =
(
C−1

)T
,

(
C∗
)−1

= C−∗ =
(
C−1

)∗
,

(11.47)

where C−∗ is condensed notation for conjugate transposition and inversion
in either order and C−T is of like style. Equation (11.47) is a consequence
of (11.14), since for conjugate transposition

(
C−1

)∗
C∗ =

[
CC−1

]∗
= [I]∗ = I = [I]∗ =

[
C−1C

]∗
= C∗

(
C−1

)∗

and similarly for nonconjugate transposition.
Third, (∏

k

Ck

)−1

=
∐

k

C−1
k . (11.48)

This rule emerges upon repeated application of (11.45), which yields that

∐

k

C−1
k

∏

k

Ck = I =
∏

k

Ck
∐

k

C−1
k .
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Table 11.4: Matrix inversion properties. (The similarity properties work
equally for C−1(r) as for C−1 if A honors an r × r active region. The full
notation C−1(r) for the rank-r inverse incidentally is not standard, usually
is not needed, and normally is not used.)

C−1C = I = CC−1

C−1(r)C = Ir = CC−1(r)

(
CT
)−1

= C−T =
(
C−1

)T
(
C∗
)−1

= C−∗ =
(
C−1

)∗

CA = [CAC−1]C

AC = C[C−1AC]
(∏

k

Ck

)−1

=
∐

k

C−1
k

A more limited form of the inverse exists than the infinite-dimensional
form of (11.45). This is the rank-r inverse, a matrix C−1(r) such that

C−1(r)C = Ir = CC−1(r). (11.49)

The full notation C−1(r) is not standard and usually is not needed, since
the context usually implies the rank. When so, one can abbreviate the
notation to C−1. In either notation, (11.47) and (11.48) apply equally for
the rank-r inverse as for the infinite-dimensional inverse. Because of (11.31),
eqn. (11.46) too applies for the rank-r inverse if A’s active region is limited
to r×r. (Section 13.2 uses the rank-r inverse to solve an exactly determined
linear system. This is a famous way to use the inverse, with which many or
most readers will already be familiar; but before using it so in chapter 13,
we shall first learn how to compute it reliably in chapter 12.)

Table 11.4 summarizes.

11.6 Parity

Consider the sequence of integers or other objects 1, 2, 3, . . . , n. By succes-
sively interchanging pairs of the objects (any pairs, not just adjacent pairs),
one can achieve any desired permutation (§ 4.2.1). For example, beginning
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with 1, 2, 3, 4, 5, one can achieve the permutation 3, 5, 1, 4, 2 by interchanging
first the 1 and 3, then the 2 and 5.

Now contemplate all possible pairs:

(1, 2) (1, 3) (1, 4) · · · (1, n);
(2, 3) (2, 4) · · · (2, n);

(3, 4) · · · (3, n);
. . .

...
(n− 1, n).

In a given permutation (like 3, 5, 1, 4, 2), some pairs will appear in proper
sequence with respect to one another, while others will appear in improper
sequence. (In 3, 5, 1, 4, 2, the pair [1, 2] appears in proper sequence in that
the larger 2 stands to the right of the smaller 1; but the pair [1, 3] appears in
improper sequence in that the larger 3 stands to the left of the smaller 1.) If p
is the number of pairs which appear in improper sequence (in the example,
p = 6), and if p is even, then we say that the permutation has even or
positive parity; if odd, then odd or negative parity.22

Now consider: every interchange of adjacent elements must either incre-
ment or decrement p by one, reversing parity. Why? Well, think about it.
If two elements are adjacent and their order is correct, then interchanging
falsifies the order, but only of that pair (no other element interposes, so
the interchange affects the ordering of no other pair). Complementarily, if
the order is incorrect, then interchanging rectifies the order. Either way, an
adjacent interchange alters p by exactly ±1, thus reversing parity.

What about nonadjacent elements? Does interchanging a pair of these
reverse parity, too? To answer the question, let u and v represent the two el-
ements interchanged, with a1, a2, . . . , am the elements lying between. Before
the interchange:

. . . , u, a1, a2, . . . , am−1, am, v, . . .

After the interchange:

. . . , v, a1, a2, . . . , am−1, am, u, . . .

The interchange reverses with respect to one another just the pairs

(u, a1) (u, a2) · · · (u, am−1) (u, am)
(a1, v) (a2, v) · · · (am−1, v) (am, v)
(u, v)

22For readers who learned arithmetic in another language than English, the even integers
are . . . ,−4,−2, 0, 2, 4, 6, . . .; the odd integers are . . . ,−3,−1, 1, 3, 5, 7, . . . .
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The number of pairs reversed is odd. Since each reversal alters p by ±1, the
net change in p apparently also is odd, reversing parity. It seems that re-
gardless of how distant the pair, interchanging any pair of elements reverses
the permutation’s parity.

The sole exception arises when an element is interchanged with itself.
This does not change parity, but it does not change anything else, either, so
in parity calculations we ignore it.23 All other interchanges reverse parity.

We discuss parity in this, a chapter on matrices, because parity concerns
the elementary interchange operator of § 11.4. The rows or columns of a
matrix can be considered elements in a sequence. If so, then the interchange
operator T[i↔j], i 6= j, acts precisely in the manner described, interchanging
rows or columns and thus reversing parity. It follows that if ik 6= jk and q is
odd, then

∏q
k=1 T[ik↔jk] 6= I. However, it is possible that

∏q
k=1 T[ik↔jk] = I

if q is even. In any event, even q implies even p, which means even (positive)
parity; odd q implies odd p, which means odd (negative) parity.

We shall have more to say about parity in §§ 11.7.1 and 14.1.

11.7 The quasielementary operator

Multiplying sequences of the elementary operators of § 11.4, one can form
much more complicated operators, which per (11.41) are always invertible.
Such complicated operators are not trivial to analyze, however, so one finds
it convenient to define an intermediate class of operators, called in this book
the quasielementary operators, more complicated than elementary operators
but less so than arbitrary matrices.

A quasielementary operator is composed of elementaries only of a single
kind. There are thus three kinds of quasielementary—interchange, scaling
and addition—to match the three kinds of elementary. With respect to
interchange and scaling, any sequences of elementaries of the respective kinds
are allowed. With respect to addition, there are some extra rules, explained
in § 11.7.3.

The three subsections which follow respectively introduce the three kinds
of quasielementary operator.

23This is why some authors forbid self-interchanges, as explained in footnote 19.
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11.7.1 The interchange quasielementary or general inter-
change operator

Any product P of zero or more interchange elementaries,

P =
∏

k

T[ik↔jk], (11.50)

constitutes an interchange quasielementary, permutation matrix, permutor
or general interchange operator.24 An example is

P = T[2↔5]T[1↔3] =



. . .
...

...
...

...
...

· · · 0 0 1 0 0 · · ·
· · · 0 0 0 0 1 · · ·
· · · 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 1 0 0 0 · · ·

...
...

...
...

...
. . .


.

This operator resembles I in that it has a single one in each row and in each
column, but the ones here do not necessarily run along the main diagonal.
The effect of the operator is to shuffle the rows or columns of the matrix it
operates on, without altering any of the rows or columns it shuffles.

By (11.41), (11.39), (11.43) and (11.15), the inverse of the general inter-
change operator is

P−1 =

(∏

k

T[ik↔jk]

)−1

=
∐

k

T−1
[ik↔jk]

=
∐

k

T[ik↔jk]

=
∐

k

T ∗[ik↔jk] =

(∏

k

T[ik↔jk]

)∗

= P ∗ = P T (11.51)

(where P ∗ = P T because P has only real elements). The inverse, transpose
and adjoint of the general interchange operator are thus the same:

P TP = P ∗P = I = PP ∗ = PP T . (11.52)

24The letter P here recalls the verb “to permute.”
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A significant attribute of the general interchange operator P is its par-
ity: positive or even parity if the number of interchange elementaries T[ik↔jk]

which compose it is even; negative or odd parity if the number is odd. This
works precisely as described in § 11.6. For the purpose of parity determina-
tion, only interchange elementaries T[ik↔jk] for which ik 6= jk are counted;
any T[i↔i] = I noninterchanges are ignored. Thus the example’s P above
has even parity (two interchanges), as does I itself (zero interchanges), but
T[i↔j] alone (one interchange) has odd parity if i 6= j. As we shall see in
§ 14.1, the positive (even) and negative (odd) parities sometimes lend actual
positive and negative senses to the matrices they describe. The parity of
the general interchange operator P concerns us for this reason.

Parity, incidentally, is a property of the matrix P itself, not just of
the operation P represents. No interchange quasielementary P has positive
parity as a row operator but negative as a column operator. The reason
is that, regardless of whether one ultimately means to use P as a row or
column operator, the matrix is nonetheless composable as a definite sequence
of interchange elementaries. It is the number of interchanges, not the use,
which determines P ’s parity.

11.7.2 The scaling quasielementary or general scaling oper-
ator

Like the interchange quasielementary P of § 11.7.1, the scaling quasielemen-
tary, diagonal matrix or general scaling operator D consists of a product of
zero or more elementary operators, in this case elementary scaling opera-
tors:25

D =

∞∏

i=−∞
Tαi[i] =

∞∐

i=−∞
Tαi[i] =

∞∑

i=−∞
αiEii =



. . .
...

...
...

...
...

· · · ∗ 0 0 0 0 · · ·
· · · 0 ∗ 0 0 0 · · ·
· · · 0 0 ∗ 0 0 · · ·
· · · 0 0 0 ∗ 0 · · ·
· · · 0 0 0 0 ∗ · · ·

...
...

...
...

...
. . .


(11.53)

(of course it might be that αi = 1, and thus that Tαi[i] = I, for some, most
or even all i; however, αi = 0 is forbidden by the definition of the scaling

25The letter D here recalls the adjective “diagonal.”
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elementary). An example is

D = T−5[4]T4[2]T7[1] =



. . .
...

...
...

...
...

· · · 7 0 0 0 0 · · ·
· · · 0 4 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 −5 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


.

This operator resembles I in that all its entries run down the main diagonal;
but these entries, though never zeros, are not necessarily ones, either. They
are nonzero scaling factors. The effect of the operator is to scale the rows
or columns of the matrix it operates on.

The general scaling operator is a particularly simple matrix. Its inverse
is evidently

D−1 =
∞∐

i=−∞
T(1/αi)[i] =

∞∏

i=−∞
T(1/αi)[i] =

∞∑

i=−∞

Eii
αi
, (11.54)

where each element down the main diagonal is individually inverted.
A superset of the general scaling operator is the diagonal matrix, defined

less restrictively that [A]ij = 0 for i 6= j, where zeros along the main diagonal
are allowed. The conventional notation

[diag{x}]ij ≡ δijxi = δijxj , (11.55)

diag{x} =



. . .
...

...
...

...
...

· · · x1 0 0 0 0 · · ·
· · · 0 x2 0 0 0 · · ·
· · · 0 0 x3 0 0 · · ·
· · · 0 0 0 x4 0 · · ·
· · · 0 0 0 0 x5 · · ·

...
...

...
...

...
. . .


,

converts a vector x into a diagonal matrix. The diagonal matrix in general
is not invertible and is no quasielementary operator, but is sometimes useful
nevertheless.

11.7.3 Addition quasielementaries

Any product of interchange elementaries (§ 11.7.1), any product of scaling
elementaries (§ 11.7.2), qualifies as a quasielementary operator. Not so, any
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product of addition elementaries. To qualify as a quasielementary, a product
of elementary addition operators must meet some additional restrictions.

Four types of addition quasielementary are defined:26

• the downward multitarget row addition operator,27

L[j] =
∞∏

i=j+1

Tαij [ij] =
∞∐

i=j+1

Tαij [ij] (11.56)

= I +
∞∑

i=j+1

αijEij

=



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 ∗ 1 0 · · ·
· · · 0 0 ∗ 0 1 · · ·

...
...

...
...

...
. . .


,

whose inverse is

L−1
[j] =

∞∐

i=j+1

T−αij [ij] =

∞∏

i=j+1

T−αij [ij] (11.57)

= I −
∞∑

i=j+1

αijEij = 2I − L[j];

26In this subsection the explanations are briefer than in the last two, but the pattern is
similar. The reader can fill in the details.

27The letter L here recalls the adjective “lower.”
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• the upward multitarget row addition operator,28

U[j] =

j−1∐

i=−∞
Tαij [ij] =

j−1∏

i=−∞
Tαij [ij] (11.58)

= I +

j−1∑

i=−∞
αijEij

=



. . .
...

...
...

...
...

· · · 1 0 ∗ 0 0 · · ·
· · · 0 1 ∗ 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


,

whose inverse is

U−1
[j] =

j−1∏

i=−∞
T−αij [ij] =

j−1∐

i=−∞
T−αij [ij] (11.59)

= I −
j−1∑

i=−∞
αijEij = 2I − U[j];

• the rightward multitarget column addition operator, which is the trans-
pose LT[j] of the downward operator; and

• the leftward multitarget column addition operator, which is the trans-
pose UT[j] of the upward operator.

11.8 The unit triangular matrix

Yet more complicated than the quasielementary of § 11.7 is the unit trian-
gular matrix, with which we draw this necessary but tedious chapter toward

28The letter U here recalls the adjective “upper.”
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a long close:

L = I +

∞∑

i=−∞

i−1∑

j=−∞
αijEij = I +

∞∑

j=−∞

∞∑

i=j+1

αijEij (11.60)

=



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · ∗ 1 0 0 0 · · ·
· · · ∗ ∗ 1 0 0 · · ·
· · · ∗ ∗ ∗ 1 0 · · ·
· · · ∗ ∗ ∗ ∗ 1 · · ·

...
...

...
...

...
. . .


;

U = I +
∞∑

i=−∞

∞∑

j=i+1

αijEij = I +

∞∑

j=−∞

j−1∑

i=−∞
αijEij (11.61)

=



. . .
...

...
...

...
...

· · · 1 ∗ ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ · · ·
· · · 0 0 0 1 ∗ · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


.

The former is a unit lower triangular matrix; the latter, a unit upper tri-
angular matrix. The unit triangular matrix is a generalized addition quasi-
elementary, which adds not only to multiple targets but also from multi-
ple sources—but in one direction only: downward or leftward for L or UT

(or U∗); upward or rightward for U or LT (or L∗).

The general triangular matrix LS or US , which by definition can have
any values along its main diagonal, is sometimes of interest, as in the Schur
decomposition of § 14.10.29 The strictly triangular matrix L− I or U − I is
likewise sometimes of interest, as in Table 11.5.30 However, such matrices
cannot in general be expressed as products of elementary operators and this
section does not treat them.

This section presents and derives the basic properties of the unit trian-
gular matrix.

29The subscript S here stands for Schur. Other books typically use the symbols L and U
for the general triangular matrix of Schur, but this book distinguishes by the subscript.

30[146, “Schur decomposition,” 00:32, 30 Aug. 2007]
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11.8.1 Construction

To make a unit triangular matrix is straightforward:

L =
∞∐

j=−∞
L[j];

U =

∞∏

j=−∞
U[j].

(11.62)

So long as the multiplication is done in the order indicated,31 then conve-
niently,

[
L
]
ij

=
[
L[j]

]
ij
,

[
U
]
ij

=
[
U[j]

]
ij
,

(11.63)

which is to say that the entries of L and U are respectively nothing more than
the relevant entries of the several L[j] and U[j]. Equation (11.63) enables one
to use (11.62) immediately and directly, without calculation, to build any
unit triangular matrix desired.

The correctness of (11.63) is most easily seen if the several L[j] and U[j]

are regarded as column operators acting sequentially on I:

L = (I)




∞∐

j=−∞
L[j]


 ;

U = (I)




∞∏

j=−∞
U[j]


 .

The reader can construct an inductive proof symbolically on this basis with-
out too much difficulty if desired, but just thinking about how L[j] adds
columns leftward and U[j], rightward, then considering the order in which
the several L[j] and U[j] act, (11.63) follows at once.

31Recall again from § 2.3 that
∏
k Ak = · · ·A3A2A1, whereas

∐
k Ak = A1A2A3 · · · .

This means that (
∏
k Ak)(C) applies first A1, then A2, A3 and so on, as row operators

to C; whereas (C)(
∐
k Ak) applies first A1, then A2, A3 and so on, as column operators

to C. The symbols
∏

and
∐

as this book uses them thus can be thought of respectively
as row and column sequencers.
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11.8.2 The product of like unit triangular matrices

The product of like unit triangular matrices,

L1L2 = L,

U1U2 = U,
(11.64)

is another unit triangular matrix of the same type. The proof for unit lower
and unit upper triangular matrices is the same. In the unit lower triangular
case, one starts from a form of the definition of a unit lower triangular
matrix:

[L1]ij or [L2]ij =

{
0 if i < j,

1 if i = j.

Then,

[L1L2]ij =
∞∑

m=−∞
[L1]im[L2]mj .

But as we have just observed, [L1]im is null when i < m, and [L2]mj is null
when m < j. Therefore,

[L1L2]ij =

{
0 if i < j,∑i

m=j [L1]im[L2]mj if i ≥ j.

Inasmuch as this is true, nothing prevents us from weakening the statement
to read

[L1L2]ij =

{
0 if i < j,∑i

m=j [L1]im[L2]mj if i = j.

But this is just

[L1L2]ij =

{
0 if i < j,

[L1]ij [L2]ij = [L1]ii[L2]ii = (1)(1) = 1 if i = j,

which again is the very definition of a unit lower triangular matrix. Hence
(11.64).

11.8.3 Inversion

Inasmuch as any unit triangular matrix can be constructed from addition
quasielementaries by (11.62), inasmuch as (11.63) supplies the specific quasi-
elementaries, and inasmuch as (11.57) or (11.59) gives the inverse of each
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such quasielementary, one can always invert a unit triangular matrix easily
by

L−1 =

∞∏

j=−∞
L−1

[j] ,

U−1 =
∞∐

j=−∞
U−1

[j] .

(11.65)

In view of (11.64), therefore, the inverse of a unit lower triangular matrix
is another unit lower triangular matrix; and the inverse of a unit upper
triangular matrix, another unit upper triangular matrix.

It is plain to see but still interesting to note that—unlike the inverse—
the adjoint or transpose of a unit lower triangular matrix is a unit upper
triangular matrix; and that the adjoint or transpose of a unit upper triangu-
lar matrix is a unit lower triangular matrix. The adjoint reverses the sense
of the triangle.

11.8.4 The parallel unit triangular matrix

If a unit triangular matrix fits the special, restricted form

L
{k}
‖ = I +

k∑

j=−∞

∞∑

i=k+1

αijEij (11.66)

=



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · ∗ ∗ ∗ 1 0 · · ·
· · · ∗ ∗ ∗ 0 1 · · ·

...
...

...
...

...
. . .
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or

U
{k}
‖ = I +

∞∑

j=k

k−1∑

i=−∞
αijEij (11.67)

=



. . .
...

...
...

...
...

· · · 1 0 ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


,

confining its nonzero elements to a rectangle within the triangle as shown,
then it is a parallel unit triangular matrix and has some special properties
the general unit triangular matrix lacks.

The general unit lower triangular matrix L acting LA on a matrix A
adds the rows of A downward. The parallel unit lower triangular matrix

L
{k}
‖ acting L

{k}
‖ A also adds rows downward, but with the useful restriction

that it makes no row of A both source and target. The addition is from A’s
rows through the kth, to A’s (k + 1)th row onward. A horizontal frontier
separates source from target, which thus march in A as separate squads.

Similar observations naturally apply with respect to the parallel unit

upper triangular matrix U
{k}
‖ , which acting U

{k}
‖ A adds rows upward, and

also with respect to L
{k}T
‖ and U

{k}T
‖ , which acting AL

{k}T
‖ and AU

{k}T
‖

add columns respectively rightward and leftward (remembering that L
{k}T
‖

is no unit lower but a unit upper triangular matrix; that U
{k}T
‖ is the lower).

Each separates source from target in the matrix A it operates on.
The reason we care about the separation of source from target is that,

in matrix arithmetic generally, where source and target are not separate
but remain intermixed, the sequence matters in which rows or columns are
added. That is, in general,

Tα1[i1j1]Tα2[i2j2] 6= I + α1Ei1j1 + α2Ei2j2 6= Tα2[i2j2]Tα1[i1j1].

It makes a difference whether the one addition comes before, during or after
the other—but only because the target of the one addition might be the
source of the other. The danger is that i1 = j2 or i2 = j1. Remove this
danger, and the sequence ceases to matter (refer to Table 11.3).

That is exactly what the parallel unit triangular matrix does: it separates
source from target and thus removes the danger. It is for this reason that
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the parallel unit triangular matrix brings the useful property that

L
{k}
‖ = I +

k∑

j=−∞

∞∑

i=k+1

αijEij

=

k∐

j=−∞

∞∏

i=k+1

Tαij [ij] =

k∐

j=−∞

∞∐

i=k+1

Tαij [ij]

=
k∏

j=−∞

∞∏

i=k+1

Tαij [ij] =
k∏

j=−∞

∞∐

i=k+1

Tαij [ij]

=
∞∏

i=k+1

k∐

j=−∞
Tαij [ij] =

∞∐

i=k+1

k∐

j=−∞
Tαij [ij]

=
∞∏

i=k+1

k∏

j=−∞
Tαij [ij] =

∞∐

i=k+1

k∏

j=−∞
Tαij [ij],

U
{k}
‖ = I +

∞∑

j=k

k−1∑

i=−∞
αijEij

=

∞∏

j=k

k−1∐

i=−∞
Tαij [ij] = · · · ,

(11.68)

which says that one can build a parallel unit triangular matrix equally well
in any sequence—in contrast to the case of the general unit triangular ma-
trix, whose construction per (11.62) one must sequence carefully. (Though
eqn. 11.68 does not show them, even more sequences are possible. You can
scramble the factors’ ordering any random way you like. The multiplication
is fully commutative.) Under such conditions, the inverse of the parallel unit
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triangular matrix is particularly simple:32

L
{k}−1
‖ = I −

k∑

j=−∞

∞∑

i=k+1

αijEij = 2I − L{k}‖

=
k∏

j=−∞

∞∐

i=k+1

T−αij [ij] = · · · ,

U
{k}−1
‖ = I −

∞∑

j=k

k−1∑

i=−∞
αijEij = 2I − U{k}‖

=

∞∐

j=k

k−1∏

i=−∞
T−αij [ij] = · · · ,

(11.69)

where again the elementaries can be multiplied in any order. Pictorially,

L
{k}−1
‖ =



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · −∗ −∗ −∗ 1 0 · · ·
· · · −∗ −∗ −∗ 0 1 · · ·

...
...

...
...

...
. . .


,

U
{k}−1
‖ =



. . .
...

...
...

...
...

· · · 1 0 −∗ −∗ −∗ · · ·
· · · 0 1 −∗ −∗ −∗ · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


.

The inverse of a parallel unit triangular matrix is just the matrix itself,
only with each element off the main diagonal negated. Table 11.5 records a
few properties that come immediately of the last observation and from the
parallel unit triangular matrix’s basic layout.

32There is some odd parochiality at play in applied mathematics when one calls such
collections of symbols as (11.69) “particularly simple.” Nevertheless, in the present context
the idea (11.69) represents is indeed simple: that one can multiply constituent elementaries
in any order and still reach the same parallel unit triangular matrix; that the elementaries
in this case do not interfere.
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Table 11.5: Properties of the parallel unit triangular matrix. (In the table,
the notation Iba represents the generalized dimension-limited identity matrix

or truncator of eqn. 11.30. Note that the inverses L
{k}−1
‖ = L

{k}′
‖ and

U
{k}−1
‖ = U

{k}′
‖ are parallel unit triangular matrices themselves, such that

the table’s properties hold for them, too.)

L
{k}
‖ + L

{k}−1
‖

2
= I =

U
{k}
‖ + U

{k}−1
‖

2

I∞k+1L
{k}
‖ Ik−∞ = L

{k}
‖ − I = I∞k+1(L

{k}
‖ − I)Ik−∞

Ik−1
−∞U

{k}
‖ I∞k = U

{k}
‖ − I = Ik−1

−∞ (U
{k}
‖ − I)I∞k

If L
{k}
‖ honors an n× n active region, then

(In − Ik)L{k}‖ Ik = L
{k}
‖ − I = (In − Ik)(L{k}‖ − I)Ik

and (I − In)(L
{k}
‖ − I) = 0 = (L

{k}
‖ − I)(I − In).

If U
{k}
‖ honors an n× n active region, then

Ik−1U
{k}
‖ (In − Ik−1) = U

{k}
‖ − I = Ik−1(U

{k}
‖ − I)(In − Ik−1)

and (I − In)(U
{k}
‖ − I) = 0 = (U

{k}
‖ − I)(I − In).
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11.8.5 The partial unit triangular matrix

Besides the notation L and U for the general unit lower and unit upper

triangular matrices and the notation L
{k}
‖ and U

{k}
‖ for the parallel unit

lower and unit upper triangular matrices, we shall find it useful to introduce
the additional notation

L[k] = I +
∞∑

j=k

∞∑

i=j+1

αijEij (11.70)

=



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · 0 1 0 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 ∗ 1 0 · · ·
· · · 0 0 ∗ ∗ 1 · · ·

...
...

...
...

...
. . .


,

U [k] = I +
k∑

j=−∞

j−1∑

i=−∞
αijEij (11.71)

=



. . .
...

...
...

...
...

· · · 1 ∗ ∗ 0 0 · · ·
· · · 0 1 ∗ 0 0 · · ·
· · · 0 0 1 0 0 · · ·
· · · 0 0 0 1 0 · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .
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for unit triangular matrices whose off-diagonal content is confined to a nar-
row wedge and

L{k} = I +
k∑

j=−∞

∞∑

i=j+1

αijEij (11.72)

=



. . .
...

...
...

...
...

· · · 1 0 0 0 0 · · ·
· · · ∗ 1 0 0 0 · · ·
· · · ∗ ∗ 1 0 0 · · ·
· · · ∗ ∗ ∗ 1 0 · · ·
· · · ∗ ∗ ∗ 0 1 · · ·

...
...

...
...

...
. . .


,

U{k} = I +
∞∑

j=k

j−1∑

i=−∞
αijEij (11.73)

=



. . .
...

...
...

...
...

· · · 1 0 ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ · · ·
· · · 0 0 0 1 ∗ · · ·
· · · 0 0 0 0 1 · · ·

...
...

...
...

...
. . .


for the supplementary forms.33 Such notation is not standard in the liter-
ature, but it serves a purpose in this book and is introduced here for this
reason. If names are needed for L[k], U [k], L{k} and U{k}, the former pair can
be called minor partial unit triangular matrices, and the latter pair, major
partial unit triangular matrices. Whether minor or major, the partial unit
triangular matrix is a matrix which leftward or rightward of the kth column
resembles I. Of course partial unit triangular matrices which resemble I
above or below the kth row are equally possible, and can be denoted L[k]T ,
U [k]T , L{k}T and U{k}T .

Observe that the parallel unit triangular matrices L
{k}
‖ and U

{k}
‖ of

§ 11.8.4 are in fact also major partial unit triangular matrices, as the nota-
tion suggests.

33The notation is arguably imperfect in that L{k} + L[k] − I 6= L but rather that
L{k} + L[k+1] − I = L. The conventional notation

∑b
k=a f(k) +

∑c
k=b f(k) 6=

∑c
k=a f(k)

suffers the same arguable imperfection.
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11.9 The shift operator

Not all useful matrices fit the dimension-limited and extended-operational
forms of § 11.3. An exception is the shift operator Hk, defined that

[Hk]ij = δi(j+k). (11.74)

For example,

H2 =



...
...

...
...

...
...

...
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 1 0 0 0 0 0 0 · · ·
· · · 0 1 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·

...
...

...
...

...
...

...


.

Operating HkA, Hk shifts A’s rows downward k steps. Operating AHk, Hk

shifts A’s columns leftward k steps. Inasmuch as the shift operator shifts
all rows or columns of the matrix it operates on, its active region is ∞×∞
in extent. Obviously, the shift operator’s inverse, transpose and adjoint are
the same:

HT
k Hk = H∗kHk = I = HkH

∗
k = HkH

T
k ,

H−1
k = HT

k = H∗k = H−k.
(11.75)

Further obvious but useful identities include that

(I` − Ik)Hk = HkI`−k,

H−k(I` − Ik) = I`−kH−k.
(11.76)

11.10 The Jacobian derivative

Chapter 4 has introduced the derivative of a function with respect to a scalar
variable. One can also take the derivative of a function with respect to a
vector variable, and the function itself can be vector-valued. The derivative
is [

df

dx

]

ij

=
∂fi
∂xj

. (11.77)

For instance, if x has three elements and f has two, then

df

dx
=


∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

.
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This is called the Jacobian derivative, the Jacobian matrix, or just the Ja-
cobian.34 Each of its columns is the derivative with respect to one element
of x.

The Jacobian derivative of a vector with respect to itself is

dx

dx
= I. (11.78)

The derivative is not In as one might think, because, even if x has only n
elements, still, one could vary xn+1 in principle, and ∂xn+1/∂xn+1 6= 0.

The Jacobian derivative obeys the derivative product rule (4.22) in the
form35

d

dx

(
gTAf

)
=

[
gTA

(
df

dx

)]
+

[(
dg

dx

)T
Af

]T
,

d

dx

(
g∗Af

)
=

[
g∗A

(
df

dx

)]
+

[(
dg

dx

)∗
Af

]T
,

(11.79)

valid for any constant matrix A—as is seen by applying the definition (4.13)
of the derivative, which here is

∂ (g∗Af)

∂xj
= lim

∂xj→0

(g + ∂g/2)∗A(f + ∂f/2)− (g − ∂g/2)∗A(f − ∂f/2)

∂xj
,

and simplifying.
The shift operator of § 11.9 and the Jacobian derivative of this section

complete the family of matrix rudiments we shall need to begin to do in-
creasingly interesting things with matrices in chapters 13 and 14. Before
doing interesting things, however, we must treat two more foundational ma-
trix matters. The two are the Gauss-Jordan decomposition and the matter
of matrix rank, which will be the subjects of chapter 12, next.

34[146, “Jacobian,” 00:50, 15 Sept. 2007]
35Notice that the last term on (11.79)’s second line is transposed, not adjointed.
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Chapter 12

Matrix rank and the
Gauss-Jordan decomposition

Chapter 11 has brought the matrix and its rudiments, the latter including

• lone-element matrix E (§ 11.3.7),

• the null matrix 0 (§ 11.3.1),

• the rank-r identity matrix Ir (§ 11.3.5),

• the general identity matrix I and the scalar matrix λI (§ 11.3.2),

• the elementary operator T (§ 11.4),

• the quasielementary operator P , D, L[k] or U[k] (§ 11.7), and

• the unit triangular matrix L or U (§ 11.8).

Such rudimentary forms have useful properties, as we have seen. The general
matrix A does not necessarily have any of these properties, but it turns out
that one can factor any matrix whatsoever into a product of rudiments which
do have the properties, and that several orderly procedures are known to
do so. The simplest of these, and indeed one of the more useful, is the
Gauss-Jordan decomposition. This chapter introduces it.

Section 11.3 has deëmphasized the concept of matrix dimensionality m×
n, supplying in its place the new concept of matrix rank. However, that
section has actually defined rank only for the rank-r identity matrix Ir. In
fact all matrices have rank. This chapter explains.

331
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Before treating the Gauss-Jordan decomposition and the matter of ma-
trix rank as such, however, we shall find it helpful to prepare two preliminar-
ies thereto: (i) the matter of the linear independence of vectors; and (ii) the
elementary similarity transformation. The chapter begins with these.

Except in § 12.2, the chapter demands more rigor than one likes in such
a book as this. However, it is hard to see how to avoid the rigor here, and
logically the chapter cannot be omitted. We will drive through the chapter
in as few pages as can be managed, and then onward to the more interesting
matrix topics of chapters 13 and 14.

12.1 Linear independence

Linear independence is a significant possible property of a set of vectors—
whether the set be the several columns of a matrix, the several rows, or
some other vectors—the property being defined as follows. A vector is lin-
early independent if its role cannot be served by the other vectors in the
set. More formally, the n vectors of the set {a1,a2,a3,a4,a5, . . . ,an} are
linearly independent if and only if none of them can be expressed as a linear
combination—a weighted sum—of the others. That is, the several ak are
linearly independent iff

α1a1 + α2a2 + α3a3 + · · ·+ αnan 6= 0 (12.1)

for all nontrivial αk, where “nontrivial αk” means the several αk, at least
one of which is nonzero (trivial αk, by contrast, would be α1 = α2 = α3 =
· · · = αn = 0). Vectors which can combine nontrivially to reach the null
vector are by definition linearly dependent.

Linear independence is a property of vectors. Technically the property
applies to scalars, too, inasmuch as a scalar resembles a one-element vector—
so, any nonzero scalar alone is linearly independent—but there is no such
thing as a linearly independent pair of scalars, because one of the pair can
always be expressed as a complex multiple of the other. Significantly but
less obviously, there is also no such thing as a linearly independent set which
includes the null vector; (12.1) forbids it. Paradoxically, even the single-
member, n = 1 set consisting only of a1 = 0 is, strictly speaking, not
linearly independent.

For consistency of definition, we regard the empty, n = 0 set as linearly
independent, on the technical ground that the only possible linear combina-
tion of the empty set is trivial.1

1This is the kind of thinking which typically governs mathematical edge cases. One
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If a linear combination of several independent vectors ak forms a vec-
tor b, then one might ask: can there exist a different linear combination of
the same vectors ak which also forms b? That is, if

β1a1 + β2a2 + β3a3 + · · ·+ βnan = b,

where the several ak satisfy (12.1), then is

β′1a1 + β′2a2 + β′3a3 + · · ·+ β′nan = b

possible? To answer the question, suppose that it were possible. The differ-
ence of the two equations then would be

(β′1 − β1)a1 + (β′2 − β2)a2 + (β′3 − β3)a3 + · · ·+ (β′n − βn)an = 0.

According to (12.1), this could only be so if the coefficients in the last
equation where trivial—that is, only if β′1 − β1 = 0, β′2 − β2 = 0, β′3 −
β3 = 0, . . . , β′n − βn = 0. But this says no less than that the two linear
combinations, which we had supposed to differ, were in fact one and the
same. One concludes therefore that, if a vector b can be expressed as a
linear combination of several linearly independent vectors ak, then it cannot
be expressed as any other combination of the same vectors. The combination
is unique.

Linear independence can apply in any dimensionality, but it helps to
visualize the concept geometrically in three dimensions, using the three-
dimensional geometrical vectors of § 3.3. Two such vectors are independent
so long as they do not lie along the same line. A third such vector is
independent of the first two so long as it does not lie in their common plane.
A fourth such vector (unless it points off into some unvisualizable fourth
dimension) cannot possibly then be independent of the three.

We discuss the linear independence of vectors in this, a chapter on ma-
trices, because (§ 11.1) a matrix is essentially a sequence of vectors—either
of column vectors or of row vectors, depending on one’s point of view. As
we shall see in § 12.5, the important property of matrix rank depends on
the number of linearly independent columns or rows a matrix has.

could define the empty set to be linearly dependent if one really wanted to, but what
then of the observation that adding a vector to a linearly dependent set never renders
the set independent? Surely in this light it is preferable just to define the empty set as
independent in the first place. Similar thinking makes 0! = 1,

∑−1
k=0 akz

k = 0, and 2 not 1
the least prime, among other examples.
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12.2 The elementary similarity transformation

Section 11.5 and its (11.46) have introduced the similarity transformation
CAC−1 or C−1AC, which arises when an operator C commutes respectively
rightward or leftward past a matrix A. The similarity transformation has
several interesting properties, some of which we are now prepared to discuss,
particularly in the case in which the operator happens to be an elementary,
C = T . In this case, the several rules of Table 12.1 obtain.

Most of the table’s rules are fairly obvious if the meaning of the symbols
is understood, though to grasp some of the rules it helps to sketch the
relevant matrices on a sheet of paper. Of course rigorous symbolic proofs
can be constructed after the pattern of § 11.8.2, but they reveal little or
nothing sketching the matrices does not. In Table 12.1 as elsewhere, the
symbols P , D, L and U represent the quasielementaries and unit triangular
matrices of §§ 11.7 and 11.8. The symbols P ′, D′, L′ and U ′ also represent
quasielementaries and unit triangular matrices, only not necessarily the same
ones P , D, L and U do.

The rules of Table 12.1 permit one to commute some but not all ele-
mentaries past a quasielementary operator or unit triangular matrix with-
out fundamentally altering the character of the quasielementary operator or
unit triangular matrix, and sometimes without changing it at all. The rules
find use among other places in the Gauss-Jordan decomposition of § 12.3.

12.3 The Gauss-Jordan decomposition

The Gauss-Jordan decomposition of an arbitrary, dimension-limited, m× n
matrix A is2

A = G>IrG< = PDLUIrKS,

G< ≡ KS,
G> ≡ PDLU,

(12.2)

where

• P and S are general interchange operators (§ 11.7.1);

2Most introductory linear algebra texts this writer has met call the Gauss-Jordan
decomposition instead the “LU decomposition” and include fewer factors in it, typically
merging D into L and omitting K and S. They also omit Ir, since their matrices have
pre-defined dimensionality. Perhaps the reader will agree that the decomposition is cleaner
as presented here.
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Table 12.1: Some elementary similarity transformations.

T[i↔j]IT[i↔j] = I

T[i↔j]PT[i↔j] = P ′

T[i↔j]DT[i↔j] = D′ = D + ([D]jj − [D]ii)Eii + ([D]ii − [D]jj)Ejj

T[i↔j]DT[i↔j] = D if [D]ii = [D]jj

T[i↔j]L
[k]T[i↔j] = L[k] if i < k and j < k

T[i↔j]U
[k]T[i↔j] = U [k] if i > k and j > k

T[i↔j]L
{k}T[i↔j] = L{k}

′
if i > k and j > k

T[i↔j]U
{k}T[i↔j] = U{k}

′
if i < k and j < k

T[i↔j]L
{k}
‖ T[i↔j] = L

{k}
‖
′

if i > k and j > k

T[i↔j]U
{k}
‖ T[i↔j] = U

{k}
‖
′

if i < k and j < k

Tα[i]IT(1/α)[i] = I

Tα[i]DT(1/α)[i] = D

Tα[i]AT(1/α)[i] = A′ where A is any of

L,U,L[k], U[k], L
[k], U [k], L{k}, U{k}, L

{k}
‖ , U

{k}
‖

Tα[ij]IT−α[ij] = I

Tα[ij]DT−α[ij] = D + ([D]jj − [D]ii)αEij 6= D′

Tα[ij]DT−α[ij] = D if [D]ii = [D]jj

Tα[ij]LT−α[ij] = L′ if i > j

Tα[ij]UT−α[ij] = U ′ if i < j
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• D is a general scaling operator (§ 11.7.2);

• L and U are respectively unit lower and unit upper triangular matrices
(§ 11.8);

• K = L
{r}T
‖ is the transpose of a parallel unit lower triangular matrix,

being thus a parallel unit upper triangular matrix (§ 11.8.4);

• G> and G< are composites3 as defined by (12.2); and

• r is an unspecified rank.

The Gauss-Jordan decomposition is also called the Gauss-Jordan factoriza-
tion.

Whether all possible dimension-limited, m×n matrices A have a Gauss-
Jordan decomposition (they do, in fact) is a matter this section addresses.
However—at least for matrices which do have one—because G> and G<
are composed of invertible factors, one can left-multiply the equation A =
G>IrG< by G−1

> and right-multiply it by G−1
< to obtain

U−1L−1D−1P−1AS−1K−1 = G−1
> AG−1

< = Ir,

S−1K−1 = G−1
< ,

U−1L−1D−1P−1 = G−1
> ,

(12.3)

the Gauss-Jordan’s complementary form.

12.3.1 Motive

Equation (12.2) seems inscrutable. The equation itself is easy enough to
read, but just as there are many ways to factor a scalar (0xC = [4][3] =
[2]2[3] = [2][6], for example), there are likewise many ways to factor a matrix.
Why choose this particular way?

There are indeed many ways. We shall meet some of the others in
§§ 13.11, 14.6, 14.10 and 14.12. The Gauss-Jordan decomposition we meet
here however has both significant theoretical properties and useful practical
applications, and in any case needs less advanced preparation to appreciate
than the others, and (at least as developed in this book) precedes the others
logically. It emerges naturally when one posits a pair of dimension-limited,

3One can pronounce G> and G< respectively as “G acting rightward” and “G acting
leftward.” The letter G itself can be regarded as standing for “Gauss-Jordan,” but ad-
mittedly it is chosen as much because otherwise we were running out of available Roman
capitals!
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square, n×n matrices, A and A−1, for which A−1A = In, where A is known
and A−1 is to be determined. [The A−1 here is the A−1(n) of eqn. 11.49.
However, it is only supposed here that A−1A = In; it is not yet claimed that
AA−1 = In. “Square” means that the matrix has an n × n active region
rather than an m×n, m 6= n, where “active region” is defined as in § 11.3.1.]

To determine A−1 is not an entirely trivial problem. The matrix A−1

such that A−1A = In may or may not exist (usually it does exist if A is
square, but even then it may not, as we shall soon see), and even if it does
exist, how to determine it is not immediately obvious. And still, if one can
determine A−1, that is only for square A; what if A, having an m × n,
m 6= n, active region, were not square? In the present subsection however
we are not trying to prove anything, only to motivate, so for the moment
let us suppose an A for which A−1 does exist, let us confine our attention
to square A, and let us seek A−1 by left-multiplying A by a sequence

∏
T

of elementary row operators, each of which makes the matrix more nearly
resemble In. When In is finally achieved, then we shall have that

(∏
T
)

(A) = In,

or, left-multiplying by In and observing that I2
n = In,

(In)
(∏

T
)

(A) = In,

which implies that

A−1 = (In)
(∏

T
)
.

The product of elementaries which transforms A to In, truncated (§ 11.3.6)
to n × n dimensionality, itself constitutes A−1. This observation is what
motivates the Gauss-Jordan decomposition.
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By successive steps,4 a concrete example:

A =
[

2 −4
3 −1

]
,[

1
2

0
0 1

]
A =

[
1 −2
3 −1

]
,[

1 0
−3 1

] [
1
2

0
0 1

]
A =

[
1 −2
0 5

]
,[

1 0
0 1

5

] [
1 0
−3 1

] [
1
2

0
0 1

]
A =

[
1 −2
0 1

]
,[

1 2
0 1

] [
1 0
0 1

5

] [
1 0
−3 1

] [
1
2

0
0 1

]
A =

[
1 0
0 1

]
,[

1 0
0 1

] [
1 2
0 1

] [
1 0
0 1

5

] [
1 0
−3 1

] [
1
2

0
0 1

]
A =

[
1 0
0 1

]
.

Hence,

A−1 =

[
1 0

0 1

][
1 2

0 1

][
1 0

0 1
5

][
1 0

−3 1

][
1
2

0

0 1

]
=

[
− 1

A
2
5

− 3
A

1
5

]
.

Using the elementary commutation identity that Tβ[m]Tα[mj] = Tαβ[mj]Tβ[m],
from Table 11.2, to group like operators, we have that

A−1 =

[
1 0

0 1

][
1 2

0 1

][
1 0

− 3
5

1

][
1 0

0 1
5

][
1
2

0

0 1

]
=

[
− 1

A
2
5

− 3
A

1
5

]
;

or, multiplying the two scaling elementaries to merge them into a single
general scaling operator (§ 11.7.2),

A−1 =

[
1 0

0 1

][
1 2

0 1

][
1 0

− 3
5

1

][
1
2

0

0 1
5

]
=

[
− 1

A
2
5

− 3
A

1
5

]
.

The last equation is written symbolically as

A−1 = I2U
−1L−1D−1,

from which

A = DLUI2 =
[

2 0
0 5

] [
1 0
3
5

1

] [
1 −2
0 1

] [
1 0
0 1

]
=
[

2 −4
3 −1

]
.

4Theoretically, all elementary operators including the ones here have extended-
operational form (§ 11.3.2), but all those · · · ellipses clutter the page too much. Only
the 2× 2 active regions are shown here.
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Now, admittedly, the equation A = DLUI2 is not (12.2)—or rather, it
is (12.2), but only in the special case that r = 2 and P = S = K = I—which
begs the question: why do we need the factors P , S and K in the first place?
The answer regarding P and S is that these factors respectively gather row
and column interchange elementaries, of which the example given has used
none but which other examples sometimes need or want, particularly to
avoid dividing by zero when they encounter a zero in an inconvenient cell of
the matrix (the reader might try reducing A = [0 1; 1 0] to I2, for instance; a
row or column interchange is needed here). Regarding K, this factor comes
into play when A has broad rectangular (m < n) rather than square (m = n)
shape, and also sometimes when one of the rows of A happens to be a linear
combination of the others. The last point, we are not quite ready to detail
yet, but at present we are only motivating not proving, so if the reader will
accept the other factors and suspend judgment on K until the actual need
for it emerges in § 12.3.3, step 12, then we will proceed on this basis.

12.3.2 Method

The Gauss-Jordan decomposition of a matrix A is not discovered at one
stroke but rather is gradually built up, elementary by elementary. It begins
with the equation

A = IIIIAII,

where the six I hold the places of the six Gauss-Jordan factors P , D, L, U ,
K and S of (12.2). By successive elementary operations, the A on the right
is gradually transformed into Ir, while the six I are gradually transformed
into the six Gauss-Jordan factors. The decomposition thus ends with the
equation

A = PDLUIrKS,

which is (12.2). In between, while the several matrices are gradually being
transformed, the equation is represented as

A = P̃ D̃L̃Ũ ĨK̃S̃, (12.4)

where the initial value of Ĩ is A and the initial values of P̃ , D̃, etc., are all I.
Each step of the transformation goes as follows. The matrix Ĩ is left- or

right-multiplied by an elementary operator T . To compensate, one of the
six factors is right- or left-multiplied by T−1. Intervening factors are mul-
tiplied by both T and T−1, which multiplication constitutes an elementary
similarity transformation as described in § 12.2. For example,

A = P̃
(
D̃T(1/α)[i]

)(
Tα[i]L̃T(1/α)[i]

)(
Tα[i]ŨT(1/α)[i]

)(
Tα[i]Ĩ

)
K̃S̃,
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which is just (12.4), inasmuch as the adjacent elementaries cancel one an-
other; then,

Ĩ ← Tα[i]Ĩ ,

Ũ ← Tα[i]ŨT(1/α)[i],

L̃← Tα[i]L̃T(1/α)[i],

D̃ ← D̃T(1/α)[i],

thus associating the operation with the appropriate factor—in this case, D̃.
Such elementary row and column operations are repeated until Ĩ = Ir, at
which point (12.4) has become the Gauss-Jordan decomposition (12.2).

12.3.3 The algorithm

Having motivated the Gauss-Jordan decomposition in § 12.3.1 and having
proposed a basic method to pursue it in § 12.3.2, we shall now establish a
definite, orderly, failproof algorithm to achieve it. Broadly, the algorithm

• copies A, a dimension-limited, m× n matrix (not necessarily square),
into the variable working matrix Ĩ (step 1 below),

• reduces Ĩ by suitable row (and maybe column) operations to unit
upper triangular form (steps 2 through 7),

• establishes a rank r (step 8), and

• reduces the now unit triangular Ĩ further to the rank-r identity ma-
trix Ir (steps 9 through 13).

Specifically, the algorithm decrees the following steps. (The steps as written
include many parenthetical remarks—so many that some steps seem to con-
sist more of parenthetical remarks than of actual algorithm. The remarks
are unnecessary to execute the algorithm’s steps as such. They are however
necessary to explain and to justify the algorithm’s steps to the reader.)

1. Begin by initializing

P̃ ← I, D̃ ← I, L̃← I, Ũ ← I, K̃ ← I, S̃ ← I,

Ĩ ← A,
i← 1,

where Ĩ holds the part of A remaining to be decomposed, where i is
a row index, and where the others are the variable working matrices
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of (12.4). (The eventual goal will be to factor all of Ĩ away, leaving
Ĩ = Ir, though the precise value of r will not be known until step 8.
Since A is by definition a dimension-limitedm×nmatrix, one naturally
need not store A beyond the m × n active region. What is less clear
until one has read the whole algorithm, but nevertheless true, is that
one also need not store the dimension-limited Ĩ beyond the m×n active
region. The other six variable working matrices each have extended-
operational form, but they also confine their activity to well-defined
regions: m×m for P̃ , D̃, L̃ and Ũ ; n×n for K̃ and S̃. One need store
none of the matrices beyond these bounds.)

2. (Besides arriving at this point from step 1 above, the algorithm also
reënters here from step 7 below. From step 1, Ĩ = A and L̃ = I, so
this step 2 though logical seems unneeded. The need grows clear once
one has read through step 7.) Observe that neither the ith row of Ĩ
nor any row below it has an entry left of the ith column, that Ĩ is
all-zero below-leftward of and directly leftward of (though not directly
below) the pivot element ı̃ii.

5 Observe also that above the ith row, the
matrix has proper unit upper triangular form (§ 11.8). Regarding the
other factors, notice that L̃ enjoys the major partial unit triangular

5The notation ı̃ii looks interesting, but this is accidental. The ı̃ relates not to the
doubled, subscribed index ii but to Ĩ. The notation ı̃ii thus means [Ĩ]ii—in other words,
it means the current iith element of the variable working matrix Ĩ.
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form L{i−1} (§ 11.8.5) and that d̃kk = 1 for all k ≥ i. Pictorially,

D̃ =



. . .
...

...
...

...
...

...
...

· · · ∗ 0 0 0 0 0 0 · · ·
· · · 0 ∗ 0 0 0 0 0 · · ·
· · · 0 0 ∗ 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


,

L̃ = L{i−1} =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 0 0 0 0 · · ·
· · · ∗ 1 0 0 0 0 0 · · ·
· · · ∗ ∗ 1 0 0 0 0 · · ·
· · · ∗ ∗ ∗ 1 0 0 0 · · ·
· · · ∗ ∗ ∗ 0 1 0 0 · · ·
· · · ∗ ∗ ∗ 0 0 1 0 · · ·
· · · ∗ ∗ ∗ 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


,

Ĩ =



. . .
...

...
...

...
...

...
...

· · · 1 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


,

where the ith row and ith column are depicted at center.

3. Choose a nonzero element ı̃pq 6= 0 on or below the pivot row, where
p ≥ i and q ≥ i. (The easiest choice may simply be ı̃ii, where p = q = i,
if ı̃ii 6= 0; but any nonzero element from the ith row downward can
in general be chosen. Beginning students of the Gauss-Jordan or LU
decomposition are conventionally taught to choose first the least possi-
ble q and then the least possible p. When one has no reason to choose
otherwise, that is as good a choice as any. There is however no actual
need to choose so. In fact alternate choices can sometimes improve
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practical numerical accuracy.6,7 Theoretically nonetheless, when do-
ing exact arithmetic, the choice is quite arbitrary, so long as ı̃pq 6= 0.)
If no nonzero element is available—if all remaining rows p ≥ i are now
null—then skip directly to step 8.

4. Observing that (12.4) can be expanded to read

A =
(
P̃ T[p↔i]

)(
T[p↔i]D̃T[p↔i]

)(
T[p↔i]L̃T[p↔i]

)(
T[p↔i]ŨT[p↔i]

)

×
(
T[p↔i]ĨT[i↔q]

)(
T[i↔q]K̃T[i↔q]

)(
T[i↔q]S̃

)

=
(
P̃ T[p↔i]

)
D̃
(
T[p↔i]L̃T[p↔i]

)
Ũ

×
(
T[p↔i]ĨT[i↔q]

)
K̃
(
T[i↔q]S̃

)
,

let

P̃ ← P̃ T[p↔i],

L̃← T[p↔i]L̃T[p↔i],

Ĩ ← T[p↔i]ĨT[i↔q],

S̃ ← T[i↔q]S̃,

thus interchanging the pth with the ith row and the qth with the
ith column, to bring the chosen element to the pivot position. (Re-

6A typical Intel or AMD x86-class computer processor represents a C/C++ double-
type floating-point number, x = 2pb, in 0x40 bits of computer memory. Of the 0x40
bits, 0x34 are for the number’s mantissa 2.0 ≤ b < 4.0 (not 1.0 ≤ b < 2.0 as one might
expect), 0xB are for the number’s exponent −0x3FF ≤ p ≤ 0x3FE, and one is for the
number’s ± sign. (The mantissa’s high-order bit, which is always 1, is implied not stored,
being thus one neither of the 0x34 nor of the 0x40 bits.) The out-of-bounds exponents
p = −0x400 and p = 0x3FF serve specially respectively to encode 0 and ∞. All this
is standard computing practice. Such a floating-point representation is easily accurate
enough for most practical purposes, but of course it is not generally exact. [69, § 1-4.2.2]

7The Gauss-Jordan’s floating-point errors come mainly from dividing by small pivots.
Such errors are naturally avoided by avoiding small pivots, at least until as late in the
algorithm as possible. Smallness however is relative: a small pivot in a row and a column
each populated by even smaller elements is unlikely to cause as much error as is a large
pivot in a row and a column each populated by even larger elements.

To choose a pivot, any of several heuristics is reasonable. The following heuristic if
programmed intelligently might not be too computationally expensive: define the pivot-
smallness metric

η̃2
pq ≡

2̃ı∗pq̃ıpq∑m
p′=i ı̃

∗
p′q̃ıp′q +

∑n
q′=i ı̃

∗
pq′̃ıpq′

.

Choose the p and q of least η̃2
pq. If two are equally least, then choose first the lesser column

index q and then if necessary the lesser row index p.
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fer to Table 12.1 for the similarity transformations. The Ũ and K̃
transformations disappear because at this stage of the algorithm, still
Ũ = K̃ = I. The D̃ transformation disappears because p ≥ i and
because d̃kk = 1 for all k ≥ i. Regarding the L̃ transformation, it does
not disappear, but L̃ has major partial unit triangular form L{i−1},
which form according to Table 12.1 it retains since i− 1 < i ≤ p.)

5. Observing that (12.4) can be expanded to read

A = P̃
(
D̃T̃ıii[i]

)(
T(1/̃ıii)[i]L̃T̃ıii[i]

)(
T(1/̃ıii)[i]Ũ T̃ıii[i]

)

×
(
T(1/̃ıii)[i]Ĩ

)
K̃S̃

= P̃
(
D̃T̃ıii[i]

)(
T(1/̃ıii)[i]L̃T̃ıii[i]

)
Ũ
(
T(1/̃ıii)[i]Ĩ

)
K̃S̃,

normalize the new ı̃ii pivot by letting

D̃ ← D̃T̃ıii[i],

L̃← T(1/̃ıii)[i]L̃T̃ıii[i],

Ĩ ← T(1/̃ıii)[i]Ĩ .

This forces ı̃ii = 1. It also changes the value of d̃ii. Pictorially after
this step,

D̃ =



. . .
...

...
...

...
...

...
...

· · · ∗ 0 0 0 0 0 0 · · ·
· · · 0 ∗ 0 0 0 0 0 · · ·
· · · 0 0 ∗ 0 0 0 0 · · ·
· · · 0 0 0 ∗ 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


,

Ĩ =



. . .
...

...
...

...
...

...
...

· · · 1 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


.
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(Though the step changes L̃, too, again it leaves L̃ in the major partial
unit triangular form L{i−1}, because i− 1 < i. Refer to Table 12.1.)

6. Observing that (12.4) can be expanded to read

A = P̃ D̃
(
L̃T̃ıpi[pi]

)(
T−̃ıpi[pi]Ũ T̃ıpi[pi]

)(
T−̃ıpi[pi]Ĩ

)
K̃S̃

= P̃ D̃
(
L̃T̃ıpi[pi]

)
Ũ
(
T−̃ıpi[pi]Ĩ

)
K̃S̃,

clear Ĩ’s ith column below the pivot by letting

L̃←
(
L̃
)



m∐

p=i+1

T̃ıpi[pi]


 ,

Ĩ ←




m∏

p=i+1

T−̃ıpi[pi]



(
Ĩ
)
.

This forces ı̃ip = 0 for all p > i. It also fills in L̃’s ith column below the
pivot, advancing that matrix from the L{i−1} form to the L{i} form.
Pictorially,

L̃ = L{i} =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 0 0 0 0 · · ·
· · · ∗ 1 0 0 0 0 0 · · ·
· · · ∗ ∗ 1 0 0 0 0 · · ·
· · · ∗ ∗ ∗ 1 0 0 0 · · ·
· · · ∗ ∗ ∗ ∗ 1 0 0 · · ·
· · · ∗ ∗ ∗ ∗ 0 1 0 · · ·
· · · ∗ ∗ ∗ ∗ 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


,

Ĩ =



. . .
...

...
...

...
...

...
...

· · · 1 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 1 ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


.

(Note that it is not necessary actually to apply the addition elemen-
taries here one by one. Together they easily form an addition quasiel-
ementary L[i], and thus can be applied all at once. See § 11.7.3.)
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7. Increment

i← i+ 1.

Go back to step 2.

8. Decrement

i← i− 1

to undo the last instance of step 7 (even if there never was an instance
of step 7), thus letting i point to the matrix’s last nonzero row. After
decrementing, let the rank

r ≡ i.

Notice that, certainly, r ≤ m and r ≤ n.

9. (Besides arriving at this point from step 8 above, the algorithm also
reënters here from step 11 below.) If i = 0, then skip directly to
step 12.

10. Observing that (12.4) can be expanded to read

A = P̃ D̃L̃
(
Ũ T̃ıpi[pi]

)(
T−̃ıpi[pi]Ĩ

)
K̃S̃,

clear Ĩ’s ith column above the pivot by letting

Ũ ←
(
Ũ
)


i−1∏

p=1

T̃ıpi[pi]


 ,

Ĩ ←



i−1∐

p=1

T−̃ıpi[pi]



(
Ĩ
)
.

This forces ı̃ip = 0 for all p 6= i. It also fills in Ũ ’s ith column above the
pivot, advancing that matrix from the U{i+1} form to the U{i} form.
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Pictorially,

Ũ = U{i} =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 1 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 1 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 1 ∗ ∗ · · ·
· · · 0 0 0 0 0 1 ∗ · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


,

Ĩ =



. . .
...

...
...

...
...

...
...

· · · 1 ∗ ∗ 0 0 0 0 · · ·
· · · 0 1 ∗ 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 0 · · ·
· · · 0 0 0 0 0 1 0 · · ·
· · · 0 0 0 0 0 0 1 · · ·

...
...

...
...

...
...

...
. . .


.

(As in step 6, here again it is not necessary actually to apply the ad-
dition elementaries one by one. Together they easily form an addition
quasielementary U[i]. See § 11.7.3.)

11. Decrement i← i− 1. Go back to step 9.

12. Notice that Ĩ now has the form of a rank-r identity matrix, except
with n− r extra columns dressing its right edge (often r = n however;
then there are no extra columns). Pictorially,

Ĩ =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 1 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 1 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 1 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

...
. . .


.

Observing that (12.4) can be expanded to read

A = P̃ D̃L̃Ũ
(
ĨT−̃ıpq [pq]

)(
T̃ıpq [pq]K̃

)
S̃,
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use the now conveniently elementarized columns of Ĩ’s main body to
suppress the extra columns on its right edge by

Ĩ ←
(
Ĩ
)



n∏

q=r+1

r∐

p=1

T−̃ıpq [pq]


 ,

K̃ ←




n∐

q=r+1

r∏

p=1

T̃ıpq [pq]



(
K̃
)
.

(Actually, entering this step, it was that K̃ = I, so in fact K̃ becomes
just the product above. As in steps 6 and 10, here again it is not neces-
sary actually to apply the addition elementaries one by one. Together
they easily form a parallel unit upper—not lower—triangular matrix

L
{r}T
‖ . See § 11.8.4.)

13. Notice now that Ĩ = Ir. Let

P ≡ P̃ , D ≡ D̃, L ≡ L̃, U ≡ Ũ , K ≡ K̃, S ≡ S̃.

End.

Never stalling, the algorithm cannot fail to achieve Ĩ = Ir and thus a com-
plete Gauss-Jordan decomposition of the form (12.2), though what value
the rank r might turn out to have is not normally known to us in advance.
(We have not yet proven, but will in § 12.5, that the algorithm always pro-
duces the same Ir, the same rank r ≥ 0, regardless of which pivots ı̃pq 6= 0
one happens to choose in step 3 along the way. We can safely ignore this
unproven fact however for the immediate moment.)

12.3.4 Rank and independent rows

Observe that the Gauss-Jordan algorithm of § 12.3.3 operates always within
the bounds of the original m× n matrix A. Therefore, necessarily,

r ≤ m,
r ≤ n. (12.5)

The rank r exceeds the number neither of the matrix’s rows nor of its
columns. This is unsurprising. Indeed the narrative of the algorithm’s
step 8 has already noticed the fact.
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Observe also however that the rank always fully reaches r = m if the
rows of the original matrix A are linearly independent. The reason for this
observation is that the rank can fall short, r < m, only if step 3 finds a null
row i ≤ m; but step 3 can find such a null row only if step 6 has created one
(or if there were a null row in the original matrix A; but according to § 12.1,
such null rows never were linearly independent in the first place). How do
we know that step 6 can never create a null row? We know this because the
action of step 6 is to add multiples only of current and earlier pivot rows
to rows in Ĩ which have not yet been on pivot.8 According to (12.1), such
action has no power to cancel the independent rows it targets.

12.3.5 Inverting the factors

Inverting the six Gauss-Jordan factors is easy. Sections 11.7 and 11.8 have
shown how. One need not however go even to that much trouble. Each
of the six factors—P , D, L, U , K and S—is composed of a sequence

∏
T

of elementary operators. Each of the six inverse factors—P−1, D−1, L−1,
U−1, K−1 and S−1—is therefore composed of the reverse sequence

∐
T−1

of inverse elementary operators. Refer to (11.41). If one merely records the
sequence of elementaries used to build each of the six factors—if one reverses
each sequence, inverts each elementary, and multiplies—then the six inverse
factors result.

And, in fact, it isn’t even that hard. One actually need not record the
individual elementaries; one can invert, multiply and forget them in stream.
This means starting the algorithm from step 1 with six extra variable work-
ing matrices (besides the seven already there):

P̃−1 ← I; D̃−1 ← I; L̃−1 ← I; Ũ−1 ← I; K̃−1 ← I; S̃−1 ← I.

8If the truth of the sentence’s assertion regarding the action of step 6 seems nonobvious,
one can drown the assertion rigorously in symbols to prove it, but before going to that
extreme consider: the action of steps 3 and 4 is to choose a pivot row p ≥ i and to shift
it upward to the ith position. The action of step 6 then is to add multiples of the chosen
pivot row downward only—that is, only to rows which have not yet been on pivot. This
being so, steps 3 and 4 in the second iteration find no unmixed rows available to choose
as second pivot, but find only rows which already include multiples of the first pivot row.
Step 6 in the second iteration therefore adds downward multiples of the second pivot row,
which already includes a multiple of the first pivot row. Step 6 in the ith iteration adds
downward multiples of the ith pivot row, which already includes multiples of the first
through (i−1)th. So it comes to pass that multiples only of current and earlier pivot rows
are added to rows which have not yet been on pivot. To no row is ever added, directly
or indirectly, a multiple of itself—until step 10, which does not belong to the algorithm’s
main loop and has nothing to do with the availability of nonzero rows to step 3.
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(There is no Ĩ−1, not because it would not be useful, but because its initial
value would be9 A−1(r), unknown at algorithm’s start.) Then, for each
operation on any of P̃ , D̃, L̃, Ũ , K̃ or S̃, one operates inversely on the
corresponding inverse matrix. For example, in step 5,

D̃ ← D̃T̃ıii[i], D̃−1 ← T(1/̃ıii)[i]D̃
−1,

L̃← T(1/̃ıii)[i]L̃T̃ıii[i], L̃−1 ← T(1/̃ıii)[i]L̃
−1T̃ıii[i],

Ĩ ← T(1/̃ıii)[i]Ĩ .

With this simple extension, the algorithm yields all the factors not only
of the Gauss-Jordan decomposition (12.2) but simultaneously also of the
Gauss-Jordan’s complementary form (12.3).

12.3.6 Truncating the factors

None of the six factors of (12.2) actually needs to retain its entire extended-
operational form (§ 11.3.2). The four factors on the left, row operators, act
wholly by their m×m squares; the two on the right, column operators, by
their n × n. Indeed, neither Ir nor A has anything but zeros outside the
m × n rectangle, anyway, so there is nothing for the six operators to act
upon beyond those bounds in any event. We can truncate all six operators
to dimension-limited forms (§ 11.3.1) for this reason if we want.

To truncate the six operators formally, we left-multiply (12.2) by Im and
right-multiply it by In, obtaining

ImAIn = ImPDLUIrKSIn.

According to § 11.3.6, the Im and In respectively truncate rows and columns,
actions which have no effect on A since it is already a dimension-limitedm×n
matrix. By successive steps, then,

A = ImPDLUIrKSIn

= I7
mPDLUI

2
rKSI

3
n;

and finally, by using (11.31) or (11.42) repeatedly,

A = (ImPIm)(ImDIm)(ImLIm)(ImUIr)(IrKIn)(InSIn), (12.6)

where the dimensionalities of the six factors on the equation’s right side are
respectively m×m, m×m, m×m, m× r, r×n and n×n. Equation (12.6)

9Section 11.5 explains the notation.
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expresses any dimension-limited rectangular matrix A as the product of six
particularly simple, dimension-limited rectangular factors.

By similar reasoning from (12.2),

A = (ImG>Ir)(IrG<In), (12.7)

where the dimensionalities of the two factors are m× r and r × n.

The book will seldom point it out again explicitly, but one can straight-
forwardly truncate not only the Gauss-Jordan factors but most other factors
and operators, too, by the method of this subsection.10

12.3.7 Properties of the factors

One would expect such neatly formed operators as the factors of the Gauss-
Jordan to enjoy some useful special properties. Indeed they do. Table 12.2
lists a few. The table’s properties formally come from (11.52) and Table 11.5;
but, if one firmly grasps the matrix forms involved and comprehends the
notation (neither of which is trivial to do), if one understands that the
operator (In− Ir) is a truncator that selects columns r+ 1 through n of the
matrix it operates leftward upon, and if one sketches the relevant factors
schematically with a pencil, then the properties are plainly seen without
reference to chapter 11 as such.

The table’s properties regarding P and S express a general advantage
all permutors share. The table’s properties regarding K are admittedly less
significant, included mostly only because § 13.3 will need them. Still, even
the K properties are always true. They might find other uses.

10Comes the objection, “Black, why do you make it more complicated than it needs to
be? For what reason must all your matrices have infinite dimensionality, anyway? They
don’t do it that way in my other linear algebra book.”

It is a fair question. The answer is that this book is a book of applied mathematical the-
ory; and theoretically in the author’s view, infinite-dimensional matrices are significantly
neater to handle. To append a null row or a null column to a dimension-limited matrix
is to alter the matrix in no essential way, nor is there any real difference between T5[21]

when it row-operates on a 3× p matrix and the same elementary when it row-operates on
a 4× p. The relevant theoretical constructs ought to reflect such insights. Hence infinite
dimensionality.

Anyway, a matrix displaying an infinite field of zeros resembles a shipment delivering
an infinite supply of nothing; one need not be too impressed with either. The two matrix
forms of § 11.3 manifest the sense that a matrix can represent a linear transformation,
whose rank matters; or a reversible row or column operation, whose rank does not. The
extended-operational form, having infinite rank, serves the latter case. In either case,
however, the dimensionality m× n of the matrix is a distraction. It is the rank r, if any,
that counts.
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Table 12.2: A few properties of the Gauss-Jordan factors.

P ∗ = P−1 = P T

S∗ = S−1 = ST

P−∗ = P = P−T

S−∗ = S = S−T

K +K−1

2
= I

IrK(In − Ir) = K − I = Ir(K − I)(In − Ir)
IrK

−1(In − Ir) = K−1 − I = Ir(K
−1 − I)(In − Ir)

(I − In)(K − I) = 0 = (K − I)(I − In)

(I − In)(K−1 − I) = 0 = (K−1 − I)(I − In)

Further properties of the several Gauss-Jordan factors can be gleaned
from the respectively relevant subsections of §§ 11.7 and 11.8.

12.3.8 Marginalizing the factor In

If A happens to be a square, n × n matrix and if it develops that the rank
r = n, then one can take advantage of (11.31) to rewrite the Gauss-Jordan
decomposition (12.2) in the form

PDLUKSIn = A = InPDLUKS, (12.8)

thus marginalizing the factor In. This is to express the Gauss-Jordan solely
in row operations or solely in column operations. It does not change the
algorithm and it does not alter the factors; it merely reorders the factors
after the algorithm has determined them. It fails however if A is rectangular
or r < n.

12.3.9 Decomposing an extended operator

Sections 12.5 and 13.1 will demonstrate that, if a matrix A is a extended
operator (§ 11.3.2) with an n × n active region and if the operation the
matrix implements is reversible, then the truncated operator InA = InAIn =
AIn necessarily enjoys full rank r = n. Complementarily, those sections
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will demonstrate that, if such an extended operator is irreversible, then the
truncated operator InA = InAIn = AIn must suffer r < n. Full rank
is associated with reversibility. This fact has many consequences, among
which is the following.

To extend the Gauss-Jordan decomposition of the present section to
decompose a reversible, n × n extended operator A is trivial. One merely
writes

A = PDLUKS,

wherein the Ir has become an I. Or, equivalently, one decomposes the n×n
dimension-limited matrix InA = InAIn = AIn as

AIn = PDLUInKS = PDLUKSIn,

from which, inasmuch as all the factors present but In are n × n extended
operators, the preceding equation results.

One can decompose only reversible extended operators so. The Gauss-
Jordan fails on irreversible extended operators. Fortunately, as we have
seen in chapter 11, every extended operator constructible as the product of
elementary, quasielementary, unit-triangular and/or shift operators is indeed
reversible, so a great variety of extended operators are decomposable. (Note
incidentally that shifts, § 11.9, generally prevent the extended operators
whose construction includes them from honoring any finite, n × n active
region. Therefore, in this subsection we are generally thinking of extended
operators constructible without shifts.)

This subsection’s equations remain unnumbered because they say little
new. Their only point, really, is that what an operator does outside some
appropriately delimited active region is seldom interesting because the vector
on which the operator ultimately acts is probably null there in any event.
In such a context it may not matter whether one truncates the operator.
Indeed, this was also the point of § 12.3.6 and, if you like, of (11.31), too.11

11If “it may not matter,” as the narrative says, then one might just put all matrices
in dimension-limited form. Many books do. To put them all in dimension-limited form
however brings at least three effects the book you are reading prefers to avoid. First, it
leaves shift-and-truncate operations hard to express cleanly (refer to §§ 11.3.6 and 11.9
and, as a typical example of the usage, eqn. 13.7). Second, it confuses the otherwise natural
extension of discrete vectors into continuous functions. Third, it leaves one to consider
the ranks of reversible operators like T[1↔2] that naturally should have no rank. The last
of the three is arguably most significant: matrix rank is such an important attribute that
one prefers to impute it only to those operators about which it actually says something
interesting.

Nevertheless, the extended-operational matrix form is hardly more than a formality. All
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Regarding the present section as a whole, the Gauss-Jordan decomposi-
tion is a significant achievement. It is not the only matrix decomposition—
further interesting decompositions include the Gram-Schmidt of § 13.11, the
diagonal of § 14.6, the Schur of § 14.10 and the singular-value of § 14.12,
among others—but the Gauss-Jordan nonetheless reliably factors an arbi-
trary m×n matrix A, which we had not known how to handle very well, into
a product of unit triangular matrices and quasielementaries, which we do.
We shall put the Gauss-Jordan to good use in chapter 13. However, before
closing the present chapter we should like finally, squarely to define and to
establish the concept of matrix rank, not only for Ir but for all matrices. To
do that, we shall first need one more preliminary: the technique of vector
replacement.

12.4 Vector replacement

Consider a set of m+ 1 (not necessarily independent) vectors

{u,a1,a2, . . . ,am}.

As a definition, the space these vectors address consists of all linear combina-
tions of the set’s several vectors. That is, the space consists of all vectors b
formable as

βou + β1a1 + β2a2 + · · ·+ βmam = b. (12.9)

Now consider a specific vector v in the space,

ψou + ψ1a1 + ψ2a2 + · · ·+ ψmam = v, (12.10)

for which

ψo 6= 0.

Solving (12.10) for u, we find that

1

ψo
v − ψ1

ψo
a1 −

ψ2

ψo
a2 − · · · −

ψm
ψo

am = u.

it says is that the extended operator unobtrusively leaves untouched anything it happens
to find outside its operational domain, whereas a dimension-limited operator would have
truncated whatever it found there. Since what is found outside the operational domain is
typically uninteresting, this may be a distinction without a difference, a distinction one
can safely ignore.
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With the change of variables

φo ←
1

ψo
,

φ1 ← −ψ1

ψo
,

φ2 ← −ψ2

ψo
,

...

φm ← −ψm
ψo

,

for which, quite symmetrically, it happens that

ψo =
1

φo
,

ψ1 = −φ1

φo
,

ψ2 = −φ2

φo
,

...

ψm = −φm
φo
,

the solution is

φov + φ1a1 + φ2a2 + · · ·+ φmam = u. (12.11)

Equation (12.11) has identical form to (12.10), only with the symbols u↔ v
and ψ ↔ φ swapped. Since φo = 1/ψo, assuming that ψo is finite it even
appears that

φo 6= 0;

so, the symmetry is complete. Table 12.3 summarizes.

Now further consider an arbitrary vector b which lies in the space ad-
dressed by the vectors

{u,a1,a2, . . . ,am}.
Does the same b also lie in the space addressed by the vectors

{v,a1,a2, . . . ,am}?
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Table 12.3: The symmetrical equations of § 12.4.

+ · · ·+ ψmam

ψou + ψ1a1 + ψ2a2

= v + · · ·+ φmam

φov + φ1a1 + φ2a2

= u

0 6= 1

ψo
= φo 0 6= 1

φo
= ψo

−ψ1

ψo
= φ1 −φ1

φo
= ψ1

−ψ2

ψo
= φ2 −φ2

φo
= ψ2

...
...

−ψm
ψo

= φm −φm
φo

= ψm

To show that it does, we substitute into (12.9) the expression for u from
(12.11), obtaining the form

(βo)(φov + φ1a1 + φ2a2 + · · ·+ φmam) + β1a1 + β2a2 + · · ·+ βmam = b.

Collecting terms, this is

βoφov + (βoφ1 + β1)a1 + (βoφ2 + β2)a2 + · · ·+ (βoφm + βm)am = b,

in which we see that, yes, b does indeed also lie in the latter space. Nat-
urally the problem’s u ↔ v symmetry then guarantees the converse, that
an arbitrary vector b which lies in the latter space also lies in the former.
Therefore, a vector b must lie in both spaces or neither, never just in one
or the other. The two spaces are, in fact, one and the same.

This leads to the following useful conclusion. Given a set of vectors

{u,a1,a2, . . . ,am},

one can safely replace the u by a new vector v, obtaining the new set

{v,a1,a2, . . . ,am},

provided that the replacement vector v includes at least a little of the re-
placed vector u (ψo 6= 0 in eqn. 12.10) and that v is otherwise an honest
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linear combination of the several vectors of the original set, untainted by
foreign contribution. Such vector replacement does not in any way alter the
space addressed. The new space is exactly the same as the old.

As a corollary, if the vectors of the original set happen to be linearly in-
dependent (§ 12.1), then the vectors of the new set are linearly independent,
too; for, if it were that

γov + γ1a1 + γ2a2 + · · ·+ γmam = 0

for nontrivial γo and γk, then either γo = 0—impossible since that would
make the several ak themselves linearly dependent—or γo 6= 0, in which
case v would be a linear combination of the several ak alone. But if v were
a linear combination of the several ak alone, then (12.10) would still also
explicitly make v a linear combination of the same ak plus a nonzero multiple
of u. Yet both combinations cannot be, because according to § 12.1, two
distinct combinations among a set of independent vectors can never target
the same v. The contradiction proves false the assumption which gave rise
to it: that the vectors of the new set were linearly dependent. Hence the
vectors of the new set are equally as independent as the vectors of the old.

12.5 Rank

Sections 11.3.5 and 11.3.6 have introduced the rank-r identity matrix Ir,
where the integer r is the number of ones the matrix has along its main
diagonal. Other matrices have rank, too. Commonly, an n × n matrix has
rank r = n, but consider the matrix 5 1 6

3 6 9
2 4 6

.
The third column of this matrix is the sum of the first and second columns.
Also, the third row is just two-thirds the second. Either way, by columns
or by rows, the matrix has only two independent vectors. The rank of this
3× 3 matrix is not r = 3 but r = 2.

This section establishes properly the important concept of matrix rank.
The section demonstrates that every matrix has a definite, unambiguous
rank, and shows how this rank can be calculated.

To forestall potential confusion in the matter, we should immediately
observe that—like the rest of this chapter but unlike some other parts of the
book—this section explicitly trades in exact numbers. If a matrix element
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here is 5, then it is exactly 5; if 0, then exactly 0. Many real-world matrices,
of course—especially matrices populated by measured data—can never truly
be exact, but that is not the point here. Here, the numbers are exact.12

12.5.1 A logical maneuver

In § 12.5.2 we will execute a pretty logical maneuver, which one might name,
“the end justifies the means.”13 When embedded within a larger logical
construct as in § 12.5.2, the maneuver if unexpected can confuse, so this
subsection is to prepare the reader to expect the maneuver.

The logical maneuver follows this basic pattern.

If P1 then Q. If P2 then Q. If P3 then Q. Which of P1, P2 and P3

are true is not known, but suppose that it is nevertheless known
that at least one of the three is true: P1 or P2 or P3. If this is so,
then—though one can draw no valid conclusion regarding any
one of the three conditions P1, P2 or P3—one can still conclude
that their common object Q is true.

One valid way to prove Q, then, would be to suppose P1 and show that it
led to Q; and then alternately to suppose P2 and show that it separately led
to Q; and then again to suppose P3 and show that it also led to Q. The final
step would be to show somehow that P1, P2 and P3 could not possibly all be
false at once. Herein, the means is to assert several individually suspicious
claims, none of which one actually means to prove. The end which justifies
the means is the conclusion Q, which thereby one can and does prove.

It is a subtle maneuver. Once the reader feels that he grasps its logic,
he can proceed to the next subsection where the maneuver is put to use.14

12It is false to suppose that because applied mathematics permits inexact or imprecise
quantities, like 3.0±0.1 inches for the length of your thumb, it also requires them. On the
contrary, the length of your thumb may indeed be 3.0± 0.1 inches, but surely no triangle
has 3.0±0.1 sides! A triangle has exactly three sides. The ratio of a circle’s circumference
to its radius is exactly 2π. The author has exactly one brother. A construction contract
might require the builder to finish within exactly 180 days (though the actual construction
time might be an inexact t = 172.6± 0.2 days), and so on. Exact quantities are every bit
as valid in applied mathematics as inexact or imprecise ones are. Where the distinction
matters, it is the applied mathematician’s responsibility to distinguish between the two
kinds of quantity.

13The maneuver’s name rings a bit sinister, does it not? However, the book is not here
setting forth an ethical proposition, but is merely previewing an abstract logical form the
mathematics of § 12.5.2 will use.

14Pure mathematics admittedly advantages the professional mathematician over the
scientific or engineering applicationist when logic like this subsection’s arrives. The writer,
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12.5.2 The impossibility of identity-matrix promotion

Consider the matrix equation

AIrB = Is. (12.12)

If r ≥ s, then it is trivial to find matrices A and B for which (12.12) holds:
A = Is = B, for instance. If instead

r < s,

however, it is not so easy to find such matrices A and B. In fact it is impos-
sible. This subsection proves the impossibility. It shows that one cannot by
any row and column operations, reversible or otherwise, ever transform an
identity matrix into another identity matrix of greater rank (§ 11.3.5).

Equation (12.12) can be written in the form

(AIr)B = Is, (12.13)

where, because Ir attacking from the right is the column truncation oper-
ator (§ 11.3.6), the product AIr is a matrix with an unspecified number of
rows but only r columns—or, more precisely, with no more than r nonzero
columns. Viewed this way, per § 11.1.3, B operates on the r columns of AIr
to produce the s columns of Is.

The r columns of AIr are nothing more than the first through rth
columns of A. Let the symbols a1,a2,a3,a4,a5, . . . ,ar denote these columns.
The s columns of Is, then, are nothing more than the elementary vectors
e1, e2, e3, e4, e5, . . . , es (§ 11.3.7). The claim (12.13) makes is thus that
the several vectors ak together address each of the several elementary vec-
tors ej—that is, that a linear combination15

b1ja1 + b2ja2 + b3ja3 + · · ·+ brjar = ej (12.14)

exists for each ej , 1 ≤ j ≤ s.
The claim (12.14) will turn out to be false because there are too many ej ,

but to prove this, we shall assume for the moment that the claim were true.
The proof then is by contradiction,16 and it runs as follows.

an engineer inexpert in symbolic logic except in that restricted form in which the design
of digital electronics employs it, will not attempt a symbolic treatment here.

15Observe that unlike as in § 12.1, here we have not necessarily assumed that the
several ak are linearly independent.

16As the reader will have observed by this point in the book, the technique—also called
reductio ad absurdum—is the usual mathematical technique to prove impossibility. One
assumes the falsehood to be true, then reasons toward a contradiction which proves the
assumption false. Section 6.1.1 among others has already illustrated the technique, but
the technique’s use here is more sophisticated.
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Consider the elementary vector e1. For j = 1, (12.14) is

b11a1 + b21a2 + b31a3 + · · ·+ br1ar = e1,

which says that the elementary vector e1 is a linear combination of the
several vectors

{a1,a2,a3,a4,a5, . . . ,ar}.
Because e1 is a linear combination, according to § 12.4 one can safely replace
any of the vectors in the set by e1 without altering the space addressed. For
example, replacing a1 by e1,

{e1,a2,a3,a4,a5, . . . ,ar}.
The only restriction per § 12.4 is that e1 contain at least a little of the
vector ak it replaces—that bk1 6= 0. Of course there is no guarantee specif-
ically that b11 6= 0, so for e1 to replace a1 might not be allowed. However,
inasmuch as e1 is nonzero, then according to (12.14) at least one of the sev-
eral bk1 also is nonzero; and if bk1 is nonzero then e1 can replace ak. Some
of the ak might indeed be forbidden, but never all; there is always at least
one ak which e1 can replace. (For example, if a1 were forbidden because
b11 = 0, then a3 might be available instead because b31 6= 0. In this case the
new set would be {a1,a2, e1,a4,a5, . . . ,ar}.)

Here comes the hard part. Here is where the logical maneuver of § 12.5.1
comes in. The book to this point has established no general method to tell
which of the several ak the elementary vector e1 actually contains (§ 13.2
gives the method, but that section depends logically on this one, so we
cannot properly appeal to it here). According to (12.14), the vector e1

might contain some of the several ak or all of them, but surely it contains
at least one of them. Therefore, even though it is illicit to replace an ak
by an e1 which contains none of it, even though we have no idea which of
the several ak the vector e1 contains, even though replacing the wrong ak
logically invalidates any conclusion which flows from the replacement, still
we can proceed with the proof—provided only that, in the end, we shall find
that the illicit choice of replacement and the licit choice had led alike to
the same, identical conclusion. If we do so find then—in the end—the logic
will demand of us only an assurance that some licit choice had existed at
the time the choice was or might have been made. The logic will never ask,
even in retrospect, which specific choice had been the licit one, for only the
complete absence of licit choices can threaten the present maneuver.

The claim (12.14) guarantees at least one licit choice. Whether as the
maneuver also demands, all the choices, licit and illicit, lead ultimately alike
to the same, identical conclusion remains to be determined.
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Now consider the elementary vector e2. According to (12.14), e2 lies in
the space addressed by the original set

{a1,a2,a3,a4,a5, . . . ,ar}.

Therefore as we have seen, e2 also lies in the space addressed by the new set

{e1,a2,a3,a4,a5, . . . ,ar}

(or {a1,a2, e1,a4,a5, . . . ,ar}, or whatever the new set happens to be). That
is, not only do coefficients bk2 exist such that

b12a1 + b22a2 + b32a3 + · · ·+ br2ar = e2,

but also coefficients βk2 exist such that

β12e1 + β22a2 + β32a3 + · · ·+ βr2ar = e2.

Again it is impossible for all the coefficients βk2 to be zero but, moreover,
it is impossible for β12 to be the sole nonzero coefficient, for (as should
seem plain to the reader who grasps the concept of the elementary vector,
§ 11.3.7) no elementary vector can ever be a linear combination of other
elementary vectors alone! The linear combination which forms e2 evidently
includes a nonzero multiple of at least one of the remaining ak. At least
one of the βk2 attached to an ak (not β12, which is attached to e1) must be
nonzero. Therefore by the same reasoning as before, we now choose an ak
with a nonzero coefficient βk2 6= 0 and replace it by e2, obtaining an even
newer set of vectors like

{e1,a2,a3, e2,a5, . . . ,ar}.

This newer set addresses precisely the same space as the previous set, and
thus also as the original set.

And so it goes, replacing one ak by an ej at a time, until all the ak are
gone and our set has become

{e1, e2, e3, e4, e5, . . . , er},

which, as we have reasoned, addresses precisely the same space as did the
original set

{a1,a2,a3,a4,a5, . . . ,ar}.
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And this is the one, identical conclusion the maneuver of § 12.5.1 has de-
manded. All intermediate choices, by various paths licit and illicit, ul-
timately have led alike to the single conclusion of this paragraph, which
thereby is properly established.

Admittedly, such subtle logic may not be easy to discern. Here is an-
other, slightly different light by which to illuminate the question. Suppose
again that, by making exactly r replacements, we wish to convert the set

{a1,a2,a3,a4,a5, . . . ,ar}

into

{e1, e2, e3, e4, e5, . . . , er},
assuming again per § 12.4 that the several vectors ak of the original set,
taken together, address each of the elementary vectors ej , 1 ≤ j ≤ s, r < s.
Suppose further again that we wish per § 12.4 to convert the set without
altering the space the set addresses. To reach our goal, first we will put the
elementary vector e1 in the place of one of the several vectors ak, then we
will put e2 in the place of one of the remaining ak; and so on until, at last,
we put er in the place of the last remaining ak. We will give the several ej ,
1 ≤ j ≤ r, in their proper order but we might take the several ak in any
of r! distinct sequences: for instance, in the case that r = 3, we might take
the several ak in any of the 3! = 6 distinct sequences

(a1,a2,a3); (a1,a3,a2); (a2,a1,a3); (a2,a3,a1); (a3,a1,a2); (a3,a2,a1);

except however that we might (or might not) find certain sequences block-
aded in the event. Blockaded? Well, consider for example the sequence
(a2,a3,a1), and suppose that e1 = 0a1 + 4a2 − 2a3 and that e2 = 5a1 −
(1/2)e1 + 0a3 (noticing that the latter already has e1 on the right instead
of a2): in this case the sequence (a2,a3,a1) is blockaded—which is to say,
forbidden—because, once e1 has replaced a2, since e2 then contains none
of a3, e2 cannot according to § 12.4 replace a3. [Actually, in this example,
both sequences beginning (a1, . . .) are blockaded, too, because the turn of e1

comes first and, at that time, e1 contains none of a1.] Clear? No? Too many
subscripts? Well, there’s nothing for it: if you wish to understand then you
will simply have to trace all the subscripts out with your pencil; the example
cannot be made any simpler. Now, although some sequences might be block-
aded, no unblockaded sequence can run to a dead end, so to speak. After
each unblockaded replacement another replacement will always be possible.
The reason is as before: that, according to § 12.4, so long as each elementary
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vector ej in turn contains some of the vector it replaces, the replacement
cannot alter the space the set addresses; that the space by initial assump-
tion includes all the elementary vectors; that each elementary vector in turn
must therefore be found to contain at least one of the vectors then in the set;
that no elementary vector can be composed solely of other elementary vec-
tors; and, consequently, that each elementary vector in turn must be found
to contain at least one of the set’s then remaining ak. The logic though
slightly complicated is nonethemore escapable. The conclusion is that we
can indeed convert {a1,a2,a3,a4,a5, . . . ,ar} into {e1, e2, e3, e4, e5, . . . , er},
step by step, without altering the space addressed.

The conclusion leaves us with a problem, however. There remain more
ej , 1 ≤ j ≤ s, than there are ak, 1 ≤ k ≤ r, because, as we have stipulated,
r < s. Some elementary vectors ej , r < j ≤ s, are evidently left over. Back
at the beginning of the section, the claim (12.14) made was that

{a1,a2,a3,a4,a5, . . . ,ar}

together addressed each of the several elementary vectors ej . But as we
have seen, this amounts to a claim that

{e1, e2, e3, e4, e5, . . . , er}

together addressed each of the several elementary vectors ej . Plainly this
is impossible with respect to the left-over ej , r < j ≤ s. The contradiction
proves false the claim which gave rise to it. The false claim: that the
several ak, 1 ≤ k ≤ r, addressed all the ej , 1 ≤ j ≤ s, even when r < s.

Equation (12.13), which is just (12.12) written differently, asserts that B
is a column operator which does precisely what we have just shown impossi-
ble: to combine the r columns of AIr to yield the s columns of Is, the latter
of which are just the elementary vectors e1, e2, e3, e4, e5, . . . , es. Hence fi-
nally we conclude that no matrices A and B exist which satisfy (12.12) when
r < s. In other words, we conclude that although row and column operations
can demote identity matrices in rank, they can never promote them. The
promotion of identity matrices is impossible.

12.5.3 General matrix rank and its uniqueness

Step 8 of the Gauss-Jordan algorithm (§ 12.3.3) discovers a rank r for any
matrix A. One should like to think that this rank r were a definite property
of the matrix itself rather than some unreliable artifact of the algorithm,
but until now we have lacked the background theory to prove it. Now we
have the theory. Here is the proof.
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The proof begins with a formal definition of the quantity whose unique-
ness we are trying to prove.

• The rank r of an identity matrix Ir is the number of ones along its
main diagonal. (This is from § 11.3.5.)

• The rank r of a general matrix A is the rank of an identity matrix Ir
to which A can be reduced by reversible row and column operations.

Let the symbols B> and B< respectively represent the aforementioned re-
versible row and column operations:

B−1
> B> = I = B>B

−1
> ;

B−1
< B< = I = B<B

−1
< .

(12.15)

A matrix A has rank r if and only if row and column operations B> and B<
exist such that

B>AB< = Ir,

A = B−1
> IrB

−1
< .

(12.16)

The question is whether in (12.16) only a single rank r is possible.
To answer the question, we suppose that another rank were possible,

that A had not only rank r but also rank s. Then,

A = B−1
> IrB

−1
< ,

A = G−1
> IsG

−1
< .

Combining these equations,

B−1
> IrB

−1
< = G−1

> IsG
−1
< .

Solving first for Ir, then for Is,

(B>G
−1
> )Is(G

−1
< B<) = Ir,

(G>B
−1
> )Ir(B

−1
< G<) = Is.

Were it that r 6= s, then one of these two equations would constitute the
demotion of an identity matrix and the other, a promotion. But according
to § 12.5.2 and its (12.12), promotion is impossible. Therefore r 6= s is also
impossible, and

r = s

is guaranteed. No matrix has two different ranks. Matrix rank is unique.
This finding has two immediate implications:
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• Reversible row and/or column operations exist to change any matrix
of rank r to any other matrix of the same rank. The reason is that,
according to (12.16), (12.2) and (12.3), reversible operations exist to
change both matrices to Ir and back.

• No reversible operation can change a matrix’s rank.

The finding further suggests a conjecture:

• The matrices A, AT and A∗ share the same rank r.

The conjecture is proved by using (11.14) or (11.15) to compute the trans-
pose or adjoint of (12.16).

The discovery that every matrix has a single, unambiguous rank and the
establishment of a failproof algorithm—the Gauss-Jordan—to ascertain that
rank have not been easy to achieve, but they are important achievements
nonetheless, worth the effort thereto. The reason these achievements matter
is that the mere dimensionality of a matrix is a chimerical measure of the
matrix’s true size—as for instance for the 3× 3 example matrix at the head
of the section. Matrix rank by contrast is a solid, dependable measure. We
will rely on it often.

Section 12.5.8 comments further.

12.5.4 The full-rank matrix

According to (12.5), the rank r of a dimension-limited matrix (§ 11.3.1)—let
us refer to it as a matrix (just to reduce excess verbiage)—can exceed the
number neither of the matrix’s rows nor of its columns. The greatest rank
possible for an m × n matrix is the lesser of m and n. A full-rank matrix,
then, is defined to be an m × n matrix with rank r = m or r = n—or, if
m = n, both. A matrix of less than full rank is a degenerate matrix.

Consider a tall m × n matrix C, m ≥ n, one of whose n columns is a
linear combination (§ 12.1) of the others. One could by definition target the
dependent column with addition elementaries, using multiples of the other
columns to wipe the dependent column out. Having zeroed the dependent
column, one could then interchange it over to the matrix’s extreme right,
effectively throwing the column away, shrinking the matrix to m × (n − 1)
dimensionality. Shrinking the matrix necessarily also shrinks the bound on
the matrix’s rank to r ≤ n−1—which is to say, to r < n. But the shrinkage,
done by reversible column operations, is itself reversible, by which § 12.5.3
binds the rank of the original, m × n matrix C likewise to r < n. The
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matrix C, one of whose columns is a linear combination of the others, is
necessarily degenerate for this reason.

Now consider a tall matrix A with the same m × n dimensionality, but
with a full n independent columns. The transpose AT of such a matrix has
a full n independent rows. One of the conclusions of § 12.3.4 was that a
matrix of independent rows always has rank equal to the number of rows.
Since AT is such a matrix, its rank is a full r = n. But formally, what this
says is that there exist operators BT

< and BT
> such that In = BT

<A
TBT

>, the
transpose of which equation is B>AB< = In—which in turn says that not
only AT , but also A itself, has full rank r = n.

Parallel reasoning rules the rows and columns of broad matrices, m ≤ n,
of course. To square matrices, m = n, both lines of reasoning apply.

Gathering findings, we have that

• a tall m×n matrix, m ≥ n, has full rank if and only if its columns are
linearly independent;

• a broad m× n matrix, m ≤ n, has full rank if and only if its rows are
linearly independent;

• a square n× n matrix, m = n, has full rank if and only if its columns
and/or its rows are linearly independent; and

• a square matrix has both independent columns and independent rows,
or neither; never just one or the other.

To say that a matrix has full column rank is to say that it is tall or
square and has full rank r = n ≤ m. To say that a matrix has full row
rank is to say that it is broad or square and has full rank r = m ≤ n. Only
a square matrix can have full column rank and full row rank at the same
time, because a tall or broad matrix cannot but include, respectively, more
columns or more rows than Ir.

Observe incidentally that extended operators, which per § 11.3.2 define
their m× n active regions differently, have infinite rank.

12.5.5 Underdetermined and overdetermined linear systems
(introduction)

The last paragraph of § 12.5.4 provokes yet further terminology. A lin-
ear system Ax = b is underdetermined if A lacks full column rank—that
is, if r < n—because inasmuch as some of A’s columns then depend lin-
early on the others such a system maps multiple n-element vectors x to the
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same m-element vector b, meaning that knowledge of b does not suffice to
determine x uniquely. Complementarily, a linear system Ax = b is overde-
termined if A lacks full row rank—that is, if r < m. If A lacks both, then
the system is paradoxically both underdetermined and overdetermined and
is thereby degenerate. If A happily has both, then the system is exactly
determined.

Section 13.2 solves the exactly determined linear system. Section 13.4
solves the nonoverdetermined linear system. Section 13.6 analyzes the un-
solvable overdetermined linear system among others. Further generalities
await chapter 13; but, regarding the overdetermined system specifically, the
present subsection would observe at least the few following facts.

An overdetermined linear system Ax = b cannot have a solution for
every possible m-element driving vector b. The truth of this claim can be
seen by decomposing the system’s matrix A by Gauss-Jordan and then left-
multiplying the decomposed system by G−1

> to reach the form

IrG<x = G−1
> b.

If the m-element vector c ≡ G−1
> b, then IrG<x = c, which is impossible

unless the last m − r elements of c happen to be zero. But since G> is
invertible, each b corresponds to a unique c and vice versa; so, if b is an
unrestricted m-element vector then so also is c, which verifies the claim.

Complementarily, a nonoverdetermined linear system Ax = b does have
a solution for every possible m-element driving vector b. This is so because
in this case the last m − r elements of c do happen to be zero; or, better
stated, because c in this case has no nonzeros among its last m−r elements,
because it has no last m− r elements, for the trivial reason that r = m.

It is an analytical error, and an easy one innocently to commit, to require
that

Ax = b

for unrestricted b when A lacks full row rank. The error is easy to commit
because the equation looks right, because such an equation is indeed valid
over a broad domain of b and might very well have been written correctly in
that context, only not in the context of unrestricted b. Analysis including
such an error can lead to subtly absurd conclusions. It is never such an
analytical error however to require that

Ax = 0

because, whatever other solutions such a system might have, it has at least
the solution x = 0.
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12.5.6 The full-rank factorization

One sometimes finds dimension-limited matrices of less than full rank in-
convenient to handle. However, every dimension-limited, m × n matrix of
rank r can be expressed as the product of two full-rank matrices, one m× r
and the other r × n, both also of rank r:

A = BC. (12.17)

The truncated Gauss-Jordan (12.7) constitutes one such full-rank factoriza-
tion: B = ImG>Ir, C = IrG<In, good for any matrix. Other full-rank
factorizations are possible, however, including among others the truncated
Gram-Schmidt (13.58). The full-rank factorization is not unique.17

Of course, if an m×n matrix already has full rank r = m or r = n, then
the full-rank factorization is trivial: A = ImA or A = AIn.

Section 13.6.4 uses the full-rank factorization.

12.5.7 Full column rank and the Gauss-Jordan factors K
and S

The Gauss-Jordan decomposition (12.2),

A = PDLUIrKS,

of a tall or square m × n matrix A of full column rank r = n ≤ m always
finds the factor K = I, regardless of the pivots one chooses during the
Gauss-Jordan algorithm’s step 3. If one happens always to choose q = i as
pivot column then not only K = I but S = I, too.

That K = I is seen by the algorithm’s step 12, which creates K. Step 12
nulls the spare columns q > r that dress Ĩ’s right, but in this case Ĩ has
only r columns and therefore has no spare columns to null. Hence step 12
does nothing and K = I.

That S = I comes immediately of choosing q = i for pivot column dur-
ing each iterative instance of the algorithm’s step 3. But, one must ask, can
one choose so? What if column q = i were unusable? That is, what if the
only nonzero elements remaining in Ĩ’s ith column stood above the main
diagonal, unavailable for step 4 to bring to pivot? Well, were it so, then one
would indeed have to choose q 6= i to swap the unusable column away right-
ward, but see: nothing in the algorithm later fills such a column’s zeros with
anything else—they remain zeros—so swapping the column away rightward

17[11, § 3.3][102, “Moore-Penrose generalized inverse”]
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could only delay the crisis. The column would remain unusable. Eventually
the column would reappear on pivot when no usable column rightward re-
mained available to swap it with, which contrary to our assumption would
mean precisely that r < n. Such contradiction can only imply that if r = n
then no unusable column can ever appear. One need not swap. We con-
clude that though one might voluntarily choose q 6= i during the algorithm’s
step 3, the algorithm cannot force one to do so if r = n. Yet if one always
does choose q = i, as the full-column-rank matrix A evidently leaves one
free to do, then indeed S = I.

Theoretically, the Gauss-Jordan decomposition (12.2) includes the fac-
tors K and S precisely to handle matrices with more columns than rank.
Matrices of full column rank r = n, common in applications, by definition
have no such problem. Therefore, the Gauss-Jordan decomposition theoret-
ically needs no K or S for such matrices, which fact lets us abbreviate the
decomposition for such matrices to read

A = PDLUIn. (12.18)

Observe however that just because one theoretically can set S = I does
not mean that one actually should. The column permutor S exists to be
used, after all—especially numerically to avoid small pivots during early
invocations of the algorithm’s step 5. Equation (12.18) is not mandatory
but optional for a matrix A of full column rank (though still r = n and thus
K = I for such a matrix, even when the unabbreviated eqn. 12.2 is used).
There are however times when it is nice to know that one theoretically could,
if doing exact arithmetic, set S = I if one wanted to.

Since PDLU acts as a row operator, (12.18) implies that each row of the
square, n × n matrix A whose rank r = n is full lies in the space the rows
of In address. This is obvious and boring, but interesting is the converse
implication of (12.18)’s complementary form,

U−1L−1D−1P−1A = In,

that each row of In lies in the space the rows of A address. The rows of In
and the rows of A evidently address the same space. One can moreover say
the same of A’s columns since, according to § 12.5.3, AT has full rank just
as A does. In the whole, if a matrix A is square and has full rank r = n,
then A’s columns together, A’s rows together, In’s columns together and In’s
rows together each address the same, complete n-dimensional space.
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12.5.8 The significance of rank uniqueness

The result of § 12.5.3, that matrix rank is unique, is an extremely important
matrix theorem. It constitutes the chapter’s chief result, which we have
spent so many pages to attain. Without this theorem, the very concept
of matrix rank must remain in doubt, along with all that attends to the
concept. The theorem is the rock upon which the general theory of the
matrix is built.

The concept underlying the theorem promotes the useful sensibility that
a matrix’s rank, much more than its mere dimensionality or the extent of its
active region, represents the matrix’s true size. Dimensionality can deceive,
after all. For example, the honest 2× 2 matrix[

5 1
3 6

]
has two independent rows or, alternately, two independent columns, and,
hence, rank r = 2. One can easily construct a phony 3 × 3 matrix from
the honest 2 × 2, however, simply by applying some 3 × 3 row and column
elementaries:

T(2/3)[32]

[
5 1
3 6

]
T1[13]T1[23] =

 5 1 6
3 6 9
2 4 6

.
The 3 × 3 matrix on the equation’s right is the one we met at the head
of the section. It looks like a rank-three matrix, but really has only two
independent columns and two independent rows. Its true rank is r = 2. We
have here caught a matrix impostor pretending to be bigger than it really
is.18

Now, admittedly, adjectives like “honest” and “phony,” terms like “im-
poster,” are a bit hyperbolic. The last paragraph has used them to convey

18An applied mathematician with some matrix experience actually probably recognizes
this particular 3 × 3 matrix as a fraud on sight, but it is a very simple example. No one
can just look at some arbitrary matrix and instantly perceive its true rank. Consider for
instance the 5× 5 matrix (in hexadecimal notation)

12 9 3 1 0
3
2

F
2

15
2

2 12
D 9 −19 −E

3
−6

−2 0 6 1 5
1 −4 4 1 −8

.
As the reader can verify by the Gauss-Jordan algorithm, the matrix’s rank is not r = 5
but r = 4.
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the subjective sense of the matter, but of course there is nothing mathemat-
ically improper or illegal about a matrix of less than full rank so long as the
true rank is correctly recognized. When one models a physical phenomenon
by a set of equations, one sometimes is dismayed to discover that one of the
equations, thought to be independent, is really just a useless combination
of the others. This can happen in matrix work, too. The rank of a matrix
helps one to recognize how many truly independent vectors, dimensions or
equations one actually has available to work with, rather than how many
seem available at first glance. Such is the sense of matrix rank.
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Chapter 13

Inversion and
orthonormalization

The undeniably tedious chapters 11 and 12 have piled the matrix theory
deep while affording scant practical reward. Building upon the two tedious
chapters, this chapter brings the first rewarding matrix work.

One might be forgiven for forgetting after so many pages of abstract the-
ory that the matrix afforded any reward or had any use at all. Uses however
it has. Sections 11.1.1 and 12.5.5 have already broached1 the matrix’s most
basic use, the primary subject of this chapter, to represent a system of m
linear scalar equations in n unknowns neatly as

Ax = b

and to solve the whole system at once by inverting the matrix A that char-
acterizes it.

Now, before we go on, we want to confess that such a use alone, on
the surface of it—though interesting—might not have justified the whole
uncomfortable bulk of chapters 11 and 12. We already knew how to solve a
simultaneous system of linear scalar equations in principle without recourse
to the formality of a matrix, after all, as in the last step to derive (3.9) as
far back as chapter 3. Why should we have suffered two bulky chapters, if
only to prepare to do here something we already knew how to do?

The question is a fair one, but admits at least four answers. First,
the matrix neatly solves a linear system not only for a particular driving
vector b but for all possible driving vectors b at one stroke, as this chapter

1The reader who has skipped chapter 12 might at least review § 12.5.5.

373
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explains. Second and yet more impressively, the matrix allows § 13.6 to
introduce the pseudoinverse to approximate the solution to an unsolvable
linear system and, moreover, to do so both optimally and efficiently, whereas
such overdetermined systems arise commonly in applications. Third, to solve
the linear system neatly is only the primary and most straightforward use
of the matrix, not its only use: the even more interesting eigenvalue and its
incidents await chapter 14. Fourth, specific applications aside, one should
never underestimate the blunt practical benefit of reducing an arbitrarily
large grid of scalars to a single symbol A, which one can then manipulate by
known algebraic rules. Most students first learning the matrix have probably
wondered at this stage whether it were worth all the tedium; so, if the reader
now wonders, then he stands in good company. The matrix finally begins
to show its worth here.

The chapter opens in § 13.1 by inverting the square matrix to solve the
exactly determined, n× n linear system in § 13.2. It continues in § 13.3 by
computing the rectangular matrix’s kernel to solve the nonoverdetermined,
m× n linear system in § 13.4. In § 13.6, it brings forth the aforementioned
pseudoinverse, which rightly approximates the solution to the unsolvable
overdetermined linear system. After briefly revisiting the Newton-Raphson
iteration in § 13.7, it concludes by introducing the concept and practice of
vector orthonormalization in §§ 13.8 through 13.12.

13.1 Inverting the square matrix

Consider an n×n square matrix A of full rank r = n. Suppose that extended
operators G>, G<, G−1

> and G−1
< can be found, each with an n × n active
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region (§ 11.3.2), such that2

G−1
> G> = I = G>G

−1
> ,

G−1
< G< = I = G<G

−1
< ,

A = G>InG<.

(13.1)

Observing from (11.31) that

InA = A = AIn,

InG
−1
< G−1

> = G−1
< InG

−1
> = G−1

< G−1
> In,

we find by successive steps that

A = G>InG<,

InA = G>G<In,

G−1
< G−1

> InA = In,

(G−1
< InG

−1
> )(A) = In;

2The symbology and associated terminology might disorient a reader who had skipped
chapters 11 and 12. In this book, the symbol I theoretically represents an∞×∞ identity
matrix. Outside the m × m or n × n square, the operators G> and G< each resemble
the ∞×∞ identity matrix I, which means that the operators affect respectively only the
first m rows or n columns of the thing they operate on. (In the present section it happens
that m = n because the matrix A of interest is square, but this footnote uses both symbols
because generally m 6= n.)

The symbol Ir contrarily represents an identity matrix of only r ones, though it too
can be viewed as an ∞×∞ matrix with zeros in the unused regions. If interpreted as
an ∞×∞ matrix, the matrix A of the m × n system Ax = b has nonzero content only
within the m× n rectangle.

None of this is complicated, really. Its purpose is merely to separate the essential features
of a reversible operation like G> or G< from the dimensionality of the vector or matrix on
which the operation happens to operate. The definitions do however necessarily, slightly
diverge from definitions the reader may have been used to seeing in other books. In this
book, one can legally multiply any two matrices, because all matrices are theoretically
∞×∞, anyway (though whether it makes any sense in a given circumstance to multiply
mismatched matrices is another question; sometimes it does make sense, as in eqns. 13.25
and 14.50, but more often it does not—which naturally is why the other books tend to
forbid such multiplication).

To the extent that the definitions confuse, the reader might briefly review the earlier
chapters, especially § 11.3.
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or alternately that

A = G>InG<,

AIn = InG>G<,

AInG
−1
< G−1

> = In,

(A)(G−1
< InG

−1
> ) = In.

Either way, we have that

A−1A = In = AA−1,

A−1 ≡ G−1
< InG

−1
> .

(13.2)

Of course, for this to work, G>, G<, G−1
> and G−1

< must exist, be known
and honor n× n active regions, which might seem a practical hurdle. How-
ever, (12.2), (12.3) and the body of § 12.3 have shown exactly how to find
just such a G>, G<, G−1

> and G−1
< for any square matrix A of full rank,

without exception; so, there is no trouble here. The factors do exist, and
indeed we know how to find them.

Equation (13.2) features the important matrix A−1, the rank-n inverse
of A.

We have not yet much studied the rank-n inverse, but have at least de-
fined it in (11.49), where we gave it the fuller, nonstandard notation A−1(n).
When naming the rank-n inverse in words one usually says simply, “the in-
verse,” because the rank is implied by the size of the square active region
of the matrix inverted; but the rank-n inverse from (11.49) is not quite the
infinite-dimensional inverse from (11.45), which is what G−1

> and G−1
< are.

According to (13.2), the product of A−1 and A—or, written more fully, the
product of A−1(n) and A—is, not I, but In.

Properties that emerge from (13.2) include the following.

• Like A, the rank-n inverse A−1 (more fully written as A−1(n)) too is
an n× n square matrix of full rank r = n.

• Since A is square and has full rank (§ 12.5.4), its rows and, separately,
its columns are linearly independent, so it has only the one, unique
inverse A−1. No other rank-n inverse of A exists.

• On the other hand, inasmuch as A is square and has full rank, it does
per (13.2) indeed have an inverse A−1. The rank-n inverse exists.

• If B = A−1 then B−1 = A. That is, A is itself the rank-n inverse
of A−1. The matrices A and A−1 thus form an exclusive, reciprocal
pair.
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• If B is an n× n square matrix and either BA = In or AB = In, then
both equalities in fact hold; thus, B = A−1. One can have neither
equality without the other.

• Only a square, n × n matrix of full rank r = n has a rank-n inverse.
A matrix A′ which is not square, or whose rank falls short of a full
r = n, is not invertible in the rank-n sense of (13.2).

That A−1 is an n × n square matrix of full rank and that A is itself the
inverse of A−1 proceed from the definition (13.2) of A−1 plus § 12.5.3’s find-
ing that reversible operations like G−1

> and G−1
< cannot change In’s rank.

That the inverse exists is plain, inasmuch as the Gauss-Jordan decompo-
sition plus (13.2) reliably calculate it. That the inverse is unique begins
from § 12.5.4’s observation that the columns (like the rows) of A are lin-
early independent because A is square and has full rank. From this begin-
ning and the fact that In = AA−1, it follows that [A−1]∗1 represents3 the
one and only possible combination of A’s columns which achieves e1, that
[A−1]∗2 represents the one and only possible combination of A’s columns
which achieves e2, and so on through en. One could observe likewise re-
specting the independent rows of A. Either way, A−1 is unique. Moreover,
no other n× n matrix B 6= A−1 satisfies either requirement of (13.2)—that
BA = In or that AB = In—much less both.

It is not claimed that the matrix factors G> and G< themselves are
unique, incidentally. On the contrary, many different pairs of matrix fac-
tors G> and G< can yield A = G>InG<, no less than that many different
pairs of scalar factors γ> and γ< can yield α = γ>1γ<. Though the Gauss-
Jordan decomposition is a convenient means to G> and G<, it is hardly the
only means, and any proper G> and G< found by any means will serve so
long as they satisfy (13.1). What are unique are not the factors but the A
and A−1 they produce.

What of the degenerate n × n square matrix A′, of rank r < n? Rank
promotion is impossible as §§ 12.5.2 and 12.5.3 have shown, so in the sense
of (13.2) such a matrix has no inverse; for, if it had, then A′−1 would by def-
inition represent a row or column operation which impossibly promoted A′

to the full rank r = n of In. Indeed, in that it has no inverse such a degen-
erate matrix resembles the scalar 0, which has no reciprocal. Mathematical
convention owns a special name for a square matrix which is degenerate and
thus has no inverse; it calls it a singular matrix.

3The notation [A−1]∗j means “the jth column of A−1.” Refer to § 11.1.3.
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And what of a rectangular matrix? Is it degenerate? Well, no, not
exactly, not necessarily. The definitions of the present particular section
are meant for square matrices; they do not neatly apply to nonsquare ones.
Refer to §§ 12.5.3 and 12.5.4. However, appending the right number of
null rows or columns to a nonsquare matrix does turn it into a degenerate
square, in which case the preceding argument applies. See also §§ 12.5.5,
13.4 and 13.6.

13.2 The exactly determined linear system

Section 11.1.1 has shown how the single matrix equation

Ax = b (13.3)

concisely represents an entire simultaneous system of linear scalar equa-
tions. If the system has n scalar equations and n scalar unknowns, then
the matrix A has square, n× n dimensionality. Furthermore, if the n scalar
equations are independent of one another, then the rows of A are similarly
independent, which gives A full rank and makes it invertible. Under these
conditions, one can solve (13.3) and the corresponding system of linear scalar
equations by left-multiplying (13.3) by the A−1 of (13.2) and (13.1) to reach
the famous formula

x = A−1b. (13.4)

Inverting the square matrix A of scalar coefficients, (13.4) concisely solves
a simultaneous system of n linear scalar equations in n scalar unknowns. It
is the classic motivational result of matrix theory.

It has taken the book two long chapters to reach (13.4). If one omits
first to prepare the theoretical ground sufficiently to support more advanced
matrix work, then one can indeed reach (13.4) with rather less effort than
the book has done.4 As the chapter’s introduction has observed, however, we

4For motivational reasons, introductory, tutorial linear algebra textbooks like [61]
and [83] rightly yet invariably invert the general square matrix of full rank much earlier,
reaching (13.4) with less effort. The deferred price the student pays for the simpler-seeming
approach of the tutorials is twofold. First, the student fails to develop the Gauss-Jordan
decomposition properly, instead learning the less elegant but easier to grasp “row echelon
form” of “Gaussian elimination” [61, chapter 1][83, § 1.2]—which makes good matrix-
arithmetic drill but leaves the student imperfectly prepared when the time comes to study
kernels and eigensolutions or to read and write matrix-handling computer code. Second,
in the long run the tutorials save no effort, because the student still must at some point
develop the theory underlying matrix rank and supporting each of the several cöıncident
properties of § 14.2. What the tutorials do is pedagogically necessary—it is how the
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shall soon meet additional interesting applications of the matrix which in any
case require the theoretical ground to have been prepared. Equation (13.4)
is only the first fruit of the effort.

Where the inverse does not exist, where the square matrix A is singu-
lar, the rows of the matrix are linearly dependent, meaning that the cor-
responding system actually contains fewer than n useful scalar equations.
Depending on the value of the driving vector b, the superfluous equations
either merely reproduce or flatly contradict information the other equations
already supply. Either way, no unique solution to a linear system described
by a singular square matrix is possible—though a good approximate solu-
tion is given by the pseudoinverse of § 13.6. In the language of § 12.5.5, the
singular square matrix characterizes a system that is both underdetermined
and overdetermined, and thus degenerate.

13.3 The kernel

If a matrix A has full column rank (§ 12.5.4), then the columns of A are
linearly independent and

Ax = 0 (13.5)

is impossible if Inx 6= 0. If the matrix however lacks full column rank
then (13.5) is possible even if Inx 6= 0. In either case, any n-element x
(including x = 0) that satisfies (13.5) belongs to the kernel of A.

Let A be an m× n matrix of rank r. A second matrix,5 AK , minimally
represents the kernel of A if and only if

• AK has n × (n − r) dimensionality (which gives AK tall rectangular
form unless r = 0),

writer first learned the matrix and probably how the reader first learned it, too—but it is
appropriate to a tutorial, not to a study reference like this book.

In this book, where derivations prevail, the proper place to invert the general square
matrix of full rank is here. Indeed, the inversion here goes smoothly, because chapters 11
and 12 have laid under it a firm foundation upon which—and supplied it the right tools
with which—to work.

5The conventional mathematical notation for the kernel of A is ker{A}, null{A} or
something nearly resembling one of the two—the notation seems to vary from editor
to editor—which technically represent the kernel space itself, as opposed to the nota-
tion AK which represents a matrix whose columns address the kernel space. This book
deëmphasizes the distinction and prefers the kernel matrix notation AK .

If we were really precise, we might write not AK but AK(n) to match the A−1(r)

of (11.49). The abbreviated notation AK is probably clear enough for most practical
purposes, though, and surely more comprehensible to those who do not happen to have
read this particular book.
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• AK has full rank n− r (that is, the columns of AK are linearly inde-
pendent, which gives AK full column rank), and

• AK satisfies the equation
AAK = 0. (13.6)

The n−r independent columns of the kernel matrix AK address the complete
space x = AKa of vectors in the kernel, where the (n− r)-element vector a
can have any value. In symbols,

Ax = A(AKa) = (AAK)a = 0.

The definition does not pretend that the kernel matrix AK is unique.
Except when A has full column rank the kernel matrix is not unique; there
are infinitely many kernel matrices AK to choose from for a given matrix A.
What is unique is not the kernel matrix but rather the space its columns
address, and it is the latter space rather than AK as such that is technically
the kernel (if you forget and call AK “a kernel,” though, you’ll be all right).

The Gauss-Jordan kernel formula6

AK = S−1K−1HrIn−r = G−1
< HrIn−r (13.7)

gives a complete kernel AK of A, where S−1, K−1 and G−1
< are the factors

their respective symbols indicate of the Gauss-Jordan decomposition’s com-
plementary form (12.3) and Hr is the shift operator of § 11.9. Section 13.3.1
derives the formula, next.

13.3.1 The Gauss-Jordan kernel formula

To derive (13.7) is not easy. It begins from the statement of the linear
system

Ax = b, where b = 0 or r = m, or both; (13.8)

and where b and x are respectively m- and n-element vectors and A is an
m× n matrix of rank r. This statement is broader than (13.5) requires but
it serves § 13.4, too; so, for the moment, for generality’s sake, we leave b un-
specified but by the given proviso. Gauss-Jordan factoring A, by successive
steps,

G>IrKSx = b,

IrKSx = G−1
> b,

Ir(K − I)Sx + IrSx = G−1
> b.

6The name Gauss-Jordan kernel formula is not standard as far as the writer is aware,
but we would like a name for (13.7). This name seems as fitting as any.
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Applying an identity from Table 12.2 on page 352,

IrK(In − Ir)Sx + IrSx = G−1
> b.

Rearranging terms,

IrSx = G−1
> b− IrK(In − Ir)Sx. (13.9)

Equation (13.9) is interesting. It has Sx on both sides, where Sx is
the vector x with elements reordered in some particular way. The equation
has however on the left only IrSx, which is the first r elements of Sx; and
on the right only (In − Ir)Sx, which is the remaining n − r elements.7 No
element of Sx appears on both sides. Naturally this is no accident; we have
(probably after some trial and error not recorded here) planned the steps
leading to (13.9) to achieve precisely this effect. Equation (13.9) implies that
one can choose the last n− r elements of Sx freely, but that the choice then
determines the first r elements.

The implication is significant. To express the implication more clearly
we can rewrite (13.9) in the improved form

f = G−1
> b− IrKHra,

Sx =

[
f
a

]
= f +Hra,

f ≡ IrSx,

a ≡ H−r(In − Ir)Sx,

(13.10)

where a represents the n − r free elements of Sx and f represents the r
dependent elements. This makes f and thereby also x functions of the free
parameter a and the driving vector b:

f(a,b) = G−1
> b− IrKHra,

Sx(a,b) =

[
f(a,b)

a

]
= f(a,b) +Hra.

(13.11)

If b = 0 as (13.5) requires, then

f(a, 0) = −IrKHra,

Sx(a, 0) =

[
f(a, 0)

a

]
= f(a, 0) +Hra.

7Notice how we now associate the factor (In−Ir) rightward as a row truncator, though
it had first entered acting leftward as a column truncator. The flexibility to reassociate
operators in such a way is one of many good reasons chapters 11 and 12 have gone to such
considerable trouble to develop the basic theory of the matrix.
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Substituting the first line into the second,

Sx(a, 0) = (I − IrK)Hra. (13.12)

In the event that a = ej , where 1 ≤ j ≤ n− r,

Sx(ej , 0) = (I − IrK)Hrej .

For all the ej at once,

Sx(In−r, 0) = (I − IrK)HrIn−r.

But if all the ej at once—that is, if all the columns of In−r—exactly address
the domain of a, then the columns of x(In−r, 0) likewise exactly address
the range of x(a, 0). Equation (13.6) has already named this range AK , by
which8

SAK = (I − IrK)HrIn−r. (13.13)

Left-multiplying by

S−1 = S∗ = ST (13.14)

produces the alternate kernel formula

AK = S−1(I − IrK)HrIn−r. (13.15)

8These are difficult steps. How does one justify replacing a by ej , then ej by In−r,
then x by AK? One justifies them in that the columns of In−r are the several ej , of which
any (n− r)-element vector a can be constructed as the linear combination

a = In−ra = [ e1 e2 e3 · · · en−r ]a =

n−r∑
j=1

ajej

weighted by the elements of a. Seen from one perspective, this seems trivial; from another
perspective, baffling; until one grasps what is really going on here.

The idea is that if we can solve the problem for each elementary vector ej—that is,
in aggregate, if we can solve the problem for the identity matrix In−r—then we shall
implicitly have solved it for every a because a is a weighted combination of the ej and the
whole problem is linear. The solution

x = AKa

for a given choice of a becomes a weighted combination of the solutions for each ej , with
the elements of a again as the weights. And what are the solutions for each ej? Answer:
the corresponding columns of AK , which by definition are the independent values of x
that cause b = 0.
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The alternate kernel formula (13.15) is correct but not as simple as it
could be. By the identity (11.76), eqn. (13.13) is

SAK = (I − IrK)(In − Ir)Hr

= [(In − Ir)− IrK(In − Ir)]Hr

= [(In − Ir)− (K − I)]Hr, (13.16)

where we have used Table 12.2 again in the last step. How to proceed
symbolically from (13.16) is not obvious, but if one sketches the matrices
of (13.16) schematically with a pencil, and if one remembers that K−1 is
just K with elements off the main diagonal negated, then it appears that

SAK = K−1HrIn−r. (13.17)

The appearance is not entirely convincing,9 but (13.17) though unproven still
helps because it posits a hypothesis toward which to target the analysis.

Two variations on the identities of Table 12.2 also help. First, from the
identity that

K +K−1

2
= I,

we have that
K − I = I −K−1. (13.18)

Second, right-multiplying by Ir the identity that

IrK
−1(In − Ir) = K−1 − I

and canceling terms, we have that

K−1Ir = Ir (13.19)

(which actually is pretty obvious if you think about it, since all of K’s
interesting content lies by construction right of its rth column). Now we
have enough to go on with. Substituting (13.18) and (13.19) into (13.16)
yields that

SAK = [(In −K−1Ir)− (I −K−1)]Hr.

Adding 0 = K−1InHr −K−1InHr and rearranging terms,

SAK = K−1(In − Ir)Hr + [K−1 −K−1In − I + In]Hr.

9Well, no, actually, the appearance pretty much is entirely convincing, but let us finish
the proof symbolically nonetheless.
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Factoring,

SAK = K−1(In − Ir)Hr + [(K−1 − I)(I − In)]Hr.

According to Table 12.2, the quantity in square brackets is zero, so

SAK = K−1(In − Ir)Hr,

which, considering that the identity (11.76) has that (In− Ir)Hr = HrIn−r,
proves (13.17). The final step is to left-multiply (13.17) by S−1 = S∗ = ST ,
reaching (13.7) that was to be derived.

One would like to feel sure that the columns of (13.7)’s AK actually
addressed the whole kernel space of A rather than only part. One would
further like to feel sure that AK had no redundant columns; that is, that it
had full rank. Moreover, the definition of AK in the section’s introduction
demands both of these features. In general such features would be hard
to establish, but here the factors conveniently are Gauss-Jordan factors.
Regarding the whole kernel space, AK addresses it because AK comes from
all a. Regarding redundancy, AK lacks it because SAK lacks it, and SAK

lacks it because according to (13.13) the last rows of SAK are HrIn−r. So,
in fact, (13.7) has both features and does fit the definition.

13.3.2 Converting between kernel matrices

If C is a reversible (n−r)×(n−r) operator by which we right-multiply (13.6),
then the matrix

A′K = AKC (13.20)

like AK evidently represents the kernel of A:

AA′K = A(AKC) = (AAK)C = 0.

Indeed this makes sense: because the columns of AKC address the same
space the columns of AK address, the two matrices necessarily represent the
same underlying kernel. Moreover, some C exists to convert AK into every
alternate kernel matrix A′K of A. We know this because § 12.4 lets one
replace the columns of AK with those of A′K , reversibly, one column at a
time, without altering the space addressed. (It might not let one replace the
columns in sequence, but if out of sequence then a reversible permutation
at the end corrects the order. Refer to §§ 12.5.1 and 12.5.2 for the pattern
by which this is done.)

The orthonormalizing column operator R−1 of (13.56) below incidentally
tends to make a good choice for C.
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13.3.3 The degree of freedom

A slightly vague but extraordinarily useful concept has emerged in this sec-
tion, worth pausing briefly to appreciate. The concept is the concept of the
degree of freedom.

A degree of freedom is a parameter one remains free to determine within
some continuous domain. For example, Napoleon’s artillerist10 might have
enjoyed as many as six degrees of freedom in firing a cannonball: two in
where he chose to set up his cannon (one degree in north-south position, one
in east-west); two in aim (azimuth and elevation); one in muzzle velocity (as
governed by the quantity of gunpowder used to propel the ball); and one
in time. A seventh potential degree of freedom, the height from which the
artillerist fires, is of course restricted by the lay of the land: the artillerist
can fire from a high place only if the place he has chosen to fire from happens
to be up on a hill, for Napoleon had no flying cannon. Yet even among the
six remaining degrees of freedom, the artillerist might find some impractical
to exercise. The artillerist probably preloads the cannon always with a
standard charge of gunpowder because, when he finds his target in the field,
he cannot spare the time to unload the cannon and alter the charge: this
costs one degree of freedom. Likewise, the artillerist must limber up the
cannon and hitch it to a horse to shift it to better ground; for this too
he cannot spare time in the heat of battle: this costs two degrees. And
Napoleon might yell, “Fire!” canceling the time degree as well. Two degrees
of freedom remain to the artillerist; but, since exactly two degrees are needed
to hit some particular target on the battlefield, the two are enough.

Now consider what happens if the artillerist loses one of his last two
remaining degrees of freedom. Maybe the cannon’s carriage wheel is broken
and the artillerist can no longer turn the cannon; that is, he can still choose
firing elevation but no longer azimuth. In such a strait to hit some particular
target on the battlefield, the artillerist needs somehow to recover another
degree of freedom, for he needs two but has only one. If he disregards
Napoleon’s order, “Fire!” (maybe not a wise thing to do, but, anyway, . . . )
and waits for the target to traverse the cannon’s fixed line of fire, then he
can still hope to hit even with the broken carriage wheel; for could he choose
neither azimuth nor the moment to fire, then he would almost surely miss.

Some apparent degrees of freedom are not real. For example, muzzle
velocity gives the artillerist little control firing elevation does not also give.

10The author, who has never fired an artillery piece (unless an arrow from a Boy Scout
bow counts), invites any real artillerist among the readership to write in to improve the
example.
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Other degrees of freedom are nonlinear in effect: a certain firing elevation
gives maximum range; nearer targets can be hit by firing either higher or
lower at the artillerist’s discretion. On the other hand, too much gunpowder
might break the cannon.

All of this is hard to generalize in unambiguous mathematical terms,
but the count of the degrees of freedom in a system is of high conceptual
importance to the engineer nonetheless. Basically, the count captures the
idea that to control n output variables of some system takes at least n in-
dependent input variables. The n may possibly for various reasons still not
suffice—it might be wise in some cases to allow n + 1 or n + 2—but in no
event will fewer than n do. Engineers of all kinds think in this way: an
aeronautical engineer knows in advance that an airplane needs at least n
ailerons, rudders and other control surfaces for the pilot adequately to con-
trol the airplane; an electrical engineer knows in advance that a circuit needs
at least n potentiometers for the technician adequately to tune the circuit;
and so on.

In geometry, a line brings a single degree of freedom. A plane brings
two. A point brings none. If the line bends and turns like a mountain
road, it still brings a single degree of freedom. And if the road reaches
an intersection? Answer: still one degree. A degree of freedom has some
continuous nature, not merely a discrete choice to turn left or right. On
the other hand, a swimmer in a swimming pool enjoys three degrees of
freedom (up-down, north-south, east-west) even though his domain in any
of the three is limited to the small volume of the pool. The driver on the
mountain road cannot claim a second degree of freedom at the mountain
intersection (he can indeed claim a choice, but the choice being discrete
lacks the proper character of a degree of freedom), but he might plausibly
claim a second degree of freedom upon reaching the city, where the web or
grid of streets is dense enough to approximate access to any point on the
city’s surface. Just how many streets it takes to turn the driver’s “line”
experience into a “plane” experience is a matter for the mathematician’s
discretion.

Reviewing (13.11), we find n−r degrees of freedom in the general under-
determined linear system, represented by the n− r free elements of a. If the
underdetermined system is not also overdetermined, if it is nondegenerate
such that r = m, then it is guaranteed to have a family of solutions x. This
family is the topic of the next section.
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13.4 The nonoverdetermined linear system

The exactly determined linear system of § 13.2 is common, but also common
is the more general, nonoverdetermined linear system

Ax = b, (13.21)

in which b is a known, m-element vector; x is an unknown, n-element vector;
and A is a square or broad, m× n matrix of full row rank (§ 12.5.4)

r = m ≤ n. (13.22)

Except in the exactly determined edge case r = m = n of § 13.2, the
nonoverdetermined linear system has no unique solution but rather a family
of solutions. This section delineates the family.

13.4.1 Particular and homogeneous solutions

The nonoverdetermined linear system (13.21) by definition admits more than
one solution x for a given driving vector b. Such a system is hard to solve
all at once, though, so we prefer to split the system as

Ax1 = b,

A(AKa) = 0,

x = x1 +AKa,

(13.23)

which, when the second line is added to the first and the third is substi-
tuted, makes the whole form (13.21). Splitting the system does not change
it but does let us treat the system’s first and second lines in (13.23) sepa-
rately. In the split form, the symbol x1 represents any one n-element vector
that happens to satisfy the form’s first line—many are possible; the mathe-
matician just picks one—and is called a particular solution of (13.21). The
(n − r)-element vector a remains unspecified, whereupon AKa represents
the complete family of n-element vectors that satisfy the form’s second line.
The family of vectors expressible as AKa is called the homogeneous solution
of (13.21).

Notice the italicized articles a and the.
The Gauss-Jordan kernel formula (13.7) has given us AK and thereby

the homogeneous solution, which renders the analysis of (13.21) already half
done. To complete the analysis, it remains in § 13.4.2 to find a particular
solution.
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13.4.2 A particular solution

Any particular solution will do. Equation (13.11) has that

f(a,b) = G−1
> b− IrKHra,

(S)
[
x1(a,b) +AKa

]
=

[
f(a,b)

a

]
= f(a,b) +Hra,

where we have substituted the last line of (13.23) for x. This holds for any a
and b. We are not free to choose the driving vector b, but since we need
only one particular solution, a can be anything we want. Why not

a = 0?

Then

f(0,b) = G−1
> b,

Sx1(0,b) =

[
f(0,b)

0

]
= f(0,b).

That is,

x1 = S−1G−1
> b. (13.24)

13.4.3 The general solution

Assembling (13.7), (13.23) and (13.24) in light of (12.3) yields the general
solution

x = S−1(G−1
> b +K−1HrIn−ra) (13.25)

to the nonoverdetermined linear system (13.21).

In exact arithmetic (13.25) solves the nonoverdetermined linear system
in theory exactly. Therefore (13.25) properly concludes the section. Never-
theless, one should like to add a significant practical observation regarding
inexact arithmetic as follows.

Practical calculations are usually done in inexact arithmetic insofar as
they are done in the limited precision of a computer’s floating-point regis-
ters. Exceptions are possible—exact-arithmetic libraries are available for a
programmer to call—but exact-arithmetic libraries are slow and memory-
intensive and, for this reason among others, are only occasionally used in
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practice. When they are not used, compounded rounding error in a floating-
point register’s last bit of mantissa11 eventually disrupts (13.25) for matrices
larger than some moderately large size. Avoiding unduly small pivots early
in the Gauss-Jordan extends (13.25)’s reach to larger matrices, and for yet
larger matrices a bewildering variety of more sophisticated techniques exists
to mitigate the problem, which can be vexing because the problem arises
even when the matrix A is exactly known.

Equation (13.25) is thus useful and correct, but one should at least be
aware that it can in practice lose floating-point accuracy when the matrix it
attacks grows too large. (It can also lose accuracy when the matrix’s rows
are almost dependent, but that is more the fault of the matrix than of the
formula. See § 14.8, which addresses a related problem.)

13.5 The residual

Equations (13.2) and (13.4) solve the exactly determined linear system
Ax = b. Equation (13.25) broadens the solution to include the nonoverde-
termined linear system. None of those equations however can handle the
overdetermined linear system, because for general b the overdetermined lin-
ear system

Ax ≈ b (13.26)

has no exact solution. (See § 12.5.5 for the definitions of underdetermined,
overdetermined, etc.)

One is tempted to declare the overdetermined system uninteresting be-
cause it has no solution and to leave the matter there, but this would be a
serious mistake. In fact the overdetermined system is especially interesting,
and the more so because it arises so frequently in applications. One seldom

11What is a mantissa? Illustration: in the number 1.65 × 106, the mantissa is 1.65.
However, computers do it in binary rather than in decimal, typically with fifty-two (0x34)
stored bits of mantissa not counting the leading bit which, in binary, is not stored be-
cause it is always 1. (There exist implementational details like floating-point “denormals”
which might seem pedantically to contradict the always-1 rule, but that is a computer-
engineering technicality uninteresting in the context of the present discussion. What might
be interesting in the present context is this: a standard double-precision floating-point rep-
resentation has—besides fifty-two bits of mantissa—also eleven, 0xB, bits for an exponent
and one bit for a sign. The smallest positive number representable without denormaliza-
tion is 2−0x3FE; the largest is 0x1.FFFF FFFF FFFF F× 20x3FF, just less than 20x400. If
the code for a full 20x400 is entered, then that is held to represent infinity. Similarly, the
code for 2−0x3FF represents zero. If you think that the code for 2−0x400 should instead
represent zero, no such code can actually be entered, for the exponent’s representation is
offset by one; and there are many other details beyond the book’s scope.)
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trusts a minimal set of data for important measurements, yet extra data
imply an overdetermined system. We need to develop the mathematics to
handle the overdetermined system properly.

The quantity12,13

r(x) ≡ b−Ax (13.27)

measures how nearly some candidate solution x solves the system (13.26).
We call this quantity the residual, and the smaller, the better. More pre-
cisely, the smaller the nonnegative real scalar

[r(x)]∗[r(x)] =
∑

i

|ri(x)|2 (13.28)

is, called the squared residual norm, the more favorably we regard the can-
didate solution x.

13.6 The Moore-Penrose pseudoinverse and the
least-squares problem

A typical problem is to fit a straight line to some data. For example, suppose
that we are building-construction contractors with a unionized work force,
whose labor union can supply additional, fully trained labor on demand.
Suppose further that we are contracted to build a long freeway and have
been adding workers to the job in recent weeks to speed construction. On
Saturday morning at the end of the second week, we gather and plot the
production data on the left of Fig. 13.1. If ui and bi respectively represent
the number of workers and the length of freeway completed during week i,
then we can fit a straight line b = σu+ γ to the measured production data
such that [

u1 1
u2 1

][
σ
γ

]
=
[
b1
b2

]
,

inverting the matrix per §§ 13.1 and 13.2 to solve for x ≡ [σ γ]T , in the hope
that the resulting line will predict future production accurately.

The foregoing is all mathematically irreproachable. By the fifth Saturday
however we shall have gathered more production data, plotted on the figure’s
right, to which we should like to fit a better line to predict production more
accurately. The added data present a problem. Statistically, the added

12Alas, the alphabet has only so many letters (see appendix B). The r here is unrelated
to matrix rank r.

13This is as [135] defines it. Some authors [97] however prefer to define r(x) ≡ Ax− b,
instead.
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Figure 13.1: Fitting a line to measured data.
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data are welcome, but geometrically we need only two points to specify a
line; what are we to do with the other three? The five points together
overdetermine the linear system

u1 1
u2 1
u3 1
u4 1
u5 1


[
σ
γ

]
=


b1
b2
b3
b4
b5

.

There is no way to draw a single straight line b = σu + γ exactly through
all five, for in placing the line we enjoy only two degrees of freedom.14

The proper approach is to draw among the data points a single straight
line that misses the points as narrowly as possible. More precisely, the proper
approach chooses parameters σ and γ to minimize the squared residual norm
[r(x)]∗[r(x)] of § 13.5, given that

A =



u1 1
u2 1
u3 1
u4 1
u5 1

...


, x =

[
σ
γ

]
, b =



b1
b2
b3
b4
b5
...


.

14Section 13.3.3 characterized a line as enjoying only one degree of freedom. Why now
two? The answer is that § 13.3.3 discussed travel along a line rather than placement of a
line as here. Though both involve lines, they differ as driving an automobile differs from
washing one. Do not let this confuse you.
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Such parameters constitute a least-squares solution.

The matrix A in the example has two columns, data marching on the
left, all ones on the right. This is a typical structure for A, but in general any
matrix A with any number of columns of any content might arise (because
there were more than two relevant variables or because some data merited
heavier weight than others, among many further reasons). Whatever ma-
trix A might arise from whatever source, this section attacks the difficult
but important problem of approximating optimally a solution to the general,
possibly unsolvable linear system (13.26), Ax ≈ b.

13.6.1 Least squares in the real domain

The least-squares problem is simplest when the matrix A enjoys full column
rank and no complex numbers are involved. In this case, we seek to minimize
the squared residual norm

[r(x)]T [r(x)] = (b−Ax)T (b−Ax)

= xTATAx + bTb−
(
xTATb + bTAx

)

= xTATAx + bTb− 2xTATb

= xTAT (Ax− 2b) + bTb,

in which the transpose is used interchangeably for the adjoint because all
the numbers involved happen to be real. The norm is minimized where

d

dx

(
rT r
)

= 0

(in which d/dx is the Jacobian operator of § 11.10). A requirement that

d

dx

[
xTAT (Ax− 2b) + bTb

]
= 0

comes of combining the last two equations. Differentiating by the Jacobian
product rule (11.79) yields the equation

xTATA+
[
AT (Ax− 2b)

]T
= 0;

or, after transposing the equation, rearranging terms and dividing by 2, the
simplified equation

ATAx = ATb.
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Assuming (as warranted by § 13.6.2, next) that the n×n square matrix ATA
is invertible, the simplified equation implies the approximate but optimal
least-squares solution

x =
(
ATA

)−1
ATb (13.29)

to the unsolvable linear system (13.26) in the restricted but quite typical
case that A and b are real and A has full column rank.

Equation (13.29) plots the line on Fig. 13.1’s right. As the reader can
see, the line does not pass through all the points, for no line can; but it does
pass pretty convincingly nearly among them. In fact it passes optimally
nearly among them. No line can pass more nearly, in the squared-residual
norm sense of (13.28).15

15Here is a nice example of the use of the mathematical adjective optimal in its ad-
verbial form. “Optimal” means “best.” Many problems in applied mathematics involve
discovering the best of something. What constitutes the best however can be a matter
of judgment, even of dispute. We will leave to the philosopher and the theologian the
important question of what constitutes objective good, for applied mathematics is a poor
guide to such mysteries. The role of applied mathematics is to construct suitable models
to calculate quantities needed to achieve some definite good; its role is not, usually, to
identify the good as good in the first place.

One generally establishes mathematical optimality by some suitable, nonnegative, real
cost function or metric, and the less, the better. Strictly speaking, the mathematics
cannot tell us which metric to use, but where no other consideration prevails the applied
mathematician tends to choose the metric that best simplifies the mathematics at hand—
and, really, that is about as good a way to choose a metric as any. The metric (13.28) is
so chosen.

“But,” comes the objection, “what if some more complicated metric is better?”
Well, if the other metric really, objectively is better, then one should probably use it. In

general however the mathematical question is: what does one mean by “better?” Better by
which metric? Each metric is better according to itself. This is where the mathematician’s
experience, taste and judgment come in.

In the present section’s example, too much labor on the freeway job might actually slow
construction rather than speed it. One could therefore seek to fit not a line but some
downward-turning curve to the data. Mathematics offers many downward-turning curves.
A circle, maybe? Not likely. An experienced mathematician would probably reject the
circle on the aesthetic yet practical ground that the parabola b = αu2 + σu + γ lends
itself to easier analysis. Yet even fitting a mere straight line offers choices. One might fit
the line to the points (bi, ui) or (lnui, ln bi) rather than to the points (ui, bi). The three
resulting lines differ subtly. They predict production differently. The adjective “optimal”
alone evidently does not always tell us all we need to know.

Section 6.3 offers a choice between averages that resembles in spirit this footnote’s choice
between metrics.
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13.6.2 The invertibility of A∗A

Section 13.6.1 has assumed correctly but unwarrantedly that the prod-
uct ATA were invertible for real A of full column rank. For real A, it
happens that AT = A∗, so it only broadens the same assumption to suppose
that the product A∗A were invertible for complex A of full column rank.16

This subsection warrants the latter assumption, thereby incidentally also
warranting the former.

Let A be a complex, m × n matrix of full column rank r = n ≤ m.
Suppose falsely that A∗A were not invertible but singular. Since the prod-
uct A∗A is a square, n×n matrix, this is to suppose (§ 13.1) that the prod-
uct’s rank r′ < n were less than full, implying (§ 12.5.4) that its columns
(as its rows) depended on one another. This would mean that there existed
a nonzero, n-element vector u for which

A∗Au = 0, Inu 6= 0.

Left-multiplying by u∗ would give that

u∗A∗Au = 0, Inu 6= 0,

or in other words that

(Au)∗(Au) =

n∑

i=1

|[Au]i|2 = 0, Inu 6= 0.

But this could only be so if

Au = 0, Inu 6= 0,

impossible when the columns of A are independent. The contradiction
proves false the assumption which gave rise to it. The false assumption:
that A∗A were singular.

Thus, the n× n product A∗A is invertible for any tall or square, m× n
matrix A of full column rank r = n ≤ m.

13.6.3 Positive definiteness

An n× n matrix C is positive definite if and only if

=(u∗Cu) = 0 and <(u∗Cu) > 0 for all Inu 6= 0. (13.30)

16Notice that if A is tall, then A∗A is a compact, n × n square, whereas AA∗ is a big,
m×m square. It is the compact square that concerns this section. The big square is not
very interesting and in any case is not invertible.
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As in § 13.6.2, here also when a matrix A has full column rank r = n ≤ m
the product u∗A∗Au = (Au)∗(Au) is real and positive for all nonzero, n-
element vectors u. Thus per (13.30) the product A∗A is positive definite for
any matrix A of full column rank.

An n× n matrix C is nonnegative definite if and only if

=(u∗Cu) = 0 and <(u∗Cu) ≥ 0 for all u. (13.31)

By reasoning like the last paragraph’s, the product A∗A is nonnegative def-
inite for any matrix A whatsoever.

Such definitions might seem opaque, but their sense is that a positive
definite operator never reverses the thing it operates on, that the product Au
points more in the direction of u than of −u. Section 13.8 explains further.
A positive definite operator resembles a positive scalar in this sense.

13.6.4 The Moore-Penrose pseudoinverse

Not every m× n matrix A enjoys full rank. According to (12.17), however,
every m× n matrix A of rank r can be factored into a product17

A = BC

of an m× r tall or square matrix B and an r×n broad or square matrix C,
both of which factors themselves enjoy full rank r. (If A happens to have
full row or column rank, then one can just choose B = Im or C = In;
but even if A lacks full rank, the Gauss-Jordan decomposition of eqn. 12.2
finds at least the full-rank factorization B = G>Ir, C = IrG<.) This being
so, a conjecture seems warranted. Suppose that, inspired by (13.29), we
manipulated (13.26) by the successive steps

Ax ≈ b,

BCx ≈ b,

(B∗B)−1B∗BCx ≈ (B∗B)−1B∗b,

Cx ≈ (B∗B)−1B∗b.

Then suppose that we changed

C∗u← x,

17This subsection uses the symbols B and b for unrelated purposes, which is unfortunate
but conventional. See footnote 12.
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thus restricting x to the space addressed by the independent columns of C∗.
Continuing,

CC∗u ≈ (B∗B)−1B∗b,

u ≈ (CC∗)−1(B∗B)−1B∗b.

Changing the variable back and (because we are conjecturing and can do as
we like), altering the “≈” sign to “=,”

x = C∗(CC∗)−1(B∗B)−1B∗b. (13.32)

Equation (13.32) has a pleasingly symmetrical form, and we know from
§ 13.6.2 at least that the two matrices it tries to invert are invertible. So
here is our conjecture:

• no x enjoys a smaller squared residual norm r∗r than the x of (13.32)
does; and

• among all x that enjoy the same, minimal squared residual norm, the x
of (13.32) is strictly least in magnitude.

The conjecture is bold, but if you think about it in the right way it is not un-
warranted under the circumstance. After all, (13.32) does resemble (13.29),
the latter of which admittedly requires real A of full column rank but does
minimize the residual when its requirements are met; and, even if there were
more than one x which minimized the residual, one of them might be smaller
than the others: why not the x of (13.32)? One can but investigate.

The first point of the conjecture is symbolized

r∗(x)r(x) ≤ r∗(x + ∆x)r(x + ∆x),

where ∆x represents the deviation, whether small, moderate or large, of
some alternate x from the x of (13.32). According to (13.27), this is

[b−Ax]∗[b−Ax] ≤ [b− (A)(x + ∆x)]∗[b− (A)(x + ∆x)].

Reorganizing,

[b−Ax]∗[b−Ax] ≤ [(b−Ax)−A∆x]∗[(b−Ax)−A∆x].

Distributing factors and canceling like terms,

0 ≤ −∆x∗A∗(b−Ax)− (b−Ax)∗A∆x + ∆x∗A∗A∆x.
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But according to (13.32) and the full-rank factorization A = BC,

A∗(b−Ax) = A∗b−A∗Ax

= [C∗B∗][b]− [C∗B∗][BC][C∗(CC∗)−1(B∗B)−1B∗b]

= C∗B∗b− C∗(B∗B)(CC∗)(CC∗)−1(B∗B)−1B∗b

= C∗B∗b− C∗B∗b = 0,

which reveals two of the inequality’s remaining three terms to be zero, leav-
ing an assertion that

0 ≤ ∆x∗A∗A∆x.

Each step in the present paragraph is reversible,18 so the assertion in the
last form is logically equivalent to the conjecture’s first point, with which
the paragraph began. Moreover, the assertion in the last form is correct
because the product of any matrix and its adjoint according to § 13.6.3 is a
nonnegative definite operator, thus establishing the conjecture’s first point.

The conjecture’s first point, now established, has it that no x+∆x enjoys
a smaller squared residual norm than the x of (13.32) does. It does not claim
that no x+∆x enjoys the same, minimal squared residual norm. The latter
case is symbolized

r∗(x)r(x) = r∗(x + ∆x)r(x + ∆x),

or equivalently by the last paragraph’s logic,

0 = ∆x∗A∗A∆x;

or in other words,
A∆x = 0.

But A = BC, so this is to claim that

B(C ∆x) = 0,

which since B has full column rank is possible only if

C ∆x = 0.

Considering the product ∆x∗ x in light of (13.32) and the last equation, we
observe that

∆x∗ x = ∆x∗ [C∗(CC∗)−1(B∗B)−1B∗b]

= [C ∆x]∗[(CC∗)−1(B∗B)−1B∗b],

18The paragraph might inscrutably but logically instead have ordered the steps in reverse
as in §§ 6.3.2 and 9.6. See chapter 6’s footnote 15.
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which is to observe that
∆x∗ x = 0

for any ∆x for which x + ∆x achieves minimal squared residual norm.
Returning attention to the conjecture, its second point is symbolized

x∗x < (x + ∆x)∗(x + ∆x)

for any
∆x 6= 0

for which x+∆x achieves minimal squared residual norm (note that it’s “<”
this time, not “≤” as in the conjecture’s first point). Distributing factors
and canceling like terms,

0 < x∗∆x + ∆x∗ x + ∆x∗∆x.

But the last paragraph has found that ∆x∗ x = 0 for precisely such ∆x as
we are considering here, so the last inequality reduces to read

0 < ∆x∗∆x,

which naturally for ∆x 6= 0 is true. Since each step in the paragraph is
reversible, reverse logic establishes the conjecture’s second point.

With both its points established, the conjecture is true.
If A = BC is a full-rank factorization, then the matrix19

A† ≡ C∗(CC∗)−1(B∗B)−1B∗ (13.33)

of (13.32) is called the Moore-Penrose pseudoinverse of A, more briefly the
pseudoinverse of A. Whether underdetermined, exactly determined, overde-
termined or even degenerate, every matrix has a Moore-Penrose pseudoin-
verse. Yielding the optimal approximation

x = A†b, (13.34)

the Moore-Penrose solves the linear system (13.26) as well as the system
can be solved—exactly if possible, with minimal squared residual norm if
impossible. If A is square and invertible, then the Moore-Penrose A† = A−1

is just the inverse, and then of course (13.34) solves the system uniquely and
exactly. Nothing can solve the system uniquely if A has broad shape but the
Moore-Penrose still solves the system exactly in that case as long as A has

19Some books print A† as A+.
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full row rank, moreover minimizing the solution’s squared magnitude x∗x
(which the solution of eqn. 13.24 fails to do). If A lacks full row rank,
then the Moore-Penrose solves the system as nearly as the system can be
solved (as in Fig. 13.1) and as a side-benefit also minimizes x∗x. The Moore-
Penrose is thus a general-purpose solver and approximator for linear systems.
It is a significant discovery.20

13.7 The multivariate Newton-Raphson iteration

When we first met the Newton-Raphson iteration in § 4.8 we lacked the
matrix notation and algebra to express and handle vector-valued functions
adeptly. Now that we have the notation and algebra we can write down the
multivariate Newton-Raphson iteration almost at once.

The iteration approximates the nonlinear vector function f(x) by its
tangent

f̃k(x) = f(xk) +

[
d

dx
f(x)

]

x=xk

(x− xk),

where df/dx is the Jacobian derivative of § 11.10. It then approximates the
root xk+1 as the point at which f̃k(xk+1) = 0:

f̃k(xk+1) = 0 = f(xk) +

[
d

dx
f(x)

]

x=xk

(xk+1 − xk).

Solving for xk+1 (approximately if necessary), we have that

xk+1 =

{
x−

[
d

dx
f(x)

]†
f(x)

}

x=xk

, (13.35)

where [·]† is the Moore-Penrose pseudoinverse of § 13.6—which is just the
ordinary inverse [·]−1 of § 13.1 if f and x happen each to have the same
number of elements. Refer to § 4.8 and Fig. 4.6.21

Despite the Moore-Penrose notation of (13.35), the Newton-Raphson
iteration is not normally meant to be applied at a value of x for which the

20[11, § 3.3][102, “Moore-Penrose generalized inverse”]. For further background and
context, see also [56, chapter 3], which does not mention the Moore-Penrose pseudoinverse
by name but offers a gentler introduction to the topic and affords examples, drawn from
the field of economics, to which one can apply Moore-Penrose.

21[111]
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Jacobian is degenerate. The iteration intends rather in light of (13.33) that

[
d

dx
f(x)

]†
=





[df/dx]∗ ([df/dx] [df/dx]∗)
−1

if r = m ≤ n,

[df/dx]−1 if r = m = n,

([df/dx]∗ [df/dx])
−1

[df/dx]∗ if r = n ≤ m,

(13.36)

where B = Im in the first case and C = In in the last. It does not intend
to use the full (13.33). If both r < m and r < n—which is to say, if the
Jacobian is degenerate—then (13.36) fails, as though the curve of Fig. 4.6
ran horizontally at the test point—when one quits, restarting the iteration
from another point.

13.8 The dot product

The dot product of two vectors, also called the inner product,22 is the product
of the two vectors to the extent to which they run in the same direction. It
is written as

a · b.
In general,

a · b = (a1e1 + a2e2 + · · ·+ anen) · (b1e1 + b2e2 + · · ·+ bnen).

But if the dot product is to mean anything, it must be that

ei · ej = δij , (13.37)

where the Kronecker delta δij is as defined in § 11.2. Therefore,

a · b = a1b1 + a2b2 + · · ·+ anbn;

or, more concisely,

a · b ≡ aTb =
∞∑

j=−∞
ajbj . (13.38)

22The term inner product is often used to indicate a broader class of products than
the one defined here, especially in some of the older literature. Where used, the notation
usually resembles 〈a,b〉 or (b,a), both of which mean a∗ · b (or, more broadly, some
similar product), except that which of a and b is conjugated depends on the author. Most
recently, at least in the author’s country, the usage 〈a,b〉 ≡ a∗ ·b seems to be emerging as
standard where the dot is not used, as in [11, § 3.1][48, chapter 4] (but slightly contrary
to [35, § 2.1], for example). At any rate, this book prefers the dot.
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The dot notation does not worry whether its arguments are column or row
vectors, incidentally:

a · b = a · bT = aT · b = aT · bT = aTb.

That is, if either vector is wrongly oriented, the notation implicitly reorients
it before using it. (The more orderly notation aTb by contrast assumes that
both are proper column vectors.)

Where vectors may have complex elements, usually one is not interested
in a · b so much as in

a∗ · b ≡ a∗b =

∞∑

j=−∞
a∗jbj . (13.39)

The reason is that

<(a∗ · b) = <(a) · <(b) + =(a) · =(b),

with the product of the imaginary parts added not subtracted, thus honoring
the right Argand sense of “the product of the two vectors to the extent to
which they run in the same direction.”

By the Pythagorean theorem, the dot product

|a|2 = a∗ · a (13.40)

gives the square of a vector’s magnitude, always real, never negative. The
unit vector in a’s direction then is

â ≡ a

|a| =
a√

a∗ · a
, (13.41)

from which
|â|2 = â∗ · â = 1. (13.42)

When two vectors do not run in the same direction at all, such that

a∗ · b = 0, (13.43)

the two vectors are said to lie orthogonal to one another. Geometrically this
puts them at right angles. For other angles θ between two vectors,

â∗ · b̂ = cos θ, (13.44)

which formally defines the angle θ even when a and b have more than three
elements each.
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13.9 Complex vector inequalities

The triangle inequalities (2.45) and (3.21) lead one to hypothesize generally
that

|a| − |b| ≤ |a + b| ≤ |a|+ |b| (13.45)

for any complex, n-dimensional vectors a and b. Section 13.9.2 will prove
(13.45); but first, § 13.9.1 develops a related inequality by Schwarz.

13.9.1 The Schwarz inequality

The Schwarz inequality, alternately the Cauchy-Schwarz inequality,23 has
that

|a∗ · b| ≤ |a||b|. (13.46)

Roughly in words: the dot product does not exceed the product of lengths.

If the three-dimensional geometrical vectors with their dot products of
chapters 3 and 15 are already familiar to you then (13.46) might seem too
obvious to bother proving. The present chapter however brings an arbitrary
number n of dimensions. Furthermore, elements in any or every dimension
can be complex. Therefore, the geometry is not so easy to visualize in the
general case. One would prefer an algebraic proof.24

The proof is by contradiction. We suppose falsely that

|a∗ · b| > |a||b|.

Squaring and using (2.62) and (13.40),

(a∗ · b)(b∗ · a) > (a∗ · a)(b∗ · b),

or in other words, ∑

i,j

a∗i bib
∗
jaj >

∑

i,j

a∗i aib
∗
jbj ,

wherein each side of the inequality is real-valued by construction (that is,
each side is real-valued because we had started with a real inequality and—
despite that elements on either side may be complex—no step since the start

23Pronounced as “Schwartz,” almost as “Schwortz.” You can sound out the German w
like an English v if you wish. The other name being French is pronounced as “Co-shee,”
preferably with little stress but—to the extent necessary while speaking English—with
stress laid on the first syllable.

24See [151] and [35, § 2.1] for various other proofs, one of which partly resembles the
proof given here. See also [146, “Cauchy-Schwarz inequality,” 17:56, 22 May 2017].
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has made either side of the inequality complex as a whole). One would like
to segregate conjugated elements for separate handling; it is not easy to see
how to segregate them all at once but to reorder factors as

∑

i,j

[(aibj)
∗(biaj)] >

∑

i,j

[(aibj)
∗(aibj)]

at least makes a step in the right direction. The last inequality is unhelpfully
asymmetric, though, so we swap indices i↔ j to write the same inequality
as that ∑

i,j

[(biaj)
∗(aibj)] >

∑

i,j

[(biaj)
∗(biaj)] .

The swapped inequality is asymmetric too but one can add it to the earlier,
unswapped inequality to achieve the symmetric form

∑

i,j

[(aibj)
∗(biaj) + (biaj)

∗(aibj)] >
∑

i,j

[(aibj)
∗(aibj) + (biaj)

∗(biaj)] .

Does this help? Indeed it does. Transferring all terms to the inequality’s
right side,

0 >
∑

i,j

[(aibj)
∗(aibj) + (biaj)

∗(biaj)− (aibj)
∗(biaj)− (biaj)

∗(aibj)] ,

Factoring,

0 >
∑

i,j

[(aibj − biaj)∗(aibj − biaj)] =
∑

i,j

|aibj − biaj |2 ,

which inequality is impossible because 0 ≤ | · |2 regardless of what the | · |
might be. The contradiction proves false the assumption that gave rise to
it, thus establishing the Schwarz inequality of (13.46).

13.9.2 Triangle inequalities

The proof of the sum hypothesis (13.45) that |a + b| ≤ |a|+ |b| is again by
contradiction. We suppose falsely that

|a + b| > |a|+ |b| .

Squaring and using (13.40),

(a + b)∗ · (a + b) > a∗ · a + 2 |a| |b|+ b∗ · b.
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Distributing factors and canceling like terms,

a∗ · b + b∗ · a > 2 |a| |b| ,

where both sides of the inequality remain real for the same reason as in the
last subsection. On the left, the imaginary parts offset because (b∗ · a)∗ =
a∗ · b, leaving

2< (a∗ · b) > 2 |a| |b| .

However, the real part of the Schwarz inequality (13.46) has that

< (a∗ · b) ≤ |a∗ · b| ≤ |a| |b| ,

which, when doubled, contradicts the last finding. The contradiction proves
false the assumption that gave rise to it, thus establishing the sum hypothesis
of (13.45).

The difference hypothesis that |a|− |b| ≤ |a + b| is established by defin-
ing a vector c such that

a + b + c = 0,

whereupon according to the sum hypothesis

|a + c| ≤ |a|+ |c| ,
|b + c| ≤ |b|+ |c| .

That is,

|−b| ≤ |a|+ |−a− b| ,
|−a| ≤ |b|+ |−a− b| ,

which is the difference hypothesis in disguise. This completes the proof of
the triangle inequalities (13.45)

The triangle sum inequality is alternately called the Minkowski inequal-
ity.25

As in § 3.10, here too we can extend the sum inequality to the even more
general form ∣∣∣∣∣

∑

k

ak

∣∣∣∣∣ ≤
∑

k

|ak| . (13.47)

25[35, § 2.1]
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13.10 The orthogonal complement

The m× (m− r) kernel (§ 13.3)26

A⊥ ≡ A∗K (13.48)

is an interesting matrix. By definition of the kernel, the columns of A∗K

are the independent vectors uj for which A∗uj = 0, which—inasmuch as
the rows of A∗ are the adjoints of the columns of A—is possible only when
each uj lies orthogonal to every column of A. This says that the columns of
A⊥ ≡ A∗K address the complete space of vectors that lie orthogonal to A’s
columns, such that

A⊥∗A = 0 = A∗A⊥. (13.49)

The matrix A⊥ is called the orthogonal complement27 or perpendicular ma-
trix to A.

Among other uses, the orthogonal complement A⊥ supplies the columns
A lacks to reach full row rank. Properties include that

A∗K = A⊥,

A∗⊥ = AK .
(13.50)

13.11 Gram-Schmidt orthonormalization

If a vector x = AKa belongs to a kernel space AK (§ 13.3), then so equally
does any αx. If the vectors x1 = AKa1 and x2 = AKa2 both belong, then
so does α1x1 + α2x2. If I claim AK = [3 4 5;−1 1 0]T to represent a kernel,
then you are not mistaken arbitrarily to rescale each column of my AK by
a separate nonzero factor, instead for instance representing the same kernel
as AK = [6 8 0xA; 1

7 −1
7 0]T . Kernel vectors have no inherent scale. Style

generally asks one to remove the false appearance of scale by using (13.41) to
normalize the columns of a kernel matrix to unit magnitude before reporting
them. The same goes for the eigenvectors of chapter 14 to come.

Where a kernel matrix AK has two or more columns (or a repeated
eigenvalue has two or more eigenvectors), style generally asks one not only
to normalize but also to orthogonalize the columns before reporting them.

26The symbol A⊥ [61][11][83] can be pronounced “A perp,” short for “A perpendicular,”
since by (13.49) A⊥ is in some sense perpendicular to A.

If we were really precise, we might write not A⊥ but A⊥(m). Refer to footnote 5.
27[61, § 3.VI.3]
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One orthogonalizes a vector b with respect to a vector a by subtracting
from b a multiple of a such that

a∗ · b⊥ = 0,

b⊥ ≡ b− βa,

where the symbol b⊥ represents the orthogonalized vector. Substituting the
second of these equations into the first and solving for β yields that

β =
a∗ · b
a∗ · a .

Hence,

a∗ · b⊥ = 0,

b⊥ ≡ b− a∗ · b
a∗ · aa.

(13.51)

But according to (13.41), a = â
√

a∗ · a; and according to (13.42), â∗ · â = 1;
so,

b⊥ = b− â(â∗ · b); (13.52)

or, in matrix notation,
b⊥ = b− â(â∗)(b).

This is arguably better written,

b⊥ = [I − (â)(â∗)] b (13.53)

(observe that it’s [â][â∗], a matrix, rather than the scalar [â∗][â]).
One orthonormalizes a set of vectors by orthogonalizing them with re-

spect to one another and then normalizing each of them to unit magnitude.
The procedure to orthonormalize several vectors

{x1,x2,x3, . . . ,xn}
therefore is as follows. First, normalize x1 by (13.41); call the result x̂1⊥.
Second, orthogonalize x2 with respect to x̂1⊥ by (13.52) or (13.53), then
normalize it; call the result x̂2⊥. Third, orthogonalize x3 with respect to x̂1⊥
then to x̂2⊥, then normalize it; call the result x̂3⊥. Proceed in this manner
through the several xj . Symbolically,

x̂j⊥ =
xj⊥√
x∗j⊥xj⊥

,

xj⊥ ≡
[
j−1∏

i=1

(I − x̂i⊥x̂∗i⊥)

]
xj .

(13.54)
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By the vector replacement principle of § 12.4 in light of (13.51), the resulting
orthonormal set of vectors

{x̂1⊥, x̂2⊥, x̂3⊥, . . . , x̂n⊥}
addresses the same space as did the original set.

Orthonormalization naturally works equally for any linearly independent
set of vectors, not only for kernel vectors or eigenvectors. By the technique,
one can conveniently replace a set of independent vectors by an equivalent,
neater, orthonormal set which addresses precisely the same space.

13.11.1 Efficient implementation

To turn an equation like the latter line of (13.54) into an efficient numerical
algorithm sometimes demands some extra thought, in perspective of what-
ever it happens to be that one is trying to accomplish. If all one wants is
some vectors orthonormalized, then the equation as written is neat but is
overkill because the product x̂i⊥x̂∗i⊥ is a matrix, whereas the product x̂∗i⊥xj
implied by (13.52) is just a scalar. Fortunately, one need not apply the
latter line of (13.54) exactly as written. One can instead introduce inter-
mediate vectors xji, representing the

∏
multiplication in the admittedly

messier form

xj1 ≡ xj ,

xj(i+1) ≡ xji − (x̂∗i⊥ · xji) x̂i⊥,

xj⊥ = xjj .

(13.55)

Besides obviating the matrix I− x̂i⊥x̂∗i⊥ and the associated matrix multipli-
cation, the messier form (13.55) has the significant additional practical virtue
that it lets one forget each intermediate vector xji immediately after using
it. (A well-written orthonormalizing computer program reserves memory for
one intermediate vector only, which memory it repeatedly overwrites—and,
actually, probably does not even reserve that much, working rather in the
memory space it has already reserved for x̂j⊥.)28

Other equations one algorithmizes can likewise benefit from thoughtful
rendering.

13.11.2 The Gram-Schmidt decomposition

The orthonormalization technique this section has developed is named the
Gram-Schmidt process. One can turn it into the Gram-Schmidt decomposi-

28[146, “Gram-Schmidt process,” 04:48, 11 Aug. 2007]
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tion

A = QR = QUDS,

R ≡ UDS, (13.56)

also called the orthonormalizing or QR decomposition, by an algorithm
that somewhat resembles the Gauss-Jordan algorithm of § 12.3.3; except
that (12.4) here becomes

A = Q̃ŨD̃S̃ (13.57)

and initially Q̃ ← A. By elementary column operations based on (13.54)
and (13.55), the algorithm gradually transforms Q̃ into a dimension-limited,
m×r matrixQ of orthonormal columns, distributing the inverse elementaries
to Ũ , D̃ and S̃ according to Table 12.1—where the latter three working
matrices ultimately become the extended-operational factors U , D and S
of (13.56).

Borrowing the language of computer science we observe that the indices i
and j of (13.54) and (13.55) imply a two-level nested loop, one level looping
over j and the other over i. The equations suggest j-major nesting, with
the loop over j at the outer level and the loop over i at the inner, such that
the several (i, j) index pairs occur in the sequence (reading left to right then
top to bottom)

(1, 2)
(1, 3) (2, 3)
(1, 4) (2, 4) (3, 4)

· · · · · · · · · . . .

In reality, however, (13.55)’s middle line requires only that no x̂i⊥ be used
before it is fully calculated; otherwise that line does not care which (i, j)
pair follows which. The i-major nesting

(1, 2) (1, 3) (1, 4) · · ·
(2, 3) (2, 4) · · ·

(3, 4) · · ·
. . .

bringing the very same index pairs in a different sequence, is just as valid.
We choose i-major nesting on the subtle ground that it affords better infor-
mation to the choice of column index p during the algorithm’s step 3.

The algorithm, in detail:
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1. Begin by initializing

Ũ ← I, D̃ ← I, S̃ ← I,

Q̃← A,
i← 1.

2. (Besides arriving at this point from step 1 above, the algorithm also
reënters here from step 9 below.) Observe that Ũ enjoys the major
partial unit triangular form L{i−1}T (§ 11.8.5), that D̃ is a general
scaling operator (§ 11.7.2) with d̃jj = 1 for all j ≥ i, that S̃ is permutor
(§ 11.7.1), and that the first through (i− 1)th columns of Q̃ consist of
mutually orthonormal unit vectors.

3. Choose a column p ≥ i of Q̃ containing at least one nonzero element.
(The simplest choice is perhaps p = i as long as the ith column does
not happen to be null, but one might instead prefer to choose the
column of greatest magnitude, or to choose randomly, among other
heuristics.) If Q̃ is null in and rightward of its ith column such that no
column p ≥ i remains available to choose, then skip directly to step 10.

4. Observing that (13.57) can be expanded to read

A =
(
Q̃T[i↔p]

)(
T[i↔p]ŨT[i↔p]

)(
T[i↔p]D̃T[i↔p]

)(
T[i↔p]S̃

)

=
(
Q̃T[i↔p]

)(
T[i↔p]ŨT[i↔p]

)
D̃
(
T[i↔p]S̃

)
,

where the latter line has applied a rule from Table 12.1, interchange
the chosen pth column to the ith position by

Q̃← Q̃T[i↔p],

Ũ ← T[i↔p]ŨT[i↔p],

S̃ ← T[i↔p]S̃.

5. Observing that (13.57) can be expanded to read

A =
(
Q̃T(1/α)[i]

)(
Tα[i]ŨT(1/α)[i]

)(
Tα[i]D̃

)
S̃,

normalize the ith column of Q̃ by

Q̃← Q̃T(1/α)[i],

Ũ ← Tα[i]ŨT(1/α)[i],

D̃ ← Tα[i]D̃,



410 CHAPTER 13. INVERSION AND ORTHONORMALIZATION

where

α =

√[
Q̃
]∗
∗i
·
[
Q̃
]
∗i
.

6. Initialize

j ← i+ 1.

7. (Besides arriving at this point from step 6 above, the algorithm also
reënters here from step 8 below.) If j > n then skip directly to step 9.
Otherwise, observing that (13.57) can be expanded to read

A =
(
Q̃T−β[ij]

)(
Tβ[ij]Ũ

)
D̃S̃,

orthogonalize the jth column of Q̃ per (13.55) with respect to the ith
column by

Q̃← Q̃T−β[ij],

Ũ ← Tβ[ij]Ũ ,

where

β =
[
Q̃
]∗
∗i
·
[
Q̃
]
∗j
.

8. Increment

j ← j + 1

and return to step 7.

9. Increment

i← i+ 1

and return to step 2.

10. Let
Q ≡ Q̃, U ≡ Ũ , D ≡ D̃, S ≡ S̃,

r = i− 1.

End.

Though the Gram-Schmidt algorithm broadly resembles the Gauss-Jordan,
at least two significant differences stand out: (i) the Gram-Schmidt is one-
sided because it operates only on the columns of Q̃, never on the rows;
(ii) since Q is itself dimension-limited, the Gram-Schmidt decomposition
(13.56) needs and has no explicit factor Ir.
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As in § 12.5.7, here also one sometimes prefers that S = I. The algorithm
optionally supports this preference if the m × n matrix A has full column
rank r = n, when null columns cannot arise, if one always chooses p = i
during the algorithm’s step 3. Such optional discipline maintains S = I
when desired.

Whether S = I or not, the matrix Q = QIr has only r columns, so one
can write (13.56) as

A = (QIr)(R).

Reassociating factors, this is

A = (Q)(IrR), (13.58)

which per (12.17) is a proper full-rank factorization with which one can
compute the pseudoinverse A† of A (see eqn. 13.33, above; but see also
eqn. 13.67, below).

If the Gram-Schmidt decomposition (13.56) looks useful, it is even more
useful than it looks. The most interesting of its several factors is the m× r
orthonormalized matrix Q, whose orthonormal columns address the same
space the columns of A themselves address. If Q reaches the maximum
possible rank r = m, achieving square, m × m shape, then it becomes a
unitary matrix—the subject of § 13.12.

Before treating the unitary matrix, however, let us pause to develop the
orthogonal complement by Gram-Schmidt in § 13.11.3, next.

13.11.3 The orthogonal complement by Gram-Schmidt

Having decomposed an m× n matrix as

A = QR = (QIr)R, (13.59)

observing that the r independent columns of the m × r matrix Q = QIr
address the same space the columns of A address, Gram-Schmidt computes
an orthogonal complement (13.48) by constructing the m× (r +m) matrix

A′ ≡ QIr + ImH−r =
[
QIr Im

]
. (13.60)

This constructed matrix A′ is then itself decomposed,

A′ = Q′R′, (13.61)

again by Gram-Schmidt—with the differences that, this time, one chooses
p = 1, 2, 3, . . . , r during the first r instances of the algorithm’s step 3 and
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that one skips the unnecessary step 7 for all j ≤ r, on the ground that the
earlier Gram-Schmidt application of (13.59) has already orthonormalized
first r columns of A′, which columns, after all, are just Q = QIr. The
resulting m×m, full-rank square matrix

Q′ = QIr +A⊥H−r =
[
QIr A⊥

]
(13.62)

consists of

• r columns on the left that address the same space the columns of A
address and

• m−r columns on the right that give a complete orthogonal complement
(§ 13.10) A⊥ of A.

Each column has unit magnitude and conveniently lies orthogonal—indeed,
orthonormal—to every other column, left and right.

Equation (13.62) is probably the more useful form, but the Gram-
Schmidt orthogonal-complement formula as such is that

A∗K = A⊥ = Q′HrIm−r. (13.63)

The writer has not encountered a Gram-Schmidt kernel in the style
of (13.7) to accompany the Gram-Schmidt orthogonal complement of
(13.63)—though if necessary one could maybe combine (13.63) with (13.48)
for the purpose. Instead, normally, as far as the writer knows, the Gauss-
Jordan (13.7) is used. Meanwhile however, the matrix Q′ of this subsection
is interesting. Being square and orthonormal, the m × m matrix Q′ is a
unitary matrix. Unitary matrices will be the subject of § 13.12, next.

13.12 The unitary matrix

When the orthonormalized matrix Q of the Gram-Schmidt decomposition
(13.56) is square, having the maximum possible rank r = m, it brings one
property so interesting that the property merits a section of its own. The
property is that

Q∗Q = Im = QQ∗. (13.64)

The reason that Q∗Q = Im is that Q’s columns are orthonormal, and that
the very definition of orthonormality demands that the dot product [Q]∗∗i ·
[Q]∗j of orthonormal columns be zero unless i = j, when the dot product of
a unit vector with itself is unity. That Im = QQ∗ is unexpected, however,
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until one realizes29 that the equation Q∗Q = Im characterizes Q∗ to be the
rank-m inverse of Q, and that § 13.1 lets any rank-m inverse (orthonormal
or otherwise) attack just as well from the right as from the left. Thus,

Q−1 = Q∗, (13.65)

a very useful property. A matrix Q that satisfies (13.64), whether derived
from the Gram-Schmidt or from elsewhere, is called a unitary matrix. (Note
that the permutor of § 11.7.1 enjoys the property of eqn. 13.65 precisely
because it is unitary.)

One immediate consequence of (13.64) is that a square matrix with either
orthonormal columns or orthonormal rows is unitary and has both.

The product of two or more unitary matrices is itself unitary if the ma-
trices are of the same dimensionality. To prove it, consider the product

Q = QaQb (13.66)

of m × m unitary matrices Qa and Qb. Let the symbols qj , qaj and qbj
respectively represent the jth columns of Q, Qa and Qb and let the sym-
bol qbij represent the ith element of qbj . By the columnwise interpretation
(§ 11.1.3) of matrix multiplication,

qj =
∑

i

qbijqai.

The adjoint dot product of any two of Q’s columns then is

q∗j′ · qj =
∑

i,i′

q∗bi′j′qbijq
∗
ai′ · qai.

But q∗ai′ · qai = δi′i because Qa is unitary,30 so

q∗j′ · qj =
∑

i

q∗bij′qbij = q∗bj′ · qbj = δj′j ,

which says neither more nor less than that the columns ofQ are orthonormal,
which is to say that Q is unitary, as was to be demonstrated.

Unitary operations preserve length. That is, operating on an m-element
vector by an m ×m unitary matrix does not alter the vector’s magnitude.
To prove it, consider the system

Qx = b.

29[48, § 4.4]
30This is true only for 1 ≤ i ≤ m, but you knew that already.
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Multiplying the system by its own adjoint yields that

x∗Q∗Qx = b∗b.

But according to (13.64), Q∗Q = Im; so,

x∗x = b∗b,

as was to be demonstrated.
Equation (13.65) lets one use the Gram-Schmidt decomposition (13.56)

to invert a square matrix as

A−1 = R−1Q∗ = S∗D−1U−1Q∗. (13.67)

Unitary extended operators are certainly possible, for if Q is an m×m
dimension-limited matrix, then the extended operator

Q∞ = Q+ (I − Im),

which is just Q with ones running out the main diagonal from its active
region, itself meets the unitary criterion (13.64) for m =∞.

Unitary matrices are so easy to handle that they can sometimes justify
significant effort to convert a model to work in terms of them if possible.
We shall meet the unitary matrix again in §§ 14.10 and 14.12.

The chapter as a whole has demonstrated at least in theory (and usu-
ally in practice) techniques to solve any linear system characterized by a
matrix of finite dimensionality, whatever the matrix’s rank or shape. It has
explained how to orthonormalize a set of vectors and has derived from the
explanation the useful Gram-Schmidt decomposition. As the chapter’s in-
troduction had promised, the matrix has shown its worth here; for without
the matrix’s notation, arithmetic and algebra most of the chapter’s findings
would have lain beyond practical reach. And even so, the single most inter-
esting agent of matrix arithmetic remains yet to be treated. This last is the
eigenvalue, and it is the subject of chapter 14, next.



Chapter 14

The eigenvalue

The eigenvalue is a scalar by which a square matrix scales a vector without
otherwise changing it, such that

Av = λv.

This chapter analyzes the eigenvalue and the associated eigenvector it scales.

Before treating the eigenvalue proper, the chapter gathers from across
chapters 11 through 14 several properties all invertible square matrices share,
assembling them in § 14.2 for reference. One of these regards the determi-
nant, which opens the chapter.

14.1 The determinant

Through chapters 11, 12 and 13 the theory of the matrix has developed
slowly but pretty straightforwardly. Here comes the first unexpected turn.

It begins with an arbitrary-seeming definition. The determinant of an
n × n square matrix A is the sum of n! terms, each term the product of n
elements, no two elements from the same row or column, terms of positive
parity adding to and terms of negative parity subtracting from the sum—a
term’s parity (§ 11.6) being the parity of the permutor (§ 11.7.1) marking
the positions of the term’s elements.

Unless you already know about determinants, the definition alone might
seem hard to parse, so try this. The inverse of the general 2 × 2 square
matrix

A2 =

[
a11 a12

a21 a22

]
,

415
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by the Gauss-Jordan method or any other convenient technique, is found to
be

A−1
2 =

[
a22 −a12

−a21 a11

]

a11a22 − a12a21
.

The quantity1

detA2 = a11a22 − a12a21

in the denominator is defined to be the determinant of A2. Each of the de-
terminant’s terms includes one element from each column of the matrix and
one from each row, with parity giving the term its ± sign. The determinant
of the general 3× 3 square matrix by the same rule is

detA3 = (a11a22a33 + a12a23a31 + a13a21a32)

− (a13a22a31 + a12a21a33 + a11a23a32);

and indeed if we tediously invert such a matrix symbolically, we do find that
quantity in the denominator there.

The parity rule merits a more careful description. The parity of a term
like a12a23a31 is positive because the parity of the permutor, or interchange
quasielementary (§ 11.7.1),

P =

 0 1 0
0 0 1
1 0 0


marking the positions of the term’s elements is positive. The parity of
a term like a13a22a31 is negative for the same reason. The determinant
comprehends all possible such terms, n! in number, half of positive parity
and half of negative. (How do we know that exactly half are of positive
and half, negative? Answer: by pairing the terms. For every term like
a12a23a31 whose marking permutor is P , there is a corresponding a13a22a31

whose marking permutor is T[1↔2]P , necessarily of opposite parity. The sole
exception to the rule is the 1× 1 square matrix, which has no second term
to pair.)

1The determinant detA used to be written |A|, an appropriately terse notation for
which the author confesses some nostalgia. The older notation |A| however unluckily
suggests “the magnitude of A,” which though not quite the wrong idea is not quite the right
idea, either. The magnitude |z| of a scalar or |u| of a vector is a real-valued, nonnegative,
nonanalytic function of the elements of the quantity in question, whereas the determinant
detA is a complex-valued, analytic function. The book follows convention by denoting
the determinant as detA for this reason among others.
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Normally the context implies a determinant’s rank n, but the nonstan-
dard notation

det(n)A

is available especially to call the rank out, stating explicitly that the deter-
minant has exactly n! terms. (See also §§ 11.3.5 and 11.5 and eqn. 11.49.2)

It is admitted3 that we have not, as yet, actually shown the determinant
to be a generally useful quantity; we have merely motivated and defined
it. The true history of the determinant is unknown to this writer, but
one might suppose that the determinant had originally emerged not from
abstract considerations but for the mundane reason that the quantity it
represents occurs frequently in practice (as in the A−1

2 of the example above).
Nothing however logically prevents one from simply defining some quantity
which, at first, one merely suspects will later prove useful. So we do here.4

14.1.1 Basic properties

The determinant detA enjoys several useful basic properties.

• If

ci∗ =





ai′′∗ when i = i′,

ai′∗ when i = i′′,

ai∗ otherwise,

or if

c∗j =





a∗j′′ when j = j′,

a∗j′ when j = j′′,

a∗j otherwise,

where i′′ 6= i′ and j′′ 6= j′, then

detC = −detA. (14.1)

Interchanging rows or columns negates the determinant.

• If

ci∗ =

{
αai∗ when i = i′,

ai∗ otherwise,

2And see further chapter 13’s footnotes 5 and 26.
3[48, § 1.2]
4[48, chapter 1]
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or if

c∗j =

{
αa∗j when j = j′,

a∗j otherwise,

then

detC = α detA. (14.2)

Scaling a single row or column of a matrix scales the matrix’s deter-
minant by the same factor. (Equation 14.2 tracks the linear scaling
property of § 7.3.3 and of eqn. 11.2.)

• If

ci∗ =

{
ai∗ + bi∗ when i = i′,

ai∗ = bi∗ otherwise,

or if

c∗j =

{
a∗j + b∗j when j = j′,

a∗j = b∗j otherwise,

then

detC = detA+ detB. (14.3)

If one row or column of a matrix C is the sum of the corresponding rows
or columns of two other matrices A and B, while the three matrices
remain otherwise identical, then the determinant of the one matrix is
the sum of the determinants of the other two. (Equation 14.3 tracks
the linear superposition property of § 7.3.3 and of eqn. 11.2.)

• If

ci′∗ = 0,

or if

c∗j′ = 0,

then

detC = 0. (14.4)

A matrix with a null row or column also has a null determinant.

• If

ci′′∗ = γci′∗,

or if

c∗j′′ = γc∗j′ ,
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where i′′ 6= i′ and j′′ 6= j′, then

detC = 0. (14.5)

The determinant is zero if one row or column of the matrix is a multiple
of another.

• The determinant of the adjoint is just the determinant’s conjugate,
and the determinant of the transpose is just the determinant itself:

detC∗ = (detC)∗ ;

detCT = detC.
(14.6)

These basic properties are all fairly easy to see if the definition of the de-
terminant is clearly understood. Equations (14.2), (14.3) and (14.4) come
because each of the n! terms in the determinant’s expansion has exactly
one element from row i′ or column j′. Equation (14.1) comes because a
row or column interchange reverses parity. Equation (14.6) comes because
according to § 11.7.1, the permutors P and P ∗ always have the same par-
ity, and because the adjoint operation individually conjugates each element
of C. Finally, (14.5) comes because, in this case, every term in the deter-
minant’s expansion finds an equal term of opposite parity to offset it. Or,
more formally, (14.5) comes because the following procedure does not al-
ter the matrix: (i) scale row i′′ or column j′′ by 1/γ; (ii) scale row i′ or
column j′ by γ; (iii) interchange rows i′ ↔ i′′ or columns j′ ↔ j′′. Not
altering the matrix, the procedure does not alter the determinant either;
and indeed according to (14.2), step (ii)’s effect on the determinant cancels
that of step (i). However, according to (14.1), step (iii) negates the determi-
nant. Hence the net effect of the procedure is to negate the determinant—to
negate the very determinant the procedure is not permitted to alter. The
apparent contradiction can be reconciled only if the determinant is zero to
begin with.

From the foregoing properties the following further property can be de-
duced.

• If

ci∗ =

{
ai∗ + αai′∗ when i = i′′,

ai∗ otherwise,

or if

c∗j =

{
a∗j + αa∗j′ when j = j′′,

a∗j otherwise,
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where i′′ 6= i′ and j′′ 6= j′, then

detC = detA. (14.7)

Adding to a row or column of a matrix a multiple of another row or
column does not change the matrix’s determinant.

To derive (14.7) for rows (the column proof is similar), one defines a matrixB
such that

bi∗ ≡
{
αai′∗ when i = i′′,

ai∗ otherwise.

From this definition, bi′′∗ = αai′∗ whereas bi′∗ = ai′∗, so

bi′′∗ = αbi′∗,

which by (14.5) guarantees that

detB = 0.

On the other hand, the three matrices A, B and C differ only in the (i′′)th
row, where [C]i′′∗ = [A]i′′∗ + [B]i′′∗; so, according to (14.3),

detC = detA+ detB.

Equation (14.7) results from combining the last two equations.

14.1.2 The determinant and the elementary operator

Section 14.1.1 has it that interchanging, scaling or adding rows or columns
of a matrix respectively negates, scales or does not alter the matrix’s deter-
minant. But the three operations named are precisely the operations of the
three elementaries of § 11.4. Therefore,

detT[i↔j]A = −detA = detAT[i↔j],

detTα[i]A = α detA = detATα[j],

detTα[ij]A = detA = detATα[ij],

1 ≤ (i, j) ≤ n, i 6= j,

(14.8)

for any n× n square matrix A. Obviously also,

det IA = detA = detAI,

det InA = detA = detAIn,

det I = 1 = det In.

(14.9)
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If A is taken to represent an arbitrary product of identity matrices (In
and/or I) and elementary operators, then a significant consequence of (14.8)
and (14.9), applied recursively, is that the determinant of a product is the
product of the determinants, at least where identity matrices and elementary
operators are concerned. In symbols,5

det

(∏

k

Mk

)
=

∏

k

detMk, (14.10)

Mk ∈
{
In, I, T[i↔j], Tα[i], Tα[ij]

}
,

1 ≤ (i, j) ≤ n.

This matters because, as the Gauss-Jordan decomposition of § 12.3 has
shown, one can build up any square matrix of full rank by applying ele-
mentary operators to In. Section 14.1.4 will put the rule (14.10) to good
use.

14.1.3 The determinant of a singular matrix

Equation (14.8) gives elementary operators the power to alter a matrix’s
determinant almost arbitrarily—almost arbitrarily, but not quite. What an
n× n elementary operator6 cannot do is to change an n× n matrix’s deter-
minant to or from zero. Once zero, a determinant remains zero under the
action of elementary operators. Once nonzero, always nonzero. Elementary
operators being reversible have no power to breach this barrier.

Another thing n × n elementaries cannot do according to § 12.5.3 is to
change an n× n matrix’s rank. Nevertheless, such elementaries can reduce
any n × n matrix reversibly to Ir, where r ≤ n is the matrix’s rank, by
the Gauss-Jordan algorithm of § 12.3. Equation (14.4) has that the n × n
determinant of Ir is zero if r < n, so it follows that the n × n determinant
of every rank-r matrix is similarly zero if r < n; and complementarily that
the n × n determinant of a rank-n matrix is never zero. Singular matrices
always have zero determinants; full-rank square matrices never do. One
can evidently tell the singularity or invertibility of a square matrix from its
determinant alone.

5Notation like “∈”, first met in § 2.3, can be too fancy for applied mathematics, but it
does help here. The notation Mk ∈ {. . .} restricts Mk to be any of the things between the
braces. As it happens though, in this case, (14.11) below is going to erase the restriction.

6That is, an elementary operator which honors an n× n active region. See § 11.3.2.
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14.1.4 The determinant of a matrix product

Sections 14.1.2 and 14.1.3 suggest the useful rule that

detAB = detAdetB. (14.11)

To prove the rule, we consider three distinct cases.

The first case is that A is singular. In this case, B acts as a column
operator on A, whereas according to § 12.5.2 no operator has the power to
promote A in rank. Hence the product AB is no higher in rank than A,
which says that AB is no less singular than A, which implies that AB like A
has a null determinant. Evidently (14.11) holds in the first case.

The second case is that B is singular. The proof here resembles that of
the first case.

The third case is that neither matrix is singular. Here, we use Gauss-
Jordan to decompose both matrices into sequences of elementary operators
and rank-n identity matrices, for which

detAB = det {[A] [B]}
= det

{[(∏
T
)
In

(∐
T
)] [(∏

T
)
In

(∐
T
)]}

=
(∏

detT
)

det In

(∐
detT

)(∏
detT

)
det In

(∐
detT

)

= det
[(∏

T
)
In

(∐
T
)]

det
[(∏

T
)
In

(∐
T
)]

= detAdetB,

which is a schematic way of pointing out in light of (14.10) merely that
since A and B are products of identity matrices and elementaries, the de-
terminant of the product is the product of the determinants.

So it is that (14.11) holds in all three cases, as was to be demonstrated.
The determinant of a matrix product is the product of the matrix determi-
nants.

14.1.5 Determinants of inverse and unitary matrices

From (14.11) it follows that

detA−1 =
1

detA
(14.12)

because A−1A = In and det In = 1.
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From (14.6) it follows that if Q is a unitary matrix (§ 13.12), then

detQ∗ detQ = 1,

|detQ| = 1.
(14.13)

This reason is that |detQ|2 = (detQ)∗(detQ) = detQ∗ detQ = detQ∗Q =
detQ−1Q = det In = 1.

14.1.6 Inverting the square matrix by determinant

The Gauss-Jordan algorithm comfortably inverts concrete matrices of mod-
erate size, but swamps one in nearly interminable algebra when symbolically
inverting general matrices larger than the A2 at the section’s head. Slogging
through the algebra to invert A3 symbolically nevertheless (the reader need
not actually do this unless he desires a long exercise), one quite incidentally
discovers a clever way to factor the determinant:

CTA = (detA)In = ACT ;

cij ≡ detRij ;

[Rij ]i′j′ ≡





1 if i′ = i and j′ = j,

0 if i′ = i or j′ = j but not both,

ai′j′ otherwise.

(14.14)

Pictorially,

Rij =



...
...

...
...

...
· · · ∗ ∗ 0 ∗ ∗ · · ·
· · · ∗ ∗ 0 ∗ ∗ · · ·
· · · 0 0 1 0 0 · · ·
· · · ∗ ∗ 0 ∗ ∗ · · ·
· · · ∗ ∗ 0 ∗ ∗ · · ·

...
...

...
...

...


,

same as A except in the ith row and jth column. The matrix C, called the
cofactor of A, then consists of the determinants of the various Rij .

Another way to write (14.14) is

[CTA]ij = (detA)δij = [ACT ]ij , (14.15)

which comprises two cases. In the case that i = j,

[ACT ]ij = [ACT ]ii =
∑

`

ai`ci` =
∑

`

ai` detRi` = detA = (detA)δij ,
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wherein the equation
∑

` ai` detRi` = detA states that detA, being a deter-
minant, consists of several terms, each term including one factor from each
row of A, where ai` provides the ith row and Ri` provides the other rows.7

In the case that i 6= j,

[ACT ]ij =
∑

`

ai`cj` =
∑

`

ai` detRj` = 0 = (detA)(0) = (detA)δij ,

wherein
∑

` ai` detRj` is the determinant, not of A itself, but rather of A
with the jth row replaced by a copy of the ith, which according to (14.5)
evaluates to zero. Similar equations can be written for [CTA]ij in both cases.
The two cases together prove (14.15), hence also (14.14).

Dividing (14.14) by detA, we have that8

A−1A = In = AA−1,

A−1 =
CT

detA
. (14.16)

Equation (14.16) inverts a matrix by determinant. In practice, it inverts
small matrices nicely, through about 4×4 dimensionality (the A−1

2 equation
at the head of the section is just eqn. 14.16 for n = 2). It inverts 5× 5 and
even 6× 6 matrices reasonably, too—especially with the help of a computer
to do the arithmetic. Though (14.16) still holds in theory for yet larger
matrices, and though symbolically it expresses the inverse of an abstract,
n×n matrix concisely whose entries remain unspecified, for concrete matri-
ces much bigger than 4× 4 to 6× 6 or so its several determinants begin to
grow too great and too many for practical calculation. The Gauss-Jordan
technique (or even the Gram-Schmidt technique) is preferred to invert con-
crete matrices above a certain size for this reason.9

14.2 Cöıncident properties

Chapters 11, 12 and 13, plus this chapter up to the present point, have
discovered several cöıncident properties of the invertible n×n square matrix.

7This is a bit subtle, but if you actually write out A3 and its cofactor C3 symbolically,
trying (14.15) on them, then you will soon see what is meant.

8Cramer’s rule [48, § 1.6], of which the reader may have heard, results from apply-
ing (14.16) to (13.4). However, Cramer’s rule is really nothing more than (14.16) in a less
pleasing form, so this book does not treat Cramer’s rule as such.

9For very large matrices, even the Gauss-Jordan grows impractical, due to compound
floating-point rounding error and the maybe large but nonetheless limited quantity of
available computer memory. Iterative techniques, regrettably beyond this edition’s scope,
serve to invert such matrices approximately.
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One does not feel the full impact of the cöıncidence when these properties
are left scattered across the long chapters; so, let us gather and summarize
the properties here. A square, n × n matrix evidently has either all of the
following properties or none of them, never some but not others.

• The matrix is invertible (§ 13.1).

• Its rows are linearly independent (§§ 12.1 and 12.3.4).

• Its columns are linearly independent (§ 12.5.4).

• Its columns address the same space the columns of In address, and its
rows address the same space the rows of In address (§ 12.5.7).

• The Gauss-Jordan algorithm reduces it to In (§ 12.3.3). (In this, per
§ 12.5.3, the choice of pivots does not matter.)

• Decomposing it, the Gram-Schmidt algorithm achieves a fully square,
unitary, n× n factor Q (§ 13.11.2).

• It has full rank r = n (§ 12.5.4).

• The linear system Ax = b it represents has a unique n-element solu-
tion x, given any specific n-element driving vector b (§ 13.2).

• The determinant detA 6= 0 (§ 14.1.3).

• None of its eigenvalues is zero (§ 14.3, below).

The square matrix which has one of these properties, has all of them. The
square matrix which lacks one, lacks all. Assuming exact arithmetic, a
square matrix is either invertible, with all that that implies, or singular;
never both. The distinction between invertible and singular matrices is
theoretically as absolute as (and is indeed analogous to) the distinction
between nonzero and zero scalars.

Whether the distinction is always useful is another matter. Usually the
distinction is indeed useful, but a matrix can be almost singular just as a
scalar can be almost zero. Such a matrix is known, among other ways, by
its unexpectedly small determinant. Now it is true: in exact arithmetic, a
nonzero determinant, no matter how small, implies a theoretically invertible
matrix. Practical matrices however often have entries whose values are im-
precisely known; and even when they don’t, the computers that invert them
tend to do arithmetic imprecisely in floating-point. Matrices which live
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on the hazy frontier between invertibility and singularity resemble the in-
finitesimals of § 4.1.1. They are called ill-conditioned matrices. Section 14.8
develops the topic.

14.3 The eigenvalue itself

We stand ready at last to approach the final major agent of matrix arith-
metic, the eigenvalue. Suppose a square, n×nmatrix A, a nonzero n-element
vector

v = Inv 6= 0, (14.17)

and a scalar λ, together such that

Av = λv, (14.18)

or in other words such that Av = λInv. If so, then

[A− λIn]v = 0. (14.19)

Since Inv is nonzero, the last equation is true if and only if the matrix
[A− λIn] is singular—which in light of § 14.1.3 is to demand that

det(A− λIn) = 0. (14.20)

The left side of (14.20) is an nth-order polynomial in λ, the characteristic
polynomial, whose n roots are the eigenvalues10 of the matrix A.

What is an eigenvalue, really? An eigenvalue is a scalar a matrix resem-
bles under certain conditions. When a matrix happens to operate on the
right eigenvector v, it is all the same whether one applies the entire matrix
or just the eigenvalue to the vector. The matrix scales the eigenvector by
the eigenvalue without otherwise altering the vector, changing the vector’s

10An example:

A =

[
2 0
3 −1

]
,

det(A− λIn) = det

[
2− λ 0

3 −1− λ

]
= (2− λ)(−1− λ)− (0)(3)

= λ2 − λ− 2 = 0,

λ = −1 or 2.
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magnitude but not its direction. The eigenvalue alone takes the place of the
whole, hulking matrix. This is what (14.18) means. Of course it works only
when v happens to be the right eigenvector, which § 14.4 discusses.

Observe incidentally that the characteristic polynomial of an n×nmatrix
always enjoys full order n regardless of the matrix’s rank. The reason lies in
the determinant det(A−λIn), which comprises exactly n! determinant-terms
(we say “determinant-terms” rather than “terms” here only to avoid con-
fusing the determinant’s terms with the characteristic polynomial’s), only
one of which, (a11−λ)(a22−λ) · · · (ann−λ), gathers elements straight down
the main diagonal of the matrix [A−λIn]. When multiplied out, this main-
diagonal determinant-term evidently contributes a (−λ)n to the character-
istic polynomial, whereas none of the other determinant-terms finds enough
factors of λ to reach order n. (If unsure, take your pencil and just calculate
the characteristic polynomials of the 3× 3 matrices I3 and 0. You will soon
see what is meant.)

On the other hand, nothing prevents λ = 0. When λ = 0, (14.20) makes
detA = 0, which as we have said is the sign of a singular matrix. Zero
eigenvalues and singular matrices always travel together. Singular matrices
each have at least one zero eigenvalue; nonsingular matrices never do.

The eigenvalues of a matrix’s inverse are the inverses of the matrix’s
eigenvalues. That is,

λ′jλj = 1 for all 1 ≤ j ≤ n if A′A = In = AA′. (14.21)

The reason behind (14.21) comes from answering the question: if Avj
scales vj by the factor λj , then what does A′Avj = Ivj do to vj?

Naturally one must solve (14.20)’s nth-order polynomial to locate the
actual eigenvalues. One solves it by the same techniques by which one solves
any polynomial: the quadratic formula (2.2); the cubic and quartic methods
of chapter 10; the Newton-Raphson iteration (4.30). On the other hand, the
determinant (14.20) can be impractical to expand for a large matrix; here
iterative techniques11 help.12

14.4 The eigenvector

It is an odd fact that (14.19) and (14.20) reveal the eigenvalues λ of a
square matrix A while obscuring the associated eigenvectors v. Once one
has calculated an eigenvalue, though, one can feed it back to calculate the

11Such iterative techniques are regrettably not treated by this edition.
12The inexpensive [48] also covers the topic competently and readably.
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associated eigenvector. According to (14.19), the eigenvectors are the n-
element vectors for which

[A− λIn]v = 0,

which is to say that the eigenvectors are the vectors of the kernel space of the
degenerate matrix [A−λIn]—which one can calculate (among other ways) by
the Gauss-Jordan kernel formula (13.7) or by a method exploiting (13.48).

An eigenvalue and its associated eigenvector, taken together, are some-
times called an eigensolution.

14.5 Eigensolution facts

Many useful or interesting mathematical facts concern the eigensolution,
among them the following.

• If the eigensolutions of A are (λj ,vj), then the eigensolutions of A+
αIn are (λj + α,vj). The eigenvalues move over by αIn while the
eigenvectors remain fixed. This is seen by adding αvj to both sides of
the definition Avj = λvj .

• A matrix and its inverse share the same eigenvectors with inverted
eigenvalues. Refer to (14.21) and its explanation in § 14.3.

• Eigenvectors corresponding to distinct eigenvalues are always linearly
independent of one another. To prove this fact, consider several inde-
pendent eigenvectors v1,v2, . . . ,vk−1 respectively with distinct eigen-
values λ1, λ2, . . . , λk−1, and further consider another eigenvector vk
which might or might not be independent but which too has a distinct
eigenvalue λk. Were vk dependent, which is to say, did nontrivial
coefficients cj exist such that

vk =

k−1∑

j=1

cjvj ,

then left-multiplying the equation by A− λkIn would yield

0 =

k−1∑

j=1

(λj − λk)cjvj ,

impossible since the k − 1 eigenvectors are independent. Thus vk too
is independent, whereupon by induction from a start case of k = 1



14.6. DIAGONALIZATION 429

we conclude that there exists no dependent eigenvector with a distinct
eigenvalue.

• If an n× n square matrix A has n independent eigenvectors (which is
always so if the matrix has n distinct eigenvalues and often so even
otherwise), then any n-element vector can be expressed as a unique
linear combination of the eigenvectors. This is a simple consequence
of the fact that the n × n matrix V whose columns are the several
eigenvectors vj has full rank r = n. Unfortunately, some matrices with
repeated eigenvalues also have repeated eigenvectors—as for example,
curiously,13 [1 0; 1 1]T , whose double eigenvalue λ = 1 has the single
eigenvector [1 0]T . Section 14.10.2 speaks of matrices of the last kind.

• An n×n square matrix whose eigenvectors are linearly independent of
one another cannot share all eigensolutions with any other n×n square
matrix. This fact proceeds from the last point, that every n-element
vector x is a unique linear combination of independent eigenvectors.
Neither of the two proposed matrices A1 and A2 could scale any of the
eigenvector components of x differently than the other matrix did, so
A1x− A2x = (A1 − A2)x = 0 for all x, which in turn is possible only
if A1 = A2.

• A positive definite matrix has only real, positive eigenvalues. A non-
negative definite matrix has only real, nonnegative eigenvalues. Were
it not so, then v∗Av = λv∗v (in which v∗v naturally is a positive real
scalar) would violate the criterion for positive or nonnegative definite-
ness. See § 13.6.3.

• Every n × n square matrix has at least one eigensolution if n > 0,
because according to the fundamental theorem of algebra (6.1) the
matrix’s characteristic polynomial (14.20) has at least one root, an
eigenvalue, which by definition would be no eigenvalue if it had no
eigenvector to scale, and for which (14.19) necessarily admits at least
one nonzero solution v because its matrix A− λIn is degenerate.

14.6 Diagonalization

Any n × n matrix with n independent eigenvectors (which class per § 14.5
includes, but is not limited to, every n×n matrix with n distinct eigenvalues)

13[60]
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can be diagonalized as
A = V ΛV −1, (14.22)

where

Λ =


λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−1 0
0 0 · · · 0 λn


is an otherwise empty n × n matrix with the eigenvalues of A set along its
main diagonal and where

V =
[

v1 v2 · · · vn−1 vn
]

is an n × n matrix whose columns are the eigenvectors of A. This is so
because the identity Avj = vjλj holds for all 1 ≤ j ≤ n; or, expressed more
concisely, because the identity

AV = V Λ (14.23)

holds (reason: the jth column of the product AV is Avj , whereas the jth
column of Λ having just the one element acts to scale V ’s jth column only).
The matrix V is invertible because its columns the eigenvectors are inde-
pendent, from which (14.22) follows. Equation (14.22) is called the eigen-
value decomposition, the diagonal decomposition or the diagonalization of
the square matrix A.

One might object that we had shown only how to compose some matrix
V ΛV −1 with the correct eigenvalues and independent eigenvectors, but had
failed to show that the matrix was actually A. However, we need not show
this, because § 14.5 has already demonstrated that two matrices with the
same eigenvalues and independent eigenvectors are in fact the same matrix,
whereby the product V ΛV −1 can be nothing other than A.

An n × n matrix with n independent eigenvectors (which class, again,
includes every n × n matrix with n distinct eigenvalues and also includes
many matrices with fewer) is called a diagonalizable matrix. Besides factor-
ing a diagonalizable matrix by (14.22), one can apply the same formula to
compose a diagonalizable matrix with desired eigensolutions.

The diagonal matrix diag{x} of (11.55) is trivially diagonalizable as
diag{x} = In diag{x}In.

It is a curious and useful fact that

A2 = (V ΛV −1)(V ΛV −1) = V Λ2V −1
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and by extension that

Ak = V ΛkV −1 (14.24)

for any diagonalizable matrix A. The diagonal matrix Λk is nothing more
than the diagonal matrix Λ with each element individually raised to the kth
power, such that [

Λk
]
ij

= δijλ
k
j .

Changing z ← k implies the generalization14

Az = V ΛzV −1,
[
Λz
]
ij

= δijλ
z
j ,

(14.25)

good for any diagonalizable A and complex z.

Nondiagonalizable matrices are troublesome and interesting. The non-
diagonalizable matrix vaguely resembles the singular matrix in that both
represent edge cases and can be hard to handle numerically; but the resem-
blance ends there, and a matrix can be either without being the other. The
n × n null matrix for example is singular but still diagonalizable. What a
nondiagonalizable matrix is, is, in essence, a matrix with a repeated eigenso-
lution: the same eigenvalue with the same eigenvector, twice or more. More
formally, a nondiagonalizable matrix is a matrix with an n-fold eigenvalue
whose corresponding eigenvector space fewer than n eigenvectors fully char-
acterize. Section 14.10.2 will have more to say about the nondiagonalizable
matrix.

14.7 Remarks on the eigenvalue

Eigenvalues and their associated eigenvectors stand among the principal
causes that one should go to such considerable trouble to develop matrix
theory as we have done in recent chapters. The idea that a matrix resembles
a humble scalar in the right circumstance is powerful. Among the reasons
for this is that a matrix can represent an iterative process, operating repeat-
edly on a vector v to change it first to Av, then to A2v, A3v and so on. The
dominant eigenvalue of A, largest in magnitude, tends then to transform v
into the associated eigenvector, gradually but relatively eliminating all other
components of v. Should the dominant eigenvalue have greater than unit

14It may not be clear however according to (5.13) which branch of λzj one should choose
at each index j, especially if A has negative or complex eigenvalues.
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magnitude, it destabilizes the iteration; thus one can sometimes judge the
stability of a physical process indirectly by examining the eigenvalues of the
matrix which describes it. Then there is the edge case of the nondiagonaliz-
able matrix, which matrix surprisingly covers only part of its domain with
eigenvectors. All this is fairly deep mathematics. It brings an appreciation
of the matrix for reasons which were anything but apparent from the outset
of chapter 11.

Remarks continue in §§ 14.10.2 and 14.13.

14.8 Matrix condition

The largest in magnitude of the several eigenvalues of a diagonalizable opera-
tor A, denoted here λmax, tends to dominate the iteration Akx. Section 14.7
has named λmax the dominant eigenvalue for this reason.

One sometimes finds it convenient to normalize a dominant eigenvalue
by defining a new operator A′ ≡ A/ |λmax|, whose own dominant eigenvalue
λmax/ |λmax| has unit magnitude. In terms of the new operator, the iteration
becomes Akx = |λmax|k A′kx, leaving one free to carry the magnifying effect
|λmax|k separately if one prefers to do so. However, the scale factor 1/ |λmax|
scales all eigenvalues equally; thus, if A’s eigenvalue of smallest magnitude
is denoted λmin, then the corresponding eigenvalue of A′ is λmin/ |λmax|. If
zero, then both matrices according to § 14.3 are singular; if nearly zero, then
both matrices are ill conditioned.

Such considerations lead us to define the condition of a diagonalizable
matrix quantitatively as15

κ ≡
∣∣∣∣
λmax

λmin

∣∣∣∣ , (14.26)

by which

κ ≥ 1 (14.27)

is always a real number of no less than unit magnitude. For best invertibility,
κ = 1 would be ideal (it would mean that all eigenvalues had the same
magnitude), though in practice quite a broad range of κ is usually acceptable.
Could we always work in exact arithmetic, the value of κ might not interest
us much as long as it stayed finite; but in computer floating point, or where
the elements of A are known only within some tolerance, infinite κ tends
to emerge imprecisely rather as large κ � 1. An ill-conditioned matrix by

15[126]
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definition16 is a matrix of large κ� 1. The applied mathematician handles
such a matrix with due skepticism.

Matrix condition so defined turns out to have another useful application.
Suppose that a diagonalizable matrix A is precisely known but that the
corresponding driving vector b is not. If

A(x + δx) = b + δb,

where δb is the error in b and δx is the resultant error in x, then one should
like to bound the ratio |δx| / |x| to ascertain the reliability of x as a solution.
Transferring A to the equation’s right side,

x + δx = A−1(b + δb).

Subtracting x = A−1b and taking the magnitude,

|δx| =
∣∣A−1 δb

∣∣ .

Dividing by |x| =
∣∣A−1b

∣∣,

|δx|
|x| =

∣∣A−1 δb
∣∣

|A−1b| .

The quantity
∣∣A−1 δb

∣∣ cannot exceed
∣∣λ−1

min δb
∣∣. The quantity

∣∣A−1b
∣∣ cannot

fall short of
∣∣λ−1

maxb
∣∣. Thus,

|δx|
|x| ≤

∣∣λ−1
min δb

∣∣
∣∣λ−1

maxb
∣∣ =

∣∣∣∣
λmax

λmin

∣∣∣∣
|δb|
|b| .

That is,
|δx|
|x| ≤ κ

|δb|
|b| . (14.28)

Condition, incidentally, might technically be said to apply to scalars as
well as to matrices, but ill condition remains a property of matrices alone.
According to (14.26), the condition of every nonzero scalar is happily κ = 1.

16There is of course no definite boundary, no particular edge value of κ, less than which
a matrix is well conditioned, at and beyond which it turns ill-conditioned; but you knew
that already. If I tried to claim that a matrix with a fine κ = 3 were ill conditioned, for
instance, or that one with a wretched κ = 20x18 were well conditioned, then you might
not credit me—but the mathematics nevertheless can only give the number; it remains to
the mathematician to interpret it.
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14.9 The similarity transformation

Any collection of vectors assembled into a matrix can serve as a basis by
which other vectors can be expressed. For example, if the columns of

B =

 1 −1
0 2
0 1


are regarded as a basis, then the vector

B
[

5
1

]
= 5

 1
0
0

+ 1

 −1
2
1

 =

 4
2
1


is (5, 1) in the basis B: five times the first basis vector plus once the second.
The basis provides the units from which other vectors can be built.

Particularly interesting is the n×n, invertible complete basis B, in which
the n basis vectors are independent and address the same full space the
columns of In address. If

x = Bu

then u represents x in the basis B. Left-multiplication by B evidently
converts out of the basis. Left-multiplication by B−1,

u = B−1x,

then does the reverse, converting into the basis. One can therefore convert
any operator A to work within a complete basis B by the successive steps

Ax = b,

ABu = b,

[B−1AB]u = B−1b,

by which the operator B−1AB is seen to be the operator A, only transformed
to work within the basis17,18 B.

17The reader may need to ponder the basis concept a while to grasp it, but the concept
is simple once grasped and little purpose would be served by dwelling on it here. Basically,
the idea is that one can build the same vector from alternate building blocks, not only
from the standard building blocks e1, e2, e3, etc.—except that the right word for the
relevant “building block” is basis vector. The books [61] and [83] introduce the basis more
gently; one might consult one of those if needed.

18The professional matrix literature sometimes distinguishes by typeface between the
matrix B and the basis B its columns represent. Such semantical distinctions seem a little
too fine for applied use, though. This book just uses B.
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The conversion from A into B−1AB is called a similarity transformation.
If B happens to be unitary (§ 13.12), then the conversion is also called a
unitary transformation. The matrix B−1AB the transformation produces
is said to be similar (or, if B is unitary, unitarily similar) to the matrix A.
We have already met the similarity transformation in §§ 11.5 and 12.2. Now
we have the theory to appreciate it properly.

Probably the most important property of the similarity transformation
is that it alters no eigenvalues. That is, if

Ax = λx,

then, by successive steps,

B−1A(BB−1)x = λB−1x,

[B−1AB]u = λu. (14.29)

The eigenvalues of A and the similar B−1AB are the same for any square,
n× n matrix A and any invertible, square, n× n matrix B.

14.10 The Schur decomposition

The Schur decomposition of an arbitrary, n× n square matrix A is

A = QUSQ
∗, (14.30)

where Q is an n×n unitary matrix whose inverse, as for any unitary matrix
(§ 13.12), is Q−1 = Q∗; and where US is a general upper triangular matrix
which can have any values (even zeros) along its main diagonal. The Schur
decomposition is slightly obscure, is somewhat tedious to derive and is of
limited use in itself, but serves a theoretical purpose.19 We derive it here
for this reason.

19The alternative is to develop the interesting but difficult Jordan canonical form, which
for brevity’s sake this chapter prefers to omit.
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14.10.1 Derivation

Suppose that20 (for some reason, which will shortly grow clear) we have a
matrix B of the form

B =



. . .
...

...
...

...
...

...
...

· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


, (14.31)

where the ith row and ith column are depicted at center. Suppose further
that we wish to transform B not only similarly but unitarily into

C ≡W ∗BW =



. . .
...

...
...

...
...

...
...

· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 ∗ ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 ∗ ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 0 ∗ ∗ · · ·
· · · 0 0 0 0 0 ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


, (14.32)

where W is an n×n unitary matrix, and where we do not mind if any or all
of the ∗ elements change in going from B to C but we require zeros in the
indicated spots. Let Bo and Co represent the (n− i)× (n− i) submatrices
in the lower right corners respectively of B and C, such that

Bo ≡ In−iH−iBHiIn−i,

Co ≡ In−iH−iCHiIn−i,
(14.33)

20This subsection assigns various capital Roman letters to represent the several matrices
and submatrices it manipulates. Its choice of letters except in (14.30) is not standard and
carries no meaning elsewhere. The writer had to choose some letters and these are ones
he chose.

This footnote mentions the fact because good mathematical style avoid assigning letters
that already bear a conventional meaning in a related context (for example, this book
avoids writing Ax = b as Te = i, not because the latter is wrong but because it would be
extremely confusing). The Roman alphabet provides only twenty-six capitals, though, of
which this subsection uses too many to be allowed to reserve any. See appendix B.
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where Hk is the shift operator of § 11.9. Pictorially,

Bo =


∗ ∗ ∗ · · ·
∗ ∗ ∗ · · ·
∗ ∗ ∗ · · ·
...

...
...

. . .

, Co =


∗ ∗ ∗ · · ·
0 ∗ ∗ · · ·
0 ∗ ∗ · · ·
...

...
...

. . .

.

Equation (14.32) seeks an n×n unitary matrix W to transform the ma-
trix B into a new matrix C ≡ W ∗BW such that C fits the form (14.32)
stipulates. The question remains as to whether a unitary W exists that sat-
isfies the form and whether for general B we can discover a way to calculate
it. To narrow the search, because we need not find every W that satisfies the
form but only one such W , let us look first for a W that fits the restricted
template

W = Ii +HiWoH−i =



. . .
...

...
...

...
...

...
...

· · · 1 0 0 0 0 0 0 · · ·
· · · 0 1 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 0 · · ·
· · · 0 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·
· · · 0 0 0 0 ∗ ∗ ∗ · · ·

...
...

...
...

...
...

...
. . .


, (14.34)

which contains a smaller, (n− i)× (n− i) unitary submatrix Wo in its lower
right corner and resembles In elsewhere. Beginning from (14.32), we have
by successive, reversible steps that

C = W ∗BW

= (Ii +HiW
∗
oH−i)(B)(Ii +HiWoH−i)

= IiBIi + IiBHiWoH−i +HiW
∗
oH−iBIi

+HiW
∗
oH−iBHiWoH−i.

The unitary submatrixWo has only n−i columns and n−i rows, so In−iWo =
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Wo = WoIn−i. Thus,21

C = IiBIi + IiBHiWoIn−iH−i +HiIn−iW
∗
oH−iBIi

+HiIn−iW
∗
o In−iH−iBHiIn−iWoIn−iH−i

= Ii[B]Ii + Ii[BHiWoH−i](In − Ii) + (In − Ii)[HiW
∗
oH−iB]Ii

+ (In − Ii)[HiW
∗
oBoWoH−i](In − Ii),

where the last step has used (14.33) and the identity (11.76). The four terms
on the equation’s right, each term with rows and columns neatly truncated,
represent the four quarters of C ≡ W ∗BW—upper left, upper right, lower
left and lower right, respectively. The lower left term is null because

(In − Ii)[HiW
∗
oH−iB]Ii = (In − Ii)[HiW

∗
o In−iH−iBIi]Ii

= (In − Ii)[HiW
∗
oH−i][(In − Ii)BIi]Ii

= (In − Ii)[HiW
∗
oH−i][0]Ii = 0,

leaving

C = Ii[B]Ii + Ii[BHiWoH−i](In − Ii)
+ (In − Ii)[HiW

∗
oBoWoH−i](In − Ii).

But the upper left term makes the upper left areas of B and C the same,
and the upper right term does not bother us because we have not restricted
the content of C’s upper right area. Apparently any (n− i)× (n− i) unitary
submatrix Wo whatsoever obeys (14.32) in the lower left, upper left and
upper right.

That leaves the lower right. Left- and right-multiplying (14.32) by the
truncator (In−Ii) to focus solely on the lower right area, we have the reduced
requirement that

(In − Ii)C(In − Ii) = (In − Ii)W ∗BW (In − Ii). (14.35)

Further left-multiplying by H−i, right-multiplying by Hi, and applying the
identity (11.76) yields that

In−iH−iCHiIn−i = In−iH−iW
∗BWHiIn−i;

21The algebra is so thick that, even if one can logically follow it, one might nonetheless
wonder how the writer had thought to write it. However, much of the algebra consists of
crop-and-shift operations like HiIn−i which, when a sample matrix is sketched on a sheet
of paper, are fairly easy to visualize. Indeed, the whole derivation is more visual than the
inscrutable symbols let on. The writer had the visuals in mind.
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or, substituting from (14.33), that

Co = In−iH−iW
∗BWHiIn−i.

Expanding W per (14.34),

Co = In−iH−i(Ii +HiW
∗
oH−i)B(Ii +HiWoH−i)HiIn−i;

or, since In−iH−iIi = 0 = IiHiIn−i,

Co = In−iH−i(HiW
∗
oH−i)B(HiWoH−i)HiIn−i

= In−iW
∗
oH−iBHiWoIn−i

= W ∗o In−iH−iBHiIn−iWo.

Per (14.33), this has that

Co = W ∗oBoWo. (14.36)

The steps from (14.35) to (14.36) are reversible, so the latter is as good a
way to state the reduced requirement as the former is. To achieve a unitary
transformation of the form (14.32), therefore, it suffices to satisfy (14.36).

The increasingly well-stocked armory of matrix theory we now have to
draw from makes satisfying (14.36) possible as follows. Observe per § 14.5
that every square matrix has at least one eigensolution. Let (λo,vo) repre-
sent an eigensolution of Bo—any eigensolution of Bo—with vo normalized
to unit magnitude. Form the broad, (n− i)× (n− i+ 1) matrix

F ≡
[

vo e1 e2 e3 · · · en−i
]
.

Decompose F by the Gram-Schmidt technique of § 13.11.2, choosing p = 1
during the first instance of the algorithm’s step 3 (though choosing any
permissible p thereafter), to obtain

F = QFRF .

Noting that the Gram-Schmidt algorithm orthogonalizes only rightward,
observe that the first column of the (n − i) × (n − i) unitary matrix QF
remains simply the first column of F , which is the unit eigenvector vo:

[QF ]∗1 = QFe1 = vo.

Transform Bo unitarily by QF to define the new matrix

G ≡ Q∗FBoQF ,
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then transfer factors to reach the equation

QFGQ
∗
F = Bo.

Right-multiplying by QFe1 = vo and noting that Bovo = λovo, observe that

QFGe1 = λovo.

Left-multiplying by Q∗F ,
Ge1 = λoQ

∗
Fvo.

Noting that the Gram-Schmidt process has rendered orthogonal to vo all
columns of QF but the first, which is vo, observe that

Ge1 = λoQ
∗
Fvo = λoe1 =


λo
0
0
...

,

which means that

G =


λo ∗ ∗ · · ·
0 ∗ ∗ · · ·
0 ∗ ∗ · · ·
...

...
...

. . .

,
which fits the very form (14.33) the submatrix Co is required to have. Con-
clude therefore that

Wo = QF ,

Co = G,
(14.37)

where QF and G are as this paragraph develops, together constitute a valid
choice for Wo and Co, satisfying the reduced requirement (14.36) and thus
also the original requirement (14.32).

Equation (14.37) completes a failsafe technique to transform unitarily
any square matrix B of the form (14.31) into a square matrix C of the
form (14.32). Naturally the technique can be applied recursively as

B|i=i′ = C|i=i′−1, 1 ≤ i′ ≤ n, (14.38)

because the form (14.31) of B at i = i′ is nothing other than the form (14.32)
of C at i = i′ − 1. Therefore, if we let

B|i=0 = A, (14.39)
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then it follows by induction that

B|i=n = US , (14.40)

where per (14.31) the matrix US has the general upper triangular form the
Schur decomposition (14.30) requires. Moreover, because the product of
unitary matrices according to (13.66) is itself a unitary matrix, we have
that

Q =
n−1∐

i′=0

(W |i=i′) , (14.41)

which along with (14.40) accomplishes the Schur decomposition.

14.10.2 The nondiagonalizable matrix

The characteristic equation (14.20) of the general upper triangular ma-
trix US is

det(US − λIn) = 0.

Unlike most determinants, this determinant brings only the one term

det(US − λIn) =
n∏

i=1

(uSii − λ) = 0

whose factors run straight down the main diagonal, where the determinant’s
n! − 1 other terms are all zero because each of them includes at least one
zero factor from below the main diagonal.22 Hence no element above the
main diagonal of US even influences the eigenvalues, which apparently are

λi = uSii, (14.42)

the main-diagonal elements.

22The determinant’s definition in § 14.1 makes the following two propositions equivalent:
(i) that a determinant’s term which includes one or more factors above the main diagonal
also includes one or more factors below; (ii) that the only permutor that marks no position
below the main diagonal is the one which also marks no position above. In either form,
the proposition’s truth might seem less than obvious until viewed from the proper angle.

Consider a permutor P . If P marked no position below the main diagonal, then it would
necessarily have pnn = 1, else the permutor’s bottom row would be empty which is not
allowed. In the next-to-bottom row, p(n−1)(n−1) = 1, because the nth column is already
occupied. In the next row up, p(n−2)(n−2) = 1; and so on, thus affirming the proposition.
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According to (14.29), similarity transformations preserve eigenvalues.
The Schur decomposition (14.30) is in fact a similarity transformation; and,
as we have seen, every matrix A has a Schur decomposition. If therefore

A = QUSQ
∗,

then the eigenvalues of A are just the values along the main diagonal of US.23

One might think that the Schur decomposition offered an easy way to cal-
culate eigenvalues, but it is less easy than it first appears because one must
calculate eigenvalues to reach the Schur decomposition in the first place.
Whatever practical merit the Schur decomposition might have or lack, how-
ever, it brings at least the theoretical benefit of (14.42): every square matrix
without exception has a Schur decomposition, whose triangular factor US
openly lists all eigenvalues along its main diagonal.

This theoretical benefit pays when some of the n eigenvalues of an n×n
square matrix A repeat. By the Schur decomposition, one can construct
a second square matrix A′, as near as desired to A but having n distinct
eigenvalues, simply by perturbing the main diagonal of US to24

U ′S ≡ US + εdiag{u}, (14.43)

ui′ 6= ui if λi′ = λi,

where |ε| � 1 and where u is an arbitrary vector that meets the criterion
given. Though infinitesimally near A, the modified matrix A′ = QU ′SQ

∗ un-
like A has n (maybe infinitesimally) distinct eigenvalues. With sufficient toil,
one might analyze such perturbed eigenvalues and their associated eigenvec-
tors similarly as § 9.7.2 has analyzed perturbed poles.

Equation (14.43) brings us to the nondiagonalizable matrix of the subsec-
tion’s title. Section 14.6 and its diagonalization formula (14.22) diagonalize

23An unusually careful reader might worry that A and US had the same eigenvalues
with different multiplicities. It would be surprising if it actually were so; but, still, one
would like to give a sounder reason than the participle “surprising.” Consider however
that

A− λIn = QUSQ
∗ − λIn = Q[US −Q∗(λIn)Q]Q∗

= Q[US − λ(Q∗InQ)]Q∗ = Q[US − λIn]Q∗.

According to (14.11) and (14.13), this equation’s determinant is

det[A− λIn] = det{Q[US − λIn]Q∗} = detQdet[US − λIn] detQ∗ = det[US − λIn],

which says that A and US have not only the same eigenvalues but also the same charac-
teristic polynomials, and thus further the same eigenvalue multiplicities.

24Equation (11.55) defines the diag{·} notation.
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any matrix with distinct eigenvalues and even any matrix with repeated
eigenvalues but distinct eigenvectors, but fail where eigenvectors repeat.
Equation (14.43) separates eigenvalues, and thus also eigenvectors—for ac-
cording to § 14.5 eigenvectors of distinct eigenvalues never depend on one
another—permitting a nonunique but still sometimes usable form of diag-
onalization in the limit ε → 0 even when the matrix in question is strictly
nondiagonalizable.

The finding that every matrix is arbitrarily nearly diagonalizable illu-
minates a question the chapter has evaded up to the present point. The
question: does a p-fold root in the characteristic polynomial (14.20) neces-
sarily imply a p-fold eigenvalue in the corresponding matrix? The existence
of the nondiagonalizable matrix casts a shadow of doubt until one realizes
that every nondiagonalizable matrix is arbitrarily nearly diagonalizable—
and, better, is arbitrarily nearly diagonalizable with distinct eigenvalues. If
you claim that a matrix has a triple eigenvalue and someone disputes the
claim, then you can show him a nearly identical matrix with three infinites-
imally distinct eigenvalues. That is the essence of the idea. We will leave
the answer in that form.

Generalizing the nondiagonalizability concept leads one eventually to the
ideas of the generalized eigenvector25 (which solves the higher-order linear
system [A − λI]kv = 0) and the Jordan canonical form,26 which together
roughly track the sophisticated conventional pole-separation technique of
§ 9.7.6. Then there is a kind of sloppy Schur form called a Hessenberg form
which allows content in US along one or more subdiagonals just beneath
the main diagonal. One could profitably propose and prove any number of
useful theorems concerning the nondiagonalizable matrix and its generalized
eigenvectors, or concerning the eigenvalue problem27 more broadly, in more
and less rigorous ways, but for the time being we will let the matter rest
there.

14.11 The Hermitian matrix

An m×m square matrix A that is its own adjoint,

A∗ = A, (14.44)

25[52, chapter 7]
26[48, chapter 5]
27[148]
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is called a Hermitian or self-adjoint matrix. Properties of the Hermitian
matrix include that

• its eigenvalues are real,

• its eigenvectors corresponding to distinct eigenvalues lie orthogonal to
one another, and

• it is unitarily diagonalizable (§§ 13.12 and 14.6) such that

A = V ΛV ∗. (14.45)

That the eigenvalues are real is proved by letting (λ,v) represent an
eigensolution of A and constructing the product v∗Av, for which

λ∗v∗v = (Av)∗v = v∗Av = v∗(Av) = λv∗v.

That is,
λ∗ = λ,

which naturally is possible only if λ is real.
That eigenvectors corresponding to distinct eigenvalues lie orthogonal to

one another is proved28 by letting (λ1,v1) and (λ2,v2) represent eigensolu-
tions of A and constructing the product v∗2Av1, for which

λ∗2v
∗
2v1 = (Av2)∗v1 = v∗2Av1 = v∗2(Av1) = λ1v

∗
2v1.

That is,
λ∗2 = λ1 or v∗2v1 = 0.

But according to the last paragraph all eigenvalues are real; the eigenval-
ues λ1 and λ2 are no exceptions. Hence,

λ2 = λ1 or v∗2v1 = 0.

To prove the last hypothesis of the three needs first some definitions as
follows. Given an m×m matrix A, let the s columns of the m×s matrix Vo
represent the s independent eigenvectors of A such that (i) each column
has unit magnitude and (ii) columns whose eigenvectors share the same
eigenvalue lie orthogonal to one another. Let the s × s diagonal matrix Λo
carry the eigenvalues on its main diagonal such that

AVo = VoΛo,

28[83, § 8.1]
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where the distinction between the matrix Λo and the full eigenvalue matrix Λ
of (14.22) is that the latter always includes a p-fold eigenvalue p times,
whereas the former includes a p-fold eigenvalue only as many times as the
eigenvalue enjoys independent eigenvectors. Let them−s columns of them×
(m− s) matrix V ⊥o represent the complete orthogonal complement (§ 13.10)
to Vo—perpendicular to all eigenvectors, each column of unit magnitude—
such that

V ⊥∗o Vo = 0 and V ⊥∗o V ⊥o = Im−s.

Recall from § 14.5 that s 6= 0 but 0 < s ≤ m because every square matrix
has at least one eigensolution. Recall from § 14.6 that s = m if and only
if A is diagonalizable.29

With these definitions in hand, we can now prove by contradiction that
all Hermitian matrices are diagonalizable, falsely supposing a nondiagonal-
izable Hermitian matrix A, whose V ⊥o (since A is supposed to be nondiag-
onalizable, implying that s < m) would have at least one column. For such
a matrix A, s× (m− s) and (m− s)× (m− s) auxiliary matrices F and G
necessarily would exist such that

AV ⊥o = VoF + V ⊥o G,

not due to any unusual property of the product AV ⊥o but for the mundane
reason that the columns of Vo and V ⊥o together by definition addressed

29A concrete example: the invertible but nondiagonalizable matrix

A =


−1 0 0 0
−6 5 5

2
− 5

2

0 0 5 0
0 0 0 5


has a single eigenvalue at λ = −1 and a triple eigenvalue at λ = 5, the latter of whose
eigenvector space is fully characterized by two eigenvectors rather than three such that

Vo =


1√
2

0 0
1√
2

1 0

0 0 1√
2

0 0 1√
2

, Λo =

 −1 0 0
0 5 0
0 0 5

, V ⊥o =


0
0
1√
2

− 1√
2

.
The orthogonal complement V ⊥o supplies the missing vector, not an eigenvector but per-
pendicular to them all.

In the example, m = 4 and s = 3.
All vectors in the example are reported with unit magnitude. The two λ = 5 eigenvectors

are reported in mutually orthogonal form, but notice that eigenvectors corresponding to
distinct eigenvalues need not be orthogonal when A is not Hermitian.
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the space of all m-element vectors—including the columns of AV ⊥o . Left-
multiplying by V ∗o , we would have by successive steps that

V ∗o AV
⊥
o = V ∗o VoF + V ∗o V

⊥
o G,

(AVo)
∗V ⊥o = IsF + V ∗o V

⊥
o G,

(VoΛo)
∗V ⊥o = F + V ∗o V

⊥
o G,

Λ∗oV
∗
o V
⊥
o = F + V ∗o V

⊥
o G,

Λ∗o(0) = F + (0)G,

0 = F,

where we had relied on the assumption that A were Hermitian and thus
that, as proved above, its distinctly eigenvalued eigenvectors lay orthogonal
to one another; in consequence of which A∗ = A and V ∗o Vo = Is.

The finding that F = 0 reduces the AV ⊥o equation above to read

AV ⊥o = V ⊥o G.

In the reduced equation the matrix G would have at least one eigensolution,
not due to any unusual property of G but because according to § 14.5 every
square matrix, 1 × 1 or larger, has at least one eigensolution. Let (µ,w)
represent an eigensolution of G. Right-multiplying by the (m − s)-element
vector w 6= 0, we would have by successive steps that

AV ⊥o w = V ⊥o Gw,

A(V ⊥o w) = µ(V ⊥o w).

The last equation claims that (µ, V ⊥o w) were an eigensolution of A, when we
had supposed that all of A’s eigenvectors lay in the space addressed by the
columns of Vo, and thus by construction did not lie in the space addressed
by the columns of V ⊥o . The contradiction proves false the assumption that
gave rise to it. The assumption: that a nondiagonalizable Hermitian A
existed. We conclude that all Hermitian matrices are diagonalizable—and
conclude further that they are unitarily diagonalizable on the ground that
their eigenvectors lie orthogonal to one another—as was to be demonstrated.

Having proven that all Hermitian matrices are diagonalizable and have
real eigenvalues and orthogonal eigenvectors, one wonders whether the con-
verse holds: are all diagonalizable matrices with real eigenvalues and or-
thogonal eigenvectors Hermitian? To show that they are, one can construct
the matrix described by the diagonalization formula (14.22),

A = V ΛV ∗,
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where V −1 = V ∗ because this V is unitary (§ 13.12). The equation’s adjoint
is

A∗ = V Λ∗V ∗.

But all the eigenvalues here are real, which means that Λ∗ = Λ and the
right sides of the two equations are the same. That is, A∗ = A as was
to be demonstrated. All diagonalizable matrices with real eigenvalues and
orthogonal eigenvectors are Hermitian.

This section brings properties that simplify many kinds of matrix analy-
sis. The properties demand a Hermitian matrix, which might seem a severe
and unfortunate restriction—except that one can left-multiply any exactly
determined linear system Cx = d by C∗ to get the equivalent Hermitian
system

[C∗C]x = [C∗d], (14.46)

in which A = C∗C and b = C∗d, for which the properties obtain.30

14.12 The singular-value decomposition

Occasionally an elegant idea awaits discovery, overlooked, almost in plain
sight. If the unlikely thought occurred to you to take the square root of a
matrix, then the following idea is one you might discover.31

Consider the n× n product A∗A of a tall or square, m× n matrix A of
full column rank

r = n ≤ m
and its adjoint A∗. The product A∗A is invertible according to § 13.6.2; is
positive definite according to § 13.6.3; and, since (A∗A)∗ = A∗A, is clearly
Hermitian according to § 14.11; thus is unitarily diagonalizable according
to (14.45) as

A∗A = V ΛV ∗. (14.47)

Here, the n×n matrices Λ and V represent respectively the eigenvalues and
eigenvectors not of A but of the product A∗A. Though nothing requires the
product’s eigenvectors to be real, because the product is positive definite
§ 14.5 does require all of its eigenvalues to be real and moreover positive—
which means among other things that the eigenvalue matrix Λ has full rank.
That the eigenvalues, the diagonal elements of Λ, are real and positive is

30The device (14.46) worsens a matrix’s condition and may be undesirable for this
reason, but it works in theory at least.

31[146, “Singular value decomposition,” 14:29, 18 Oct. 2007]
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a useful fact; for just as a real, positive scalar has a real, positive square
root, so equally has Λ a real, positive square root under these conditions.
Let the symbol Σ =

√
Λ represent the n×n real, positive square root of the

eigenvalue matrix Λ such that

Λ = Σ∗Σ, (14.48)

Σ∗ = Σ =


+
√
λ1 0 · · · 0 0

0 +
√
λ2 · · · 0 0

...
...

. . .
...

...
0 0 · · · +

√
λn−1 0

0 0 · · · 0 +
√
λn

,

where the singular values of A populate Σ’s diagonal. Applying (14.48)
to (14.47) then yields that

A∗A = V Σ∗ΣV ∗,

V ∗A∗AV = Σ∗Σ.
(14.49)

Now consider the m×m matrix U such that

AV Σ−1 = UIn,

AV = UΣ,

A = UΣV ∗.

(14.50)

Substituting (14.50)’s second line into (14.49)’s second line gives the equa-
tion

Σ∗U∗UΣ = Σ∗Σ;

but ΣΣ−1 = In, so left- and right-multiplying respectively by Σ−∗ and Σ−1

leaves that
InU

∗UIn = In,

which says neither more nor less than that the first n columns of U are
orthonormal. Equation (14.50) does not constrain the last m − n columns
of U , leaving us free to make them anything we want. Why not use Gram-
Schmidt to make them orthonormal, too, thus making U a unitary matrix?
If we do this, then the surprisingly simple (14.50) constitutes the singular-
value decomposition of A.

If A happens to have broad shape then we can decompose A∗, instead,
so this case poses no special trouble. Apparently every full-rank matrix has
a singular-value decomposition.

But what of the matrix of less than full rank r < n? In this case the
product A∗A is singular and has only s < n nonzero eigenvalues (it may be
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that s = r, but this is irrelevant to the proof at hand). However, if the s
nonzero eigenvalues are arranged first in Λ, then (14.50) becomes

AV Σ−1 = UIs,

AV = UΣ,

A = UΣV ∗.

(14.51)

The product A∗A is nonnegative definite in this case and ΣΣ−1 = Is, but
the reasoning is otherwise the same as before. Apparently every matrix of
less than full rank has a singular-value decomposition, too.

If A happens to be an invertible square matrix, then the singular-value
decomposition evidently inverts it as

A−1 = V Σ−1U∗. (14.52)

14.13 General remarks on the matrix

Chapters 11 through 14 have derived the uncomfortably bulky but—incred-
ibly—approximately minimal knot of theory one needs to grasp the matrix
properly and to use it with moderate versatility. As far as the writer knows,
no one has yet discovered a satisfactory way to untangle the knot. The choice
to learn the basic theory of the matrix is almost an all-or-nothing choice;
and how many scientists and engineers would rightly choose the “nothing”
if the matrix did not serve so very many applications as it does? Since it
does serve so very many, the “all” it must be.32 Applied mathematics brings
nothing else quite like it.

These several matrix chapters have not covered every topic they might.
The topics they omit fall roughly into two classes. One is the class of more
advanced and more specialized matrix theory, about which we will have
more to say in a moment. The other is the class of basic matrix theory these
chapters do not happen to use. The essential agents of matrix analysis—
multiplicative associativity, rank, inversion, pseudoinversion, the kernel, the
orthogonal complement, orthonormalization, the eigenvalue, diagonalization
and so on—are the same in practically all books on the subject, but the way
the agents are developed differs. This book has chosen a way that needs some
tools like truncators other books omit, but does not need other tools like

32Of course, one might avoid true understanding and instead work by memorized rules.
That is not always a bad plan, really; but if that were your plan then it seems spectacularly
unlikely that you would be reading a footnote buried beneath the further regions of the
hinterland of Chapter 14 in such a book as this.
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projectors other books33 include. What has given these chapters their hefty
bulk is not so much the immediate development of the essential agents as the
preparatory development of theoretical tools used to construct the essential
agents, yet most of the tools are of limited interest in themselves; it is the
agents that matter. Tools like the projector not used here tend to be omitted
here or deferred to later chapters, not because they are altogether useless but
because they are not used here and because the present chapters are already
too long. The reader who understands the Moore-Penrose pseudoinverse
and/or the Gram-Schmidt process reasonably well can after all pretty easily
figure out how to construct a projector without explicit instructions thereto,
should the need arise.34

Paradoxically and thankfully, more advanced and more specialized ma-
trix theory though often harder tends to come in smaller, more manageable
increments: the Cholesky decomposition, for instance; or the conjugate-
gradient algorithm. The theory develops endlessly. From the present pause
one could proceed directly to such topics. However, since this is the first
proper pause these several matrix chapters have afforded, since the book
is Derivations of Applied Mathematics rather than Derivations of Applied
Matrices, maybe we ought to take advantage to change the subject.

33Such as [61, § 3.VI.3], a lengthy but well-knit tutorial this writer recommends.
34Well, since we have brought it up (though only as an example of tools these chapters

have avoided bringing up), briefly: a projector is a matrix that flattens an arbitrary
vector b into its nearest shadow b̃ within some restricted subspace. If the columns of A
represent the subspace, then x represents b̃ in the subspace basis iff Ax = b̃, which is to
say that Ax ≈ b, whereupon x = A†b. That is, per (13.33),

b̃ = Ax = AA†b = [BC][C∗(CC∗)−1(B∗B)−1B∗]b = B(B∗B)−1B∗b,

in which the matrix B(B∗B)−1B∗ is the projector. Thence it is readily shown that the
deviation b− b̃ lies orthogonal to the shadow b̃. More broadly defined, any matrix M for
which M2 = M is a projector. One can approach the projector in other ways, but there
are two ways at least.



Chapter 15

Vector analysis

Leaving the matrix, this chapter and the next turn to an agent of applied
mathematics that, though ubiquitous in some fields of study like physics,
remains curiously underappreciated in other fields that should use it more.
This agent is the three-dimensional geometrical vector, first met in §§ 3.3, 3.4
and 3.9. Seen from one perspective, the three-dimensional geometrical vector
is the n = 3 special case of the general, n-dimensional vector of chapters 11
through 14. Because its three elements represent the three dimensions of
the physical world, however, the three-dimensional geometrical vector merits
closer attention and special treatment.1

It also merits a shorter name. Where the geometrical context is clear—as
it is in this chapter and the next—we will call the three-dimensional geomet-
rical vector just a vector. A name like “matrix vector” or “n-dimensional
vector” can disambiguate the vector of chapters 11 through 14 where neces-
sary but, since the three-dimensional geometrical vector is in fact a vector
in the broader sense, to disambiguate is usually unnecessary. The lone word
vector serves.

In the present chapter’s context and according to § 3.3, a vector con-
sists of an amplitude of some kind plus a direction. Per § 3.9, three scalars
called coordinates suffice together to specify the amplitude and direction
and thus the vector, the three being (x, y, x) in the rectangular coordinate
system, (ρ;φ, z) in the cylindrical coordinate system, or (r; θ;φ) in the spher-
ical spherical coordinate system—as Fig. 15.1 illustrates and Table 3.4 on
page 84 interrelates—among other, more exotic possibilities (§ 15.7).

The vector brings an elegant notation. This chapter and chapter 16

1[28, chapter 2]
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Figure 15.1: A point on a sphere, in spherical (r; θ;φ) and cylindrical (ρ;φ, z)
coordinates. (The axis labels bear circumflexes in this figure only to disam-
biguate the ẑ axis from the cylindrical coordinate z. See also Fig. 15.5.)
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detail it. Without the notation, one would write an expression like

(z − z′)− [∂z′/∂x]x=x′,y=y′ (x− x′)− [∂z′/∂y]x=x′,y=y′ (y − y′)√
[1 + (∂z′/∂x)2 + (∂z′/∂y)2]x=x′,y=y′ [(x− x′)2 + (y − y′)2 + (z − z′)2]

for the aspect coefficient relative to a local surface normal (and if the sen-
tence’s words do not make sense to you yet, don’t worry; just look the
symbols over and appreciate the expression’s bulk). The same coefficient in
standard vector notation is

n̂ ·∆r̂.

Besides being more evocative (once one has learned to read it) and much
more compact, the standard vector notation brings the major advantage
of freeing a model’s geometry from reliance on any particular coordinate
system. Reorienting axes (§ 15.1) for example knots the former expression
like spaghetti but does not disturb the latter expression at all.

Two-dimensional geometrical vectors arise in practical modeling about
as often as three-dimensional geometrical vectors do. Fortunately, the two-
dimensional case needs little special treatment, for it is just the three-
dimensional with z = 0 or θ = 2π/4 (see however § 15.6).

Here at the outset, a word on complex numbers seems in order. Unlike
most of the rest of the book this chapter and the next will work chiefly
in real numbers, or at least in real coordinates. Notwithstanding, complex
coordinates are possible. Indeed, in the rectangular coordinate system com-
plex coordinates are perfectly appropriate and are straightforward enough to
handle. The cylindrical and spherical systems however, which these chapters
also treat, were not conceived with complex coordinates in mind; and, al-
though it might with some theoretical subtlety be possible to treat complex
radii, azimuths and elevations consistently as three-dimensional coordinates,
these chapters will not try to do so.2 (This is not to say that you cannot
have a complex vector like, say, ρ̂[3 + i2]− φ̂[1/4] in a nonrectangular basis.
You can have such a vector, it is fine, and these chapters will not avoid it.
What these chapters will avoid are complex nonrectangular coordinates like
[3 + i2;−1/4, 0].)

Vector addition will already be familiar to the reader from chapter 3 or
(quite likely) from earlier work outside this book. This chapter therefore
begins with the reorientation of axes in § 15.1 and vector multiplication in
§ 15.2.

2The author would be interested to learn if there existed an uncontrived scientific or
engineering application that actually used complex, nonrectangular coordinates.
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15.1 Reorientation

Matrix notation expresses the rotation of axes (3.5) as x̂′

ŷ′

ẑ′

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 x̂
ŷ
ẑ

.
In three dimensions however one can do more than just to rotate the x and y
axes about the z. One can reorient the three axes generally as follows.

15.1.1 The Tait-Bryan rotations

With a yaw and a pitch to point the x axis in the desired direction plus a
roll to position the y and z axes as desired about the new x axis,3 one can
reorient the three axes generally: x̂′

ŷ′

ẑ′

 =

 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 x̂
ŷ
ẑ

;

(15.1)
or, inverting per (3.6), x̂

ŷ
ẑ

 =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 x̂′

ŷ′

ẑ′

.
(15.2)

These are called the Tait-Bryan rotations, or alternately the Cardan rota-
tions.4,5

3The English maritime verbs to yaw, to pitch and to roll describe the rotational motion
of a vessel at sea. For a vessel to yaw is for her to rotate about her vertical axis, so her
bow (her forwardmost part) yaws from side to side. For a vessel to pitch is for her to
rotate about her “beam axis,” so her bow pitches up and down. For a vessel to roll is for
her to rotate about her “fore-aft axis” such that she rocks or lists (leans) without changing
the direction she points [146, “Glossary of nautical terms,” 23:00, 20 May 2008]. In the
Tait-Bryan rotations as explained in this book, to yaw is to rotate about the z axis, to
pitch about the y, and to roll about the x [72]. In the Euler rotations as explained in this
book later in the present section, however, the axes are assigned to the vessel differently
such that to yaw is to rotate about the x axis, to pitch about the y, and to roll about
the z. This implies that the Tait-Bryan vessel points x-ward whereas the Euler vessel
points z-ward. The reason to shift perspective so is to maintain the semantics of the
symbols θ and φ (though not ψ) according to Fig. 15.1.

If this footnote seems confusing, then read (15.1) and (15.7) which are correct.
4The literature seems to agree on no standard order among the three Tait-Bryan rota-

tions; and, though the rotational angles are usually named φ, θ and ψ, which angle gets
which name admittedly depends on the author. If unsure, prefer the names given here.

5[27]
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Notice in (15.1) and (15.2) that the transpose (though curiously not the
adjoint) of each 3× 3 Tait-Bryan factor is also its inverse.

In concept, the Tait-Bryan equations (15.1) and (15.2) say nearly all
one needs to say about reorienting axes in three dimensions; but, still, the
equations can confuse the uninitiated. Consider a vector

v = x̂x+ ŷy + ẑz. (15.3)

It is not the vector one reorients but rather the axes used to describe the
vector. Envisioning the axes as in Fig. 15.1 with the z axis upward, one first
yaws the x axis through an angle φ toward the y then pitches it downward
through an angle θ away from the z. Finally, one rolls the y and z axes
through an angle ψ about the new x, all the while maintaining the three
axes rigidly at right angles to one another. These three Tait-Bryan rotations
can orient axes any way. Yet, even once one has clearly visualized the Tait-
Bryan sequence, the prospect of applying (15.2) (which inversely represents
the sequence) to (15.3) can still seem daunting until one rewrites the latter
equation in the form

v =
[

x̂ ŷ ẑ
]


x
y
z


 , (15.4)

after which the application is straightforward. There results

v′ = x̂′x′ + ŷ′y′ + ẑ′z′,

where x′

y′

z′

 ≡
 1 0 0

0 cosψ sinψ
0 − sinψ cosψ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 x
y
z

,
(15.5)

and where Table 3.4 converts to cylindrical or spherical coordinates if and
as desired. Since (15.5) resembles (15.1), it comes as no surprise that its
inverse,

 x
y
z

 =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 x′

y′

z′

,
(15.6)

resembles (15.2).
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15.1.2 The Euler rotations

A useful alternative to the Tait-Bryan rotations are the Euler rotations,
which view the problem of reorientation from the perspective of the z axis
rather than of the x. The Euler rotations consist of a roll and a pitch
followed by another roll, without any explicit yaw:6

 x̂′

ŷ′

ẑ′

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 x̂
ŷ
ẑ

;

(15.7)
and inversely

 x̂
ŷ
ẑ

 =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 x̂′

ŷ′

ẑ′

.
(15.8)

Whereas the Tait-Bryan point the x axis first, the Euler tactic is to point
first the z.

So, that’s it. One can reorient three axes arbitrarily by rotating them in
pairs about the z, y and x or the z, y and z axes in sequence—or, general-
izing, in pairs about any of the three axes so long as the axis of the middle
rotation differs from the axes (Tait-Bryan) or axis (Euler) of the first and
last. A firmer grasp of the reorientation of axes in three dimensions comes
with practice, but those are the essentials of it.

15.2 Multiplication

One can multiply a vector in any of three ways. The first, scalar multipli-
cation, is trivial: if a vector v is as defined by (15.3), then

ψv = x̂ψx+ ŷψy + ẑψz. (15.9)

Such scalar multiplication evidently scales a vector’s length without divert-
ing its direction. The other two forms of vector multiplication involve multi-
plying a vector by another vector and are the subjects of the two subsections
that follow.

6As for the Tait-Bryan, for the Euler also the literature agrees on no standard sequence.
What one author calls a pitch, another might call a yaw, and some prefer to roll twice
about the x axis rather than the z. What makes a reorientation an Euler rather than a
Tait-Bryan is that the Euler rolls twice.
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15.2.1 The dot product

We first met the dot product in § 13.8. It works similarly for the geometrical
vectors of this chapter as for the matrix vectors of chapter 13:

v1 · v2 = x1x2 + y1y2 + z1z2, (15.10)

which, if the vectors v1 and v2 are real, is the product of the two vectors
to the extent to which they run in the same direction. It is the product to
the extent to which the vectors run in the same direction because one can
reorient axes to point x̂′ in the direction of v1, whereupon v1 · v2 = x′1x

′
2

since y′1 and z′1 have vanished.
Naturally, to be valid, the dot product must not vary under a reorienta-

tion of axes; and indeed if we write (15.10) in matrix notation,

v1 · v2 =
[
x1 y1 z1

]


x2

y2

z2


 , (15.11)

and then expand each of the two factors on the right according to (15.6),
we see that the dot product does not in fact vary. As in (13.44) of § 13.8,
here too the relationship

v∗1 · v2 = v∗1v2 cos θ,

v̂∗1 · v̂2 = cos θ,
(15.12)

gives the angle θ between two vectors according Fig. 3.1’s cosine if the vectors
are real, by definition hereby if complex. Consequently, the two vectors are
mutually orthogonal—that is, the vectors run at right angles θ = 2π/4 to
one another—if and only if

v∗1 · v2 = 0.

That the dot product is commutative,

v2 · v1 = v1 · v2, (15.13)

is obvious from (15.10). Fig. 15.2 illustrates the dot product.

15.2.2 The cross product

The dot product of two vectors according to § 15.2.1 is a scalar. One can
also multiply two vectors to obtain a vector, however, and it is often useful
to do so. As the dot product is the product of two vectors to the extent to
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Figure 15.2: The dot product.

θ

b cos θ
a

b
a · b = ab cos θ

which they run in the same direction, the cross product is the product of two
vectors to the extent to which they run in different directions. Unlike the
dot product the cross product is a vector, defined in rectangular coordinates
as

v1 × v2 =

∣∣∣∣∣∣

x̂ ŷ ẑ
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
(15.14)

≡ x̂(y1z2 − z1y2) + ŷ(z1x2 − x1z2) + ẑ(x1y2 − y1x2),

where the |·| notation is a mnemonic (actually a pleasant old determinant
notation § 14.1 could have but did not happen to use) whose semantics are
as shown.

As the dot product, the cross product too is invariant under reorienta-
tion. One could demonstrate this fact by multiplying out (15.2) and (15.6)
then substituting the results into (15.14): a lengthy, unpleasant exercise.
Fortunately, it is also an unnecessary exercise, forasmuch as an arbitrary re-
orientation consists of three rotations (§ 15.1) in sequence it suffices merely
that rotation about one axis not alter the cross product. One proves the
proposition in the latter form by setting any two of φ, θ and ψ to zero before
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multiplying out and substituting. For instance, setting θ and ψ to zero,

v1 × v2 =

∣∣∣∣∣∣

x̂ ŷ ẑ
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣

=

∣∣∣∣∣∣

x̂′ cosφ− ŷ′ sinφ x̂′ sinφ+ ŷ′ cosφ ẑ
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
= x̂′ [y1z2 cosφ− z1y2 cosφ+ z1x2 sinφ− x1z2 sinφ]

+ ŷ′ [−y1z2 sinφ+ z1y2 sinφ+ z1x2 cosφ− x1z2 cosφ]

+ ẑ [x1y2 − y1x2]

= x̂′ [(−x1 sinφ+ y1 cosφ)z2 − z1(−x2 sinφ+ y2 cosφ)]

+ ŷ′ [z1(y2 sinφ+ x2 cosφ)− (y1 sinφ+ x1 cosφ)z2]

+ ẑ [x1y2 − y1x2]

= x̂′
[
y′1z2 − z1y

′
2

]
+ ŷ′

[
z1x
′
2 − z2x

′
1

]

+ ẑ[(x′1 cosφ− y′1 sinφ)(x′2 sinφ+ y′2 cosφ)

− (x′1 sinφ+ y′1 cosφ)(x′2 cosφ− y′2 sinφ)].

Since according to Pythagoras in Table 3.1 cos2 φ+ sin2 φ = 1,

v1 × v2 = x̂′
[
y′1z2 − z1y

′
2

]
+ ŷ′

[
z1x
′
2 − z2x

′
1

]
+ ẑ[x′1y

′
2 − y′1x′2]

=

∣∣∣∣∣∣

x̂′ ŷ′ ẑ
x′1 y′1 z1

x′2 y′2 z2

∣∣∣∣∣∣

as was to be demonstrated.
Several facets of the cross product draw attention to themselves.

• The cyclic progression

· · · → x→ y → z → x→ y → z → x→ y → · · · (15.15)

of (15.14) arises again and again in vector analysis. Where the pro-
gression is honored, as in ẑx1y2, the associated term bears a + sign,
otherwise a − sign, due to § 11.6’s parity principle and the right-hand
rule.

• The cross product is not commutative. In fact,

v2 × v1 = −v1 × v2, (15.16)
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which is a direct consequence of the previous point regarding parity, or
which can be seen more prosaically in (15.14) by swapping the places
of v1 and v2.

• The cross product is not associative. That is,

(v1 × v2)× v3 6= v1 × (v2 × v3),

as is proved by a suitable counterexample like v1 = v2 = x̂, v3 = ŷ.

• The cross product runs perpendicularly to each of its two factors if the
vectors involved are real. That is,

v1 · (v1 × v2) = 0 = v2 · (v1 × v2), (15.17)

as is seen by substituting (15.14) into (15.10) with an appropriate
change of variables and simplifying.

• Unlike the dot product, the cross product is closely tied to three-
dimensional space. Two-dimensional space (a plane) can have a cross
product so long as one does not mind that the product points off
into the third dimension, but to speak of a cross product in four-
dimensional space would require arcane definitions and would oth-
erwise make little sense. Fortunately, the physical world is three-
dimensional (or, at least, the space in which we model all but a few,
exotic physical phenomena is three-dimensional), so the cross prod-
uct’s limitation as defined here to three dimensions will seldom disturb
us.

• Section 15.2.1 has related the cosine of the angle between vectors to
the dot product. One can similarly relate the angle’s sine to the cross
product if the vectors involved are real, as

|v1 × v2| = v1v2 sin θ,

|v̂1 × v̂2| = sin θ,
(15.18)

demonstrated by reorienting axes such that v̂1 = x̂′, that v̂2 has no
component in the ẑ′ direction, and that v̂2 has only a nonnegative com-
ponent in the ŷ′ direction; by remembering that reorientation cannot
alter a cross product; and finally by applying (15.14) and comparing
the result against Fig. 3.1’s sine. (If the vectors involved are com-
plex then nothing prevents the operation |v∗1 × v2| by analogy with
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Figure 15.3: The cross product.

θ

a

b

c = a× b
= ĉab sin θ

eqn. 15.12—in fact the operation v∗1 × v2 without the magnitude sign
is used routinely to calculate electromagnetic power flow7—but each of
the cross product’s three rectangular components has its own complex
phase which the magnitude operation flattens, so the result’s relation-
ship to the sine of an angle is not immediately clear.)

Fig. 15.3 illustrates the cross product.

15.3 Orthogonal bases

A vector exists independently of the components by which one expresses
it, for, whether q = x̂x + ŷy + ẑz or q = x̂′x′ + ŷ′y′ + ẑ′z′, it remains
the same vector q. However, where a model involves a circle, a cylinder
or a sphere, where a model involves a contour or a curved surface of some
kind, to choose x̂′, ŷ′ and ẑ′ wisely can immensely simplify the model’s
analysis. Normally one requires that x̂′, ŷ′ and ẑ′ each retain unit length,
run perpendiclarly to one another, and obey the right-hand rule (§ 3.3), but
otherwise any x̂′, ŷ′ and ẑ′ can serve. Moreover, various parts of a model can
specify various x̂′, ŷ′ and ẑ′, or various substitutes therefor, under various
conditons.

Recalling the constants and variables of § 2.7, such a concept is flexible
enough to confuse the uninitiated severely and soon. As in § 2.7, here too an

7[59, eqn. 1-51]
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example affords perspective. Imagine driving your automobile down a wind-
ing road, where q represented your speed8 and ˆ̀ represented the direction
the road ran, not generally, but just at the spot along the road at which your
automobile momentarily happened to be. That your velocity were ˆ̀q meant
that you kept skilfully to your lane; on the other hand, that your velocity
were (ˆ̀ cosψ + v̂ sinψ)q—where v̂, at right angles to ˆ̀, represented the di-
rection right-to-left across the road—would have you drifting out of your
lane at an angle ψ. A headwind had velocity −ˆ̀qwind; a crosswind, ±v̂qwind.
A car a mile ahead of you had velocity ˆ̀

2q2 = (ˆ̀ cosβ + v̂ sinβ)q2, where β
represented the difference (assuming that the other driver kept skilfully to
his own lane) between the road’s direction a mile ahead and its direction at
your spot. For all these purposes the unit vector ˆ̀ would remain constant.
However, fifteen seconds later, after you had rounded a bend in the road,
the symbols ˆ̀ and v̂ would by definition represent different vectors than
before, with respect to which one would express your new velocity as ˆ̀q but
would no longer express the headwind’s velocity as −ˆ̀qwind because, since
the road had turned while the wind had not, the wind would no longer be
a headwind. And this is where confusion can arise: your own velocity had
changed while the expression representing it had not; whereas the wind’s
velocity had not changed while the expression representing it had. This is
not because ˆ̀ differs from place to place at a given moment, for like any
other vector the vector ˆ̀ (as defined in this particular example) is the same
vector everywhere. Rather, it is because ˆ̀ is defined relative to the road at
your automobile’s location, which location changes as you drive.

If a third unit vector ŵ were defined, perpendicular both to ˆ̀ and to v̂
such that [ˆ̀ v̂ ŵ] obeyed the right-hand rule, then the three together would
constitute an orthogonal basis. Any three real,9 right-handedly mutually
perpendicular unit vectors [x̂′ ŷ′ ẑ′] in three dimensions, whether constant
or variable, for which

ŷ′ · ẑ′ = 0, ŷ′ × ẑ′ = x̂′, =(x̂′) = 0,
ẑ′ · x̂′ = 0, ẑ′ × x̂′ = ŷ′, =(ŷ′) = 0,
x̂′ · ŷ′ = 0, x̂′ × ŷ′ = ẑ′, =(ẑ′) = 0,

(15.19)

8Conventionally one would prefer the letter v to represent speed, with velocity as v
which in the present example would happen to be v = ˆ̀v. However, this section will
require the letter v for an unrelated purpose.

9A complex orthogonal basis is also theoretically possible but is normally unnecessary
in geometrical applications and involves subtleties in the cross product. This chapter,
which specifically concerns three-dimensional geometrical vectors rather than the general,
n-dimensional vectors of chapter 11, is content to consider real bases only. Note that one
can express a complex vector in a real basis.
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constitutes such an orthogonal basis, from which other vectors can be built.
The geometries of some models suggest no particular basis, when one usually
just uses a constant [x̂ ŷ ẑ]. The geometries of other models however do
suggest a particular basis, often a variable one.

• Where the model features a contour like the example’s winding road,
an [ˆ̀ v̂ ŵ] basis (or a [û v̂ ˆ̀] basis or even a [û ˆ̀ ŵ] basis) can be
used, where ˆ̀ locally follows the contour. The variable unit vectors v̂
and ŵ (or û and v̂, etc.) can be defined in any convenient way so
long as they remain perpendicular to one another and to ˆ̀—such that
(ẑ× ˆ̀) · ŵ = 0 for instance (that is, such that ŵ lay in the plane of ẑ
and ˆ̀)—but if the geometry suggests a particular v̂ or ŵ (or û), like
the direction right-to-left across the example’s road, then that v̂ or ŵ
should probably be used. The letter ` here stands for “longitudinal.”10

• Where the model features a curved surface like the surface of a wavy
sea,11 a [û v̂ n̂] basis (or a [û n̂ ŵ] basis, etc.) can be used, where n̂
points locally perpendicularly to the surface. The letter n here stands
for “normal,” a synonym for “perpendicular.” Observe, incidentally
but significantly, that such a unit normal n̂ tells one everything one
needs to know about its surface’s local orientation.

• Combining the last two, where the model features a contour along a
curved surface, an [ˆ̀ v̂ n̂] basis can be used. One need not worry about
choosing a direction for v̂ in this case since necessarily v̂ = n̂× ˆ̀.

• Where the model features a circle or cylinder, a [ρ̂ φ̂ ẑ] basis can
be used, where ẑ is constant and runs along the cylinder’s axis (or
perpendicularly through the circle’s center), ρ̂ is variable and points
locally away from the axis, and φ̂ is variable and runs locally along
the circle’s perimeter in the direction of increasing azimuth φ. Refer
to § 3.9 and Fig. 15.4.

• Where the model features a sphere, an [r̂ θ̂ φ̂] basis can be used,
where r̂ is variable and points locally away from the sphere’s cen-
ter, θ̂ is variable and runs locally tangentially to the sphere’s surface
in the direction of increasing elevation θ (that is, though not usually
in the −ẑ direction itself, as nearly as possible to the −ẑ direction
without departing from the sphere’s surface), and φ̂ is variable and

10The assertion wants a citation, which the author lacks.
11[100]
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Figure 15.4: The cylindrical basis. (The conventional symbols b and
respectively represent vectors pointing out of the page toward the reader and
into the page away from the reader. Thus, this figure shows the constant
basis vector ẑ pointing out of the page toward the reader. The dot in the
middle of the b is supposed to look like the tip of an arrowhead.)

ρ̂
φ̂

b

ẑ
φ

ρ

runs locally tangentially to the sphere’s surface in the direction of in-
creasing azimuth φ (that is, along the sphere’s surface perpendicularly
to ẑ). Standing on the earth’s surface, with the earth as the sphere, r̂
would be up, θ̂ south, and φ̂ east. Refer to § 3.9 and Fig. 15.5.

• Occasionally a model arises with two circles that share a center but
whose axes stand perpendicular to one another. In such a model one
conventionally establishes ẑ as the direction of the principal circle’s
axis but then is left with x̂ or ŷ as the direction of the secondary
circle’s axis, upon which an [x̂ ρ̂x φ̂

x
], [φ̂

x
r̂ θ̂

x
], [φ̂

y
ŷ ρ̂y] or [θ̂

y
φ̂
y

r̂]
basis can be used locally as appropriate. Refer to § 3.9.

Many other orthogonal bases are possible (as in § 15.7, for instance) but the
foregoing are the most common. Whether listed here or not, each orthogonal
basis orders its three unit vectors by the right-hand rule (15.19).

Quiz: what does the vector expression ρ̂3− φ̂(1/4) + ẑ2 mean? Wrong
answer: it meant the cylindrical coordinates (3;−1/4, 2); or, it meant the
position vector x̂3 cos(−1/4) + ŷ3 sin(−1/4) + ẑ2 associated with those co-
ordinates. Right answer: the expression means nothing certain in itself
but acquires a definite meaning only when an azimuthal coordinate φ is
also supplied, after which the expression indicates the ordinary rectangular
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Figure 15.5: The spherical basis (see also Fig. 15.1).

b

r̂

θ̂
φ̂

vector x̂′3 − ŷ′(1/4) + ẑ′2, where x̂′ = ρ̂ = x̂ cosφ + ŷ sinφ, ŷ′ = φ̂ =
−x̂ sinφ + ŷ cosφ, and ẑ′ = ẑ. But, if this is so—if the cylindrical basis
[ρ̂ φ̂ ẑ] is used solely to express rectangular vectors—then why should we
name this basis “cylindrical”? Answer: only because cylindrical coordinates
(supplied somewhere) determine the actual directions of its basis vectors.
Once directions are determined, such a basis is used rectangularly like any
other orthogonal basis.

This can seem confusing until one has grasped what the so-called non-
rectangular bases are for. Consider the problem of air flow in a jet engine.
It may suit such a problem that instantaneous local air velocity within the
engine cylinder be expressed in cylindrical coordinates, with the z axis ori-
ented along the engine’s axle; but this does not mean that the air flow within
the engine cylinder were everywhere ẑ-directed. On the contrary, a local air
velocity of q = [−ρ̂5.0+ φ̂30.0− ẑ250.0] m/s would have air moving through
the point in question at 250.0 m/s aftward along the axle, 5.0 m/s inward
toward the axle and 30.0 m/s circulating about the engine cylinder.

In this model, it is true that the basis vectors ρ̂ and φ̂ indicate differ-
ent directions at different positions within the cylinder, but at a particular
position the basis vectors are still used rectangularly to express q, the in-
stantaneous local air velocity at that position. It’s just that the “rectangle”
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is rotated locally to line up with the axle.

Naturally, you cannot make full sense of an air-velocity vector q unless
you have also the coordinates (ρ;φ, z) of the position within the engine
cylinder at which the air has the velocity the vector specifies—yet this is
when confusion can arise, for besides the air-velocity vector there is also,
separately, a position vector r = x̂ρ cosφ + ŷρ sinφ + ẑz. One may denote
the air-velocity vector as12 q(r), a function of position; yet, though the
position vector is as much a vector as the velocity vector is, one nonetheless
handles it differently. One will not normally express the position vector r in
the cylindrical basis.

It would make little sense to try to express the position vector r in the
cylindrical basis because the position vector is the very thing that determines
the cylindrical basis. In the cylindrical basis, after all, the position vector
is necessarily r = ρ̂ρ + ẑz (and consider: in the spherical basis it is the
even more cryptic r = r̂r), and how useful is that, really? Well, maybe it
is useful in some situations, but for the most part to express the position
vector in the cylindrical basis would be as to say, “My house is zero miles
away from home.” Or, “The time is presently now.” Such statements may
be tautologically true, perhaps, but they are confusing because they only
seem to give information. The position vector r determines the basis, after
which one expresses things other than position, like instantaneous local air
velocity q, in that basis. In fact, the only basis normally suitable to express
a position vector is a fixed rectangular basis like [x̂ ŷ ẑ]. Otherwise, one
uses cylindrical coordinates (ρ;φ, z), but not a cylindrical basis [ρ̂ φ̂ ẑ], to
express a position r in a cylindrical geometry.

Maybe the nonrectangular bases were more precisely called “rectangular
bases of the nonrectangular coordinate systems,” but those are too many
words and, anyway, that is not how the usage has evolved. Chapter 16 will
elaborate the story by considering spatial derivatives of quantities like air
velocity, when one must take the variation in ρ̂ and φ̂ from point to point
into account, but the foregoing is the basic story nevertheless.

15.4 Notation

The vector notation of §§ 15.1 and 15.2 is correct, familiar and often expe-
dient but sometimes inconveniently prolix. This admittedly difficult section

12Conventionally, one is much more likely to denote a velocity vector as u(r) or v(r),
except that the present chapter is (as footnote 8 has observed) already using the letters u
and v for an unrelated purpose. To denote position as r however is entirely standard.
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augments the notation to render it much more concise.

15.4.1 Components by subscript

The notation
ax ≡ x̂ · a, aρ ≡ ρ̂ · a,
ay ≡ ŷ · a, ar ≡ r̂ · a,
az ≡ ẑ · a, aθ ≡ θ̂ · a,
an ≡ n̂ · a, aφ ≡ φ̂ · a,

and so forth abbreviates the indicated dot product. That is to say, the
notation represents the component of a vector a in the indicated direction.
Generically,

aα ≡ α̂ · a. (15.20)

Applied mathematicians use subscripts for several unrelated or vaguely re-
lated purposes, so the full dot-product notation α̂ ·a is often clearer in print
than the abbreviation aα is, but the abbreviation especially helps when sev-
eral such dot products occur together in the same expression.

Since13

â = x̂ax + ŷay + ẑaz,

b̂ = x̂bx + ŷby + ẑbz,

the abbreviation lends a more amenable notation to the dot and cross prod-
ucts of (15.10) and (15.14):

a · b = axbx + ayby + azbz; (15.21)

a× b =

∣∣∣∣∣∣

x̂ ŷ ẑ
ax ay az
bx by bz

∣∣∣∣∣∣
. (15.22)

In fact—because, as we have seen, reorientation of axes cannot alter the dot
and cross products—any orthogonal basis [x̂′ ŷ′ ẑ′] (§ 15.3) can serve here,
so one can write more generally that

a · b = ax′bx′ + ay′by′ + az′bz′ ; (15.23)

a× b =

∣∣∣∣∣∣

x̂′ ŷ′ ẑ′

ax′ ay′ az′

bx′ by′ bz′

∣∣∣∣∣∣
. (15.24)

13“Wait!” comes the objection. “I thought that you said that ax meant x̂ · a. Now you
claim that it means the x component of a?”

But there is no difference between x̂ ·a and the x component of a. The two are one and
the same.
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Because all those prime marks burden the notation and for professional
mathematical reasons, the general forms (15.23) and (15.24) are sometimes
rendered

a · b = a1b1 + a2b2 + a3b3,

a× b =

∣∣∣∣∣∣

ê1 ê2 ê3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
,

but you have to be careful about that in applied usage because people are
not always sure whether a symbol like a3 means “the third component of
the vector a” (as it does here) or “the third vector’s component in the â
direction” (as it would in eqn. 15.10). Typically, applied mathematicians will
write in the manner of (15.21) and (15.22) with the implied understanding
that they really mean (15.23) and (15.24) but prefer not to burden the
notation with extra little strokes—that is, with the implied understanding
that x, y and z could just as well be ρ, φ and z or the coordinates of any
other orthogonal, right-handed, three-dimensional basis.

Some pretty powerful confusion can afflict the student regarding the
roles of the cylindrical symbols ρ, φ and z; or, worse, of the spherical sym-
bols r, θ and φ. Such confusion reflects a pardonable but remediable lack
of understanding of the relationship between coordinates like ρ, φ and z
and their corresponding unit vectors ρ̂, φ̂ and ẑ. Section 15.3 has already
written of the matter; but, further to dispel the confusion, one can now
ask the student what the cylindrical coordinates of the vectors ρ̂, φ̂ and ẑ
are. The correct answer: (1;φ, 0), (1;φ+ 2π/4, 0) and (0; 0, 1), respectively.
Then, to reinforce, one can ask the student which cylindrical coordinates
the variable vectors ρ̂ and φ̂ are functions of. The correct answer: both are
functions of the coordinate φ only (ẑ, a constant vector, is not a function
of anything). What the student needs to understand is that, among the
cylindrical coordinates, φ is a different kind of thing than z and ρ are:

• z and ρ are lengths whereas φ is an angle;

• but ρ̂, φ̂ and ẑ are all the same kind of thing, unit vectors;

• and, separately, aρ, aφ and az are all the same kind of thing, lengths.

Now to ask a harder question: in the cylindrical basis, what is the vec-
tor representation of (ρ1;φ1, z1)? The correct answer: ρ̂ρ1 cos(φ1 − φ) +
φ̂ρ1 sin(φ1 − φ) + ẑz1. The student that gives this answer probably grasps
the cylindrical symbols.
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If the reader feels that the notation begins to confuse more than it de-
scribes, the writer empathizes but regrets to inform that the rest of the
section, far from granting the reader a comfortable respite to absorb the
elaborated notation as it stands, will not delay to elaborate the notation yet
further! The confusion however is subjective. The trouble with vector work
is that one has to learn to abbreviate or the expressions involved grow repet-
itive and unreadably long. For vectors, the abbreviated notation really is
the proper notation. Eventually one accepts the need and takes the trouble
to master the conventional vector abbreviation this section presents; and,
indeed, the abbreviation is rather elegant once one has grown used to it. So,
study closely and take heart!14 The notation is not actually as impenetrable
as it at first will seem.

15.4.2 Einstein’s summation convention

Einstein’s summation convention is this: that repeated indices are implicitly
summed over.15 For instance, where the convention is in force, the equa-
tion16

a · b = aibi (15.25)

means that
a · b =

∑

i

aibi

or more fully that

a · b =
∑

i=x′,y′,z′

aibi = ax′bx′ + ay′by′ + az′bz′ ,

which is (15.23), except that Einstein’s form (15.25) expresses it more suc-
cinctly. Likewise,

a× b = ı̂(ai+1bi−1 − bi+1ai−1) (15.26)

is (15.24)—although an experienced applied mathematician would probably
apply the Levi-Civita epsilon of § 15.4.3, below, to further abbreviate this
last equation to the form of (15.27) before presenting it.

14What to study? Besides this book, one can study any good, introductory undergrad-
uate textbook in fluid dynamics, electromagnetics, quantum mechanics or the like. For
example, [28] is not bad.

15[66]
16Some professional mathematicians now write a superscript ai in certain cases in place

of a subscript ai, where the superscript bears some additional semantics [146, “Einstein
notation,” 05:36, 10 Feb. 2008]. Scientists and engineers however tend to prefer Einstein’s
original, subscript-only notation.
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Einstein’s summation convention is also called the Einstein notation, a
term sometimes taken loosely to include also the Kronecker delta and Levi-
Civita epsilon of § 15.4.3.

What is important to understand about Einstein’s summation conven-
tion is that, in and of itself, it brings no new mathematics. It is rather a
notational convenience.17 It asks a reader to regard a repeated index like
the i in “aibi” as a dummy index (§ 2.3) and thus to read “aibi” as “

∑
i aibi.”

It does not magically create a summation where none existed; it just hides
the summation sign to keep it from cluttering the page. It is the kind of
notational trick an accountant might appreciate. Under the convention, the
summational operator

∑
i is implied not written, but the operator is still

there. Admittedly confusing on first encounter, the convention’s utility and
charm are felt after only a little practice.

Incidentally, nothing requires you to invoke Einstein’s summation con-
vention everywhere and for all purposes. You can waive the convention,
writing the summation symbol out explicitly whenever you like.18 In con-
texts outside vector analysis, to invoke the convention at all may make little
sense. Nevertheless, you should indeed learn the convention—if only because
you must learn it to understand the rest of this chapter—but once having
learned it you should naturally use it only where it actually serves to clarify.
Fortunately, in vector work, it often does just that.

Quiz:19 if δij is the Kronecker delta of § 11.2, then what does the sym-
bol δii represent where Einstein’s summation convention is in force?

15.4.3 The Kronecker delta and the Levi-Civita epsilon

Einstein’s summation convention expresses the dot product (15.25) neatly
but, as we have seen in (15.26), does not by itself wholly avoid unseemly
repetition in the cross product. The Levi-Civita epsilon20 εijk mends this,
rendering the cross-product as

a× b = εijk ı̂ajbk, (15.27)

17[141, “Einstein summation”]
18[105]
19[66]
20Also called the Levi-Civita symbol, tensor, or permutor. For native English speakers

who do not speak Italian, the “ci” in Levi-Civita’s name is pronounced as the “chi” in
“children.”
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where21

εijk ≡





+1 if (i, j, k) = (x′, y′, z′), (y′, z′, x′) or (z′, x′, y′);

−1 if (i, j, k) = (x′, z′, y′), (y′, x′, z′) or (z′, y′, x′);

0 otherwise [for instance if (i, j, k) = (x′, x′, y′)].

(15.28)

In the language of § 11.6, the Levi-Civita epsilon quantifies parity. (Chap-
ters 11 and 14 did not use it, but the Levi-Civita notation applies in any
number of dimensions, not only three as in the present chapter. In this
more general sense the Levi-Civita is the determinant of the permutor whose
ones hold the indicated positions—which is a formal way of saying that it’s
a + sign for even parity and a − sign for odd. For instance, in the four-
dimensional, 4 × 4 case ε1234 = 1 whereas ε1243 = −1: refer to §§ 11.6,
11.7.1 and 14.1. Table 15.1, however, as the rest of this section and chapter,
concerns the three-dimensional case only.)

Technically, the Levi-Civita epsilon and Einstein’s summation conven-
tion are two separate, independent things, but a canny reader takes the
Levi-Civita’s appearance as a hint that Einstein’s convention is probably in
force, as in (15.27). The two tend to go together.22

The Levi-Civita epsilon εijk relates to the Kronecker delta δij of § 11.2
approximately as the cross product relates to the dot product. Both delta
and epsilon find use in vector work. For example, one can write (15.25)
alternately in the form

a · b = δijaibj .

Table 15.1 lists several relevant properties,23 each as with Einstein’s
summation convention in force.24 Of the table’s several properties, the
property that εimnεijk = δmjδnk − δmkδnj is proved by observing that, in
the case that i = x′, either (j, k) = (y′, z′) or (j, k) = (z′, y′), and also
either (m,n) = (y′, z′) or (m,n) = (z′, y′); and similarly in the cases that

21[102, “Levi-Civita permutation symbol”]
22The writer has heard the apocryphal belief expressed that the letter ε, a Greek e,

stood in this context for “Einstein.” As far as the writer knows, ε is merely the letter
after δ, which represents the name of Paul Dirac—though the writer does not claim his
indirected story to be any less apocryphal than the other one (the capital letter ∆ has
a point on top that suggests the pointy nature of the Dirac delta of Fig. 7.11, which
makes for yet another plausible story). In any event, one sometimes hears Einstein’s
summation convention, the Kronecker delta and the Levi-Civita epsilon together referred
to as “the Einstein notation,” which though maybe not quite terminologically correct is
hardly incorrect enough to argue over and is clear enough in practice.

23[105]
24The table incidentally answers § 15.4.2’s quiz.
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Table 15.1: Properties of the Kronecker delta and the Levi-Civita epsilon,
with Einstein’s summation convention in force.

δjk = δkj

δijδjk = δik

δii = 3

δjkεijk = 0

δnkεijk = εijn

εijk = εjki = εkij = −εikj = −εjik = −εkji
εijkεijk = 6

εijnεijk = 2δnk

εimnεijk = δmjδnk − δmkδnj

i = y′ and i = z′ (more precisely, in each case the several indices can take
any values, but combinations other than the ones listed drive εimn or εijk,
or both, to zero, thus contributing nothing to the sum). This implies that
either (j, k) = (m,n) or (j, k) = (n,m)—which, when one takes parity into
account, is exactly what the property in question asserts. The property that
εijnεijk = 2δnk is proved by observing that, in any given term of the Einstein
sum, i is either x′ or y′ or z′ and that j is one of the remaining two, which
leaves the third to be shared by both k and n. The factor 2 appears because,
for k = n = x′, an (i, j) = (y′, z′) term and an (i, j) = (z′, y′) term both
contribute positively to the sum; and similarly for k = n = y′ and again for
k = n = z′.

Unfortunately, the last paragraph likely makes sense to few who do not
already know what it means. A concrete example helps. Consider the
compound product c× (a× b). In this section’s notation and with the use
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of (15.27), the compound product is

c× (a× b) = c× (εijk ı̂ajbk)

= εmnim̂cn(εijk ı̂ajbk)i

= εmniεijkm̂cnajbk

= εimnεijkm̂cnajbk

= (δmjδnk − δmkδnj)m̂cnajbk

= δmjδnkm̂cnajbk − δmkδnjm̂cnajbk

= ̂ckajbk − k̂cjajbk

= (̂aj)(ckbk)− (k̂bk)(cjaj).

That is, in light of (15.25),

c× (a× b) = a(c · b)− b(c · a), (15.29)

a useful vector identity. Written without the benefit of Einstein’s summation
convention, the example’s central step would have been

c× (a× b) =
∑

i,j,k,m,n

εimnεijkm̂cnajbk

=
∑

j,k,m,n

(δmjδnk − δmkδnj)m̂cnajbk,
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which makes sense if you think about it hard enough,25 and justifies the

25If thinking about it hard enough does not work, then here it is in interminable detail:∑
i,j,k,m,n

εimnεijkf(j, k,m, n)

= εx′y′z′εx′y′z′f(y′, z′, y′, z′) + εx′y′z′εx′z′y′f(y′, z′, z′, y′)

+ εx′z′y′εx′y′z′f(z′, y′, y′, z′) + εx′z′y′εx′z′y′f(z′, y′, z′, y′)

+ εy′z′x′εy′z′x′f(z′, x′, z′, x′) + εy′z′x′εy′x′z′f(z′, x′, x′, z′)

+ εy′x′z′εy′z′x′f(x′, z′, z′, x′) + εy′x′z′εy′x′z′f(x′, z′, x′, z′)

+ εz′x′y′εz′x′y′f(x′, y′, x′, y′) + εz′x′y′εz′y′x′f(x′, y′, y′, x′)

+ εz′y′x′εz′x′y′f(y′, x′, x′, y′) + εz′y′x′εz′y′x′f(y′, x′, y′, x′)

= f(y′, z′, y′, z′)− f(y′, z′, z′, y′)− f(z′, y′, y′, z′) + f(z′, y′, z′, y′)

+ f(z′, x′, z′, x′)− f(z′, x′, x′, z′)− f(x′, z′, z′, x′) + f(x′, z′, x′, z′)

+ f(x′, y′, x′, y′)− f(x′, y′, y′, x′)− f(y′, x′, x′, y′) + f(y′, x′, y′, x′)

=
[
f(y′, z′, y′, z′) + f(z′, x′, z′, x′) + f(x′, y′, x′, y′)

+ f(z′, y′, z′, y′) + f(x′, z′, x′, z′) + f(y′, x′, y′, x′)
]

−
[
f(y′, z′, z′, y′) + f(z′, x′, x′, z′) + f(x′, y′, y′, x′)

+ f(z′, y′, y′, z′) + f(x′, z′, z′, x′) + f(y′, x′, x′, y′)
]

=
[
f(y′, z′, y′, z′) + f(z′, x′, z′, x′) + f(x′, y′, x′, y′)

+ f(z′, y′, z′, y′) + f(x′, z′, x′, z′) + f(y′, x′, y′, x′)

+ f(x′, x′, x′, x′) + f(y′, y′, y′, y′) + f(z′, z′, z′, z′)
]

−
[
f(y′, z′, z′, y′) + f(z′, x′, x′, z′) + f(x′, y′, y′, x′)

+ f(z′, y′, y′, z′) + f(x′, z′, z′, x′) + f(y′, x′, x′, y′)

+ f(x′, x′, x′, x′) + f(y′, y′, y′, y′) + f(z′, z′, z′, z′)
]

=
∑

j,k,m,n

(δmjδnk − δmkδnj)f(j, k,m, n).

That is for the property that εimnεijk = δmjδnk−δmkδnj . For the property that εijnεijk =
2δnk, the corresponding calculation is∑

i,j,k,n

εijnεijkf(k, n)

= εy′z′x′εy′z′x′f(x′, x′) + εz′y′x′εz′y′x′f(x′, x′)

+ εz′x′y′εz′x′y′f(y′, y′) + εx′z′y′εx′z′y′f(y′, y′)

+ εx′y′z′εx′y′z′f(z′, z′) + εy′x′z′εy′x′z′f(z′, z′)

= f(x′, x′) + f(x′, x′) + f(y′, y′) + f(y′, y′) + f(z′, z′) + f(z′, z′)

= 2
[
f(x′, x′) + f(y′, y′) + f(z′, z′)

]
= 2

∑
k,n

δnkf(k, n).

For the property that εijkεijk = 6,∑
i,j,k

εijkεijk = ε2x′y′z′ + ε2y′z′x′ + ε2z′x′y′ + ε2x′z′y′ + ε2y′x′z′ + ε2z′y′x′ = 6.
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table’s claim that εimnεijk = δmjδnk − δmkδnj . (Notice that the compound
Kronecker operator δmjδnk includes nonzero terms for the case that j = k =
m = n = x′, for the case that j = k = m = n = y′ and for the case that
j = k = m = n = z′, whereas the compound Levi-Civita operator εimnεijk
does not. However, the compound Kronecker operator −δmkδnj includes
canceling terms for these same three cases. This is why the table’s claim is
valid as written.)

To belabor the topic further here would serve little purpose. The reader
who does not feel entirely sure that he understands what is going on might
work out the table’s several properties with his own pencil, in something like
the style of the example, until he is satisfied that he adequately understands
the several properties and their correct use.

Section 16.7 will refine the notation for use when derivatives with respect
to angles come into play but, before leaving the present section, we might
pause for a moment to appreciate (15.29) in the special case that b = c = n̂:

− n̂× (n̂× a) = a− n̂(n̂ · a). (15.30)

The difference a−n̂(n̂ ·a) evidently projects a vector a onto the plane whose
unit normal is n̂. Equation (15.30) reveals that the double cross product
−n̂ × (n̂ × a) projects the same vector onto the same plane. Figure 15.6
illustrates.

15.5 Algebraic identities

Vector algebra is not in principle very much harder than scalar algebra is, but
with three distinct types of product it has more rules controlling the way its
products and sums are combined. Table 15.2 lists several of these.26,27 Most
of the table’s identities are plain by the formulas (15.9), (15.21) and (15.22)
respectively for the scalar, dot and cross products, and two were proved
as (15.29) and (15.30). The remaining identity is proved in the notation of
§ 15.4 as

εijkciajbk = εijkciajbk = εkijckaibj = εjkicjakbi
= εijkciajbk = εijkaibjck = εijkbicjak
= c · (εijk ı̂ajbk) = a · (εijk ı̂bjck) = b · (εijk ı̂cjak).

It is precisely to encapsulate such interminable detail that we use the Kronecker delta,
the Levi-Civita epsilon and the properties of Table 15.1.

26[124, appendix II][59, appendix A]
27Nothing in any of the table’s identities requires the vectors involved to be real. The

table is equally as valid when vectors are complex.
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Figure 15.6: A vector projected onto a plane.

n̂

a

n̂(n̂ · a)

−n̂× (n̂× a)
= a− n̂(n̂ · a)

Table 15.2: Algebraic vector identities.

ψa = ı̂ψai a · b ≡ aibi a× b ≡ εijk ı̂ajbk
a∗ · a = |a|2 (ψ)(a + b) = ψa + ψb
b · a = a · b b× a = −a× b

c · (a + b) = c · a + c · b c× (a + b) = c× a + c× b
a · (ψb) = (ψ)(a · b) a× (ψb) = (ψ)(a× b)

c · (a× b) = a · (b× c) = b · (c× a)
c× (a× b) = a(c · b)− b(c · a)
−n̂× (n̂× a) = a− n̂(n̂ · a)
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That is,

c · (a× b) = a · (b× c) = b · (c× a). (15.31)

Besides the several vector identities, the table also includes the three vector
products in Einstein notation.28

Each definition and identity of Table 15.2 is invariant under reorientation
of axes.

15.6 Isotropy

A real,29 three-dimensional coordinate system30 (α;β; γ) is isotropic at a
point r = r1 if and only if

β̂(r1) · γ̂(r1) = 0,

γ̂(r1) · α̂(r1) = 0,

α̂(r1) · β̂(r1) = 0,

(15.32)

and ∣∣∣∣
∂r

∂α

∣∣∣∣
r=r1

=

∣∣∣∣
∂r

∂β

∣∣∣∣
r=r1

=

∣∣∣∣
∂r

∂γ

∣∣∣∣
r=r1

. (15.33)

That is, a three-dimensional system is isotropic if its three coordinates ad-
vance locally at right angles to one another but at the same rate.

Of the three basic three-dimensional coordinate systems—indeed, of all
the three-dimensional coordinate systems this book treats—only the rect-
angular is isotropic according to (15.32) and (15.33).31 Isotropy admittedly
would not be a very interesting property if that were all there were to it.
However, there is also two-dimensional isotropy, more interesting because it
arises oftener.

28If the reader’s native language is English, then he is likely to have heard of the
unfortunate “back cab rule,” which actually is not a rule but an unhelpful mnemonic for
one of Table 15.2’s identities. The mnemonic is mildly orthographically clever but, when
learned, significantly impedes real understanding of the vector. The writer recommends
that the reader forget the rule if he has heard of it for, in mathematics, spelling-based
mnemonics are seldom if ever a good idea.

29The reader is reminded that one can licitly express a complex vector in a real basis.
30This chapter’s footnote 32 and chapter 16’s footnote 21 explain the usage of semicolons

as coordinate delimiters.
31Whether it is even possible to construct an isotropic, nonrectangular coordinate sys-

tem in three dimensions is a question we will leave to the professional mathematician.
The author has not encountered such a system.
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A real, two-dimensional coordinate system (α;β) is isotropic at a point
ργ = ργ1 if and only if

α̂(ργ1) · β̂(ργ1) = 0 (15.34)

and ∣∣∣∣
∂ργ

∂α

∣∣∣∣
ργ=ργ1

=

∣∣∣∣
∂ργ

∂β

∣∣∣∣
ργ=ργ1

, (15.35)

where ργ = α̂α+ β̂β represents position in the α-β plane. (If the α-β plane
happens to be the x-y plane, as is often the case, then ργ = ρz = ρ and per
eqn. 3.20 one can omit the superscript.) The two-dimensional rectangular
system (x, y) naturally is isotropic. Because |∂ρ/∂φ| = (ρ) |∂ρ/∂ρ| the
standard two-dimensional cylindrical system (ρ;φ) as such is nonisotropic,
but the change of coordinate

λ ≡ ln
ρ

ρo
, (15.36)

where ρo is some arbitrarily chosen reference radius, converts the system
straightforwardly into the logarithmic cylindrical system (λ;φ) which is iso-
tropic everywhere in the plane except at the origin ρ = 0. Further two-
dimensionally isotropic coordinate systems include the parabolic system of
§ 15.7.2, to follow.

15.7 Parabolic coordinates

Scientists and engineers find most spatial-geometrical problems they en-
counter in practice to fall into either of two categories. The first category
comprises problems of simple geometry conforming to any one of the three
basic coordinate systems—rectangular, cylindrical or spherical. The second
category comprises problems of complicated geometry, analyzed in the rect-
angular system not because the problems’ geometries fit that system but
rather because they fit no system and thus give one little reason to depart
from the rectangular. One however occasionally encounters problems of a
third category, whose geometries are simple but, though simple, neverthe-
less fit none of the three basic coordinate systems. Then it may fall to the
scientist or engineer to devise a special coordinate system congenial to the
problem.

This section will treat the parabolic coordinate systems which, besides
being arguably the most useful of the various special systems, serve as good
examples of the kind of special system a scientist or engineer might be
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called upon to devise. The two three-dimensional parabolic systems are the
parabolic cylindrical system (σ, τ, z) of § 15.7.4 and the circular paraboloidal
system32 (η;φ, ξ) of § 15.7.5, where the angle φ and the length z are familiar
to us but σ, τ , η and ξ—neither angles nor lengths but root-lengths (that
is, coordinates having dimensions of [length]1/2)—are new.33 Both three-
dimensional parabolic systems derive from the two-dimensional parabolic
system (σ, τ) of § 15.7.2.34

However, before handling any parabolic system we ought formally to
introduce the parabola itself, next.

15.7.1 The parabola

Parabolic coordinates are based on a useful geometrical curve called the
parabola, which many or most readers will have met long before opening
this book’s covers. The parabola, simple but less obvious than the circle,
may however not be equally well known to all readers, and even readers
already acquainted with it (as from §§ 7.4.1 and 7.4.2) might appreciate a
reëxamination. This subsection reviews the parabola.

Given a point, called the focus, and a line, called the directrix,35 plus the
plane in which the focus and the directrix both lie, the associated parabola
is that curve which lies in the plane everywhere equidistant from both focus
and directrix.36 See Fig. 15.7.

Referring to the figure, if rectangular coordinates are established such
that x̂ and ŷ lie in the plane, that the parabola’s focus lies at (x, y) = (0, k),
and that the equation y = k − σ2 describes the parabola’s directrix, then
the equation

x2 + (y − k)2 = (y − k + σ2)2

32The reader will probably think nothing of it now, but later may wonder why the
circular paraboloidal coordinates are (η;φ, ξ) rather than (ξ;φ, η) or (η, ξ;φ). The peculiar
ordering is to honor the right-hand rule (§ 3.3 and eqn. 15.19), since η̂ × ξ̂ = −φ̂ rather
than +φ̂. See § 15.7.5. (Regarding the semicolon “;” delimiter, it doesn’t mean much.
This book arbitrarily uses a semicolon when the following coordinate happens to be an
angle, which helps to distinguish rectangular coordinates from cylindrical from spherical.
Admittedly, such a notational convention ceases to help much when parabolic coordinates
arrive, but we will continue to use it for inertia’s sake. See also chapter 16’s footnote 21.)

33The letters σ, τ , η and ξ are available letters this section happens to use, not neces-
sarily standard parabolic symbols. See appendix B.

34[84, § 10.1][146, “Parabolic coordinates,” 09:59, 19 July 2008]
35Whether the parabola’s definition ought to forbid the directrix to pass through the

focus is a stylistic question this book will leave unanswered.
36[115, § 12-1]
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Figure 15.7: The parabola.

b

σ2 a

a

evidently expresses the equidistance rule of the parabola’s definition. Solving
for y − k and then, from that solution, for y, we have that

y =
x2

2σ2
+

(
k − σ2

2

)
. (15.37)

With the definitions that

µ ≡ 1

2σ2
,

κ ≡ k − σ2

2
,

(15.38)

given which

σ2 =
1

2µ
,

k = κ+
1

4µ
,

(15.39)

eqn. (15.37) becomes

y = µx2 + κ. (15.40)

Equations fitting the general form (15.40) often arise in applications, for
example in the equation that describes a projectile’s flight in the absence of
air resistance. Any equation that fits the form can be plotted as a parabola,
which is why projectiles fly in parabolic arcs.

Observe that the parabola’s definition does not actually require the direc-
trix to be ŷ-oriented: the directrix can be x̂-oriented or, indeed, oriented any
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way. Observe also the geometrical fact that the parabola’s track necessarily
bisects the angle between the two line segments labeled “a” in Fig. 15.7. One
of the consequences of this geometrical fact37—is that a parabolic mirror
reflects precisely38 toward its focus all light rays that arrive perpendicu-
larly with respect to the directrix (which for instance is why satellite dish
antennas have parabolic cross-sections).

15.7.2 Parabolic coordinates in two dimensions

Parabolic coordinates are most easily first explained in the two-dimensional
case that z = 0. In two dimensions, the parabolic coordinates (σ, τ) repre-
sent the point in the x-y plane that lies equidistant

• from the line y = −σ2,

• from the line y = +τ2, and

• from the point ρ = 0,

where the parameter k of § 15.7.1 has been set to k = 0. Figure 15.8
depicts the construction described. In the figure are two dotted curves, one
of which represents the point’s parabolic track if σ were varied while τ were
held constant and the other of which represents the point’s parabolic track
if τ were varied while σ were held constant. Observe according to § 15.7.1’s
bisection finding that each parabola necessarily bisects the angle between
two of the three line segments labeled a in the figure. Observe further that
the two angles’ sum is the straight angle 2π/2, from which one can conclude,
significantly, that the two parabolas cross at right angles to one another.

Figure 15.9 lays out the parabolic coordinate grid. Notice in the figure

37It seems better merely to let the reader visualize the fact than to try to justify in so
many words. If words help nevertheless, some words: consider that the two line segments
labeled a in the figure run in the directions of increasing distance respectively from the
focus and from the directrix. If you want to draw away from the directrix at the same
rate as you draw away from the focus, thus maintaining equal distances, then your track
cannot but exactly bisect the angle between the two segments.

Once you grasp the idea, the bisection is obvious, though to grasp the idea can take
some thought.

To bisect a thing, incidentally—if the context has not already made the meaning plain—
is to divide the thing at its middle into two equal parts.

38Well, actually, physically, the ray model of light implied here is valid only insofar as
λ� σ2, where λ represents the light’s characteristic wavelength. Also, regardless of λ, the
ray model breaks down in the immediate neighborhood of the mirror’s focus. However,
we were not thinking of wave mechanics at the moment. Insofar as rays are concerned,
the focusing is precise.
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Figure 15.8: Locating a point in two dimensions by parabolic construction.
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Figure 15.9: The parabolic coordinate grid in two dimensions.
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that one of the grid’s several cells is subdivided at its quarter-marks for
illustration’s sake, to show how one can subgrid at need to locate points like,
for example, (σ, τ) = (7

2 ,−9
4) visually. (That the subgrid’s cells approach

square shape implies that the parabolic system is isotropic, a significant fact
§ 15.7.3 will formally demonstrate.)

Using the Pythagorean theorem, one can symbolically express the equi-
distant construction rule above as

a = σ2 + y = τ2 − y,
a2 = ρ2 = x2 + y2.

(15.41)

From the first line of (15.41),

y =
τ2 − σ2

2
. (15.42)

On the other hand, combining the two lines of (15.41),

(σ2 + y)2 = x2 + y2 = (τ2 − y)2,

or, subtracting y2,

σ4 + 2σ2y = x2 = τ4 − 2τ2y.

Substituting (15.42)’s expression for y,

x2 = (στ)2.

That either x = +στ or x = −στ would satisfy this equation. Arbitrarily
choosing the + sign gives us that

x = στ. (15.43)

Also, since ρ2 = x2 + y2, (15.42) and (15.43) together imply that

ρ =
τ2 + σ2

2
. (15.44)

Combining (15.42) and (15.44) to isolate σ2 and τ2 yields that

σ2 = ρ− y,
τ2 = ρ+ y.

(15.45)
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15.7.3 Properties

The derivatives of (15.43), (15.42) and (15.44) are

dx = σ dτ + τ dσ,

dy = τ dτ − σ dσ,
dρ = τ dτ + σ dσ.

(15.46)

Solving the first two lines of (15.46) simultaneously for dσ and dτ and then
collapsing the resultant subexpression τ2 + σ2 per (15.44) yields that

dσ =
τ dx− σ dy

2ρ
,

dτ =
σ dx+ τ dy

2ρ
,

(15.47)

from which it is apparent that

σ̂ =
x̂τ − ŷσ√
τ2 + σ2

,

τ̂ =
x̂σ + ŷτ√
τ2 + σ2

;

or, collapsing again per (15.44), that

σ̂ =
x̂τ − ŷσ√

2ρ
,

τ̂ =
x̂σ + ŷτ√

2ρ
,

(15.48)

of which the dot product

σ̂ · τ̂ = 0 if ρ 6= 0 (15.49)

is null, confirming our earlier finding that the various grid parabolas cross
always at right angles to one another. Solving (15.48) simultaneously for x̂
and ŷ then produces

x̂ =
τ̂σ + σ̂τ√

2ρ
,

ŷ =
τ̂ τ − σ̂σ√

2ρ
.

(15.50)
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One can express an infinitesimal change in position in the plane as

dρ = x̂ dx+ ŷ dy

= x̂(σ dτ + τ dσ) + ŷ(τ dτ − σ dσ)

= (x̂τ − ŷσ) dσ + (x̂σ + ŷτ) dτ,

in which (15.46) has expanded the differentials and from which

∂ρ

∂σ
= x̂τ − ŷσ,

∂ρ

∂τ
= x̂σ + ŷτ,

and thus ∣∣∣∣
∂ρ

∂σ

∣∣∣∣ =

∣∣∣∣
∂ρ

∂τ

∣∣∣∣ . (15.51)

Equations (15.49) and (15.51) respectively meet the requirements (15.34)
and (15.35), implying that the two-dimensional parabolic coordinate system
is isotropic except at ρ = 0.

Table 15.3 summarizes, gathering parabolic coordinate properties from
this subsection and § 15.7.2.

15.7.4 The parabolic cylindrical coordinate system

Two-dimensional parabolic coordinates are easily extended to three dimen-
sions by adding a z coordinate, thus constituting the parabolic cylindrical
coordinate system (σ, τ, z). The surfaces of constant σ and of constant τ in
this system are parabolic cylinders (and the surfaces of constant z naturally
are planes). All the properties of Table 15.3 apply. Observe however that
the system is isotropic only in two dimensions not three.

The orthogonal parabolic cylindrical basis is [σ̂ τ̂ ẑ].

15.7.5 The circular paraboloidal coordinate system

Sometimes one would like to extend the parabolic system to three dimensions
by adding an azimuth φ rather than a height z. This is possible, but then
one tends to prefer the parabolas, foci and directrices of Figs. 15.8 and 15.9
to run in the ρ-z plane rather than in the x-y. Therefore, one defines the
coordinates η and ξ to represent in the ρ-z plane what the letters σ and τ
have represented in the x-y. The properties of Table 15.4 result, which are
just the properties of Table 15.3 with coordinates changed. The system is
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Table 15.3: Parabolic coordinate properties.

x = στ

y =
τ2 − σ2

2

ρ =
τ2 + σ2

2
ρ2 = x2 + y2

σ2 = ρ− y
τ2 = ρ+ y

x̂ =
τ̂σ + σ̂τ√

2ρ

ŷ =
τ̂ τ − σ̂σ√

2ρ

σ̂ =
x̂τ − ŷσ√

2ρ

τ̂ =
x̂σ + ŷτ√

2ρ

σ̂ × τ̂ = ẑ

σ̂ · τ̂ = 0∣∣∣∣
∂ρ

∂σ

∣∣∣∣ =

∣∣∣∣
∂ρ

∂τ

∣∣∣∣

Table 15.4: Circular paraboloidal coordinate properties.

ρ = ηξ

z =
ξ2 − η2

2

r =
ξ2 + η2

2
r2 = ρ2 + z2 = x2 + y2 + z2

η2 = r − z
ξ2 = r + z

ρ̂ =
ξ̂η + η̂ξ√

2r

ẑ =
ξ̂ξ − η̂η√

2r

η̂ =
ρ̂ξ − ẑη√

2r

ξ̂ =
ρ̂η + ẑξ√

2r

η̂ × ξ̂ = −φ̂
η̂ · ξ̂ = 0∣∣∣∣
∂r

∂η

∣∣∣∣ =

∣∣∣∣
∂r

∂ξ

∣∣∣∣
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the circular paraboloidal system (η;φ, ξ).
The surfaces of constant η and of constant ξ in the circular paraboloidal

system are paraboloids, parabolas rotated about the z axis (and the surfaces
of constant φ are planes, or half planes if you like, just as in the cylindrical
system). Like the parabolic cylindrical system, the circular paraboloidal
system too is isotropic in two dimensions.

Notice that, given the usual definition of the φ̂ unit basis vector, η̂× ξ̂ =
−φ̂ rather than +φ̂ as one might first guess. The correct, right-handed
sequence of the orthogonal circular paraboloidal basis therefore would be
[η̂ φ̂ ξ̂].39

This concludes the present chapter on the algebra of vector analysis.
Chapter 16, next, will venture hence into the larger and even more interest-
ing realm of vector calculus.

39See footnote 32.
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Chapter 16

Vector calculus

Chapter 15 has introduced the algebra of the three-dimensional geometrical
vector. Like the scalar, the vector is a continuous quantity and as such has
not only an algebra but also a calculus. This chapter develops the calculus
of the vector.

16.1 Fields and their derivatives

A scalar quantity σ(t) or vector quantity f(t) whose value varies over time is
“a function of time t.” We can likewise call a scalar quantity1 ψ(r) or vector
quantity a(r) whose value varies over space “a function of position r,” but
there is a special, alternate name for such a quantity. We call it a field.

A field is a quantity distributed over space or, if you prefer, a function
in which spatial position serves as independent variable. Air pressure p(r) is
an example of a scalar field, whose value at a given location r has amplitude
but no direction. Wind velocity2 q(r) is an example of a vector field, whose
value at a given location r has both amplitude and direction. These are
typical examples. Tactically, a vector field can be thought of as composed
of three scalar fields

q(r) = x̂qx(r) + ŷqy(r) + ẑqz(r);

1This ψ(r) is unrelated to the Tait-Bryan and Euler roll angles ψ of § 15.1, an unfortu-
nate but tolerable overloading of the Greek letter ψ in the conventional notation of vector
analysis. In the unlikely event of confusion, you can use an alternate letter like η for the
roll angle. See appendix B.

2As § 15.3, this section also uses the letter q for velocity in place of the conventional v
[17, § 18.4], which it needs for another purpose.

489
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but, since

q(r) = x̂′qx′(r) + ŷ′qy′(r) + ẑ′qz′(r)

for any orthogonal basis [x′ y′ z′] as well, the specific scalar fields qx(r),
qy(r) and qz(r) are no more essential to the vector field q(r) than the specific
scalars bx, by and bz are to a vector b. As we said, the three components
come tactically; typically, such components are uninteresting in themselves.
The field q(r) as a whole is the interesting thing.

Scalar and vector fields are of utmost use in the modeling of physical
phenomena.

As one can take the derivative dσ/dt or df/dt with respect to time t
of a function σ(t) or f(t), one can likewise take the derivative with respect
to position r of a field ψ(r) or a(r). However, derivatives with respect to
position create a notational problem, for it is not obvious what symbology
like dψ/dr or da/dr would actually mean. The notation dσ/dt means “the
rate of σ as time t advances,” but if the notation dψ/dr likewise meant “the
rate of ψ as position r advances” then it would necessarily prompt one to
ask, “advances in which direction?” The notation offers no hint. In fact
dψ/dr and da/dr mean nothing very distinct in most contexts and we shall
avoid such notation. If we will speak of a field’s derivative with respect to
position r then we shall be more precise.

Section 15.2 has given the vector three distinct kinds of product. This
section gives the field no fewer than four distinct kinds of derivative: the
directional derivative; the gradient; the divergence; and the curl.3

So many derivatives bring the student a conceptual difficulty one could
call “the caveman problem.” Imagine a caveman. Suppose that you tried
to describe to the caveman a house or building of more than one floor. He
might not understand. You and I who already grasp the concept of upstairs
and downstairs do not find a building of two floors, or three or even thirty,
especially hard to envision, but our caveman is used to thinking of the ground
and the floor as more or less the same thing. To try to think of upstairs
and downstairs might confuse him with partly false images of sitting in a
tree or of clambering onto (and breaking) the roof of his hut. “There are
many trees and antelopes but only one sky and floor. How can one speak of
many skies or many floors?” The student’s principal conceptual difficulty
with the several vector derivatives is of this kind.

3Vector veterans may notice that the Laplacian is not listed. This is not because the
Laplacian were uninteresting but rather because the Laplacian is actually a second-order
derivative—a derivative of a derivative. We will address the Laplacian in § 16.4.
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16.1.1 The ∇ operator

Consider a vector
a = x̂ax + ŷay + ẑaz.

Then consider a “vector”

c = x̂[Tuesday] + ŷ[Wednesday] + ẑ[Thursday].

If you think that the latter does not look very much like a vector, then the
writer thinks as you do, but consider:

c · a = [Tuesday]ax + [Wednesday]ay + [Thursday]az.

The writer does not know how to interpret a nonsensical term like
“[Tuesday]ax” any more than the reader does, but the point is that c behaves
as though it were a vector insofar as vector operations like the dot product
are concerned. What matters in this context is not that c have amplitude
and direction (it has neither) but rather that it have the three orthonormal
components it needs to participate formally in relevant vector operations.
It has these. That the components’ amplitudes seem nonsensical is beside
the point. Maybe there exists a model in which “[Tuesday]” knows how to
operate on a scalar like ax. (Operate on? Yes. Nothing in the dot product’s
definition requires the component amplitudes of c to multiply those of a.
Multiplication is what the component amplitudes of true vectors do, but c
is not a true vector, so “[Tuesday]” might do something to ax other than
to multiply it. Section 16.1.2 elaborates the point.) If there did exist such
a model, then the dot product c · a could be licit in that model. As if this
were not enough, the cross product c × a too could be licit in that model,
composed according to the usual rule for cross products. The model might
allow it. The dot and cross products in and of themselves do not forbid it.

Now consider a “vector”

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (16.1)

This ∇ is not a true vector any more than c is, maybe, but if we treat it as
one then we have that

∇ · a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

.

Such a dot product might or might not prove useful; but, unlike the terms
in the earlier dot product, at least we know what this one’s terms mean.
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Well, days of the week, partial derivatives, ersatz vectors—it all seems
rather abstract. What’s the point? The answer is that there wouldn’t be
any point if the only nonvector “vectors” in question were of c’s nonsensical
kind. The operator ∇ however shares more in common with a true vector
than merely having x, y and z components; for, like a true vector, the
operator ∇ is amenable to having its axes reoriented by (15.1), (15.2), (15.7)
and (15.8). This is easier to see at first with respect the true vector a, as
follows. Consider rotating the x and y axes through an angle φ about the z
axis. There ensues

a = x̂ax + ŷay + ẑaz

= (x̂′ cosφ− ŷ′ sinφ)(ax′ cosφ− ay′ sinφ)

+ (x̂′ sinφ+ ŷ′ cosφ)(ax′ sinφ+ ay′ cosφ) + ẑ′az′

= x̂′[ax′ cos2 φ− ay′ cosφ sinφ+ ax′ sin
2 φ+ ay′ cosφ sinφ]

+ ŷ′[−ax′ cosφ sinφ+ ay′ sin
2 φ+ ax′ cosφ sinφ+ ay′ cos2 φ]

+ ẑ′az′

= x̂′ax′ + ŷ′ay′ + ẑ′az′ ,

where the final expression has different axes than the original but, relative
to those axes, exactly the same form. Further rotation about other axes
would further reorient but naturally also would not alter the form. Now
consider ∇. The partial differential operators ∂/∂x, ∂/∂y and ∂/∂z change
no differently under reorientation than the component amplitudes ax, ay
and az do. Hence,

∇ = ı̂
∂

∂i
= x̂′

∂

∂x′
+ ŷ′

∂

∂y′
+ ẑ′

∂

∂z′
, (16.2)

evidently the same operator regardless of the choice of basis [x̂′ ŷ′ ẑ′]. It is
this invariance under reorientation that makes the ∇ operator useful.

If ∇ takes the place of the ambiguous d/dr, then what takes the place
of the ambiguous d/dro, d/dr̃, d/dr†, d/dr′ and so on? Answer: ∇o, ∇̃, ∇†,
∇′ and so on. Whatever mark distinguishes the special r, the same mark
distinguishes the corresponding special ∇. For example, where ro = ı̂io,
there ∇o = ı̂ ∂/∂io. That is the convention.4

Introduced by William Rowan Hamilton and Oliver Heaviside, informally
pronounced “del” (in the author’s country at least), the vector differential
operator∇ finds extensive use in the modeling of physical phenomena. After

4A few readers not fully conversant with the material of chapter 15, to whom this
chapter had been making sense until the last two sentences, may suddenly find the notation
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a brief digression to discuss operator notation, the subsections that follow
will use the operator to develop and present the four basic kinds of vector
derivative.

16.1.2 Operator notation

Section 16.1.1 has introduced operator notation without explaining what it
is or even what it concerns. This subsection digresses to explain.

Operator notation concerns the representation of unary operators and
the operations they specify. Section 7.3 has already broadly introduced the
notion of the operator. A unary operator is a mathematical agent that
transforms a single discrete quantity, a single distributed quantity, a single
field, a single function or another single mathematical object in some defi-
nite way. For example, J ≡

∫ t
0 dt is a unary operator, more fully written as

J ≡
∫ t

0 · dt where the “·” holds the place of the thing operated upon,5 whose
effect is such that, for instance, Jt = t2/2 and J cosωt = (sinωt)/ω. Any
letter might serve as well as the example’s J ; but what distinguishes oper-
ator notation is that, like the matrix row operator A in matrix notation’s
product Ax (§ 11.1.1), the operator J in operator notation’s operation Jt
attacks from the left. Thus, generally, Jt 6= tJ if J is a unary operator,
though the notation Jt usually formally resembles multiplication in other
respects as we shall see.

The matrix actually is a type of unary operator and matrix notation
is a specialization of operator notation, so we have met operator notation
before. And, in fact, we have met operator notation much earlier than that.
The product 5t can if you like be regarded as the unary operator “5 times,”
operating on t. Perhaps you did not know that 5 was an operator—and,
indeed, the scalar 5 itself is no operator but just a number—but where no
other operation is defined operator notation implies scalar multiplication
by default. Seen in this way, 5t and t5 actually mean two different things;
though naturally in the specific case of scalar multiplication, which happens
to be commutative, it is true that 5t = t5.

The a · in the dot product a · b and the a× in the cross product a× b
can profitably be regarded as unary operators.

incomprehensible. The notation is Einstein’s. It means

ı̂io =
∑

i=x′,y′,z′

ı̂io = x̂′x′o + ŷ′y′o + ẑ′z′o,

in the leftmost form of which the summation sign is implied not written. Refer to § 15.4.
5[23]
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Whether operator notation can licitly represent any unary operation
whatsoever is a definitional question we will leave for the professional math-
ematician to answer, but in normal usage operator notation represents only
linear unary operations, unary operations that honor § 7.3.3’s rule of linear-
ity. The operators J and A above are examples of linear unary operators;
the operator K ≡ · + 3 is not linear and almost certainly should never be
represented in operator notation as here, lest an expression like Kt mislead
an understandably unsuspecting audience. Linear unary operators often do
not commute, so J1J2 6= J2J1 generally; but otherwise linear unary opera-
tors follow familiar rules of multiplication like (J2 + J3)J1 = J2J1 + J3J1.
Linear unary operators obey a definite algebra, the same algebra matrices
obey. It is precisely this algebra that makes operator notation so useful.

Operators associate from right to left (§ 2.1.1) so that, in operator nota-
tion, Jωt = J(ωt), not (Jω)t. Observe however that the perceived need for
parentheses comes only of the purely notational ambiguity as to whether ωt
bears the semantics of “the product of ω and t” or those of “the unary
operator ‘ω times,’ operating on t.” The perceived need and any associ-
ated confusion would vanish if Ω ≡ (ω)(·) were unambiguously an opera-
tor, in which case the product JΩ would itself be an operator, whereupon
(JΩ)t = JΩt = J(Ωt) = J(ωt). Indeed, one can compare the distinction in
§ 11.3.2 between λ and λI against the distinction between ω and Ω here, for
a linear unary operator enjoys the same associativity (11.5) a matrix enjoys,
and for the same reason. Still, rather than go to the trouble of defining
extra symbols like Ω, it is usually easier just to write the parentheses, which
take little space on the page and are universally understood; or, better, to
rely on the right-to-left convention that Jωt = J(ωt). Modern conventional
applied mathematical notation though generally excellent remains imper-
fect; so, notationally, when it matters, operators associate from right to left
except where parentheses group otherwise.

One can speak of a unary operator like J , A or Ω without giving it any-
thing in particular to operate upon. One can leave an operation unresolved.
For example, tJ is itself a unary operator—it is the operator t

∫ t
0 dt—though

one can assign no particular value to it until it actually operates on some-
thing. The operator ∇ of (16.2) is an unresolved unary operator of the same
kind.

16.1.3 The directional derivative and the gradient

In the calculus of vector fields, the derivative notation d/dr is ambiguous
because, as the section’s introduction has observed, the notation gives r
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no specific direction in which to advance. In operator notation, however,
given (16.2) and accorded a reference vector b to supply a direction and a
scale, one can compose the directional derivative operator

(b · ∇) = bi
∂

∂i
(16.3)

to express the derivative unambiguously. This operator applies equally to
the scalar field,

(b · ∇)ψ(r) = bi
∂ψ

∂i
,

as to the vector field,

(b · ∇)a(r) = bi
∂a

∂i
= ̂bi

∂aj
∂i

. (16.4)

For the scalar field the parentheses are unnecessary and conventionally are
omitted, as

b · ∇ψ(r) = bi
∂ψ

∂i
. (16.5)

In the case (16.4) of the vector field, however, ∇a(r) itself means nothing co-
herent6 so the parentheses usually are retained. Equations (16.4) and (16.5)
define the directional derivative.

Note that the directional derivative is the derivative not of the reference
vector b but only of the field ψ(r) or a(r). The vector b just directs and
scales the derivative; it is not the object of it. Nothing requires b to be
constant, though. It can be a vector field b(r) that varies from place to
place; the directional derivative does not care.

Within (16.5), the quantity

∇ψ(r) = ı̂
∂ψ

∂i
(16.6)

is called the gradient of the scalar field ψ(r). Though both scalar and
vector fields have directional derivatives, only scalar fields have gradients.
The gradient represents the amplitude and direction of a scalar field’s locally
steepest rate.

Formally a dot product, the directional derivative operator b · ∇ is in-
variant under reorientation of axes, whereupon the directional derivative is
invariant, too. The result of a ∇ operation, the gradient ∇ψ(r) is likewise
invariant.

6Well, it does mean something coherent in dyadic analysis [21, appendix B], but this
book won’t treat that.
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16.1.4 Divergence

There exist other vector derivatives than the directional derivative and gra-
dient of § 16.1.3. One of these is divergence. It is not easy to motivate
divergence directly, however, so we will approach it indirectly, through the
concept of flux as follows.

The flux of a vector field a(r) outward from a region in space is

Φ ≡
∮

S
a(r) · ds, (16.7)

where

ds ≡ n̂ · ds (16.8)

is a vector infinitesimal of amplitude ds, directed normally outward from
the closed surface bounding the region—ds being the area of an infinitesi-
mal element of the surface, the area of a tiny patch. Flux is flow through
a surface: in this case, net flow outward from the region in question. (The
paragraph says much in relatively few words. If it seems opaque then try to
visualize eqn. 16.7’s dot product a[r] · ds, in which the vector ds represents
the area and orientation of a patch of the region’s enclosing surface. When
something like air flows through any surface—not necessarily a physical bar-
rier but an imaginary surface like the goal line’s vertical plane in a football
game7—what matters is not the surface’s area as such but rather the area
the surface presents to the flow. The surface presents its full area to a per-
pendicular flow but otherwise the flow sees a foreshortened surface, as though
the surface were projected onto a plane perpendicular to the flow. Refer to
Fig. 15.2. Now realize that eqn. 16.7 actually describes flux not through an
open surface but through a closed—it could be the imaginary rectangular
box enclosing the region of football play to goal-post height; where wind
blowing through the region, entering and leaving, would constitute zero net
flux; but where a positive net flux would have barometric pressure falling
and air leaving the region maybe because a storm is coming—and you’ve
got the idea.)

A region of positive flux is a source; of negative flux, a sink. One can
contemplate the flux Φopen =

∫
S a(r) · ds through an open surface as well as

through a closed, but it is the outward flux (16.7) through a closed surface
that will concern us here.

7The author has American football in mind but other football games have goal lines
and goal posts, too. Pick your favorite brand of football.
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The outward flux Φ of a vector field a(r) through a closed surface bound-
ing some definite region in space is evidently

Φ =

∫∫
∆ax(y, z) dy dz +

∫∫
∆ay(z, x) dz dx+

∫∫
∆az(x, y) dx dy,

where

∆ax(y, z) =

∫ xmax(y,z)

xmin(y,z)

∂ax
∂x

dx,

∆ay(z, x) =

∫ ymax(z,x)

ymin(z,x)

∂ay
∂y

dy,

∆az(x, y) =

∫ zmax(x,y)

zmin(x,y)

∂az
∂z

dz

represent the increase across the region respectively of ax, ay or az along
an x̂-, ŷ- or ẑ-directed line.8 If the field has constant derivatives ∂a/∂i, or
equivalently if the region in question is small enough that the derivatives
are practically constant through it, then these increases are simply

∆ax(y, z) =
∂ax
∂x

∆x(y, z),

∆ay(z, x) =
∂ay
∂y

∆y(z, x),

∆az(x, y) =
∂az
∂z

∆z(x, y),

upon which

Φ =
∂ax
∂x

∫∫
∆x(y, z) dy dz +

∂ay
∂y

∫∫
∆y(z, x) dz dx

+
∂az
∂z

∫∫
∆z(x, y) dx dy.

But each of the last equation’s three integrals represents the region’s vol-
ume V , so

Φ = (V )

(
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

)
;

8Naturally, if the region’s boundary happens to be concave, then some lines might enter
and exit the region more than once, but this merely elaborates the limits of integration
along those lines. It changes the problem in no essential way.
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or, dividing through by the volume,

Φ

V
=
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

=
∂ai
∂i

= ∇ · a(r). (16.9)

We give this ratio of outward flux to volume,

∇ · a(r) =
∂ai
∂i
, (16.10)

the name divergence, representing the intensity of a source or sink.
Formally a dot product, divergence is invariant under reorientation of

axes.

16.1.5 Curl

Curl is to divergence as the cross product is to the dot product. Curl is a
little trickier to visualize, though. It needs first the concept of circulation
as follows.

The circulation of a vector field a(r) about a closed contour in space is

Γ ≡
∮

a(r) · d`, (16.11)

where, unlike the
∮
S of (16.7) which represented a double integration over a

surface, the
∮

here represents only a single integration. One can in general
contemplate circulation about any closed contour, but it suits our purpose
here to consider specifically a closed contour that happens not to depart
from a single, flat plane in space.

Let [û v̂ n̂] be an orthogonal basis with n̂ normal to the contour’s plane
such that travel positively along the contour tends from û toward v̂ rather
than the reverse. The circulation Γ of a vector field a(r) about this contour
is evidently

Γ =

∫
∆av(v) dv −

∫
∆au(u) du,

where

∆av(v) =

∫ umax(v)

umin(v)

∂av
∂u

du,

∆au(u) =

∫ vmax(u)

vmin(u)

∂au
∂v

dv

represent the increase across the contour’s interior respectively of av or au
along a û- or v̂-directed line. If the field has constant derivatives ∂a/∂i, or
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equivalently if the contour in question is short enough that the derivatives
are practically constant over it, then these increases are simply

∆av(v) =
∂av
∂u

∆u(v),

∆au(u) =
∂au
∂v

∆v(u),

upon which

Γ =
∂av
∂u

∫
∆u(v) dv − ∂au

∂v

∫
∆v(u) du.

But each of the last equation’s two integrals represents the area A within
the contour, so

Γ = (A)

(
∂av
∂u
− ∂au

∂v

)
;

or, dividing through by the area,

Γ

A
=

∂av
∂u
− ∂au

∂v

= n̂ ·
[
εijk ı̂

∂ak
∂j

]
= n̂ ·

∣∣∣∣∣∣

û v̂ n̂
∂/∂u ∂/∂v ∂/∂n
au av an

∣∣∣∣∣∣
= n̂ · [∇× a(r)]. (16.12)

We give this ratio of circulation to area,

n̂ · [∇× a(r)] = n̂ ·
[
εijk ı̂

∂ak
∂j

]
=
∂av
∂u
− ∂au

∂v
, (16.13)

the name directional curl, representing the intensity of circulation, the degree
of twist so to speak, about a specified axis. The cross product in (16.13),

∇× a(r) = εijk ı̂
∂ak
∂j

, (16.14)

we call curl.
Curl (16.14) is an interesting quantity. Although it emerges from di-

rectional curl (16.13) and although we have developed directional curl with
respect to a contour in some specified plane, curl (16.14) itself turns out
to be altogether independent of any particular plane. We might have cho-
sen another plane and though n̂ would then be different the same (16.14)
would necessarily result. Directional curl, a scalar, is a property of the field
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and the plane. Curl, a vector, unexpectedly is a property of the field only.
Directional curl evidently cannot exceed curl in magnitude, but will equal
it when n̂ points in its direction, so it may be said that curl is the locally
greatest directional curl, oriented normally to the locally greatest directional
curl’s plane.

We have needed n̂ and (16.13) to motivate and develop the concept
(16.14) of curl. Once developed, however, the concept of curl stands on its
own, whereupon one can return to define directional curl more generally
than (16.13) has defined it. As in (16.4) here too any reference vector b or
vector field b(r) can serve to direct the curl, not only n̂. Hence,

b · [∇× a(r)] = b ·
[
εijk ı̂

∂ak
∂j

]
= εijkbi

∂ak
∂j

. (16.15)

This would be the actual definition of directional curl. Note however that
directional curl so defined is not a distinct kind of derivative but rather is
just curl, dot-multiplied by a reference vector.

Formally a cross product, curl is invariant under reorientation of axes.
An ordinary dot product, directional curl is likewise invariant.

16.1.6 Cross-directional derivatives

The several directional derivatives of the b · ∇ class, including the scalar
(16.5) and vector (16.4) directional derivatives themselves and also including
directional curl (16.15), compute rates with reference to some direction b.
Another class of directional derivatives however is possible, that of the cross-
directional derivatives.9 These compute rates perpendicularly to b. Unlike
the vector directional derivative (16.4), the cross-directional derivatives are
not actually new derivatives but are cross products of b with derivatives
already familiar to us. The cross-directional derivatives are

b×∇ψ = εijk ı̂bj
∂ψ

∂k
,

b×∇× a = ̂bi

(
∂ai
∂j
− ∂aj

∂i

)
.

(16.16)

9The author is unaware of a conventional name for these derivatives. The name cross-
directional seems as apt as any.
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We call these respectively the cross-directional derivative (itself) and cross-
directional curl, the latter derived as

b×∇× a = b×
(
εijk ı̂

∂ak
∂j

)

= εmnim̂bn

(
εijk ı̂

∂ak
∂j

)

i

= εmniεijkm̂bn
∂ak
∂j

= (δmjδnk − δmkδnj)m̂bn
∂ak
∂j

= ̂bk
∂ak
∂j
− k̂bj

∂ak
∂j

= ̂bi
∂ai
∂j
− ̂bi

∂aj
∂i

where the Levi-Civita identity that εmniεijk = εimnεijk = δmjδnk − δmkδnj
comes from Table 15.1.

16.2 Integral forms

The vector field’s distinctive maneuver is the shift between integral forms,
which we are now prepared to treat. This shift comes in two kinds. The two
subsections that follow explain.

16.2.1 The divergence theorem

Section 16.1.4 has contemplated the flux of a vector field a(r) from a volume
small enough that the divergence ∇·a were practically constant through the
volume. One would like to treat the flux from larger, more general volumes
as well. According to the definition (16.7), the flux from any volume is

Φ =

∮

S
a · ds.

If one subdivides a large volume into infinitesimal volume elements dv, then
the flux from a single volume element is

Φelement =

∮

Selement

a · ds.

Even a single volume element however can have two distinct kinds of surface
area: inner surface area shared with another element; and outer surface area
shared with no other element because it belongs to the surface of the larger,
overall volume. Interior elements naturally have only the former kind but



502 CHAPTER 16. VECTOR CALCULUS

boundary elements have both kinds of surface area, so one can elaborate the
last equation to read

Φelement =

∫

Sinner

a · ds +

∫

Souter

a · ds

for a single element, where
∮
Selement

=
∫
Sinner

+
∫
Souter

. Adding all the ele-
ments together, we have that

∑

elements

Φelement =
∑

elements

∫

Sinner

a · ds +
∑

elements

∫

Souter

a · ds;

but the inner sum is null because it includes each interior surface twice,
because each interior surface is shared by two elements such that ds2 = −ds1

(in other words, such that the one volume element’s ds on the surface the
two elements share points oppositely to the other volume element’s ds on
the same surface), so

∑

elements

Φelement =
∑

elements

∫

Souter

a · ds =

∮

S
a · ds.

In this equation, the last integration is over the surface of the larger, overall
volume, which surface after all consists of nothing other than the several
boundary elements’ outer surface patches. Applying (16.9) to the equation’s
left side to express the flux Φelement from a single volume element yields that

∑

elements

∇ · a dv =

∮

S
a · ds.

That is, ∫

V
∇ · a dv =

∮

S
a · ds. (16.17)

Equation (16.17) is the divergence theorem.10 The divergence theorem,
the vector’s version of the fundamental theorem of calculus (7.2), neatly
relates the divergence within a volume to the flux from it. It is an important
result. The integral on the equation’s left and the one on its right each arise
in vector analysis more often than one might expect. When they do, (16.17)
swaps the one integral for the other, often a profitable maneuver.11

10[124, eqn. 1.2.8]
11Where a wave propagates through a material interface, the associated field can be

discontinuous and, consequently, the field’s divergence can be infinite, which would seem
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16.2.2 Stokes’ theorem

Corresponding to the divergence theorem of § 16.2.1 is a second, related the-
orem for directional curl, developed as follows. If an open surface, whether
the surface be confined to a plane or be warped in three dimensions (as for ex-
ample in bowl shape), is subdivided into infinitesimal surface elements ds—
each element small enough not only to experience essentially constant curl
but also to be regarded as planar—then according to (16.11) the circulation
about the entire surface is

Γ =

∮
a · d`

and the circulation about any one surface element is

Γelement =

∮

element
a · d`.

From this equation, reasoning parallel to that of § 16.2.1—only using (16.12)
in place of (16.9)—concludes that

∫

S
(∇× a) · ds =

∮
a · d`. (16.18)

Equation (16.18) is Stokes’ theorem,12,13 neatly relating the directional curl
over a (possibly nonplanar) surface to the circulation about it. Like the di-
vergence theorem (16.17), Stokes’ theorem (16.18) serves to swap one vector
integral for another where such a maneuver is needed.

16.3 Summary of definitions and identities of vec-
tor calculus

Table 16.1 lists useful definitions and identities of vector calculus,14 the
first several of which it gathers from §§ 16.1 and 16.2, the last several of

to call assumptions underlying (16.17) into question. However, the infinite divergence
at a material interface is normally integrable in the same way the Dirac delta of § 7.7,
though infinite, is integrable. One can integrate finitely through either infinity. If one can
conceive of an interface not as a sharp layer of zero thickness but rather as a thin layer of
thickness ε, through which the associated field varies steeply but continuously, then the
divergence theorem necessarily remains valid in the limit ε→ 0.

12[124, eqn. 1.4.20]
13If (16.17) is “the divergence theorem,” then should (16.18) not be “the curl theorem”?

Answer: maybe it should be, but no one calls it that. Sir George Gabriel Stokes is evidently
not to be denied his fame!

14[9, appendix II.3][124, appendix II][59, appendix A]
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which (exhibiting heretofore unfamiliar symbols like ∇2) it gathers from
§ 16.4 to follow. Of the identities in the middle of the table, a few are
statements of the ∇ operator’s distributivity over summation. The rest are
vector derivative product rules (§ 4.5.2).

The product rules resemble the triple products of Table 15.2, only with
the ∇ operator in place of the vector c. However, since ∇ is a differential
operator for which, for instance, b · ∇ 6= ∇ · b, its action differs from a
vector’s in some cases, and there are more distinct ways in which it can act.
Among the several product rules the easiest to prove is that

∇(ψω) = ı̂
∂(ψω)

∂i
= ωı̂

∂ψ

∂i
+ ψı̂

∂ω

∂i
= ω∇ψ + ψ∇ω.

The hardest to prove is that

∇(a · b) = ∇(aibi) = ̂
∂(aibi)

∂j
= ̂bi

∂ai
∂j

+ ̂ai
∂bi
∂j

= ̂bi
∂aj
∂i

+ ̂bi

(
∂ai
∂j
− ∂aj

∂i

)
+ ̂ai

∂bj
∂i

+ ̂ai

(
∂bi
∂j
− ∂bj

∂i

)

= (b · ∇)a + b×∇× a + (a · ∇)b + a×∇× b

= (b · ∇+ b×∇× )a + (a · ∇+ a×∇× )b,

because to prove it one must recognize in it the cross-directional curl of
(16.16). Also nontrivial to prove is that

∇× (a× b) = ∇× (εijk ı̂ajbk)

= εmnim̂
∂(εijk ı̂ajbk)i

∂n
= εmniεijkm̂

∂(ajbk)

∂n

= (δmjδnk − δmkδnj)m̂
∂(ajbk)

∂n

= ̂
∂(ajbk)

∂k
− k̂

∂(ajbk)

∂j
= ̂

∂(ajbi)

∂i
− ̂

∂(aibj)

∂i

=

(
̂bi
∂aj
∂i

+ ̂aj
∂bi
∂i

)
−
(

̂ai
∂bj
∂i

+ ̂bj
∂ai
∂i

)

= (b · ∇+∇ · b)a− (a · ∇+∇ · a)b.
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Table 16.1: Definitions and identities of vector calculus (see also Table 15.2
on page 476).

∇ ≡ ı̂
∂

∂i
b · ∇ = bi

∂

∂i

∇ψ = ı̂
∂ψ

∂i
b · ∇ψ = bi

∂ψ

∂i

∇ · a =
∂ai
∂i

(b · ∇)a = bi
∂a

∂i
= ̂bi

∂aj
∂i

∇× a = εijk ı̂
∂ak
∂j

b · ∇ × a = εijkbi
∂ak
∂j

b×∇ψ = εijk ı̂bj
∂ψ

∂k
b×∇× a = ̂bi

(
∂ai
∂j
− ∂aj

∂i

)

Φ ≡
∫

S
a · ds

∫

V
∇ · a dv =

∮

S
a · ds

Γ ≡
∫

C
a · d`

∫

S
(∇× a) · ds =

∮
a · d`

∇ · (a + b) = ∇ · a +∇ · b
∇× (a + b) = ∇× a +∇× b

∇(ψ + ω) = ∇ψ +∇ω
∇(ψω) = ω∇ψ + ψ∇ω
∇ · (ψa) = a · ∇ψ + ψ∇ · a
∇× (ψa) = ψ∇× a− a×∇ψ
∇(a · b) = (b · ∇+ b×∇× )a + (a · ∇+ a×∇× )b

∇ · (a× b) = b · ∇ × a− a · ∇ × b

∇× (a× b) = (b · ∇+∇ · b)a− (a · ∇+∇ · a)b

∇2 ≡ ∂2

∂i2
∇∇ · a = ̂

∂2ai
∂j ∂i

∇2ψ = ∇ · ∇ψ =
∂2ψ

∂i2
∇2a =

∂2a

∂i2
= ̂

∂2aj
∂i2

= ̂∇2(̂ · a)

∇×∇ψ = 0 ∇ · ∇ × a = 0

∇×∇× a = ̂
∂

∂i

(
∂ai
∂j
− ∂aj

∂i

)

∇∇ · a = ∇2a +∇×∇× a



506 CHAPTER 16. VECTOR CALCULUS

The others are less hard:15

∇ · (ψa) =
∂(ψai)

∂i
= ai

∂ψ

∂i
+ ψ

∂ai
∂i

= a · ∇ψ + ψ∇ · a;

∇× (ψa) = εijk ı̂
∂(ψak)

∂j
= εijk ı̂ψ

∂ak
∂j

+ εijk ı̂ak
∂ψ

∂j

= ψ∇× a− a×∇ψ;

∇ · (a× b) =
∂(εijkajbk)

∂i
= εijkbk

∂aj
∂i

+ εijkaj
∂bk
∂i

= b · ∇ × a− a · ∇ × b.

Inasmuch as none of the derivatives or products within the table’s several
product rules vary under rotation of axes, the product rules are themselves
invariant. That the definitions and identities at the top of the table are
invariant, we have already seen; and § 16.4, next, will give invariance to
the definitions and identities at the bottom. The whole table is therefore
invariant under rotation of axes.

16.4 The Laplacian and other second-order deriv-
atives

Table 16.1 ends with second-order vector derivatives. Like vector products
and first-order vector derivatives, second-order vector derivatives too come
in several kinds, the simplest of which is the Laplacian16

∇2 ≡ ∂2

∂i2
,

∇2ψ = ∇ · ∇ψ =
∂2ψ

∂i2
,

∇2a =
∂2a

∂i2
= ̂

∂2aj
∂i2

= ̂∇2(̂ · a).

(16.19)

15And probably should have been left as exercises, except that this book is not actually
an instructional textbook. The reader who wants exercises might hide the page from sight
and work the three identities out with his own pencil.

16Though seldom seen in applied usage in the author’s country, the alternate symbol ∆
replaces ∇2 in some books, especially some British books. The author prefers the ∇2,
which better captures the sense of the thing and which leaves ∆ free for other uses.
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Other second-order vector derivatives include

∇∇ · a = ̂
∂2ai
∂j ∂i

,

∇×∇× a = ̂
∂

∂i

(
∂ai
∂j
− ∂aj

∂i

)
,

(16.20)

the latter of which is derived as

∇×∇× a = ∇×
(
εijk ı̂

∂ak
∂j

)

= εmnim̂
∂

∂n

(
εijk ı̂

∂ak
∂j

)

i

= εmniεijkm̂
∂2ak
∂n ∂j

= (δmjδnk − δmkδnj)m̂
∂2ak
∂n ∂j

= ̂
∂2ak
∂k ∂j

− k̂
∂2ak
∂j2

= ̂
∂2ai
∂i ∂j

− ̂
∂2aj
∂i2

.

Combining the various second-order vector derivatives yields the useful iden-
tity that

∇∇ · a = ∇2a +∇×∇× a. (16.21)

Table 16.1 summarizes.
The table includes two curious null identities,

∇×∇ψ = 0,

∇ · ∇ × a = 0.
(16.22)

In words, (16.22) states that gradients do not curl and curl does not diverge.
This is unexpected but is a direct consequence of the definitions of the
gradient, curl and divergence:

∇×∇ψ = ∇×
(

ı̂
∂ψ

∂i

)
= εmnim̂

∂2ψ

∂n∂i
= 0;

∇ · ∇ × a = ∇ ·
(
εijk ı̂

∂ak
∂j

)
= εijk

∂2ak
∂i ∂j

= 0.

A field like ∇ψ that does not curl is called an irrotational field. A field like
∇×a that does not diverge is called a solenoidal, source-free or (prosaically)
divergenceless field.17

17In the writer’s country, the United States, there has been a mistaken belief afoot
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Each of this section’s second-order vector derivatives—including the vec-
tor Laplacian∇2a, according to (16.21)—is or can be composed of first-order
vector derivatives already familiar to us from § 16.1. Therefore, inasmuch as
each of those first-order vector derivatives is invariant under reorientation
of axes, each second-order vector derivative is likewise invariant.

16.5 Contour derivative product rules

Equation (4.22) gives the derivative product rule for functions of a scalar
variable. Fields—that is, functions of a vector variable—obey product rules,
too, several of which Table 16.1 lists. The table’s product rules however
are general product rules that regard full spatial derivatives. What about
derivatives along an arbitrary contour? Do they obey product rules, too?

that, if two fields b1(r) and b2(r) had everywhere the same divergence and curl, then the
two fields could differ only by an additive constant. Even at least one widely distributed
textbook expresses this belief, naming it Helmholtz’s theorem; but it is not just the one
textbook, for the writer has heard it verbally from at least two engineers, unacquainted
with one other, who had earned Ph.D.s in different eras in different regions of the country.
So the belief must be correct, mustn’t it?

Well, maybe it is, but the writer remains unconvinced. Consider the admittedly con-
trived counterexample of b1 = x̂y + ŷx, b2 = 0.

On an applied level, the writer knows of literally no other false theorem so widely
believed to be true, which leads the writer to suspect that he himself had somehow erred
in judging the theorem false. What the writer really believes however is that Hermann
von Helmholtz probably originally had put some appropriate restrictions on b1 and b2

which, if obeyed, made his theorem true but which at some time after his death got lost in
transcription. That a transcription error would go undetected so many years would tend
to suggest that Helmholtz’s theorem, though interesting, were not actually very necessary
in practical applications. (Some believe the theorem necessary to establish a “gauge” in
a wave equation, but if they examine the use of their gauges closely then they will likely
discover that one does not logically actually need to invoke the theorem to use the gauges.)

Corrections by readers are invited.
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That is, one supposes that18

∂

∂`
(ψω) = ω

∂ψ

∂`
+ ψ

∂ω

∂`
,

∂

∂`
(ψa) = a

∂ψ

∂`
+ ψ

∂a

∂`
,

∂

∂`
(a · b) = b · ∂a

∂`
+ a · ∂b

∂`
,

∂

∂`
(a× b) = −b× ∂a

∂`
+ a× ∂b

∂`
.

(16.23)

where ` is the distance along some arbitrary contour in space. As a hypoth-
esis, (16.23) is attractive. But is it true?

That the first line of (16.23) is true is clear, if you think about it in
the right way, because, in the restricted case (16.23) represents, one can
treat the scalar fields ψ(r) and ω(r) as ordinary scalar functions ψ(`) and
ω(`) of the scalar distance ` along the contour, whereupon (4.22) applies—
for (16.23) never evaluates ψ(r) or ω(r) but along the contour. The same
naturally goes for the vector fields a(r) and b(r), which one can treat as
vector functions a(`) and b(`) of the scalar distance `; so the second and
third lines of (16.23) are true, too, since one can write the second line in the
form

ı̂

[
∂

∂`
(ψai)

]
= ı̂

[
ai
∂ψ

∂`
+ ψ

∂ai
∂`

]

and the third line in the form

∂

∂`
(aibi) = bi

∂ai
∂`

+ ai
∂bi
∂`
,

each of which, according to the first line, is true separately for i = x, for
i = y and for i = z.

The truth of (16.23)’s last line is slightly less obvious. Nevertheless, one
can reorder factors to write the line as

∂

∂`
(a× b) =

∂a

∂`
× b + a× ∂b

∂`
,

the Levi-Civita form (§ 15.4.3) of which is

εijk ı̂

[
∂

∂`
(ajbk)

]
= εijk ı̂

[
∂aj
∂`

bk + aj
∂bk
∂`

]
.

18The − sign in (16.23)’s last line is an artifact of ordering the line’s factors in the style
of Table 16.1. Before proving the line, the narrative will reverse the order to kill the sign.
See below.
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Table 16.2: The metric coefficients of the rectangular, cylindrical and spher-
ical coordinate systems.

RECT.
hx = 1
hy = 1
hz = 1

CYL.
hρ = 1
hφ = ρ
hz = 1

SPHER.
hr = 1
hθ = r
hφ = ρ = r sin θ

The Levi-Civita form is true separately for (i, j, k) = (x, y, z), for (i, j, k) =
(x, z, y), and so forth, so (16.23)’s last line as a whole is true, too, which
completes the proof of (16.23).

16.6 Metric coefficients

A scalar field ψ(r) is the same field whether expressed as a function ψ(x, y, z)
of rectangular coordinates, ψ(ρ;φ, z) of cylindrical coordinates or ψ(r; θ;φ)
of spherical coordinates,19 or indeed of coordinates in any three-dimensional
system. However, cylindrical and spherical geometries normally recommend
cylindrical and spherical coordinate systems, systems which make some of
the identities of Table 16.1 hard to use.

The reason a cylindrical or spherical system makes some of the table’s
identities hard to use is that some of the table’s identities involve derivatives
d/di, notation which per § 15.4.2 stands for d/dx′, d/dy′ or d/dz′ where the
coordinates x′, y′ and z′ represent lengths. But among the cylindrical and
spherical coordinates are θ and φ, angles rather than lengths. Because one
cannot use an angle as though it were a length, the notation d/di cannot
stand for d/dθ or d/dφ and, thus, one cannot use the table in cylindrical or
spherical coordinates as the table stands.

We therefore want factors to convert the angles in question to lengths (or,
more generally, when special coordinate systems like the parabolic systems of
§ 15.7 come into play, to convert coordinates other than lengths to lengths).
Such factors are called metric coefficients and Table 16.2 lists them.20 The
use of the table is this: that for any metric coefficient hα a change dα in
its coordinate α sweeps out a length hα dα. For example, in cylindrical
coordinates hφ = ρ according to table, so a change dφ in the azimuthal

19For example, the field ψ = x2 + y2 in rectangular coordinates is ψ = ρ2 in cylindrical
coordinates. Refer to Table 3.4.

20[28, § 2-4]
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coordinate φ sweeps out a length ρ dφ—a fact we have already informally
observed as far back as § 7.4.3, which the table now formalizes.

Incidentally, the metric coefficient hφ seems to have two different values
in the table, one value in cylindrical coordinates and another in spherical.
The two are really the same value, though, since ρ = r sin θ per Table 3.4.

16.6.1 Displacements, areas and volumes

In any orthogonal, right-handed, three-dimensional coordinate system
(α;β; γ)—whether the symbols (α;β; γ) stand for (x, y, z), (y, z, x), (z, x, y),
(x′, y′, z′), (ρ;φ, z), (r; θ;φ), (φx, r; θx), etc.,21 or even something exotic like
the parabolic (σ, τ, z) of § 15.7—the product

ds = α̂hβhγ dβ dγ (16.24)

represents an area infinitesimal normal to α̂. For example, the area infinites-
imal on a spherical surface of radius r is ds = r̂hθhφ dθ dφ = r̂r2 sin θ dθ dφ.

Again in any orthogonal, right-handed, three-dimensional coordinate
system (α;β; γ), the product

dv = hαhβhγ dα dβ dγ (16.25)

represents a volume infinitesimal. For example, the volume infinitesimal in
a spherical geometry is dv = hrhθhφ dr dθ dφ = r2 sin θ dr dθ dφ.

Notice that § 7.4 has already calculated several integrals involving area
and volume infinitesimals of these kinds.

A volume infinitesimal (16.25) cannot meaningfully in three dimensions
be expressed as a vector as an area infinitesimal (16.24) can, since in three
dimensions a volume has no orientation. Naturally however, a length or
displacement infinitesimal can indeed be expressed as a vector, as

d` = α̂hα dα. (16.26)

Section 16.10 will have more to say about vector infinitesimals in non-
rectangular coordinates.

21The book’s admittedly clumsy usage of semicolons “;” and commas “,” to delimit
coordinate triplets, whereby a semicolon precedes an angle (or, in this section’s case,
precedes a generic coordinate like α that could stand for an angle), serves well enough
to distinguish the three principal coordinate systems (x, y, z), (ρ;φ, z) and (r; θ;φ) visu-
ally from one another but ceases to help much when further coordinate systems such as
(φx, r; θx) come into play. Logically, maybe, it would make more sense to write in the
manner of (, x, y, z), but to do so seems overwrought and fortunately no one the author
knows of does it in that way. The delimiters just are not that important.

The book adheres to the semicolon convention not for any deep reason but only for lack
of a better convention. See also chapter 15’s footnote 32.
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16.6.2 The vector field and its scalar components

Like a scalar field ψ(r), a vector field a(r) too is the same field whether
expressed as a function a(x, y, z) of rectangular coordinates, a(ρ;φ, z) of
cylindrical coordinates or a(r; θ;φ) of spherical coordinates, or indeed of co-
ordinates in any three-dimensional system. A vector field however is the sum
of three scalar fields, each scaling an appropriate unit vector. In rectangular
coordinates,

a(r) = x̂ax(r) + ŷay(r) + ẑaz(r);

in cylindrical coordinates,

a(r) = ρ̂aρ(r) + φ̂aφ(r) + ẑaz(r);

and in spherical coordinates,

a(r) = r̂ar(r) + θ̂aθ(r) + φ̂aφ(r).

The scalar fields aρ(r), ar(r), aθ(r) and aφ(r) in and of themselves do not
differ in nature from ax(r), ay(r), az(r), ψ(r) or any other scalar field. One
does tend to use them differently, though, because constant unit vectors x̂,
ŷ and ẑ exist to combine the scalar fields ax(r), ay(r), az(r) to compose the
vector field a(r) whereas no such constant unit vectors exist to combine the
scalar fields aρ(r), ar(r), aθ(r) and aφ(r). Of course there are the variable

unit vectors ρ̂(r), r̂(r), θ̂(r) and φ̂(r), but the practical and philosophical
differences between these and the constant unit vectors is greater than it
might seem. For instance, it is true that ρ̂ · φ̂ = 0, so long as what is meant
by this is that ρ̂(r) · φ̂(r) = 0. However, ρ̂(r1) · φ̂(r2) 6= 0, an algebraic error
fairly easy to commit. On the other hand, that x̂ · ŷ = 0 is always true.

(One might ask why such a subsection as this would appear in a section
on metric coefficients. The subsection is here because no obviously better
spot for it presents itself, but moreover because we shall need the under-
standing the subsection conveys to apply metric coefficients consistently and
correctly in § 16.9 to come.)

16.7 Nonrectangular notation

Section 15.4 has introduced Einstein’s summation convention, the Kronecker
delta δij and the Levi-Civita epsilon εijk together as notation for use in the
definition of vector operations and in the derivation of vector identities.
The notation relies on symbols like i, j and k to stand for unspecified co-
ordinates, and Tables 15.2 and 16.1 use it extensively. Unfortunately, the
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notation fails in the nonrectangular coordinate systems when derivatives
come into play, as they do in Table 16.1, because ∂/∂i is taken to represent
a derivative specifically with respect to a length whereas nonrectangular co-
ordinates like θ and φ are not lengths. Fortunately, this failure is not hard
to redress.

Whereas the standard Einstein symbols i, j and k can stand only for
lengths, the modified Einstein symbols ı̃, ̃ and k̃, which this section now
introduces, can stand for any coordinates, even for coordinates like θ and φ
that are not lengths. The tilde “˜” atop the symbol ı̃ warns readers that the
coordinate it represents is not necessarily a length and that, if one wants a
length, one must multiply ı̃ by an appropriate metric coefficient h̃ı (§ 16.6).
The products h̃ı̃ı, h̃̃ and hk̃k̃ always represent lengths.

The symbols ı̂, ̂ and k̂ need no modification even when modified symbols
like ı̃, ̃ and k̃ are in use. This is because ı̂, ̂ and k̂ are taken to represent unit
vectors—and [̂ı ̂ k̂], to represent a proper orthogonal basis—irrespective of
the coordinate system; so long, naturally, as the coordinate system is an
orthogonal, right-handed coordinate system as are all the coordinate systems
in this book.

The modified notation will find use in § 16.9.3.

16.8 Derivatives of the basis vectors

The derivatives of the various unit basis vectors with respect to the several
coordinates of their respective coordinate systems are not hard to compute.
In fact, looking at Fig. 15.1 on page 452, Fig. 15.4 on page 464, and Fig. 15.5
on page 465, one can just write them down. Table 16.3 records them.

Naturally, one can compute the table’s derivatives symbolically, instead,
as for example

∂ρ̂

∂φ
=

∂

∂φ
(x̂ cosφ+ ŷ sinφ) = −x̂ sinφ+ ŷ cosφ = +φ̂.

Such an approach prospers in special coordinate systems like the parabolic
systems of Tables 15.3 and 15.4, but in cylindrical and spherical coordinates
it is probably easier just to look at the figures.

16.9 Derivatives in the nonrectangular systems

This section develops vector derivatives in cylindrical and spherical coordi-
nates.
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Table 16.3: Derivatives of the basis vectors.

RECTANGULAR

∂x̂

∂x
= 0

∂x̂

∂y
= 0

∂x̂

∂z
= 0

∂ŷ

∂x
= 0

∂ŷ

∂y
= 0

∂ŷ

∂z
= 0

∂ẑ

∂x
= 0

∂ẑ

∂y
= 0

∂ẑ

∂z
= 0

CYLINDRICAL

∂ρ̂

∂ρ
= 0

∂ρ̂

∂φ
= +φ̂

∂ρ̂

∂z
= 0

∂φ̂

∂ρ
= 0

∂φ̂

∂φ
= −ρ̂ ∂φ̂

∂z
= 0

∂ẑ

∂ρ
= 0

∂ẑ

∂φ
= 0

∂ẑ

∂z
= 0

SPHERICAL

∂r̂

∂r
= 0

∂r̂

∂θ
= +θ̂

∂r̂

∂φ
= +φ̂ sin θ

∂θ̂

∂r
= 0

∂θ̂

∂θ
= −r̂

∂θ̂

∂φ
= +φ̂ cos θ

∂φ̂

∂r
= 0

∂φ̂

∂θ
= 0

∂φ̂

∂φ
= −ρ̂ = −r̂ sin θ − θ̂ cos θ
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16.9.1 Derivatives in cylindrical coordinates

According to Table 16.1,

∇ψ = ı̂
∂ψ

∂i
,

but as § 16.6 has observed Einstein’s symbol i must stand for a length not an
angle, whereas one of the three cylindrical coordinates—the azimuth φ—is
an angle. The cylindrical metric coefficients of Table 16.2 make the necessary
conversion, the result of which is

∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

∂ψ

ρ ∂φ
+ ẑ

∂ψ

∂z
. (16.27)

Again according to Table 16.1,

(b · ∇)a = bi
∂a

∂i
.

Applying the cylindrical metric coefficients, we have that

(b · ∇)a = bρ
∂a

∂ρ
+ bφ

∂a

ρ ∂φ
+ bz

∂a

∂z
. (16.28)

Expanding the vector field a in the cylindrical basis,

(b · ∇)a =

{
bρ
∂

∂ρ
+ bφ

∂

ρ ∂φ
+ bz

∂

∂z

}(
ρ̂aρ + φ̂aφ + ẑaz

)
.

Here are three derivatives of three terms, each term of two factors. Evaluat-
ing the derivatives according to the contour derivative product rule (16.23)
yields (3)(3)(2) = 0x12 (eighteen) terms in the result. Half the 0x12 terms
involve derivatives of the basis vectors, which Table 16.3 computes. Some
of the 0x12 terms turn out to be null. The result is that

(b · ∇)a = bρ

[
ρ̂
∂aρ
∂ρ

+ φ̂
∂aφ
∂ρ

+ ẑ
∂az
∂ρ

]

+
bφ
ρ

[
ρ̂

(
∂aρ
∂φ
− aφ

)
+ φ̂

(
∂aφ
∂φ

+ aρ

)
+ ẑ

∂az
∂φ

]

+ bz

[
ρ̂
∂aρ
∂z

+ φ̂
∂aφ
∂z

+ ẑ
∂az
∂z

]
. (16.29)

To evaluate divergence and curl wants more care. It also wants a constant
basis to work in, whereas [x̂ ŷ ẑ] is awkward in a cylindrical geometry and
[ρ̂ φ̂ ẑ] is not constant. Fortunately, nothing prevents us from defining a
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constant basis [ρ̂o φ̂o ẑ] such that [ρ̂ φ̂ ẑ] = [ρ̂o φ̂o ẑ] at the point r = ro at
which the derivative is evaluated. If this is done, then the basis [ρ̂o φ̂o ẑ] is
constant like [x̂ ŷ ẑ] but not awkward like it.

According to Table 16.1,

∇ · a =
∂ai
∂i

In cylindrical coordinates and the [ρ̂o φ̂o ẑ] basis, this is22

∇ · a =
∂(ρ̂o · a)

∂ρ
+
∂(φ̂o · a)

ρ ∂φ
+
∂(ẑ · a)

∂z
.

Applying the contour derivative product rule (16.23),

∇ · a = ρ̂o ·
∂a

∂ρ
+
∂ρ̂o
∂ρ
· a + φ̂o ·

∂a

ρ ∂φ
+
∂φ̂o
ρ ∂φ

· a + ẑ · ∂a

∂z
+
∂ẑ

∂z
· a.

But [ρ̂o φ̂o z] are constant unit vectors, so

∇ · a = ρ̂o ·
∂a

∂ρ
+ φ̂o ·

∂a

ρ ∂φ
+ ẑ · ∂a

∂z
.

That is,

∇ · a = ρ̂ · ∂a

∂ρ
+ φ̂ · ∂a

ρ ∂φ
+ ẑ · ∂a

∂z
.

Expanding the field in the cylindrical basis,

∇ · a =

{
ρ̂ · ∂

∂ρ
+ φ̂ · ∂

ρ ∂φ
+ ẑ · ∂

∂z

}(
ρ̂aρ + φ̂aφ + ẑaz

)
.

As above, here again the expansion yields 0x12 (eighteen) terms. Fortu-
nately, this time most of the terms turn out to be null. The result is that

∇ · a =
∂aρ
∂ρ

+
aρ
ρ

+
∂aφ
ρ ∂φ

+
∂az
∂z

,

22Mistakenly to write here that

∇ · a =
∂aρ
∂ρ

+
∂aφ
ρ ∂φ

+
∂az
∂z

,

which is not true, would be a ghastly error, leading to any number of hard-to-detect false
conclusions. Refer to § 16.6.2.
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or, expressed more cleverly in light of (4.27), that

∇ · a =
∂(ρaρ)

ρ ∂ρ
+
∂aφ
ρ ∂φ

+
∂az
∂z

. (16.30)

Again according to Table 16.1,

∇× a = εijk ı̂
∂ak
∂j

= ρ̂o

[
∂(ẑ · a)

ρ ∂φ
− ∂(φ̂o · a)

∂z

]
+ φ̂o

[
∂(ρ̂o · a)

∂z
− ∂(ẑ · a)

∂ρ

]

+ ẑ

[
∂(φ̂o · a)

∂ρ
− ∂(ρ̂o · a)

ρ ∂φ

]
.

That is,

∇× a = ρ̂

[
ẑ · ∂a

ρ ∂φ
− φ̂ · ∂a

∂z

]
+ φ̂

[
ρ̂ · ∂a

∂z
− ẑ · ∂a

∂ρ

]

+ ẑ

[
φ̂ · ∂a

∂ρ
− ρ̂ · ∂a

ρ ∂φ

]
.

Expanding the field in the cylindrical basis,

∇× a =

{
ρ̂

[
ẑ · ∂

ρ ∂φ
− φ̂ · ∂

∂z

]
+ φ̂

[
ρ̂ · ∂

∂z
− ẑ · ∂

∂ρ

]

+ ẑ

[
φ̂ · ∂

∂ρ
− ρ̂ · ∂

ρ ∂φ

]}(
ρ̂aρ + φ̂aφ + ẑaz

)
.

Here the expansion yields 0x24 (thirty-six) terms, but fortunately as last
time this time most of the terms again turn out to be null. The result is
that

∇× a = ρ̂

[
∂az
ρ ∂φ

− ∂aφ
∂z

]
+ φ̂

[
∂aρ
∂z
− ∂az

∂ρ

]
+ ẑ

[
∂aφ
∂ρ

+
aφ
ρ
− ∂aρ
ρ ∂φ

]
,

or, expressed more cleverly, that

∇× a = ρ̂

[
∂az
ρ ∂φ

− ∂aφ
∂z

]
+ φ̂

[
∂aρ
∂z
− ∂az

∂ρ

]
+

ẑ

ρ

[
∂(ρaφ)

∂ρ
− ∂aρ
∂φ

]
. (16.31)

Table 16.4 summarizes.23

23[9, appendix II.2.2]
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Table 16.4: Vector derivatives in cylindrical coordinates.

∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

∂ψ

ρ ∂φ
+ ẑ

∂ψ

∂z

(b · ∇)a = bρ
∂a

∂ρ
+ bφ

∂a

ρ ∂φ
+ bz

∂a

∂z

= bρ

[
ρ̂
∂aρ
∂ρ

+ φ̂
∂aφ
∂ρ

+ ẑ
∂az
∂ρ

]

+
bφ
ρ

[
ρ̂

(
∂aρ
∂φ
− aφ

)
+ φ̂

(
∂aφ
∂φ

+ aρ

)
+ ẑ

∂az
∂φ

]

+ bz

[
ρ̂
∂aρ
∂z

+ φ̂
∂aφ
∂z

+ ẑ
∂az
∂z

]

∇ · a =
∂(ρaρ)

ρ ∂ρ
+
∂aφ
ρ ∂φ

+
∂az
∂z

∇× a = ρ̂

[
∂az
ρ ∂φ

− ∂aφ
∂z

]
+ φ̂

[
∂aρ
∂z
− ∂az

∂ρ

]
+

ẑ

ρ

[
∂(ρaφ)

∂ρ
− ∂aρ
∂φ

]

One can compute a second-order vector derivative in cylindrical coor-
dinates as a sequence of two first-order cylindrical vector derivatives. For
example, because Table 16.1 gives the scalar Laplacian as ∇2ψ = ∇ · ∇ψ,
one can calculate ∇2ψ in cylindrical coordinates by taking the divergence
of ψ’s gradient.24 To calculate the vector Laplacian ∇2a in cylindrical co-
ordinates is tedious but nonetheless can with care be done accurately by
means of Table 16.1’s identity that ∇2a = ∇∇·a−∇×∇×a. (This means
that to calculate the vector Laplacian ∇2a in cylindrical coordinates takes
not just two but actually four first-order cylindrical vector derivatives, for
the author regrettably knows of no valid shortcut—the clumsy alternative,
less proper, less insightful, even more tedious and not recommended, be-
ing to take the Laplacian in rectangular coordinates and then to convert
back to the cylindrical domain; for to work cylindrical problems directly in

24A concrete example: if ψ(r) = eiφ/ρ, then ∇ψ = (−ρ̂ + iφ̂)eiφ/ρ2 per Table 16.4,
whereupon

∇2ψ = ∇ ·
[(
−ρ̂+ iφ̂

) eiφ
ρ2

]
=
(
−ρ̂+ iφ̂

)
· ∇
(
eiφ

ρ2

)
+
eiφ

ρ2
∇ ·
(
−ρ̂+ iφ̂

)
.

To finish the example is left as an exercise.
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cylindrical coordinates is almost always advisable.)

16.9.2 Derivatives in spherical coordinates

One can compute vector derivatives in spherical coordinates as in cylindrical
coordinates (§ 16.9.1), only the spherical details though not essentially more
complicated are messier. According to Table 16.1,

∇ψ = ı̂
∂ψ

∂i
.

Applying the spherical metric coefficients of Table 16.2, we have that

∇ψ = r̂
∂ψ

∂r
+ θ̂

∂ψ

r ∂θ
+ φ̂

∂ψ

(r sin θ) ∂φ
. (16.32)

Again according to Table 16.1,

(b · ∇)a = bi
∂a

∂i
.

Applying the cylindrical metric coefficients, we have that

(b · ∇)a = br
∂a

∂r
+ bθ

∂a

r ∂θ
+ bφ

∂a

(r sin θ) ∂φ
. (16.33)

Expanding the vector field a in the spherical basis,

(b · ∇)a =

{
br
∂

∂r
+ bθ

∂

r ∂θ
+ bφ

∂

(r sin θ) ∂φ

}(
r̂ar + θ̂aθ + φ̂aφ

)
.

Evaluating the derivatives,

(b · ∇)a = br

[
r̂
∂ar
∂r

+ θ̂
∂aθ
∂r

+ φ̂
∂aφ
∂r

]

+
bθ
r

[
r̂

(
∂ar
∂θ
− aθ

)
+ θ̂

(
∂aθ
∂θ

+ ar

)
+ φ̂

∂aφ
∂θ

]

+
bφ

r sin θ

[
r̂

(
∂ar
∂φ
− aφ sin θ

)
+ θ̂

(
∂aθ
∂φ
− aφ cos θ

)

+ φ̂

(
∂aφ
∂φ

+ ar sin θ + aθ cos θ

)]
. (16.34)

According to Table 16.1, reasoning as in § 16.9.1,

∇ · a =
∂ai
∂i

= r̂ · ∂a

∂r
+ θ̂ · ∂a

r ∂θ
+ φ̂ · ∂a

(r sin θ) ∂φ
.
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Expanding the field in the spherical basis,

∇ · a =

{
r̂ · ∂

∂r
+ θ̂ · ∂

r ∂θ
+ φ̂ · ∂

(r sin θ) ∂φ

}(
r̂ar + θ̂aθ + φ̂aφ

)
.

Evaluating the derivatives, the result is that

∇ · a =
∂ar
∂r

+
2ar
r

+
∂aθ
r ∂θ

+
aθ

r tan θ
+

∂aφ
(r sin θ) ∂φ

,

or, expressed more cleverly, that

∇ · a =
1

r

[
∂(r2ar)

r ∂r
+
∂(aθ sin θ)

(sin θ) ∂θ
+

∂aφ
(sin θ) ∂φ

]
. (16.35)

Again according to Table 16.1, reasoning as in § 16.9.1,

∇× a = εijk ı̂
∂ak
∂j

= r̂

[
φ̂ · ∂a

r ∂θ
− θ̂ · ∂a

(r sin θ) ∂φ

]
+ θ̂

[
r̂ · ∂a

(r sin θ) ∂φ
− φ̂ · ∂a

∂r

]

+ φ̂

[
θ̂ · ∂a

∂r
− r̂ · ∂a

r ∂θ

]
.

Expanding the field in the spherical basis,

∇× a =

{
r̂

[
φ̂ · ∂

r ∂θ
− θ̂ · ∂

(r sin θ) ∂φ

]
+ θ̂

[
r̂ · ∂

(r sin θ) ∂φ
− φ̂ · ∂

∂r

]

+ φ̂

[
θ̂ · ∂

∂r
− r̂ · ∂

r ∂θ

]}(
r̂ar + θ̂aθ + φ̂aφ

)
.

Evaluating the derivatives, the result is that

∇× a = r̂

[
∂aφ
r ∂θ

+
aφ

r tan θ
− ∂aθ

(r sin θ) ∂φ

]
+ θ̂

[
∂ar

(r sin θ) ∂φ
− ∂aφ

∂r
− aφ

r

]

+ φ̂

[
∂aθ
∂r

+
aθ
r
− ∂ar
r ∂θ

]
,

or, expressed more cleverly, that

∇× a =
r̂

r sin θ

[
∂(aφ sin θ)

∂θ
− ∂aθ
∂φ

]
+
θ̂

r

[
∂ar

(sin θ) ∂φ
− ∂(raφ)

∂r

]

+
φ̂

r

[
∂(raθ)

∂r
− ∂ar

∂θ

]
. (16.36)
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Table 16.5: Vector derivatives in spherical coordinates.

∇ψ = r̂
∂ψ

∂r
+ θ̂

∂ψ

r ∂θ
+ φ̂

∂ψ

(r sin θ) ∂φ

(b · ∇)a = br
∂a

∂r
+ bθ

∂a

r ∂θ
+ bφ

∂a

(r sin θ) ∂φ

= br

[
r̂
∂ar
∂r

+ θ̂
∂aθ
∂r

+ φ̂
∂aφ
∂r

]

+
bθ
r

[
r̂

(
∂ar
∂θ
− aθ

)
+ θ̂

(
∂aθ
∂θ

+ ar

)
+ φ̂

∂aφ
∂θ

]

+
bφ

r sin θ

[
r̂

(
∂ar
∂φ
− aφ sin θ

)
+ θ̂

(
∂aθ
∂φ
− aφ cos θ

)

+ φ̂

(
∂aφ
∂φ

+ ar sin θ + aθ cos θ

)]

∇ · a =
1

r

[
∂(r2ar)

r ∂r
+
∂(aθ sin θ)

(sin θ) ∂θ
+

∂aφ
(sin θ) ∂φ

]

∇× a =
r̂

r sin θ

[
∂(aφ sin θ)

∂θ
− ∂aθ
∂φ

]
+
θ̂

r

[
∂ar

(sin θ) ∂φ
− ∂(raφ)

∂r

]

+
φ̂

r

[
∂(raθ)

∂r
− ∂ar

∂θ

]
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Table 16.5 summarizes.25

One can compute a second-order vector derivative in spherical coordi-
nates as in cylindrical coordinates, as a sequence of two first-order vector
derivatives. Refer to § 16.9.1.

16.9.3 Finding the derivatives geometrically

The method of §§ 16.9.1 and 16.9.2 is general, reliable and correct, but there
exists an alternate, arguably neater method to derive nonrectangular formu-
las for most vector derivatives. Adapting the notation to this subsection’s
purpose we can write (16.9) as

∇ · a(r) ≡ lim
∆V→0

Φ

∆V
, (16.37)

thus defining a vector’s divergence fundamentally as in § 16.1.4, geometri-
cally, as the ratio of flux Φ from a vanishing test volume ∆V to the volume
itself; where per (16.7) Φ =

∮
S a(r′) · ds, where r′ is a position on the test

volume’s surface, and where ds = ds(r′) is the corresponding surface patch.
So long as the test volume ∆V includes the point r and is otherwise in-
finitesimal in extent, we remain free to shape the volume as we like,26 so let
us give it six sides and shape it as an almost rectangular box that conforms
precisely to the coordinate system (α;β; γ) in use:

α− ∆α

2
≤ α′ ≤ α+

∆α

2
;

β − ∆β

2
≤ β′ ≤ β +

∆β

2
;

γ − ∆γ

2
≤ γ′ ≤ γ +

∆γ

2
.

25[9, appendix II.2.3]
26A professional mathematician would probably enjoin the volume’s shape to obey cer-

tain technical restrictions, such as that it remain wholly enclosed within a sphere of
vanishing radius, but we will not try for such a level of rigor here.
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The fluxes outward through the box’s +α- and −α-ward sides will then be27

Φ+α = (+aα)(hβhγ ∆β∆γ)|r′=r(α+∆α/2;β;γ)

= +aαhβhγ |r′=r(α+∆α/2;β;γ) ∆β∆γ,

Φ−α = (−aα)(hβhγ ∆β∆γ)|r′=r(α−∆α/2;β;γ)

= −aαhβhγ |r′=r(α−∆α/2;β;γ) ∆β∆γ,

products of the outward-directed field components and the areas (16.24) of
the sides through which the fields pass. Thence by successive steps, the net
flux outward through the pair of opposing sides will be

Φα = Φ+α + Φ−α

=
[
aαhβhγ |r′=r(α+∆α/2;β;γ) − aαhβhγ |r′=r(α−∆α/2;β;γ)

]
∆β∆γ

=

[
∂(aαhβhγ)

∂α
∆α

]
∆β∆γ = ∆α∆β∆γ

∂(aαhβhγ)

∂α

=
∆V ∂(aαhβhγ)

hαhβhγ ∂α
.

Naturally, the same goes for the other two pairs of sides:

Φβ =
∆V ∂(aβhγhα)

hαhβhγ ∂β
;

Φγ =
∆V ∂(aγhαhβ)

hαhβhγ ∂γ
.

27More rigorously, one might digress from this point to expand the field in a three-
dimensional Taylor series (§ 8.16) to account for the field’s variation over a single side of
the test volume. So lengthy a digression however would only formalize what we already
knew; namely, that one can approximate to first order the integral of a well-behaved
quantity over an infinitesimal domain by the quantity’s value at the domain’s midpoint.

If you will believe that lim∆τ→0

∫ τ+∆τ/2

τ−∆τ/2
f(τ ′) dτ ′ = f(τ) ∆τ for any τ in the neighborhood

of which f(τ) is well behaved, then you will probably also believe its three-dimensional
analog in the narrative. (If the vagueness in this context of the adjective “well-behaved”
deeply troubles any reader then that reader may possess the worthy temperament of a
professional mathematician; he might review chapter 8 and then seek further illumination
in the professional mathematical literature. Other readers, of more practical temperament,
are advised to visualize test volumes in rectangular, cylindrical and spherical coordinates
and to ponder the matter a while. Consider: if the field grows in strength across a single
side of the test volume and if the test volume is small enough that second-order effects
can be ignored, then what single value ought one to choose to represent the field over
the whole side but its value at the side’s midpoint? Such visualization should soon clear
up any confusion and is what the writer recommends. Incidentally, the contrast between
the two modes of thought this footnote reveals is exactly the sort of thing Courant and
Hilbert were talking about in § 1.2.1.)
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The three equations are better written

Φα =
∆V ∂

h3 ∂α

(
h3aα
hα

)
,

Φβ =
∆V ∂

h3 ∂β

(
h3aβ
hβ

)
,

Φγ =
∆V ∂

h3 ∂γ

(
h3aγ
hγ

)
,

where

h3 ≡ hαhβhγ . (16.38)

The total flux from the test volume then is

Φ = Φα + Φβ + Φγ

=
∆V

h3

[
∂

∂α

(
h3aα
hα

)
+

∂

∂β

(
h3aβ
hβ

)
+

∂

∂γ

(
h3aγ
hγ

)]
;

or, invoking Einstein’s summation convention in § 16.7’s modified style,

Φ =
∆V ∂

h3 ∂̃ı

(
h3ãı

h̃ı

)
.

Finally, substituting the last equation into (16.37),

∇ · a =
∂

h3 ∂̃ı

(
h3ãı

h̃ı

)
. (16.39)

An analogous formula for curl is not much harder to derive but is harder
to approach directly, so we will approach it by deriving first the formula for
γ̂-directed directional curl. Equation (16.12) has it that28

γ̂ · ∇ × a(r) ≡ lim
∆A→0

Γ

∆A
, (16.40)

where per (16.11) Γ =
∮
γ a(r′) · d` and the notation

∮
γ reminds us that the

contour of integration lies in the α-β plane, perpendicular to γ̂. In this case
the contour of integration bounds not a test volume but a test surface, which

28The appearance of both a and A in (16.40) is unfortunate but cöıncidental, as is the
appearance of both γ̂ and Γ. The capital and minuscule symbols here represent unrelated
quantities.
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we give four edges and an almost rectangular shape that conforms precisely
to the coordinate system (α;β; γ) in use:

α− ∆α

2
≤ α′ ≤ α+

∆α

2
;

β − ∆β

2
≤ β′ ≤ β +

∆β

2
;

γ′ = γ.

The circulations along the +α- and −α-ward edges will be

Γ+α = +hβaβ|r′=r(α+∆α/2;β;γ) ∆β,

Γ−α = −hβaβ|r′=r(α−∆α/2;β;γ) ∆β,

and likewise the circulations along the −β- and +β-ward edges will be

Γ−β = +hαaα|r′=r(α;β−∆β/2;γ) ∆α,

Γ+β = −hαaα|r′=r(α;β+∆β/2;γ) ∆α,

whence the total circulation about the contour is

Γ =
∂(hβaβ)

∂α
∆α∆β − ∂(hαaα)

∂β
∆β∆α

=
hγ ∆A

h3

[
∂(hβaβ)

∂α
− ∂(hαaα)

∂β

]
.

Substituting the last equation into (16.40), we have that

γ̂ · ∇ × a =
hγ
h3

[
∂(hβaβ)

∂α
− ∂(hαaα)

∂β

]
.

Likewise,

α̂ · ∇ × a =
hα
h3

[
∂(hγaγ)

∂β
− ∂(hβaβ)

∂γ

]
,

β̂ · ∇ × a =
hβ
h3

[
∂(hαaα)

∂γ
− ∂(hγaγ)

∂α

]
.

But one can split any vector v into locally rectangular components as v =
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α̂(α̂ · v) + β̂(β̂ · v) + γ̂(γ̂ · v), so

∇× a = α̂(α̂ · ∇ × a) + β̂(β̂ · ∇ × a) + γ̂(γ̂ · ∇ × a)

=
α̂hα
h3

[
∂(hγaγ)

∂β
− ∂(hβaβ)

∂γ

]
+
β̂hβ
h3

[
∂(hαaα)

∂γ
− ∂(hγaγ)

∂α

]

+
γ̂hγ
h3

[
∂(hβaβ)

∂α
− ∂(hαaα)

∂β

]

=
1

h3

∣∣∣∣∣∣

α̂hα β̂hβ γ̂hγ
∂/∂α ∂/∂β ∂/∂γ
hαaα hβaβ hγaγ

∣∣∣∣∣∣
;

or, in Einstein notation,29

∇× a =
ε̃ı̃k̃ ı̂h̃ı ∂(hk̃ak̃)

h3 ∂̃
. (16.41)

Compared to the formulas (16.39) and (16.41) for divergence and curl,
the corresponding gradient formula seems almost trivial. It is

∇ψ =
ı̂ ∂ψ

h̃ı ∂̃ı
. (16.42)

One can generate most of the vector-derivative formulas of Tables 16.4
and 16.5 by means of this subsection’s (16.39), (16.41) and (16.42). One can
generate additional vector-derivative formulas for special coordinate systems
like the parabolic systems of § 15.7 by means of the same equations.

29What a marvel mathematical notation is! If you can read (16.41) and understand
the message it conveys, then let us pause a moment to appreciate a few of the many
concepts the notation implicitly encapsulates. There are the vector, the unit vector, the
field, the derivative, the integral, circulation, parity, rotational invariance, nonrectangular
coordinates, three-dimensional geometry, the dummy variable and so on—each of which
concepts itself yet encapsulates several further ideas—not to mention multiplication and
division which themselves are not trivial. It is doubtful that one could explain it even
tersely to the uninitiated in fewer than fifty pages, and yet to the initiated one can express
it all in half a line.
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16.10 Vector infinitesimals

To integrate a field over a contour or surface is a typical maneuver of vector
calculus. One might integrate in any of the forms

∫

C
ψ d`

∫

C
a d`

∫

S
ψ ds

∫

S
a ds

∫

C
ψ d`

∫

C
a · d`

∫

S
ψ ds

∫

S
a · ds

∫

C
a× d`

∫

S
a× ds

among others. Where the integration is over a contour, a pair of functions
α(γ) and β(γ) typically can serve to specify the contour. Where over a sur-
face, a single function γ(α;β) can serve. Given such functions and a field
integral to compute, one wants an expression for the integrand’s infinitesi-
mal d` or ds in terms respectively of the contour functions α(γ) and β(γ)
or of the surface function γ(α;β).

The contour infinitesimal is evidently

d` =

(
γ̂hγ + α̂

hα dα

dγ
+ β̂

hβ dβ

dγ

)
dγ, (16.43)

consisting of a step in the γ̂ direction plus the corresponding steps in the or-
thogonal α̂ and β̂ directions. This is easy once you see how to do it. Harder
is the surface infinitesimal, but one can nevertheless correctly construct it
as the cross product

ds =

[(
α̂hα + γ̂

hγ ∂γ

∂α

)
dα

]
×
[(
β̂hβ + γ̂

hγ ∂γ

∂β

)
dβ

]

=

(
γ̂

1

hγ
− α̂ ∂γ

hα ∂α
− β̂ ∂γ

hβ ∂β

)
h3 dα dβ (16.44)

of two vectors that lie on the surface, one vector normal to β̂ and the other
to α̂, edges not of a rectangular patch of the surface but of a patch whose
projection onto the α-β plane is an (hα dα)-by-(hβ dβ) rectangle.

So, that’s it. Those are the essentials of the three-dimensional geomet-
rical vector—of its analysis and of its calculus. The geometrical vector of
chapters 15 and 16 and the matrix of chapters 11 through 14 have in common
that they represent well-developed ways of marshaling several quantities to-
gether to a common purpose: three quantities in the specialized case of the
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geometrical vector; n quantities in the generalized case of the matrix. Ma-
trices and vectors have admittedly not been easy for us to treat but after a
slow start, it must be said, they have proven unexpectedly interesting. In
applications, they are exceedingly significant. Matrices and vectors vastly
expand the domain of physical phenomena a scientist or engineer can model.
Mathematically, one cannot well manage without them.

The time nevertheless has come to change the subject. Turning the
page, we will begin from the start of the next chapter to introduce a series
of advanced topics that pick up where chapter 9 has left off, entering first
upon the broad topic of the Fourier transform.
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Chapter 17

The Fourier series

It might be said that, among advanced mathematical techniques, none is so
useful, and few so appealing, as the one Lord Kelvin has acclaimed “a great
mathematical poem.”1 It is the Fourier transform, which this chapter and
the two that follow it will develop. This first of the three chapters brings
the Fourier transform in its primitive guise as the Fourier series.

The Fourier series is an analog of the Taylor series of chapter 8 but meant
for repeating waveforms, functions f(t) of which

f(t) = f(t+ nT1), =(T1) = 0, T1 > 0, for all n ∈ Z, (17.1)

where T1 is the waveform’s characteristic period. Examples include the
square wave of Fig. 17.1. A Fourier series expands such a repeating wave-

1[71, chapter 17]

Figure 17.1: A square wave.
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form as a superposition of complex exponentials (or, equivalently, if the
waveform is real, as a superposition of sinusoids).

Suppose that you wanted to approximate the square wave of Fig. 17.1 by
a single sinusoid. You might try the sinusoid at the top of Fig. 17.2—which
is not very convincing, maybe, but if you added to the sinusoid another,
suitably scaled sinusoid of thrice the frequency then you would obtain the
somewhat better fitting curve in the figure’s middle. The curve at the fig-
ure’s bottom would yet result after you had added in four more sinusoids
respectively of five, seven, nine and eleven times the primary frequency.
Algebraically,

f(t) =
8A

2π

[
cos

(2π)t

T1
− 1

3
cos

3(2π)t

T1

+
1

5
cos

5(2π)t

T1
− 1

7
cos

7(2π)t

T1
+ · · ·

]
. (17.2)

How faithfully (17.2) really represents the repeating waveform and why its
coefficients happen to be 1,−1

3 ,
1
5 ,−1

7 , . . . are among the questions this chap-
ter will try to answer; but, visually at least, it looks as though superimposing
sinusoids worked.

The chapter begins in preliminaries, starting with a discussion of Parse-
val’s principle.

17.1 Parseval’s principle

Parseval’s principle is that a step in every direction is no step at all. In the
Argand plane (Fig. 2.6), stipulated that

∆ω T1 = 2π,

=(∆ω) = 0,

=(to) = 0,

=(T1) = 0,

T1 6= 0,

(17.3)
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Figure 17.2: Superpositions of one, two and six sinusoids to approximate
the square wave of Fig. 17.1.
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and also that2

j, n,N ∈ Z,
n 6= 0,

|n| < N,

2 ≤ N,

(17.4)

the principle is expressed algebraically as that3

∫ to+T1/2

to−T1/2
ein∆ω τ dτ = 0 (17.5)

or alternately in discrete form as that

N−1∑

j=0

ei2πnj/N = 0. (17.6)

Because the product ∆ω T1 = 2π relates ∆ω to T1, the symbols ∆ω
and T1 together represent in (17.3) and (17.5) not two but only one parame-
ter; you cannot set them independently, for the one merely inverts the other.
If T1 bears physical units then these will typically be units of time (seconds,
for instance), whereupon ∆ω will bear the corresponding units of angular
frequency (such as radians per second). The frame offset to and the dummy
variable τ must have the same dimensions4 T1 has. This matter is discussed
further in § 17.2.

To prove (17.5) symbolically is easy: one merely carries out the indi-
cated integration. To prove (17.6) symbolically is not much harder: one
replaces the complex exponential ei2πnj/N by limε→0+ e(i−ε)2πnj/N and then
uses (2.34) to evaluate the summation. Notwithstanding, we can do better,
for an alternate, more edifying, physically more insightful explanation of the
two equations is possible as follows. Because n is a nonzero integer, (17.5)
and (17.6) represent sums of steps in every direction—that is, steps in every
phase—in the Argand plane (more precisely, eqn. 17.6 represents a sum over

2That 2 ≤ N is a redundant requirement, since (17.4)’s other lines imply it, but it
doesn’t hurt to state it anyway.

3An expression like to ± T1/2 means to ± (T1/2), here and elsewhere in the book.
4The term dimension in this context refers to the kind of physical unit. A quantity

like T1 for example, measurable in seconds or years (but not, say, in kilograms or dollars),
has dimensions of time. An automobile’s speed having dimensions of length divided by
time can be expressed in miles per hour as well as in meters per second but not directly,
say, in volts per centimeter; and so on.
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a discrete but balanced, uniformly spaced selection of phases). An appeal to
symmetry forbids such sums from favoring any one phase n∆ω τ or 2πnj/N
over any other. This being the case, how could the sums of (17.5) and (17.6)
come to any totals other than zero? The plain answer is that they can come
to no other totals. A step in every direction is indeed no step at all. This is
why (17.5) and (17.6) are so.5

We have actually already met Parseval’s principle, informally, in § 9.7.2.
There is also Parseval’s theorem to come in § 18.2.8.

One can translate Parseval’s principle from the Argand realm to the
analogous realm of geometrical vectors, if needed, in the obvious way.

17.2 Time, space and frequency

A frequency is the inverse of an associated period of time, expressing the
useful concept of the rate at which a cycle repeats. For example, an internal-
combustion engine whose crankshaft revolves once every 20 milliseconds—
which is to say, once every 1/3000 of a minute—runs thereby at a frequency
of 3000 revolutions per minute (RPM) or, in other words, 3000 cycles per
minute. Frequency however comes in two styles: cyclic frequency (as in the
engine’s example), conventionally represented by letters like ν and f ; and
angular frequency, by letters like ω and k. If T , ν and ω are letters taken to
stand respectively for a period of time, for the associated cyclic frequency,
and for the associated angular frequency, then by definition

νT = 1,

ωT = 2π,

ω = 2πν.

(17.7)

The period T will bear units of time like seconds or minutes. The cyclic
frequency ν will bear units of inverse time like cycles per second (hertz) or

5The writer unfortunately knows of no conventionally established name for Parseval’s
principle. The name Parseval’s principle seems as apt as any and this is the name the
book will use.

A pedagogical knot seems to tangle Marc-Antoine Parseval’s various namesakes. Be-
cause Parseval’s principle can be extracted as a special case from Parseval’s theorem
(eqn. 18.44 in the next chapter), the literature sometimes indiscriminately applies the
name “Parseval’s theorem” to both. This is fine as far as it goes, but the knot arrives
when one needs Parseval’s principle to derive the Fourier series, which one needs to derive
the Fourier transform, which one needs in turn to derive Parseval’s theorem, at least as
this book develops them. The way to untie the knot is to give Parseval’s principle its own
name and to let it stand as an independent result.
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cycles per minute.6 The angular frequency ω will bear units of inverse time
like radians per second or radians per minute.

The last brings us to a point that has confused many students of science
and engineering: if T = 20 ms and ν = 3000 cycles/min, then why not
νT = (3000 cycles/min)(20 ms) = 6.0 × 104 cycle · ms/min = 1 cycle 6= 1?
The answer is that a cycle is not conventionally held to be a unit of measure
and, thus, does not conventionally enter into the arithmetic.7 Minimally
correct usage is rather that

νT = (3000 min−1)(20 ms) = 6.0× 104 ms

min
= 1.

As for the word “cycle,” one can include the word in the above line if one
wishes to include it, but with the understanding that the word lacks arith-
metical significance. Arithmetically, one can drop the word at any stage.

It follows, perhaps unexpectedly, that the cycle per minute and the ra-
dian per minute do not arithmetically differ from one another. Arithmeti-
cally, counterintuitively,

1

60

cycle

second
= 1

cycle

minute
= 1

radian

minute
=

1

60

radian

second
.

This looks obviously wrong, of course, but don’t worry: it is a mere tautology
which, though perhaps literally accurate (we will explain why), expresses no
very profound idea. Its sole point is that both the cycle per minute and the
radian per minute, interpreted as units of measure, are units of [minute]−1;
whereas—in the context of phrases like “cycle per minute” and “radian per
minute”—the words “cycle” and “radian” are verbal cues that, in and of
themselves, play no actual part in the mathematics. This is not because
the cycle and the radian were ephemeral but rather because the minute is
unfundamental.

The minute, a unit of measure representing a definite but arbitrary quan-
tity of time, requires arithmetical representation. The cycle and the radian,

6Notice incidentally, contrary to the improper verbal usage one sometimes hears, that
there is no such thing as a “hert.” Rather, “Hertz” is somebody’s name. The uncapitalized
form “hertz” thus is singular as well as plural.

7The writer believes the convention to be wise. The reason behind the convention is not
easy to articulate (though the narrative will try to articulate it, anyway), but experience
does seem to support the convention nevertheless. Little is gained, and convenience is
lost, when one—contrary to convention—treats a countable entity like a cycle as one
would treat an arbitrary quantity of physical reference like a second. The cycle and the
second are not things of the same kind. As such, they tend not to approve treatment of
the same kind, even if such treatment is possible.
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by contrast, are nonarbitrary, discrete, inherently countable things; and,
where things are counted, it is ultimately up to the mathematician to in-
terpret the count (consider for instance that nine baseball caps may imply
nine baseball players and one baseball team, but that there is nothing in
the number nine itself to tell us so). To distinguish angular frequencies from
cyclic frequencies, it remains to the mathematician to lend factors of 2π
where needed.

If, nevertheless, you think the last displayed equation just too weird,
then don’t write it that way; but think of, say, gear ratios. A gear ratio
might be 3:1 or 5:1 or whatever, but the ratio is unitless. You can say “3.0
turns of the small gear per turn of the large gear,” but this manner of speak-
ing does not make the “turn of the small gear per turn of the large gear” a
proper unit of measure. The “cycle per radian” is in the same sense likewise
not a proper unit of measure. (Now, if you still think the last displayed
equation just too weird—well, it is weird. You can ignore the equation,
instead interpreting the expression “cycle per radian” as a way of naming
the number 2π. This sort of works, but beware that such an interpretation
does not extend very well to other nonunit units like “decibel” and is not
the interpretation the writer recommends. Also beware: an expression like
sin{[2π/4] radians} = sin[2π/4] = 1 means something sensible whereas an
expression like sin{[2π/4] dollars} = ?? probably does not. Anyway, if “ra-
dian” is taken to be 1—as it must be taken if sin{[2π/4] radians} is to come
out right—then “cycle” must be taken to be 2π, which does not quite square
with eqn. 17.7, does it? No, the problem is that the radian and the cycle
are no units of measure.)8

The word “frequency” without a qualifying adjective is usually taken
in English to mean cyclic frequency unless the surrounding context implies

8Some recent undergraduate engineering textbooks have taken to the style of

E =
Q

Cd
[volts/meter].

The intent seems to be to encourage undergraduates to include units of measure with their
engineering quantities, as

E =
Q

Cd
= 5.29 volts/meter.

Unfortunately, my own, occasional experience at teaching undergraduates suggests that
undergraduates tend to read the textbook as though it had read

E =

[
Q

Cd

] [
1.0

volt

meter

]
,

which is wrong and whose resultant confusion compounds, wasting hours of the under-
graduates’ time. It seems to me preferable to insist that undergraduates learn from the
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otherwise. Notwithstanding, interestingly, experience seems to find angular
frequency to be oftener the more natural or convenient to use (but see § 19.7).

Frequencies exist in space as well as in time:

kλ = 2π. (17.8)

Here, λ is a wavelength measured in meters or other units of length. The
wave number9 k is an angular spatial frequency measured in units like ra-
dians per meter; that is, [meter]−1. (Oddly, no conventional symbol for
cyclic spatial frequency seems to be current. The literature mostly just uses
k/2π which, in light of the potential for confusion between ν and ω in the
temporal domain, is probably for the best.)

Where a wave propagates the propagation speed

v =
λ

T
=
ω

k
(17.9)

relates periods and frequencies in space and time.

Now, we must admit that we fibbed when we said (or implied) that T
had to have dimensions of time. Physically, that is the usual interpretation,
but mathematically T (and T1, t, to, τ , etc.) can bear any units and indeed is
not required to bear units at all, a fact to which § 17.1 has alluded. The only
mathematical requirement is that the product ωT = 2π (or ∆ω T1 = 2π or
the like, as appropriate) be dimensionless. However, when T has dimensions
of length rather than of time it is conventional—indeed, it is practically
mandatory if one wishes to be understood—to change λ← T and k ← ω as

first the correct meaning of an unadorned equation like

E =
Q

Cd
,

where, say, Q = 13.3 volt · sec/ohm, C = 0.470 sec/ohm, and d = 5.35 cm; and
that they grasp the need not to write algebraically perplexing falsities such as that
“d cm = 5.35 cm”—perplexing falsities which, unfortunately, the textbook style in ques-
tion inadvertently encourages them to write.

When during an engineering lecture it becomes pedagogically necessary to associate
units of measure to a symbolic equation, my own practice at the blackboard has been to
write

E =
Q

Cd
, E : [volts/meter].

Done sparingly, this seems to achieve the desired effect, though in other instances the
unadorned style is preferred. —THB—

9One could wish for a better name for the thing than wave number. By whatever name,
the wave number k is no integer, notwithstanding that the letter k tends to represent
integers in other contexts.
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this section has done, though the essential Fourier mathematics is the same
regardless of T ’s dimensions (if any) or of whether alternate symbols like λ
and k are used.

17.3 Some symmetrical pulses of unit area

The Dirac delta of § 7.7 and Fig. 7.11 is useful among other reasons for
the unit area it covers, but for some purposes its curve is too sharp. This
section introduces several alternate pulses each of unit area. Each pulse is
symmetrical. Each is less sharp. Applications can substitute any of them for
the Dirac delta—or use any in the limit to implement the Dirac delta—as
need arises.

17.3.1 The basic nonanalytic pulses

The square, triangular or raised-cosine pulse of Fig. 17.3,

Π(t) ≡





1 if |t| < 1/2,

1/2 if |t| = 1/2,

0 otherwise;

Λ(t) ≡
{

1− |t| if |t| ≤ 1,

0 otherwise;

Ψ(t) ≡
{

[1 + cos(πt)] /2 if |t| ≤ 1,

0 otherwise;

=(t) = 0;

(17.10)

substitutes for or implements the Dirac delta. Each pulse evidently shares
Dirac’s property that

∫ ∞

−∞

1

T
δ

(
τ − to
T

)
dτ = 1,

∫ ∞

−∞

1

T
Π

(
τ − to
T

)
dτ = 1,

∫ ∞

−∞

1

T
Λ

(
τ − to
T

)
dτ = 1,

∫ ∞

−∞

1

T
Ψ

(
τ − to
T

)
dτ = 1,

(17.11)
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Figure 17.3: The basic nonanalytic pulses.
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for any real T > 0 and real to. In the limit,

lim
T→0+

1

T
Π

(
t− to
T

)
= δ(t− to),

lim
T→0+

1

T
Λ

(
t− to
T

)
= δ(t− to),

lim
T→0+

1

T
Ψ

(
t− to
T

)
= δ(t− to).

(17.12)

The three basic nonanalytic pulses can do more than to implement Dirac.
The three share the convenient property for all t that

∞∑

m=−∞
Π(t−m) =

∞∑

m=−∞
Λ(t−m) =

∞∑

m=−∞
Ψ(t−m) = 1, (17.13)

a property that makes the three especially useful in the rendering of dis-
cretely sampled electronic signals and the like (see also § 19.2). Related is
the property that

Π

(
±1

2

)
= Λ

(
±1

2

)
= Ψ

(
±1

2

)
=

1

2
, (17.14)

though for the square Π(±1/2), admittedly, the specific value one imputes
to the discontinuity is a matter of interpretation. Significant too is the
property that

Π(t) = Λ(t) = Ψ(t) = 0 for all |t| ≥ 1. (17.15)

Indeed,

Π(t) = 0 for all |t| ≥ 1

2
. (17.16)

17.3.2 Rolloff pulses

No other pulse that satisfies (17.13) and the other properties of § 17.3.1 is
so compact10 as the simple square pulse Π(t) of (17.10) and Fig. 17.3. The
other basic nonanalytic pulses, Λ(t) and Ψ(t), of (17.10) and Fig. 17.3 act
over the domain |t| < 1 as (17.15) has observed; whereas Π(t) per (17.16)
confines itself to a minimal |t| < 1/2. The abruptness of Π(t) can cause
trouble, though. Some applications would prefer a smoother compromise.

10Pure mathematics might add a proof of this fact but we shall take it as obvious.
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Figure 17.4: Rolloff pulses.
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The rolloff pulses

Λr(t) ≡





1 if |t| ≤ (1− r)/2,

1

2
+

1
2 − |t|
r

if
1− r

2
≤ |t| ≤ 1 + r

2
,

0 otherwise;

Ψr(t) ≡





1 if |t| ≤ (1− r)/2,

1

2
+

1

2
sin

(
π

1
2 − |t|
r

)
if

1− r
2
≤ |t| ≤ 1 + r

2
,

0 otherwise;

=(t) = 0, =(r) = 0, 0 ≤ r ≤ 1;

(17.17)

of Fig. 17.4 afford the compromise. Narrower than the full Λ(t) and Ψ(t),
Λr(t) and Ψr(t) nevertheless avoid the abrupt jumps of the square Π(t).
The Ψr(t) avoids corners , too. The rolloff parameter r quantifies the
compromise: the nearer r is to 0, the more like the square pulse; the nearer r
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is to 1, the more like the triangular or raised-cosine pulse.11 Indeed,

Ψ0(t) = Λ0(t) = Π(t),

Λ1(t) = Λ(t),

Ψ1(t) = Ψ(t).

(17.18)

If 0 < r < 1, then a rolloff pulse resembles the square pulse by maintaining
a height of 1 in its central region but softens the square pulse’s abrupt
transition by rolling off, smoothly, along a triangular or raised-cosine track
at the edge. Though nonanalytic and time-limited, the trapezoidal and
raised cosine-rolloff pulses are continuous and the raised cosine-rolloff pulse
even has a continuous first derivative, properties that make the pulse useful
in applications that would have preferred a true square pulse but cannot
quite tolerate the abruptness of the square pulse’s transition.

Figure 17.5 takes a closer look at the raised cosine-rolloff pulse.
Properties (17.11) through (17.14) all apply to the two rolloff pulses. As

for (17.15),
Λr(t) = Ψr(t) = 0 for all |t| ≥ (1 + r)/2, (17.19)

which is better.

17.3.3 The Gaussian pulse (preview)

Looking ahead, if we may further abuse the Greek capitals to let them
represent pulses whose shapes they accidentally resemble, then a subtler
implementation of Dirac’s delta—more complicated to handle but analytic
(§ 8.4) and therefore preferable for some purposes—is the Gaussian pulse,

lim
T→0+

1

T
Ω

(
t− to
T

)
= δ(t− to), (17.20)

Ω(t) ≡ 1√
2π

exp

(
− t

2

2

)
,

of Fig. 17.6, the mathematics of which § 18.4 and chapter 20 will begin to
unfold.

Equation (18.58) will later find that the Gaussian pulse Ω(t) covers unit
area as this section’s other pulses do. Most of the section’s other properties
do not however apply to the Gaussian. For example, the Gaussian does
not wholly vanish at large t (though it almost does). Interestingly, unlike
the several nonanalytic pulses, the Gaussian pulse is sensibly defined for
complex t.

11[29]
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Figure 17.5: A closer look at the raised cosine-rolloff pulse.
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Figure 17.6: The Gaussian pulse.
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17.4 Expanding repeating waveforms in Fourier
series

The Fourier series represents a repeating waveform (17.1) as a superposition
of sinusoids. More precisely, inasmuch as Euler’s formula (5.18) renders each
sinusoid as the sum of two complex exponentials, the Fourier series represents
a repeating waveform as a superposition

f(t) =
∞∑

j=−∞
aje

ij∆ω t (17.21)

of complex exponentials in which (17.3) is obeyed and yet neither the several
Fourier coefficients aj nor the waveform f(t) itself need be real. Whether one
can properly represent every repeating waveform as a superposition (17.21)
of complex exponentials is a question §§ 17.4.4 and 17.7 will address later;
but, at least to the extent to which one can properly represent such a wave-
form, we will now assert that one can recover any or all of the waveform’s
Fourier coefficients aj by choosing an arbitrary frame offset to (to = 0 being
a typical choice) and then integrating

aj =
1

T1

∫ to+T1/2

to−T1/2
e−ij∆ω τf(τ) dτ. (17.22)

17.4.1 Derivation of the Fourier-coefficient formula

But why should (17.22) work? How is it to recover a Fourier coefficient aj?
The answer is that it recovers a Fourier coefficient aj by isolating it, and
that it isolates it by shifting frequencies and integrating.
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Equation (17.21) has proposed to express a repeating waveform as a
series of complex exponentials, each exponential of the form aje

ij∆ω t in
which aj is a weight to be determined. Unfortunately, (17.21) can hardly be
very useful until the several aj are determined, whereas how to determine aj
from (17.21) for a given value of j is not immediately obvious.

The trouble with using (17.21) to determine the several coefficients aj is
that it includes all the terms of the series and, hence, all the coefficients aj at
once. To determine aj for a given value of j, one should like to suppress the
entire series except the single element aje

ij∆ω t, isolating this one element
for analysis. Fortunately, Parseval’s principle (17.5) gives us a way to do
this, as we shall soon see.

Now, to prove (17.22) we mean to use (17.22), a seemingly questionable
act. Nothing prevents us however from taking only the right side of (17.22)—
not as an equation but as a mere expression—and doing some algebra with it
to see where the algebra leads, for if the algebra should lead to the left side
of (17.22) then we should have proven the equation. Accordingly, chang-
ing dummy variables τ ← t and ` ← j in (17.21) and then substituting
into (17.22)’s right side the resulting expression for f(τ), we have by suc-
cessive steps that

1

T1

∫ to+T1/2

to−T1/2
e−ij∆ω τf(τ) dτ

=
1

T1

∫ to+T1/2

to−T1/2
e−ij∆ω τ

∞∑

`=−∞
a`e

i`∆ω τ dτ

=
1

T1

∞∑

`=−∞
a`

∫ to+T1/2

to−T1/2
ei(`−j) ∆ω τ dτ

=
aj
T1

∫ to+T1/2

to−T1/2
ei(j−j) ∆ω τ dτ

=
aj
T1

∫ to+T1/2

to−T1/2
dτ = aj ,

in which Parseval’s principle (17.5) has killed all but the ` = j term in the
summation. Thus is (17.22) proved.

Except maybe to the extent to which one would like to examine con-
vergence (see the next paragraph), the idea behind the proof remains more
interesting than the proof itself, for one would like to know not only the fact
that (17.22) is true but also the thought which leads one to propose the equa-
tion in the first place. The thought is as follows. Assuming that (17.21) can
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indeed represent the waveform f(t) properly, one observes that the trans-
forming factor e−ij∆ω τ of (17.22) serves to shift the waveform’s jth compo-
nent aje

ij∆ω t—whose angular frequency is evidently ω = j∆ω—down to a
frequency of zero, incidentally shifting the waveform’s several other compo-
nents to various nonzero frequencies as well. Significantly, the transforming
factor leaves each shifted frequency to be a whole multiple of the waveform’s
fundamental frequency ∆ω. By Parseval’s principle, (17.22)’s integral then
kills all the thus frequency-shifted components except the zero-shifted one
by integrating the components over complete cycles, passing only the zero-
shifted component which, once shifted, has no cycle. Such is the thought
which has given rise to the equation.

Before approving the proof’s interchange of summation and integration,
a pure mathematician would probably have preferred to establish condi-
tions under which the summation and integration should each converge. To
the applied mathematician however, the establishment of general conditions
turns out to be an unrewarding exercise,12 so we will let the matter pass
with this remark: nothing prevents one from treating (17.21) as

f(t) = lim
J→∞

J∑

j=−J
aje

ij∆ω t,

which manages the convergence problem (to the extent to which it even is
a problem) in most cases of practical interest. Further work on the con-
vergence problem is left to the charge of the concerned reader, but see also
§§ 7.3.4, 7.3.5 and 22.4.

12The conditions conventionally observed among professional mathematicians seem to
be known as the Dirichlet conditions. As far as this writer can tell, the Dirichlet con-
ditions lie pretty distant from applications—not that there aren’t concrete applications
that transgress them (for example in stochastics), but rather that the failure of (17.22) to
converge in a given concrete application is more readily apparent by less abstract means
than Dirichlet’s.

This book could merely list the Dirichlet conditions without proof; but, since the book
is a book of derivations, it will decline to do that. The conditions look plausible. We’ll
leave it at that.

The writer suspects that few readers will ever encounter a concrete application that
really wants the Dirichlet conditions, but one never knows. The interested reader can
pursue Dirichlet elsewhere. (Where? No recommendation. No book on the writer’s shelf
seems strong enough on Dirichlet to recommend.)
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17.4.2 The square wave

According to (17.22), the Fourier coefficients of Fig. 17.1’s square wave are,
if to = T1/4 is chosen and by successive steps,

aj =
1

T1

∫ 3T1/4

−T1/4
e−ij∆ω τf(τ) dτ

=
A

T1

[∫ T1/4

−T1/4
−
∫ 3T1/4

T1/4

]
e−ij∆ω τ dτ

=
iA

2πj
e−ij∆ω τ

[∣∣∣∣
T1/4

−T1/4

−
∣∣∣∣
3T1/4

T1/4

]
.

But

e−ij∆ω τ
∣∣
τ=−T1/4

= e−ij∆ω τ
∣∣
τ=3T1/4

= ij ,

e−ij∆ω τ
∣∣
τ=T1/4

= (−i)j ,

so

e−ij∆ω τ

[∣∣∣∣
T1/4

−T1/4

−
∣∣∣∣
3T1/4

T1/4

]

= [(−i)j − ij ]− [ij − (−i)j ] = 2[(−i)j − ij ]
= . . . ,−i4, 0, i4, 0,−i4, 0, i4, . . . for j = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Therefore,

aj =
[
(−i)j − ij

] i2A
2πj

=

{
(−)(j−1)/24A/2πj for odd j,

0 for even j,

(17.23)

are the square wave’s Fourier coefficients which, when the coefficients are
applied to (17.21) and when (5.18) is invoked, indeed yield the specific series
of sinusoids (17.2) and Fig. 17.2 have proposed.

17.4.3 The rectangular pulse train

The square wave of § 17.4.2 is an important, canonical case and (17.2) is
arguably worth memorizing. After the square wave, however, an endless
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Figure 17.7: A rectangular pulse train.

t

f(t)

A

T1 ηT1

variety of repeating waveforms present themselves. Section 17.4.2 has ex-
ampled how to compute their Fourier series.

One variant on the square wave is nonetheless interesting enough to
attract special attention. This variant is the pulse train of Fig. 17.7,

f(t) = A
∞∑

j=−∞
Π

(
t− jT1

ηT1

)
; (17.24)

where Π(·) is the square pulse of (17.10); the symbol A represents the pulse’s
full height rather than the half height of Fig. 17.1; and the dimensionless
factor 0 ≤ η ≤ 1 is the train’s duty cycle, the fraction of each cycle its pulse
is as it were on duty. By the routine of § 17.4.2,

aj =
1

T1

∫ T1/2

−T1/2
e−ij∆ω τf(τ) dτ

=
A

T1

∫ ηT1/2

−ηT1/2
e−ij∆ω τ dτ

=
iA

2πj
e−ij∆ω τ

∣∣∣∣
ηT1/2

−ηT1/2

=
2A

2πj
sin

2πηj

2

for j 6= 0. On the other hand,

a0 =
1

T1

∫ T1/2

−T1/2
f(τ) dτ =

A

T1

∫ ηT1/2

−ηT1/2
dτ = ηA

is the waveform’s mean value. Altogether for the pulse train,

aj =





2A

2πj
sin

2πηj

2
if j 6= 0,

ηA if j = 0
(17.25)
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Figure 17.8: A Dirac delta pulse train.

t

f(t)

T1

(though eqn. 17.41 will improve the notation later).

An especially interesting special case occurs when the duty cycle grows
very short. Since limη→0+ sin(2πηj/2) = 2πηj/2 according to (8.32), it
follows from (17.25) that

lim
η→0+

aj = ηA, (17.26)

the same for every index j. As the duty cycle η tends to vanish the pulse
tends to disappear and the Fourier coefficients along with it; but we can com-
pensate for vanishing duty if we wish by increasing the pulse’s amplitude A
proportionally, maintaining the product

ηT1A = 1 (17.27)

of the pulse’s width ηT1 and its height A—and thus preserving unit area13

under the pulse. In the limit η → 0+, the pulse then by definition becomes
the Dirac delta of Fig. 7.11, and the pulse train by construction becomes
the Dirac delta pulse train of Fig. 17.8. Enforcing (17.27) on (17.26) yields
the Dirac delta pulse train’s Fourier coefficients

aj =
1

T1
. (17.28)

13In light of the discussion of time, space and frequency in § 17.2, we should clarify
that we do not here mean a physical area measurable in square meters or the like. We
merely mean the dimensionless product of the width (probably measured in units of time
like seconds) and the height (correspondingly probably measured in units of frequency like
inverse seconds) of the rectangle a single pulse encloses in Fig. 17.7. Though it is not a
physical area the rectangle one sketches on paper to represent it, as in the figure, of course
does have an area. The word area here is meant in the latter sense.
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Looking ahead, Tables 18.4 and 18.5 will tabulate the Fourier transforms
of various functions. Equation (19.4) and the method of § 19.1.2 can convert
the tabulated transforms to corresponding Fourier series at need.

17.4.4 Linearity and sufficiency

The Fourier series is evidently linear according to the rules of § 7.3.3. That
is, if the Fourier coefficients of f1(t) are aj1 and the Fourier coefficients
of f2(t) are aj2, and if the two waveforms f1(t) and f2(t) share the same
fundamental period T1, then the Fourier coefficients of f(t) = f1(t) + f2(t)
are aj = aj1 + aj2. Likewise, the Fourier coefficients of αf(t) are αaj and
the Fourier coefficients of the null waveform fnull(t) ≡ 0 are themselves null,
thus satisfying the conditions of linearity.

All this however supposes that the Fourier series actually works.14

Though Fig. 17.2 is suggestive, the figure alone hardly serves to demon-
strate that every repeating waveform were representable as a Fourier series.
To try to consider every repeating waveform at once would be too much to
try at first in any case, so let us start from a more limited question: does
there exist any continuous, repeating waveform f(t) 6= 0 of period T1 whose
Fourier coefficients aj = 0 are identically zero? [By f(t) 6= 0, we here mean15

that at least one real value of t is to exist for which f(t) 6= 0. In logical
notation,16 ∃t ∈ R : f(t) 6= 0.]

If the waveform f(t) in question is continuous then nothing prevents us
from discretizing (17.22) as

aj = lim
M→∞

1

T1

M∑

`=−M
e(−ij∆ω)(to+`∆τM )f(to + `∆τM ) ∆τM ,

∆τM ≡ T1

2M + 1
,

and further discretizing the waveform itself as

f(t) = lim
M→∞

∞∑

p=−∞
f(to + p∆τM ) Π

[
t− (to + p∆τM )

∆τM

]
,

14The remainder of this dense subsection can be regarded as optional reading.
15We generally mean the same elsewhere in the book, too.
16It is unnecessary to read logical notation to read this book but you might wish to

learn a little of it, anyway. Besides ∃x :, “at least one x exists such that . . . ,” you also
have ∃!x :, “exactly one x exists such that . . . ,” @x :, “no x exists such that . . . ,” and ∀x :,
“for all x . . . .” Along with such symbols are also ∧, ∨ and ¬, which respectively mean
“and,” “or” and “not.” The symbol R represents the real domain.
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in which Π[·] is the square pulse of (17.10). Substituting the discretized
waveform into the discretized formula for aj , we have that

aj = lim
M→∞

∆τM
T1

M∑

`=−M

∞∑

p=−∞
e(−ij∆ω)(to+`∆τM )f(to + p∆τM )Π(`− p)

= lim
M→∞

∆τM
T1

M∑

`=−M
e(−ij∆ω)(to+`∆τM )f(to + `∆τM ).

If we define the (2M + 1)-element vectors and (2M + 1)× (2M + 1) matrix

[fM ]` ≡ f(to + `∆τM ),

[aM ]j ≡ aj ,

[CM ]j` ≡
∆τM
T1

e(−ij∆ω)(to+`∆τM ),

−M ≤ (j, `) ≤M,

then matrix notation renders the last equation as

lim
M→∞

aM = lim
M→∞

CM fM ,

whereby

lim
M→∞

fM = lim
M→∞

C−1
M aM ,

assuming that CM is invertible.

But is CM invertible? This seems a hard question to answer until we
realize that the rows of CM consist of sampled complex exponentials which
repeat over the interval T1 and thus stand subject to Parseval’s princi-
ple (17.6). Realizing this, we can do better than merely to state that CM is
invertible: we can write down its actual inverse,

[C−1
M ]`j =

T1

(2M + 1) ∆τM
e(+ij∆ω)(to+`∆τM ),

such that17 CMC
−1
M = IM−M and thus per (13.2) also that C−1

M CM = IM−M .
So, the answer to our question is that, yes, CM is invertible.

17Equation (11.30) has defined the notation IM−M , representing a (2M + 1)-dimensional
identity matrix whose string of ones extends along its main diagonal from j = ` = −M
through j = ` = M .
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Because CM is invertible, § 14.2 has it that neither fM nor aM can be null
unless both are. In the limit M → ∞, this implies18 that no continuous,
repeating waveform f(t) 6= 0 exists whose Fourier coefficients aj = 0 are
identically zero.

Now consider a continuous, repeating waveform19 F (t) and its Fourier
series f(t). Let ∆F (t) ≡ F (t)−f(t) be the part of F (t) unrepresentable as a
Fourier series, continuous because both F (t) and f(t) are continuous. Being
continuous and unrepresentable as a Fourier series, ∆F (t) has null Fourier
coefficients; but as the last paragraph has concluded this can only be so if
∆F (t) = 0. Hence, ∆F (t) = 0 indeed, which implies20 that f(t) = F (t).
In other words, every continuous, repeating waveform is representable as a
Fourier series.

And what of discontinuous waveforms? Well, the square wave of Figs.
17.1 and 17.2 this chapter has posed as its principal example is a repeat-
ing waveform but, of course, not a continuous one. A truly discontinuous
waveform would admittedly invalidate the discretization above of f(t), but
see: nothing prevents us from approximating the square wave’s discontinuity
by an arbitrarily steep slope (as in § 17.3.2), whereupon this subsection’s
conclusion again applies.21

The better, subtler, more complete answer to the question though is that
a discontinuity incurs Gibbs’ phenomenon, which § 17.7 will derive.

18Pure mathematics might have preferred an alternate proof that never discretized the
function. A professional mathematician might construct such an alternate proof on § 18.2.8
and its (18.45) or (18.46), or might prefer yet a different approach such as the Cantor-
Riemann approach outlined in [129].

Nevertheless, for purpose of applications, your writer prefers this subsection’s approach,
for it avoids overgeneralization of the problem.

19Chapter 18 will use the capital letter F to represent a transform (such as a Fourier
or Laplace transform) of a function f . However, that is not the use here.

20Chapter 8’s footnote 6 has argued in a similar style, earlier in the book.
21Where this subsection’s conclusion cannot be made to apply is where unreasonable

waveforms like A sin[B/ sinωt] come into play. We will leave to the professional mathe-
matician the classification of such unreasonable waveforms, the investigation of the wave-
forms’ Fourier series and the provision of greater rigor generally.

One can object to the subsection’s reliance on discretization, yet discretization is a
useful technique, and to the extent to which pure mathematics has not yet recognized and
formalized it, maybe that suggests—in the spirit of [106]—that some interested professional
mathematician has more work to do, whenever he gets around to it. Or maybe it doesn’t.
Meanwhile, a lengthy, alternate, more abstractly rigorous proof that does not appeal to
discretization is found in [35, chapter 3].
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17.4.5 The trigonometric form

It is usually best, or at least neatest and cleanest, and moreover more evoca-
tive, to express Fourier series in terms of complex exponentials as (17.21)
and (17.22) do. When the repeating waveform f(t) is real, though, to ex-
press the series instead in terms of sines and cosines can be an attractive
alternative. Euler’s formula (5.12) makes (17.21) to be

f(t) = a0 +
∞∑

j=1

[(aj + a−j) cos j∆ω t+ i(aj − a−j) sin j∆ω t] .

Then, superimposing coefficients in (17.22),

a0 =
1

T1

∫ to+T1/2

to−T1/2
f(τ) dτ,

bj ≡ (aj + a−j) =
2

T1

∫ to+T1/2

to−T1/2
cos(j∆ω τ)f(τ) dτ,

cj ≡ i(aj − a−j) =
2

T1

∫ to+T1/2

to−T1/2
sin(j∆ω τ)f(τ) dτ,

(17.29)

which give the Fourier series the trigonometric form

f(t) = a0 +

∞∑

j=1

(bj cos j∆ω t+ cj sin j∆ω t) . (17.30)

The complex conjugate of (17.22) is

a∗j =
1

T1

∫ to+T1/2

to−T1/2
e+ij∆ω τf∗(τ) dτ.

If the waveform happens to be real then f∗(t) = f(t), which in light of the
last equation and (17.22) implies that

a−j = a∗j if =[f(t)] = 0. (17.31)

Combining (17.29) and (17.31), we have that

bj = 2<(aj)

cj = −2=(aj)

}
if =[f(t)] = 0. (17.32)
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17.5 Parseval, Poisson and Euler

The Fourier transform of § 17.4 opens some interesting prospects to Parse-
val’s principle of § 17.1.

17.5.1 Parseval’s equality

The product of a Fourier series and its conjugate is

f∗(t)f(t) =




∞∑

k=−∞
a∗ke
−ik∆ω t






∞∑

j=−∞
aje

ij∆ω t




=

∞∑

k=−∞

∞∑

j=−∞
a∗kaje

i(j−k) ∆ω t.

Integrating over a single period,

∫ to+T1/2

to−T1/2
f∗(τ)f(τ) dτ =

∫ to+T1/2

to−T1/2

∞∑

k=−∞

∞∑

j=−∞
a∗kaje

i(j−k) ∆ω t dτ

=

∞∑

k=−∞

∞∑

j=−∞
a∗kaj

∫ to+T1/2

to−T1/2
ei(j−k) ∆ω t dτ.

Parseval’s principle of § 17.1 nulls the last integration except when j = k,
so ∫ to+T1/2

to−T1/2
f∗(τ)f(τ) dτ = T1

∞∑

j=−∞
a∗jaj .

Dividing by T1,

1

T1

∫ to+T1/2

to−T1/2
f∗(τ)f(τ) dτ =

∞∑

j=−∞
a∗jaj ; (17.33)

or, if you prefer,

1

T1

∫ to+T1/2

to−T1/2
|f(τ)|2 dτ =

∞∑

j=−∞
|aj |2; (17.34)

or even
1

T1

∫

T1

|f(τ)|2 dτ =
∞∑

j=−∞
|aj |2. (17.35)
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Figure 17.9: Poisson’s ramp.

t

f(t)

2π

2π

Whether as (17.33), (17.34) or (17.35), the result is Parseval’s equality22

which, as you see, connects a function’s mean square to its Fourier coeffi-
cients.

Related to Parseval’s equality are (18.43) and the results of § 18.2.8.

17.5.2 Poisson’s ramp

Poisson’s ramp,23

f(t) =
∞∑

k=−∞
(t− 2πk)Π

(
t− 2πk

2π

)
, (17.36)

is the repeating waveform of Fig. 17.9. Various applications including the
Basel problem of § 17.5.3 use it. The method of § 17.4 finds the ramp’s
Fourier coefficients to be

aj =

{
0 if j = 0;

−(−)j/ij otherwise;
(17.37)

22[35, § 2.3]
23The source [152] names Poisson and develops Poisson’s concept, thus earning credit for

the idea here presented. However, that source does not pair the specific words “Poisson’s
ramp” as far as the author of the book you are reading is aware. The book will take
responsibility for the words.
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as one can show—observing that ∆ω = 2π/T1 = 1—via Table 9.1 by

aj =
1

2π

∫ π

−π
te−ijt dt =

e−ijt

2π

(
1

j2
− t

ij

)∣∣∣∣
π

t=−π

=
e−ijt

2π

(
1 + ijt

j2

)∣∣∣∣
π

t=−π
=

(−)j

2π

(
ij2π

j2

)
= −(−)j

ij
.

17.5.3 Euler and the Basel problem

Substituting (17.37) into (17.34) with to = 0, using the period T1 = 2π
of (17.36) and of Fig. 17.9,

1

2π

∫ π

−π
|f(τ)|2 dτ =

∑

j 6=0

1

j2
= 2

∞∑

j=1

1

j2
.

On the other hand, by Fig. 17.9 and Table 7.1, via elementary integration
without Fourier’s help,

1

2π

∫ π

−π
|f(τ)|2 dτ =

(2π)2

0xC
.

Combining the last two equations and rearranging factors,

∞∑

j=1

1

j2
=

(2π)2

0x18
, (17.38)

a curious result, the sum of inverse squares and the solution24 from an
unexpected source of Leonhard Euler’s famous Basel problem.

Though Euler himself first reached (17.38) by another route, a few
routes25 have since been discovered of which this subsection’s is one.

Euler’s (17.38) is significant because the series
∑∞

j=1(1/j2) it sums can
arise in contexts that seem to have nothing to do with Fourier analysis or
Parseval technique. If the series is summed directly, convergence is slow,
but (17.38) gives the exact sum at once—provided that one is alert enough
to recognize that (17.38) applies. (Admittedly, a purist could object that
the value of 2π wants to be calculated before Euler’s eqn. 17.38 can be
applied. However, eqn. 8.43 is available and it calculates 2π fast. Even
without leveraging prior knowledge of the value of 2π, using only eqn. 8.43

24[146, “Basel problem,” 21:42, 30 April 2019]
25Ibid.
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Table 17.1: Sums of inverse squares.

∞∑

j=1

1

j2
=

(2π)2

0x18

∞∑

j=1

1

(2j − 1)2
=

(2π)2

0x20

∞∑

j=1

1

(2j)2
=

(2π)2

0x60

and Euler’s eqn. 17.38, the writer’s computer can sum the Basel series to
the 0x34-bit—that is, sixteen-decimal place—precision of its double-type
floating-point representation within 0.2 microseconds, whereas to sum the
series directly the computer wants more than 0.2 seconds, a million times as
long.26 Good mathematical analysis like Euler’s achieves such economies.)

In advanced mathematics, apparently unrelated investigations will some-
times deeply connect. The Basel problem affords an example.

Similar operations on the Fourier coefficients (17.23) of the square wave
of Fig. 17.1, using T1 = 2π and A = 1, yield

∞∑

j=1

1

(2j − 1)2
=

(2π)2

0x20
, (17.39)

the sum of inverse odd squares. The sum of inverse even squares, if needed,
is given by the difference of (17.38) and (17.39) to be

∞∑

j=1

1

(2j)2
=

(2π)2

0x60
. (17.40)

Table 17.1 summarizes.
Incidentally, if you wonder why the table omits sums of plain inverses like∑∞
j=1(1/j), the reason is that sums of plain inverses diverge. Section 8.10.5

has explained.

26Actually, the direct summation is even worse than this, for floating-point errors will
accumulate over millions of terms. Thus, even after taking a million times as long, the
direct summation’s accuracy is poor. To improve the direct summation’s accuracy would
require extended-precision floating-point arithmetic, slowing the summation even further.
Euler’s method, by contrast, can be completed to fine accuracy with a pencil!
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Figure 17.10: The sine-argument function.

t

Sa t ≡ sin t

t

−2π − 2π
2

2π
2 2π

1

See also § 8.10.2 and its Fig. 8.5.

17.6 The sine-argument function

Equation (17.25) gives the pulse train of Fig. 17.7 its Fourier coefficients,
but a better notation for (17.25) is

aj = ηASa
2πηj

2
, (17.41)

where

Sa z ≡ sin z

z
(17.42)

is the sine-argument function,27 plotted in Fig. 17.10. The function’s Taylor
series is

Sa z =
∞∑

j=0

j∏

m=1

−z2

(2m)(2m+ 1)
, (17.43)

the Taylor series of sin z from Table 8.1, divided by z.
This section introduces the sine-argument function and some of its prop-

erties, plus also the related sine integral.28

27Many (including the author himself in other contexts) call it the sinc function, denot-
ing it sinc(·) and pronouncing it as “sink.” Unfortunately, some [99, § 4.3][29, § 2.2][41]
use the sinc(·) notation for another function,

sincalternate z ≡ Sa
2πz

2
=

sin(2πz/2)

2πz/2
.

The unambiguous Sa(·) suits this particular book better, anyway, so this is the notation
we will use.

28Readers interested in Gibbs’ phenomenon, § 17.7, will read the present section because
Gibbs depends on its results. Among other readers however some, less interested in special
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Figure 17.11: The sine integral.

t
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∫ t

0 Sa τ dτ
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2

2π
2

2π

1

−1

2π
4

− 2π
4

17.6.1 Derivative and integral

The sine-argument function’s derivative is computed from the definition
(17.42) and the derivative product rule (4.23) to be

d

dz
Sa z =

cos z − Sa z

z
. (17.44)

The function’s integral is expressed as a Taylor series after integrating the
function’s own Taylor series (17.43) term by term to obtain the form

Si z ≡
∫ z

0
Sa τ dτ =

∞∑

j=0

[
z

2j + 1

j∏

m=1

−z2

(2m)(2m+ 1)

]
, (17.45)

plotted in Fig. 17.11. Convention gives this integrated function its own name
and notation: it calls it the sine integral29,30 and denotes it by Si(·).

17.6.2 Properties of the sine-argument function

Sine-argument properties include the following.

• The sine-argument function is real over the real domain. That is, if
=(t) = 0 then =(Sa t) = 0.

functions than in basic Fourier theory, may find this section unprofitably tedious. They
can skip ahead to the start of the next chapter without great loss.

29[84, § 3.3]
30Incidentally, as far as the writer is aware, the name “sine argument” would seem to

have been back-constructed from the name “sine integral.”
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• The zeros of Sa z occur at z = nπ, n 6= 0, n ∈ Z.

• It is that |Sa t| < 1 over the real domain =(t) = 0 except at the global
maximum t = 0, where

Sa 0 = 1. (17.46)

• Over the real domain =(t) = 0, the function Sa t alternates between
distinct positive and negative lobes. Specifically, (−)n Sa(±t) > 0 over
nπ < t < (n+ 1)π for each n ≥ 0, n ∈ Z.

• Each of the sine-argument’s lobes has but a single peak. That is, over
the real domain =(t) = 0, the derivative (d/dt) Sa t = 0 is zero at only
a single value of t on each lobe.

• The sine-argument function and its derivative converge toward

lim
t→±∞

Sa t = 0,

lim
t→±∞

d

dt
Sa t = 0.

(17.47)

Some of these properties are obvious in light of the sine-argument function’s
definition (17.42). Among the less obvious properties, that |Sa t| < 1 says
merely that |sin t| < |t| for nonzero t; which must be true since t, interpreted
as an angle—which is to say, as a curved distance about a unit circle—can
hardly be shorter than sin t, interpreted as the corresponding direct shortcut
to the axis (see Fig. 3.1). For t = 0, (8.32) obtains—or, if you prefer, (17.43).

That each of the sine-argument function’s lobes should have but a single
peak seems right in view of Fig. 17.10 but is nontrivial to prove. To assert
that each lobe has but a single peak is to assert that (d/dt) Sa t = 0 exactly
once in each lobe; or, equivalently—after setting the left side of (17.44) to
zero, multiplying by z2/ cos z, and changing t← z—it is to assert that

tan t = t

exactly once in each interval

nπ ≤ t < (n+ 1)π, n ≥ 0,

for t ≥ 0; and similarly for t ≤ 0. But according to Table 5.2

d

dt
tan t =

1

cos2 t
≥ 1,
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Figure 17.12: The points at which t intersects tan t.

t

f(t)

2π
2

− 2π
2

t
tan t

whereas dt/dt = 1, implying that tan t is everywhere at least as steep as t is—
and, well, the most concise way to finish the argument is to draw a picture of
it, as in Fig. 17.12, where the curves evidently cannot but intersect exactly
once in each interval.

17.6.3 Properties of the sine integral

Properties of the sine integral Si t of (17.45) include the following.

• Over the real domain =(t) = 0, the sine integral Si t is positive for
positive t, negative for negative t and, of course, zero for t = 0.

• The local extrema of Si t over the real domain =(t) = 0 occur at the
zeros of Sa t.

• The global maximum and minimum of Si t over the real domain =(t) =
0 occur respectively at the first positive and negative zeros of Sa t,
which are t = ±π.

• The sine integral converges toward

lim
t→±∞

Si t = ±2π

4
. (17.48)
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That the sine integral should reach its local extrema at the sine-argument’s
zeros ought to be obvious to the extent to which the concept of integration is
understood. To explain the other properties it helps first to have expressed
the sine integral in the form

Si t = Sn +

∫ t

nπ
Sa τ dτ,

Sn ≡
n−1∑

j=0

Uj ,

Uj ≡
∫ (j+1)π

jπ
Sa τ dτ,

nπ ≤ t < (n+ 1)π,

0 ≤ n, (j, n) ∈ Z,

where each partial integral Uj integrates over a single lobe of the sine-
argument. The several Uj alternate in sign but, because each lobe majorizes
the next (§ 8.10.2)—that is, because,31 in the integrand, |Sa τ | ≥ |Sa(τ + π)|
for all τ ≥ 0—the magnitude of the area under each lobe exceeds that under
the next, such that

0 ≤ (−)j
∫ t

jπ
Sa τ dτ < (−)jUj < (−)j−1Uj−1,

jπ ≤ t < (j + 1)π,

0 ≤ j, j ∈ Z

(except that the Uj−1 term of the inequality does not apply when j = 0,
since there is no U−1) and thus that

0 = S0 < S2m < S2m+2 < S∞ < S2m+3 < S2m+1 < S1

for all m > 0, m ∈ Z;

or in other words that

0 = S0 < S2 < S4 < S6 < S8 < · · · < S∞ < · · · < S9 < S7 < S5 < S3 < S1.

The foregoing applies only when t ≥ 0 but naturally one can reason similarly
for t ≤ 0, concluding that the integral’s global maximum and minimum

31More rigorously, to give the reason perfectly unambiguously, one could fuss here for a
third of a page or so over signs, edges and the like. To do so is left as an exercise to those
who aspire to the pure mathematics profession.



564 CHAPTER 17. THE FOURIER SERIES

over the real domain occur respectively at the sine-argument function’s first
positive and negative zeros, t = ±π; and further concluding that the integral
is positive for all positive t and negative for all negative t.

Equation (17.48) wants some cleverness to calculate and will be the sub-
ject of the next subsection.

17.6.4 The sine integral’s limit by complex contour

Equation (17.48) has proposed that the sine integral converges toward a
value of 2π/4, but why? The integral’s Taylor series (17.45) is impractical
to compute for large t and is useless for t → ∞, so it cannot answer the
question. To evaluate the integral in the infinite limit, we shall have to
think of something cleverer.

Noticing per (5.19) that

Sa z =
e+iz − e−iz

i2z
,

rather than trying to integrate the sine-argument function all at once let us
first try to integrate just one of its two complex terms, leaving the other
term aside to handle later, for the moment computing only

I1 ≡
∫ ∞

0

eiz dz

i2z
.

To compute the integral I1, we will apply the closed-contour technique of
§ 9.6, choosing a contour in the Argand plane that incorporates I1 but shuts
out the integrand’s pole at z = 0.

Many contours are possible and one is unlikely to find an amenable
contour on the first attempt, but perhaps after several false tries we discover
and choose the contour of Fig. 17.13. The integral about the inner semicircle
of this contour is

I6 =

∫

C6

eiz dz

i2z
= lim

ρ→0+

∫ 0

2π/2

eiz(iρeiφ dφ)

i2(ρeiφ)
=

∫ 0

2π/2

ei0 dφ

2
= −2π

4
.

The integral across the contour’s top segment is

I3 =

∫

C3

eiz dz

i2z
= lim

a→∞

∫ −a

a

ei(x+ia) dx

i2z
= lim

a→∞

∫ a

−a

−eixe−a dx
i2z

,

from which, according to the continuous triangle inequality (9.19),

|I3| ≤ lim
a→∞

∫ a

−a

∣∣∣∣
−eixe−a dx

i2z

∣∣∣∣ = lim
a→∞

∫ a

−a

e−a dx

2 |z| ;
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Figure 17.13: A complex contour about which to integrate eiz/i2z.

ℜ(z)

ℑ(z)

I1

I2

I3

I4

I5
I6

which, since 0 < a ≤ |z| across the segment, we can weaken to read

|I3| ≤ lim
a→∞

∫ a

−a

e−a dx

2a
= lim

a→∞
e−a = 0,

only possible if

I3 = 0.

The integral up the contour’s right segment is

I2 =

∫

C2

eiz dz

i2z
= lim

a→∞

∫ a

0

ei(a+iy) dy

2z
= lim

a→∞

∫ a

0

eiae−y dy

2z
,

from which, according to the continuous triangle inequality,

|I2| ≤ lim
a→∞

∫ a

0

∣∣∣∣
eiae−y dy

2z

∣∣∣∣ = lim
a→∞

∫ a

0

e−y dy

2 |z| ;

which, since 0 < a ≤ |z| across the segment, we can weaken to read

|I2| ≤ lim
a→∞

∫ a

0

e−y dy

2a
= lim

a→∞

1

2a
= 0,

only possible if

I2 = 0.

The integral down the contour’s left segment is

I4 = 0
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for like reason. Because the contour encloses no pole,

∮
eiz dz

i2z
= I1 + I2 + I3 + I4 + I5 + I6 = 0,

which in light of the foregoing calculations implies that

I1 + I5 =
2π

4
.

Now,

I1 =

∫

C1

eiz dz

i2z
=

∫ ∞

0

eix dx

i2x

is the integral we wanted to compute in the first place, but what is that I5?
Answer:

I5 =

∫

C5

eiz dz

i2z
=

∫ 0

−∞

eix dx

i2x
;

or, changing −x← x by the rule of (9.5) and (9.6),

I5 =

∫ ∞

0

−e−ix dx
i2x

,

which fortuitously happens to integrate the heretofore neglected term of the
sine-argument function we started with. Thus,

lim
t→∞

Si t =

∫ ∞

0
Sax dx =

∫ ∞

0

e+ix − e−ix
i2x

dx = I1 + I5 =
2π

4
,

which was to be computed.32

32Integration by closed contour is a subtle technique, is it not? What a finesse this
subsection’s calculation has been! The author rather strongly sympathizes with the reader
who still somehow cannot quite believe that contour integration actually works, but in
the case of the sine integral another, quite independent method to evaluate the integral
is known and it finds the same number 2π/4. The interested reader can extract this
other method from Gibbs’ calculation in § 17.7, which refers a sine integral to the known
amplitude of a square wave.

We said that it was fortuitous that I5, which we did not know how to eliminate, turned
out to be something we needed anyway; but is it really merely fortuitous, once one has
grasped the technique? An integration of −e−iz/i2z is precisely the sort of thing an
experienced applied mathematician would expect to fall out as a byproduct of the contour
integration of eiz/i2z. The trick is to discover the contour from which it actually does fall
out, the discovery being a process of informed trial and error.



17.7. GIBBS’ PHENOMENON 567

17.7 Gibbs’ phenomenon

Section 17.4.4 has shown how the Fourier series suffices to represent a con-
tinuous, repeating waveform. Paradoxically, the chapter’s examples have
been chiefly of discontinuous waveforms like the square wave. At least in
Fig. 17.2 the Fourier series seems to work for such discontinuous waveforms,
though we have never exactly demonstrated that it should work for them,
or how. So, what does all this imply?

In one sense, it does not imply much of anything. One can represent
a discontinuity by a relatively sharp continuity—as for instance one can
represent the Dirac delta of Fig. 7.11 by the triangular pulse of Fig. 17.3,
with its sloped edges, if T in (17.12) is sufficiently small—and, considered in
this light, the Fourier series works. (See also the nonanalytic pulses of § 17.3
and especially the rolloff pulses of § 17.3.2.) Mathematically however one is
more likely to approximate a Fourier series by truncating it after some finite
number N of terms; and, indeed, so-called33 “low-pass” physical systems
that naturally suppress high frequencies34 are common, in which case to
truncate the series is more or less the right thing to do. Yet, a significant
thing happens when one truncates the Fourier series. At a discontinuity, the
Fourier series oscillates and overshoots.35

Henry Wilbraham investigated this phenomenon as early as 1848.
J. Willard Gibbs explored its engineering implications in 1899.36 Let us
along with them refer to the square wave of Fig. 17.2 on page 533. As
further Fourier components are added the Fourier waveform better approxi-
mates the square wave, but, as we said, it oscillates about and overshoots—it
“rings about” in the electrical engineer’s vernacular—the square wave’s dis-
continuities (the verb “to ring” here recalling the ringing of a bell or steel
beam). This oscillation and overshot turn out to be irreducible, and more-
over they can have significant physical effects.

Changing t − T1/4 ← t in (17.2) to delay the square wave by a quarter
cycle yields that

f(t) =
8A

2π

∞∑

j=0

1

2j + 1
sin

[
(2j + 1)(2π)t

T1

]
,

33So called because they pass low frequencies while suppressing high ones, though
systems encountered in practice admittedly typically suffer a middle frequency domain
through which frequencies are only partly suppressed.

34[71, § 15.2]
35[74]
36[147][54]
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which we can, if we like, write as

f(t) = lim
N→∞

8A

2π

N−1∑

j=0

1

2j + 1
sin

[
(2j + 1)(2π)t

T1

]
.

Again changing

∆v ← 2(2π)t

T1

makes this

f

[
T1

2(2π)
∆v

]
= lim

N→∞

4A

2π

N−1∑

j=0

Sa

[(
j +

1

2

)
∆v

]
∆v.

Stipulating that ∆v be infinitesimal,

0 < ∆v � 1

(which in light of the definition of ∆v is to stipulate that 0 < t� T1) such
that dv ≡ ∆v and, therefore, that the summation become an integration;
and further defining

u ≡ N ∆v;

we have that

lim
N→∞

f

[
T1

2(2π)N
u

]
=

4A

2π

∫ u

0
Sa v dv =

4A

2π
Siu. (17.49)

Equation (17.48) gives us that limu→∞ Siu = 2π/4, so (17.49) as it should
has it that f(t) ≈ A when37 t � 0. When t ≈ 0 however it gives the
waveform locally the sine integral’s shape of Fig. 17.11.

Though unexpected the effect can and does actually arise in physical
systems. When it does, the maximum value of f(t) is of interest to me-
chanical and electrical engineers among others because, if an element in an
engineered system will overshoot its designed position, the engineer wants
to allow safely for the overshot. According to § 17.6.3, the sine integral Siu
reaches its maximum at

u =
2π

2
,

where according to (17.45)38

fmax =
4A

2π
Si

2π

2
=

4A

2π

∞∑

j=0

[
2π/2

2j + 1

j∏

m=1

−(2π/2)2

(2m)(2m+ 1)

]
≈ (0x1.2DD2)A.

37Here is an exotic symbol: �. It means what it appears to mean, that t > 0 and t 6≈ 0.
38[119, sequence A243267]



17.7. GIBBS’ PHENOMENON 569

Figure 17.14: Gibbs’ phenomenon.

t

f(t)

A

This overshot, peaking momentarily at (0x1.2DD2)A, and the associated
sine-integral ringing constitute Gibbs’ phenomenon, as Fig. 17.14 depicts.

We have said that Gibbs’ phenomenon is irreducible, and indeed strictly
this is so: a true discontinuity, if it is to obey Fourier, must overshoot
according to Gibbs. Admittedly as earlier alluded, one can sometimes sub-
stantially evade Gibbs by softening a discontinuity’s edge as in § 17.3.2,
giving the discontinuity a steep but not vertical slope and maybe rounding
its corners a little;39 or, alternately, by rolling the Fourier series off gradually
rather than truncating it exactly at N terms. Engineers may do one or the
other, or both, explicitly or implicitly, which is why the full Gibbs is not
always observed in engineered systems. Nature may do likewise. Neither
however is the point. The point is that sharp discontinuities do not behave
in the manner one might näıvely have expected, yet that one can still analyze
them profitably, adapting this section’s subtle technique as the circumstance
might demand. A good engineer or other applied mathematician will make
himself aware of Gibbs’ phenomenon and of the mathematics behind it for
this reason.

39If the applied mathematician is especially exacting he might represent a discontinuity
by the cumulative normal distribution function (20.20) or maybe (if slightly less exacting)
by an arctangent, and indeed there are times at which he might do so. However, such
extra-fine mathematical craftsmanship is unnecessary to this section’s purpose.
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Chapter 18

The Fourier transform

The Fourier series of chapter 17 is useful. Applications of the series are
extensive. However, the series applies solely to waveforms that repeat—or,
at most, to waveforms that can be framed as though they repeated.

An effort to extend the Fourier series to the broader domain of non-
repeating waveforms leads to the Fourier transform, this chapter’s chief
subject.

18.1 The Fourier transform

This section extends the Fourier series to derive the Fourier transform.

18.1.1 Fourier’s equation

Consider the nonrepeating waveform or pulse of Fig. 18.1. Because the

Figure 18.1: A pulse.

t

f(t)

571
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pulse does not repeat it has no Fourier series, yet one can however give it
something very like a Fourier series in the following way. First, convert the
pulse f(t) into the pulse train

g(t) ≡
∞∑

n=−∞
f(t− nT1),

which naturally does repeat,1 where T1 > 0 is an arbitrary period of repeti-
tion whose value you can choose. Second, by (17.22), calculate the Fourier
coefficients of this pulse train g(t). Third, use these coefficients in the Fourier
series (17.21) to reconstruct

g(t) =
∞∑

j=−∞

{[
1

T1

∫ T1/2

−T1/2
e−ij∆ω τg(τ) dτ

]
eij∆ω t

}
.

Fourth, observing that limT1→∞ g(t) = f(t), recover from the train the orig-
inal pulse

f(t) = lim
T1→∞

∞∑

j=−∞

{[
1

T1

∫ T1/2

−T1/2
e−ij∆ω τf(τ) dτ

]
eij∆ω t

}

[in which we have replaced g(τ) by f(τ), supposing that T1 has grown great
enough to separate the several instances f(τ − nT1) of which, according to
definition, g(τ) is composed]; or, observing per (17.3) that ∆ω T1 = 2π and
reordering factors,

f(t) = lim
∆ω→0+

1√
2π

∞∑

j=−∞
eij∆ω t

[
1√
2π

∫ 2π/2 ∆ω

−2π/2 ∆ω
e−ij∆ω τf(τ) dτ

]
∆ω.

Fifth, defining the symbol ω ≡ j∆ω, observe that the summation is really
an integration in the limit, such that

f(t) =
1√
2π

∫ ∞

−∞
eiωt

[
1√
2π

∫ ∞

−∞
e−iωτf(τ) dτ

]
dω. (18.1)

This is Fourier’s equation, a remarkable, highly significant result.

1One could divert rigorously from this point to consider formal requirements against
f(t) but for applications it probably suffices that f(t) be limited enough in extent that
g(t) exist for all <(T1) > 0, =(T1) = 0. Formally, such a condition would forbid a function
like f(t) = A cosωot, but one can evade the formality, among other ways, by defining
the function as f(t) = limT2→∞Π(t/T2)A cosωot, the Π(·) being the rectangular pulse
of (17.10). Other pulses of § 17.3 might suit, as well.
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18.1.2 The transform and inverse transform

The reader may agree that Fourier’s equation (18.1) is curious, but in what
way is it remarkable? To answer, let us observe that the quantity within the
square brackets of (18.1),

F (ω) ≡ F {f(t)} ≡ 1√
2π

∫ ∞

−∞
e−iωτf(τ) dτ, (18.2)

is a function not of t but rather of ω. We conventionally give this function
the capitalized symbol F (ω) and name it the Fourier transform of f(t),
introducing also the notation F{·} (where the script letter F , which stands
for “Fourier,” is only accidentally the same letter as f and F ) as a short form
to represent the transformation (18.2) serves to define. Substituting (18.2)
into (18.1) and changing η ← ω as the dummy variable of integration, we
have that

f(t) = F−1 {F (ω)} =
1√
2π

∫ ∞

−∞
eiηtF (η) dη. (18.3)

This last is the inverse Fourier transform of the function F (ω).

The Fourier transform (18.2) serves as a continuous measure of a func-
tion’s frequency content. To understand why this should be so, consider
that (18.3) constructs a function f(t) of an infinity of infinitesimally graded
complex exponentials and that (18.2) provides the weights F (ω) for the con-
struction. Indeed, the Fourier transform’s complementary equations (18.3)
and (18.2) are but continuous versions of the earlier complementary equa-
tions (17.21) and (17.22) of the discrete Fourier series. The transform finds
even wider application than the series does.2

Figure 18.2 plots the Fourier transform of the pulse of Fig. 18.1.

18.1.3 The complementary variables of transformation

If t represents time then ω represents angular frequency as § 17.2 has ex-
plained. In this case the function f(t) is said to operate in the time domain
and the corresponding transformed function F (ω), in the frequency domain.
The mutually independent variables ω and t are then the complementary
variables of transformation.

2Regrettably, several alternate definitions and usages of the Fourier series are current.
Alternate definitions [99][29] handle the factors of 1/

√
2π differently, as for instance in

§ 19.7. Alternate usages [46] change −i ← i in certain circumstances. The essential
Fourier mathematics however remains the same in any case. The reader can adapt the
book’s presentation at need to the Fourier definition and usage his colleagues prefer.
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Figure 18.2: The Fourier transform of the pulse of Fig. 18.1.

ω

ℜ[F (ω)]

ℑ[F (ω)]

Formally, one can use any two letters in place of the ω and t; and indeed
one need not even use two different letters, for it is sometimes easier just to
write,

F (v) = F {f(v)} =
1√
2π

∫ ∞

−∞
e−ivθf(θ) dθ,

f(v) = F−1 {F (v)} =
1√
2π

∫ ∞

−∞
eivθF (θ) dθ,

F ≡ Fvv,

(18.4)

in which the θ is in itself no variable of transformation but only a dummy
variable. To emphasize the distinction between the untransformed and
transformed (respectively typically time and frequency) domains, however,
scientists and engineers tend to style (18.4) as

F (ω) = F {f(t)} =
1√
2π

∫ ∞

−∞
e−iωtf(t) dt,

f(t) = F−1 {F (ω)} =
1√
2π

∫ ∞

−∞
eiωtF (ω) dω,

F ≡ Fωt,

(18.5)

which are just (18.2) and (18.3) together with their dummy variables
changed. For precision of specification, one can affix subscripts as shown:
Fvv; Fωt. However, the unadorned F is normally clear enough in context.)

Whichever letter or letters might be used for the independent variable,
the functions

f(v)
F→ F (v) (18.6)

constitute a Fourier transform pair.
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18.1.4 Transforms of the basic nonanalytic pulses

As a Fourier example, consider the triangular pulse Λ(v) of (17.10). Its
Fourier transform according to (18.4) is

F {Λ(v)} =
1√
2π

∫ ∞

−∞
e−ivθΛ(θ) dθ

=
1√
2π

{∫ 0

−1
e−ivθ(1 + θ) dθ +

∫ 1

0
e−ivθ(1− θ) dθ

}
.

Evaluating the integrals according to Table 9.1’s antiderivative that θe−ivθ =
[d/dθ][e−ivθ(1 + ivθ)/v2],

F {Λ(v)} =
1

v2
√

2π

{[
e−ivθ[1 + (iv)(1 + θ)]

]0

θ=−1

+
[
e−ivθ[−1 + (iv)(1− θ)]

]1

θ=0

}

=
Sa2(v/2)√

2π
,

where Sa(·) is the sine-argument function of (17.42). Thus we find the
Fourier transform pair

Λ(v)
F→ Sa2(v/2)√

2π
. (18.7)

One can compute other Fourier transform pairs in like manner, such as3

Π(v)
F→ Sa(v/2)√

2π
, (18.8)

Ψ(v)
F→ Sa v√

2π [1− (v/π)2]
. (18.9)

One can compute yet further transform pairs by the duality rule and other
properties of § 18.2.

The algebra can be intricate, though. As a second Fourier example,

3To verify (18.8) and (18.9) is left as an exercise. Hint toward (18.9): sin(v ± π) =
− sin v.



576 CHAPTER 18. THE FOURIER TRANSFORM

consider the raised cosine-rolloff pulse Ψr(t) of (17.17):
(√

2π
)

F {Ψr(v)}

=

∫ −(1−r)/2

−(1+r)/2

{
e−ivθ

2
+
ei[(−v+π/r)θ+2π/4r]

i4
− ei[(−v−π/r)θ−2π/4r]

i4

}
dθ

+

∫ (1−r)/2

−(1−r)/2
e−ivθ dθ

+

∫ (1+r)/2

(1−r)/2

{
e−ivθ

2
+
ei[(−v−π/r)θ+2π/4r]

i4
− ei[(−v+π/r)θ−2π/4r]

i4

}
dθ

=

{
−e
−ivθ

i2v
− ei[(−v+π/r)θ+2π/4r]

4(−v + π/r)
+
ei[(−v−π/r)θ−2π/4r]

4(−v − π/r)

}−(1−r)/2

−(1+r)/2

+

{
−e
−ivθ

iv

}(1−r)/2

−(1−r)/2

+

{
−e
−ivθ

i2v
− ei[(−v−π/r)θ+2π/4r]

4(−v − π/r) +
ei[(−v+π/r)θ−2π/4r]

4(−v + π/r)

}(1+r)/2

(1−r)/2

,

and so on. After two more pages or so of algebra (left as a tedious though
not especially difficult exercise to try the accuracy of the interested reader’s
pencil), the result is that4

Ψr(v)
F→ cos(rv/2) Sa(v/2)√

2π [1− (rv/π)2]
. (18.10)

Unless r = 0, the v2 in the transform’s denominator lends F{Ψr(v)} the
possibly significant property that

∫∞
−∞ |F{Ψr(v)}| dv converges as

∫
dv/v3

does, whereas
∫∞
−∞ |F{Π(v)}| dv does not converge but diverges as

∫
dv/v.

Using a small but nonzero r, applications (§ 18.1.5) sometimes replace Π(v)
by Ψr(v) [or, alternately, if convergence5 less aggressive than that of Ψr(v)
is tolerable, maybe instead by the simpler Λr(v)] for this or related reasons.

4The conscientious reader might check (18.10) against (18.8) and (18.9), the former
with r = 0, the latter with r = 1. The former looks all right but the latter looks
wrong at first glance, until one recalls from Table 3.3 the trigonometric identity that
sin 2α = 2 sinα cosα.

5Rather than “convergence,” an electrical engineer might instead say “band confine-
ment,” where by “band” the engineer means “range of frequencies.” The engineer would
change t← v, transform via Fωt rather than Fvv, and, in the result, observe that Ψr(t)
is even less active at high values of the frequency ω than Λr(t) is.
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Similarly,6

Λr(v)
F→ Sa(rv/2) Sa(v/2)√

2π
. (18.11)

One thing left to consider is the values of the raised-cosine transforms
when the denominators of (18.9) and (18.10) vanish. For the latter,

lim
rv→±π

cos(rv/2) Sa(v/2)√
2π [1− (rv/π)2]

= lim
rv∓π→0

sin[(π ∓ rv)/2] Sa(v/2)√
2π(1∓ rv/π)(1± rv/π)

= lim
rv∓π→0

π2 sin[(π ∓ rv)/2] Sa(v/2)√
2π(π ∓ rv)(π ± rv)

= lim
rv∓π→0

(2π)3/2 Sa[(π ∓ rv)/2] Sa(v/2)

8(π ± rv)

=

(√
2π
)

Sa(v/2)

8
=

(√
2π
)

Sa(2π/4r)

8
.

For the former, using l’Hôpital’s rule (4.29) and the derivative (17.44),

lim
v→±π

Sa v√
2π [1− (v/π)2]

=
Sa v − cos v

2
√

2π(v/π)2

∣∣∣∣
v=±π

=
1

2
√

2π
,

which, reassuringly, agrees with the former at r = 1. Summarizing,

F{Ψ(v)}v=±π =
1

2
√

2π
,

F{Ψr(v)}rv=±π =

(√
2π
)

Sa(v/2)

8
=

(√
2π
)

Sa(2π/4r)

8
.

(18.12)

18.1.5 Approximation to an arbitrary pulse

Before closing the section, we should briefly notice an important application
of the several nonanalytic pulses of § 17.3, whose Fourier transforms § 18.1.4
has computed and Table 18.4 will list. Sampling a pulse f(t) at equal, finite
intervals of ∆t, one can approximate the pulse as

f̃(t) ≡
∞∑

k=−∞
f(k∆t)h

(
t− k∆t

∆t

)
, (18.13)

6If you work these out for yourself and get

Λr(v)
F→ 2(√

2π
)
rv2

[
cos

(1− r)v
2

− cos
(1 + r)v

2

]
then your answer is right. Apply a sum-of-angles identity of Table 3.3 to reach the formula
the narrative gives.



578 CHAPTER 18. THE FOURIER TRANSFORM

where h(t) is any of the basic nonanalytic pulses of § 17.3.1 and Fig. 17.3,
whether Π(t), Λ(t) or Ψ(t); or is either of the rolloff variants of § 17.3.2 and
Fig. 17.4, whether Λr(t) or Ψr(t). Naturally, there are constraints for this
to work. For instance, f(t) must not change so quickly or abruptly that
sufficiently dense samples fail to approximate the function. Fortunately,
whether f(t) submits to such constraints tends to be clearer in an actual
application with a specific, concrete f(t) than it is in the abstract; so, other
than to warn the reader regarding any f(t) that suffers an infinite slope—
like f(t) = (te−|t|

2/2)/
√
|t|, for example—we shall not further study the

constraints here (but see § 19.2, which develops constructive functions that
impose fewer constraints).

Having approximated the pulse by (18.13), having thus reduced the pulse
to a superposition f̃(t) of pulses whose Fourier transforms we already know,
we can approximate that F{f(t)} ≈ F{f̃(t)}, where

F
{
f̃(t)

}
=

∞∑

k=−∞
f(k∆t)F

{
h

(
t− k∆t

∆t

)}
. (18.14)

Qualifications regarding convergence and such could be multiplied against
(18.14) but, again, that is not our purpose here. Other than to note that
the square pulse Π(t) might, in some applications, be a poor choice for
h(t) because the absolute integral

∫∞
−∞ |F{Π(t)}| dω of its transform fails to

converge, we will leave the question in that form.
We said that we already knew the transforms of the various basic non-

analytic pulses. However, (18.13) and (18.14) have used h[(t − k∆t)/∆t]
rather than a plain h(t). Fortunately, the conversion is not difficult. It is
that

F

{
h

(
t− k∆t

∆t

)}
= e−ik∆t ω ∆tH(ω∆t), (18.15)

as we shall see in Table 18.1 of § 18.2, next.

18.2 Properties of the Fourier transform

The Fourier transform obeys an algebra of its own, exhibiting properties the
mathematician can exploit to extend the transform’s reach. This section
derives and lists several such properties.

18.2.1 Symmetries of the real and imaginary parts

In Fig. 18.2, page 574, each of the real and imaginary parts of the Fourier
transform is symmetrical (or at least each looks symmetrical), though the
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imaginary symmetry differs from the real. The present subsection analyti-
cally develops the symmetries.

The Fourier transform of a function’s conjugate according to (18.4) is

F{f∗(v)} =
1√
2π

∫ ∞

−∞
e−ivθf∗(θ) dθ =

[
1√
2π

∫ ∞

−∞
eiv
∗θf(θ) dθ

]∗
,

in which we have taken advantage of the fact that the integrand’s dummy
variable θ = θ∗ happens to be real. On the other hand, within the para-
graph’s first equation just above,

1√
2π

∫ ∞

−∞
eiv
∗θf(θ) dθ =

1√
2π

∫ ∞

−∞
e−i(−v

∗)θf(θ) dθ = F (−v∗),

implying that7

f∗(v)
F→ F ∗(−v∗);

f∗(t)
F→ F ∗(−ω∗).

(18.16)

If we express the real and imaginary parts of f(v) in the style of (2.63) as

<[f(v)] =
f(v) + f∗(v)

2
,

=[f(v)] =
f(v)− f∗(v)

i2
,

then the Fourier transforms of these parts according to (18.16) are8

<[f(v)]
F→ F (v) + F ∗(−v∗)

2
,

=[f(v)]
F→ F (v)− F ∗(−v∗)

i2
.

(18.17)

7From past experience with complex conjugation, an applied mathematician might

naturally have expected of (18.16) that f∗(v)
F→ F ∗(v), but the expectation though nat-

ural would have been incorrect. Unlike most of the book’s mathematics before chap-
ter 17, eqns. (17.21) and (17.22)—and thus ultimately also the Fourier transform’s defi-
nition (18.2) or (18.4)—have arbitrarily chosen a particular sign for the i in the phasing
factor e−ij∆ω τ or e−ivθ, which phasing factor the Fourier integration bakes into the trans-
formed function F (v), so to speak. The Fourier transform as such therefore does not meet
§ 2.11.2’s condition for (2.69) to hold. Fortunately, (18.16) does hold.

Viewed from another angle, it must be so, because Fourier transforms real functions
into complex ones. See Figs. 18.1 and 18.2.

8The precisely orderly reader might note that a forward reference to Table 18.1 is

here implied; but the property referred to, Fourier superposition A1f1(v) + A2f2(v)
F→

A1F1(v)+A2F2(v), which does not depend on this subsection’s results anyway, is so trivial
to prove that we will not bother about the precise ordering in this instance.
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For real v and an f(v) which is itself real for all real v, the latter line becomes

0
F→ F (v)− F ∗(−v)

i2
if =(v) = 0 and, for all such v, =[f(v)] = 0,

whereby9

F (v) = F ∗(−v) if =(v) = 0 and, for all such v, =[f(v)] = 0. (18.18)

Interpreted, (18.18) says for real v and f(v) that the plot of <[F (v)] must
be symmetric about the vertical axis whereas the plot of =[F (v)] must be
symmetric about the origin, as Fig. 18.2 has illustrated.

18.2.2 Duality

Changing −v ← v makes (18.4)’s second line to read

f(−v) =
1√
2π

∫ ∞

−∞
e−ivθF (θ) dθ.

However, according to (18.4)’s first line, this says neither more nor less than
that

F (v)
F→ f(−v),

F (t)
F→ f(−ω),

(18.19)

which is that the transform of the transform is the original function with
the independent variable reversed, an interesting and useful property. It is
entertaining, and moreover enlightening, to combine (18.6) and (18.19) to
form the endless transform progression

· · · F→ f(v)
F→ F (v)

F→ f(−v)
F→ F (−v)

F→ f(v)
F→ · · · (18.20)

Equation (18.19) or alternately (18.20) expresses the Fourier transform’s
property of duality.

9A professional mathematician might object that we had never established a one-to-one
correspondence between a function and its transform. On the other hand, recognizing the
applied spirit of the present work, the professional might waive the objection—if not with
pleasure, then at least with a practical degree of indulgence—but see also § 17.4.4.
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For an example of duality, recall that § 18.1.4 has computed the trans-
form pairs

Π(v)
F→ Sa(v/2)√

2π
,

Λ(v)
F→ Sa2(v/2)√

2π
,

Ψ(v)
F→ Sa v√

2π [1− (v/π)2]
.

Application of (18.19) yields the additional, dual transform pairs10

Sa(v/2)√
2π

F→ Π(v),

Sa2(v/2)√
2π

F→ Λ(v),

Sa v√
2π [1− (v/π)2]

F→ Ψ(v),

(18.21)

in which that Π(−v) = Π(v), Λ(−v) = Λ(v) and Ψ(−v) = Ψ(v) are observed
(but eqn. 18.19 works as well on pulses that lack such symmetry). With-
out duality, to use (18.4) to compute the transform pairs of (18.21) might
have been hard, but with duality it’s pretty easy, as you see. (Section 18.3
incidentally will further improve eqn. 18.21.)

18.2.3 The Fourier transform of the Dirac delta

Section 18.3 will compute several Fourier transform pairs but one particular
pair is so significant, so illustrative, so curious, and so easy to compute that
we will pause to compute it and its dual now. Applying (18.4) to the Dirac
delta (7.23) and invoking its sifting property (7.25), we find that

δ(v)
F→ 1√

2π
, (18.22)

the dual of which according to (18.20) is

1
F→
(√

2π
)
δ(v) (18.23)

10The last of these three duals though logical is admittedly, probably not very useful—
except maybe in a few special cases in which the applied mathematician, already expecting
it, will hardly need to look it up. Table 18.4 omits it.
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inasmuch as δ(−v) = δ(v).
The duality rule again incidentally proves its worth in eqn. 18.23. Had we

tried to calculate the Fourier transform of 1—that is, of f(v) ≡ 1—directly

according to eqn. 18.4 we would have found the pair 1
F→

(1/
√

2π)
∫∞
−∞ e

−ivθ dθ, the right side of which features an integral impos-
sible to evaluate. A limit of some kind might perhaps have been enforced to
circumvent the impossibility, but as you see again, duality is easier.

18.2.4 Delay and shift

Applying (18.4) to f(v− a) and changing ξ ← θ− a, we have the transform
property of delay:

f(v − a)
F→ e−iavF (v). (18.24)

Applying (18.4) to eiavf(v), we have the transform property of frequency
shift:

eiavf(v)
F→ F (v − a). (18.25)

18.2.5 Metaduality

Section 18.2.2 has shown how to compose the dual of a Fourier transform
pair. One can likewise compose the metadual11 of a Fourier transform prop-
erty, but to do so correctly wants careful handling.

Defining12

F (w) ≡ F{f(u)},
Φ(u) ≡ F{φ(w)},
φ(w) ≡ F (w),

one can write (18.20) as

· · · F→ Φ(−u)
F→ φ(w)

F→ Φ(u)
F→ φ(−w)

F→ · · ·
· · · F→ f(u)

F→ F (w)
F→ f(−u)

F→ F (−w)
F→ · · ·

(18.26)

in which φ(w) = F (w) are vertically aligned, Φ(u) = f(−u) are vertically
aligned, and so on. Similarly,

· · · F→ Γ(−v)
F→ γ(v)

F→ Γ(v)
F→ γ(−v)

F→ · · ·
· · · F→ g(v)

F→ G(v)
F→ g(−v)

F→ G(−v)
F→ · · ·

(18.27)

11Other books the writer has read just call it a “dual.” However, the book you are
reading finds it expedient to disambiguate by modifying the term where the term is used
of properties rather than of mere pairs.

12The Roman w of this subsection is not the Greek ω of § 18.1.1.
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These are just to repeat (18.20) in various symbols φ ← F and γ ← G,
so they say nothing new, but the variant symbology helps for example as
follows.

Let the delay property (18.24) be styled as

γ(v)
F→ Γ(v),

where

γ(v) ≡ φ(v − a),

Γ(v) = e−iavΦ(v),

γ(−v) = φ(−v − a),

Γ(−v) = eiavΦ(−v),

w ≡ v − a,
u ≡ v.

Observe the technique: w and u are defined such that the γ(v) and Γ(v) lines
just above mention φ(v−a) = φ(w) and Φ(v) = Φ(u) on their respective right
sides, whereas the γ(−v) and Γ(−v) lines do not purposely mention φ(−w)
or Φ(−u) (although they might mention the one or the other by accident);
thus, the latter two lines are written merely by substituting −v ← v in the
former two. Having written the four lines (for γ[v], Γ[v], γ[−v] and Γ[−v]),
we can change symbols downward a row with respect to each of (18.26)
and (18.27), revealing the pair

G(v)
F→ g(−v),

where

G(v) = F (v − a),

g(−v) = e−iavf(−v),

G(−v) = F (−v − a),

g(v) = eiavf(v),

among which, again, the latter two lines are written by substituting −v ← v.

Since g(v)
F→ G(v), the four lines mean that

eiavf(v)
F→ F (v − a),

which is (18.25). Apparently, the frequency-shifting property is the metad-
ual of the delay property. (Exercise: pursuing this paragraph’s pattern, show
that the delay property is the metadual of the frequency-shifting property.)
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Besides (18.26) and (18.27), the reverse skew is just as possible:

· · · F→ φ(w)
F→ Φ(u)

F→ φ(−w)
F→ Φ(−u)

F→ · · ·
· · · F→ F (−w)

F→ f(u)
F→ F (w)

F→ f(−u)
F→ · · ·

and

· · · F→ γ(v)
F→ Γ(v)

F→ γ(−v)
F→ Γ(−v)

F→ · · ·
· · · F→ G(−v)

F→ g(v)
F→ G(v)

F→ g(−v)
F→ · · ·

though this writer seems (for whatever reason) to have found the forward
skew of (18.26) and (18.27) to be the more convenient. Either way, a lot
of letters are used—φΦfF (wu) and γΓgG(v) [and you can use yet more
letters like χXhH(wχuX) if you have an extra function to transform as,
for instance, while deriving eqn. 18.33]—but the letters serve to keep the
various relations straight and, anyway, you don’t need so many letters to
compute the dual (18.19) of an ordinary transform pair but only to compute
the metadual of a transform property.

18.2.6 Summary of properties

Table 18.1 summarizes properties of the Fourier transform.

The table’s first three properties have been proved earlier in this section.
The table’s fourth property, that

Af(αv)
F→ A

|α|F
( v
α

)
if =(α) = 0, <(α) 6= 0, (18.28)

which is the scaling property of the Fourier transform, is proved by apply-
ing (18.4) to Af(αv) and then changing ξ ← αθ (the magnitude sign | · |
coming because α, if negative, reverses Fourier’s infinite limits of integration
in eqn. 18.4; see § 9.3 and its eqn. 9.10). The table’s fifth property is merely
the fourth with an alternate scale. The table’s sixth property applies the
fourth and then the second, in that sequence. The table’s seventh property
is proved trivially.

The table’s eighth through eleventh properties begin from the deriva-
tive of the inverse Fourier transform; that is, of (18.4)’s second line. This
derivative is

d

dv
f(v) =

1√
2π

∫ ∞

−∞
eivθ[iθF (θ)] dθ = F−1{ivF (v)},
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Table 18.1: Properties of the Fourier transform.

F (v) = F ∗(−v) if =(v) = 0 and,

for all such v, =[f(v)] = 0.

f(v − a)
F→ e−iavF (v)

eiavf(v)
F→ F (v − a)

Af(αv)
F→ A

|α|F
( v
α

)

(√
|α|
)
Af(αv)

F→ A√
|α|

F
( v
α

)

Af [(α)(v − a)]
F→ Ae−iav

|α| F
( v
α

)

=(α) = 0, <(α) 6= 0

A1f1(v) +A2f2(v)
F→ A1F1(v) +A2F2(v)

d

dv
f(v)

F→ ivF (v)

−ivf(v)
F→ d

dv
F (v)

dn

dvn
f(v)

F→ (iv)nF (v)

(−iv)nf(v)
F→ dn

dvn
F (v)

n ∈ Z, n ≥ 0∫ v

−∞
f(τ) dτ

F→ F (v)

iv
+ πF (0)δ(v)

∫ ∞

−∞
h∗(v)f(v) dv =

∫ ∞

−∞
H∗(v)F (v) dv

∫ ∞

−∞
|f(v)|2 dv =

∫ ∞

−∞
|F (v)|2 dv

aj =
∆ω√

2π
F (j∆ω)
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which implies that

F

{
d

dv
f(v)

}
= ivF (v),

the table’s eighth property. The metadual (§ 18.2.5) of the eighth property is
the table’s ninth property, during the computation of which13 one observes
that,

if γ(v) =
d

dv
φ(v), then γ(−v) = − d

dv
φ(−v), (18.29)

a fact whose truth can be demonstrated via eqn. 4.13’s definition of the
derivative or, easier, can be seen by sketching on a sheet of paper some
arbitrary, asymmetric function (like, say, φ[v] ≡ ev/3) and a visual approxi-
mation to its derivative. The table’s tenth and eleventh properties come by
repeated application of the eighth and ninth.

The table’s twelfth property is (18.59). Section 18.5 will derive it.
The table’s final three properties are (18.44), (18.45) and (19.4). Sec-

tions 18.2.8 and 19.1.2 will derive them.

18.2.7 Convolution and correlation

In mechanical and electrical engineering, the concept of convolution emerges
during the analysis of a linear system whose response to a Dirac impulse
δ(t) is some characteristic transfer function h(t). To explore the mechanical
origin and engineering application of the transfer function would exceed the
book’s remit; but, inasmuch as a system is linear and its response to a Dirac
impulse δ(t) is indeed h(t), its response to an arbitrary input f(t) cannot
but be

g1(t) ≡
∫ ∞

−∞
h(t− τ)f(τ) dτ ; (18.30)

or, changing t/2 + τ ← τ to improve the equation’s symmetry,

g1(t) ≡
∫ ∞

−∞
h

(
t

2
− τ
)
f

(
t

2
+ τ

)
dτ. (18.31)

13If working out this metadual with your own pencil according to the pattern of § 18.2.5,
if you reach

G(v) =
d

dv
F (v),

g(−v) = ivf(−v),

then you are probably on the right track. Note that, during the calculation of this par-
ticular metadual, it happens that w = v and u = v, so this particular metadual is a little
easier than some others to work out.

For a harder metadual, see § 18.2.7.
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This integral defines14 convolution of the two functions f(t) and h(t).
Changing v ← t and ψ ← τ in (18.31) to comport with the notation

found elsewhere in this section and then applying (18.4) yields that15

F

{∫ ∞

−∞
h
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

}

=
1√
2π

∫ ∞

−∞
e−ivθ

∫ ∞

−∞
h

(
θ

2
− ψ

)
f

(
θ

2
+ ψ

)
dψ dθ

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
e−ivθh

(
θ

2
− ψ

)
f

(
θ

2
+ ψ

)
dθ dψ.

Now changing φ← θ/2 + ψ within the inner integral,

F

{∫ ∞

−∞
h
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

}

=
2√
2π

∫ ∞

−∞

∫ ∞

−∞
e−iv(2φ−2ψ)h(φ− 2ψ)f(φ) dφ dψ

=
2√
2π

∫ ∞

−∞
e−ivφf(φ)

∫ ∞

−∞
e−iv(φ−2ψ)h(φ− 2ψ) dψ dφ.

Again changing µ← φ− 2ψ within the inner integral,

F

{∫ ∞

−∞
h
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

}

=
1√
2π

∫ ∞

−∞
e−ivφf(φ)

∫ ∞

−∞
e−ivµh(µ) dµ dφ

=
[√

2π
] [ 1√

2π

∫ ∞

−∞
e−ivµh(µ) dµ

] [
1√
2π

∫ ∞

−∞
e−ivφf(φ) dφ

]

=
(√

2π
)
H(v)F (v).

That is,

∫ ∞

−∞
h
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

F→
(√

2π
)
H(v)F (v). (18.32)

Symbolizing (18.32) in the manner of § 18.2.5 as

γ(v)
F→ Γ(v),

14[68, § 2.2]
15See § 17.4.1.
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where

γ(v) ≡
∫ ∞

−∞
χ
(v

2
− ψ

)
φ
(v

2
+ ψ

)
dψ,

Γ(v) =
(√

2π
)

X(v)Φ(v),

γ(−v) =

∫ ∞

−∞
χ
(
−v

2
− ψ

)
φ
(
−v

2
+ ψ

)
dψ,

Γ(−v) =
(√

2π
)

X(−v)Φ(−v),

wχ ≡
v

2
− ψ,

wφ ≡
v

2
+ ψ,

u ≡ v,

or, after changing symbols downward a row with respect to each of (18.26)
and (18.27),

G(v)
F→ g(−v),

where

G(v) =

∫ ∞

−∞
H
(v

2
− ψ

)
F
(v

2
+ ψ

)
dψ,

g(−v) =
(√

2π
)
h(−v)f(−v),

G(−v) =

∫ ∞

−∞
H
(
−v

2
− ψ

)
F
(
−v

2
+ ψ

)
dψ,

g(v) =
(√

2π
)
h(v)f(v),

one finds the metadual g(v)
F→ G(v) of (18.32) to be

h(v)f(v)
F→ 1√

2π

∫ ∞

−∞
H
(v

2
− ψ

)
F
(v

2
+ ψ

)
dψ. (18.33)

Whether by (18.32) or by (18.33), convolution in the one domain evi-
dently transforms to multiplication in the other.

Closely related to the convolutional integral (18.31) is the integral

g2(t) ≡
∫ ∞

−∞
h

(
τ − t

2

)
f

(
τ +

t

2

)
dτ, (18.34)
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whose transform and dual transform are computed as above, with one extra
step using (18.20), to be

∫ ∞

−∞
h
(
ψ − v

2

)
f
(
ψ +

v

2

)
dψ

F→
(√

2π
)
H(−v)F (v),

h(−v)f(v)
F→ 1√

2π

∫ ∞

−∞
H
(
ψ − v

2

)
F
(
ψ +

v

2

)
dψ.

(18.35)

Furthermore, according to (18.16), h∗(t)
F→ H∗(−ω∗), so

∫ ∞

−∞
h∗
(
ψ − v

2

)
f
(
ψ +

v

2

)
dψ

F→
(√

2π
)
H∗(v∗)F (v),

h∗(−v)f(v)
F→ 1√

2π

∫ ∞

−∞
H∗
(
v∗

2
− ψ

)
F

(
v

2
+ ψ

)
dψ;

(18.36)

and indeed one can do the same to the transforms (18.32) and (18.33) of the
convolutional integral, obtaining

∫ ∞

−∞
h∗
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

F→
(√

2π
)
H∗(−v∗)F (v),

h∗(v)f(v)
F→ 1√

2π

∫ ∞

−∞
H∗
(
ψ − v∗

2

)
F

(
ψ +

v

2

)
dψ.

(18.37)

(The v∗ of eqns. 18.36 and 18.37 seems to imply that the argument v might
be complex. Though this writer has encountered applications with com-
plex h and f , and though complex H and F are the norm, the writer has
never yet met an application with complex v. How to interpret the case of
complex v, or whether such a case is even valid in Fourier work, are ques-
tions left open to the reader’s consideration. It is perhaps interesting that
H. F. Davis, author of a book on Fourier mathematics, does not in his book
seem to consider the transform of a function whose argument is complex at
all.16 Still, it appears that one can consider complex v 6= v∗ at least in a
formal sense, as in § 18.2.1; yet in applications at any rate, normally and
maybe always, v = v∗ will be real.)

Unlike the operation the integral (18.31) expresses, known as convolu-
tion, the operation the integral (18.34) expresses has no special name as far

16[35, § 6.7]
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as the writer is aware. However, the operation its variant

g3(t) ≡
∫ ∞

−∞
h∗
(
τ − t

2

)
f

(
τ +

t

2

)
dτ (18.38)

expresses does have a name. It is called correlation,17 being a measure of the
degree to which one function tracks another with an offset in the independent
variable. Reviewing this subsection, we see that in (18.36) we have already
determined the transform of the correlational integral (18.38). Moreover,
assuming that =(t) = 0, we see in (18.37)’s second line that we have already
determined the dual of this transform, as well. Convolution and correlation
arise often enough in applications to enjoy their own, peculiar notations18

h(t) ∗ f(t) ≡
∫ ∞

−∞
h

(
t

2
− τ
)
f

(
t

2
+ τ

)
dτ (18.39)

for convolution and

Rfh(t) ≡
∫ ∞

−∞
h∗
(
τ − t

2

)
f

(
τ +

t

2

)
dτ (18.40)

for correlation (in the latter of which one can read the symbol Rfh as “the
correlation of f against h”).

Nothing prevents one from correlating a function against itself, inciden-
tally. The autocorrelation

Rff (t) =

∫ ∞

−∞
f∗
(
τ − t

2

)
f

(
τ +

t

2

)
dτ (18.41)

proves useful at times.19 For convolution, commutative and associative prop-
erties that

f(t) ∗ h(t) = h(t) ∗ f(t),

f(t) ∗ [g(t) ∗ h(t)] = [f(t) ∗ g(t)] ∗ h(t),
(18.42)

may be demonstrated, the former by changing −τ ← τ in (18.39) and

the latter by Fourier transformation as f(v) ∗ [g(v) ∗ h(v)]
F→ (
√

2π)F (v)

× [(
√

2π)G(v)H(v)] = (
√

2π)[(
√

2π)F (v)G(v)]H(v)
F−1

→ [f(v) ∗ g(v)] ∗ h(v).

17Also called cross-correlation, as in [141].
18[71, § 19.4]
19[67, § 1.6A]
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In most cases of practical interest in applications, v is probably real even
when H(v) and F (v) are not, so one can use (18.41) to write a transform
pair like the first line of (18.36) in the style of

Rff (t)
F→
(√

2π
)
|F (ω)|2 , =(t) = 0. (18.43)

Electrical engineers call the quantity |F (ω)|2 on (18.43)’s right the energy
spectral density of f(t).20 Equation (18.43) is significant among other rea-
sons because, in electronic signaling—especially where the inevitable imposi-
tion of random environmental noise has degraded the signal—it may happen
that an adequate estimate of Rff (t) is immediately available while sufficient
information regarding F (ω) is unavailable. When this is the case, (18.43)
affords an elegant, indirect way to calculate an energy spectral density even
if more direct methods cannot be invoked.

Tables 18.2 and 18.3 summarize.

See also § 19.1.

18.2.8 Parseval’s theorem

Provided that

=(v) = 0,

one finds that

∫ ∞

−∞
h∗(v)f(v) dv =

∫ ∞

−∞
h∗(v)

[
1√
2π

∫ ∞

−∞
eivθF (θ) dθ

]
dv

=

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
eivθh∗(v) dv

]
F (θ) dθ

=

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
e−ivθh(v) dv

]∗
F (θ) dθ

=

∫ ∞

−∞
H∗(θ)F (θ) dθ,

in which an interchange of integrations between two applications of (18.4)
has been interposed. Changing v ← θ on the right,

∫ ∞

−∞
h∗(v)f(v) dv =

∫ ∞

−∞
H∗(v)F (v) dv. (18.44)

20[67, § 1.6B]
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Table 18.2: Convolution and correlation, and their Fourier properties. (Note
that, though the table provides for complex v, v is typically real.)

∫ ∞

−∞
h
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

F→
(√

2π
)
H(v)F (v)

h(v)f(v)
F→ 1√

2π

∫ ∞

−∞
H
(v

2
− ψ

)

× F
(v

2
+ ψ

)
dψ

∫ ∞

−∞
h
(
ψ − v

2

)
f
(
ψ +

v

2

)
dψ

F→
(√

2π
)
H(−v)F (v)

h(−v)f(v)
F→ 1√

2π

∫ ∞

−∞
H
(
ψ − v

2

)

× F
(
ψ +

v

2

)
dψ

∫ ∞

−∞
h∗
(v

2
− ψ

)
f
(v

2
+ ψ

)
dψ

F→
(√

2π
)
H∗(−v∗)F (v)

h∗(v)f(v)
F→ 1√

2π

∫ ∞

−∞
H∗
(
ψ − v∗

2

)

× F
(
ψ +

v

2

)
dψ

∫ ∞

−∞
h∗
(
ψ − v

2

)
f
(
ψ +

v

2

)
dψ

F→
(√

2π
)
H∗(v∗)F (v)

h∗(−v)f(v)
F→ 1√

2π

∫ ∞

−∞
H∗
(
v∗

2
− ψ

)

× F
(v

2
+ ψ

)
dψ
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Table 18.3: Convolution and correlation in their peculiar notation. (Note
that the ∗ which appears in the table as h[t] ∗ f [t] differs in meaning from
the ∗ in h∗[v].)

=(t) = 0

f(t) ∗ h(t) = h(t) ∗ f(t) ≡
∫ ∞

−∞
h

(
t

2
− τ
)
f

(
t

2
+ τ

)
dτ

Rfh(t) ≡
∫ ∞

−∞
h∗
(
τ − t

2

)
f

(
τ +

t

2

)
dτ

h(t) ∗ f(t)
F→

(√
2π
)
H(ω)F (ω)

h(t)f(t)
F→ 1√

2π
[H(ω) ∗ F (ω)]

Rfh(t)
F→

(√
2π
)
H∗(ω)F (ω)

h∗(t)f(t)
F→ 1√

2π
RFH(ω)

Rff (t)
F→

(√
2π
)
|F (ω)|2

f(t) ∗ [g(t) ∗ h(t)] = [f(t) ∗ g(t)] ∗ h(t)
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This is Parseval’s theorem.21 It is related to Parseval’s principle of § 17.1
and Parseval’s equality of § 17.5.1.

Especially interesting to Parseval’s theorem is the case of h(v) = f(v),
in which ∫ ∞

−∞
|f(v)|2 dv =

∫ ∞

−∞
|F (v)|2 dv. (18.45)

When this is written as
∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|F (ω)|2 dω,

and t, |f(t)|2, ω and |F (ω)|2 respectively have physical dimensions of time,
energy per unit time, angular frequency and energy per unit angular fre-
quency, then the theorem conveys the important physical insight that energy
transferred at various times can equally well be regarded as energy trans-
ferred at various frequencies. This works for space and spatial frequencies,
too: see § 17.2. For real f(v), one can write (18.45) as
∫ ∞

−∞
f2(v) dv =

∫ ∞

−∞
<2[F (v)] dv+

∫ ∞

−∞
=2[F (v)] dv, =[f(v)] = 0, (18.46)

which expresses the principle of quadrature, conveying the additional phys-
ical insight that a single frequency can carry energy in not only one but
each of two distinct, independent channels; namely, a real-phased, in-phase
or I channel and an imaginary-phased, quadrature-phase or Q channel.22

Practical digital electronic communications systems, wired or wireless, of-
ten do precisely this—effectively transmitting two, independent streams of
information at once, without conflict, in the selfsame band.

18.2.9 Oddness and evenness

Odd functions have odd transforms. Even functions have even transforms.
Symbolically,

• [odd] if f(−v) = −f(v) for all v, then F (−v) = −F (v);

• [even] if f(−v) = f(v) for all v, then F (−v) = F (v).

The odd case is proved by expressing F (−v) per (18.4) as

F (−v) =
1√
2π

∫ ∞

−∞
e−i(−v)θf(θ) dθ

21[29, § 2-2][67, § 1.6B]
22[29, § 5-1]
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and then changing −θ ← θ to get that

F (−v) =
1√
2π

∫ ∞

−∞
e−i(−v)(−θ)f(−θ) dθ =

1√
2π

∫ ∞

−∞
e−ivθf(−θ) dθ.

That f(v) should be odd means by definition that f(−θ) = −f(θ), so

F (−v) = − 1√
2π

∫ ∞

−∞
e−ivθf(θ) dθ = −F (v).

The even case is proved similarly. See § 8.12.

18.3 The Fourier transforms of selected functions

We have already computed the Fourier transforms of several functions in
§§ 18.1.4 and 18.2.3. We have also already computed duals of these but
would still like to put the duals into more pleasing forms. For example, the
dual of

Λ(v)
F→ Sa2(v/2)√

2π

according to (18.21) is

Sa2(v/2)√
2π

F→ Λ(v).

The scaling property (18.28) of Table 18.1, using α = 2, makes it

Sa2 v
F→
√

2π

2
Λ
(v

2

)
,

which is probably more convenient than (18.21) to use when one meets a
Sa2(·) and wishes to transform it.

Tables 18.4 and 18.5 list the last transform pair and others similarly
derived.23 The tables list further transform pairs as well—some as gleaned
from earlier in the chapter; others as computed in the last paragraph’s way,
as adapted by the properties of Table 18.1 (especially the properties of delay,
shift and scaling), or as derived in the subsections that follow. The final
pair of Table 18.5 is derived in § 18.4.

23In electronic signaling systems, including radio, the table’s transform pair Sa(v)
F→√

2π
2

Π
(
v
2

)
implies significantly that, to spread energy evenly over an available “baseband”

but to let no energy leak outside that band, one should transmit sine-argument-shaped
pulses as in Fig. 17.10.
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Table 18.4: Fourier transform pairs. (See also Table 18.5.)

1
F→
(√

2π
)
δ(v) δ(v)

F→ 1√
2π

Λ(v)
F→ Sa2(v/2)√

2π
u(v)

F→ 1(√
2π
)
iv

+

√
2π

2
δ(v)

Λr(v)
F→ Sa(rv/2) Sa(v/2)√

2π
Π(v)

F→ Sa(v/2)√
2π

Ψ(v)
F→ Sa v√

2π [1− (v/π)2]
F{Ψ(v)}v=±π =

1

2
√

2π

Ψr(v)
F→ cos(rv/2) Sa(v/2)√

2π [1− (rv/π)2]
F{Ψr(v)}rv=±π =

(√
2π
)

Sa(v/2)

8

=

(√
2π
)

Sa(2π/4r)

8

Sa2(v)
F→
√

2π

2
Λ
(v

2

)
Sa(v)

F→
√

2π

2
Π
(v

2

)

u(v)e−av
F→ 1(√

2π
)

(a+ iv)
, <(a) > 0

u(v)e−avvn
F→ n!(√

2π
)

(a+ iv)n+1
, <(a) > 0, n ∈ Z, n ≥ 0

eiav
F→

(√
2π
)
δ(v − a), =(a) = 0

sin av
F→
√

2π

i2
[δ(v − a)− δ(v + a)] , =(a) = 0

cos av
F→
√

2π

2
[δ(v − a) + δ(v + a)] , =(a) = 0

∞∑

j=−∞
δ(v − jT1)

F→
√

2π

T1

∞∑

j=−∞
δ

(
v − j 2π

T1

)
=

∆ω√
2π

∞∑

j=−∞
δ(v − j∆ω)

√
T1

∞∑

j=−∞
δ(v − jT1)

F→
√

∆ω

∞∑

j=−∞
δ(v − j∆ω), ∆ωT1 = 2π
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Table 18.5: Fourier autotransform pairs.

∞∑

j=−∞
δ
(
v − j

√
2π
)

F→
∞∑

j=−∞
δ
(
v − j

√
2π
)

Ω(v)
F→ Ω(v)

18.3.1 Exponential decay and Heaviside’s unit step

Applying the Fourier transform’s definition (18.4) to u(v)e−av, where u(v)
is Heaviside’s unit step (7.21), yields that

F
{
u(v)e−av

}
=

1√
2π

∫ ∞

0
e−(a+iv)θ dθ =

1√
2π

[
e−(a+iv)θ

−(a+ iv)

]∞

θ=0

,

revealing the transform pair

u(v)e−av
F→ 1(√

2π
)

(a+ iv)
, <(a) > 0. (18.47)

Interesting is the limit a→ 0+ in (18.47),

u(v)
F→ 1(√

2π
)

(iv)
+ Cδ(v),

where the necessary term Cδ(v), with scale C to be determined, merely
admits that we do not yet know how to evaluate (18.47) when both a and v
vanish at once. What we do know from § 18.2.9 is that odd functions have
odd transforms and that (as one can see in Fig. 7.10) one can convert u(v)
to an odd function by the simple expedient of subtracting 1/2 from it. Since

1/2
F→ (
√

2π/2)δ(v) according to (18.23), we have then that

u(v)− 1

2

F→ 1(√
2π
)

(iv)
+

(
C −

√
2π

2

)
δ(v),

which to make its right side odd demands that C =
√

2π/2. The transform
pair

u(v)
F→ 1(√

2π
)
iv

+

√
2π

2
δ(v) (18.48)
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results.
Invoking (18.4),

u(v)e−avvn
F→ 1√

2π

∫ ∞

0
e−(a+iv)θθn dθ.

Evaluating the antiderivative via Table 9.1 with α← −(a+ iv),

u(v)e−avvn
F→ −e

−(a+iv)θ

√
2π

n∑

k=0

(n!/k!)θk

(a+ iv)n−k+1

∣∣∣∣
∞

θ=0

.

Since all but the k = 0 term vanish, the last equation implies the transform
pair24

u(v)e−avvn
F→ n!√

2π(a+ iv)n+1
, <(a) > 0, n ∈ Z, n ≥ 0. (18.49)

18.3.2 Sinusoids

The Fourier transforms of sin av and cos av are interesting and important.
One can compute them from the pairs

eiav
F→
(√

2π
)
δ(v − a),

e−iav
F→
(√

2π
)
δ(v + a),

(18.50)

which result by applying to (18.23) Table 18.1’s property that eiavf(v)
F→

F (v − a). Composing by Table 5.1 the trigonometrics from their complex
parts, we have that

sin av
F→
√

2π

i2
[δ(v − a)− δ(v + a)] ,

cos av
F→
√

2π

2
[δ(v − a) + δ(v + a)] .

(18.51)

18.3.3 The Dirac delta pulse train

Curiously, the Fourier transform of the Dirac delta pulse train of Fig. 17.8
turns out to be another Dirac delta pulse train. The reason is that the Dirac
delta pulse train’s Fourier series according to (17.28) and (17.21) is

∞∑

j=−∞
δ(v − jT1) =

∞∑

j=−∞

eij(2π/T1)v

T1
,

24[99, Table 5.2]
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the transform of which according to (18.50) is

∞∑

j=−∞
δ(v − jT1)

F→
√

2π

T1

∞∑

j=−∞
δ

(
v − j 2π

T1

)
. (18.52)

Apparently, the farther the pulses of the original train, the nearer the pulses
of the transformed train, and vice versa; yet, even when transformed, the
train remains a train of Dirac deltas. Letting T1 =

√
2π in (18.52) yields

the pair
∞∑

j=−∞
δ
(
v − j

√
2π
)

F→
∞∑

j=−∞
δ
(
v − j

√
2π
)
, (18.53)

discovering a pulse train whose Fourier transform is itself.
This completes the derivations of the Fourier transform pairs of Ta-

bles 18.4 and 18.5—except one pair. The one pair will be the subject of
§ 18.4, next.

18.4 The Gaussian pulse

While studying the derivative in chapters 4 and 5, we asked among other
questions whether any function could be its own derivative. We found that
a sinusoid could be its own derivative after a fashion—differentiation shifted
its curve leftward without altering its shape or scale—but that the only non-
trivial function to be exactly its own derivative was the natural exponential
f(z) = Aez. We later found the same natural exponential to fill several sig-
nificant mathematical roles—largely, whether directly or indirectly, because
it was indeed its own derivative.

As we study the Fourier transform, a similar question arises: can any
function be its own transform? We have already found in § 18.3.3 that the
Dirac delta pulse train can be its own transform; but this train unlike the
natural exponential is nonanalytic, perhaps not the sort of function one had
in mind. One should like an analytic function, and preferably not a train
but a single pulse.

In chapter 20, during the study of the mathematics of probability, we
shall encounter a most curious function, the Gaussian pulse, also known as
the bell curve among other names. We will defer discussion of the Gaussian
pulse’s provenance to the coming chapters but, for now, we can just copy
here the pulse’s definition from (20.17) as

Ω(t) ≡ exp
(
−t2/2

)
√

2π
, (18.54)
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plotted on pages 640 below and 545 above, respectively in Figs. 20.1 and 17.6.
The Fourier transform of the Gaussian pulse is even trickier to compute than
were the transforms of § 18.3, but known techniques to compute it include
the following.25 From the the Fourier transform’s definition (18.4),

F{Ω(v)} =
1

2π

∫ ∞

−∞
exp

(
−θ

2

2
− ivθ

)
dθ.

Completing the square (§ 2.2),26

F{Ω(v)} =
exp

(
−v2/2

)

2π

∫ ∞

−∞
exp

(
−θ

2

2
− ivθ +

v2

2

)
dθ

=
exp

(
−v2/2

)

2π

∫ ∞

−∞
exp

[
−(θ + iv)2

2

]
dθ.

Changing ξ ← θ + iv,

F{Ω(v)} =
exp

(
−v2/2

)

2π

∫ ∞+iv

−∞+iv
exp

(
−ξ

2

2

)
dξ.

Had we not studied complex contour integration in § 9.6 we should find such
an integral hard to integrate in closed form. However, since happily we have
studied it, observing that the integrand exp(ξ2) is an entire function (§ 8.6)
of ξ—that is, that it is everywhere analytic—we recognize that one can trace
the path of integration from −∞+ iv to∞+ iv along any contour one likes.
Let us trace it along the real Argand axis from −∞ to ∞, leaving only the
two, short complex segments at the ends which (as is easy enough to see,
and the formal proof is left as an exercise to the interested reader27) lie so
far away that—for this integrand—they integrate to nothing. So tracing
leaves us with

F{Ω(v)} =
exp

(
−v2/2

)

2π

∫ ∞

−∞
exp

(
−ξ

2

2

)
dξ. (18.55)

How to proceed from here is not immediately obvious. None of the tech-
niques of chapter 9 seems especially suitable to evaluate

I ≡
∫ ∞

−∞
exp

(
−ξ

2

2

)
dξ,

25An alternate technique is outlined in [68, Prob. 5.43].
26[34]
27The short complex segments at the ends might integrate to something were the real

part of ξ2 negative, but the real part happens to be positive—indeed, most extremely
positive—over the domains of the segments in question.
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though if a search for a suitable contour of integration failed one might fall
back on the Taylor-series technique of § 9.12. Fortunately, mathematicians
have been searching hundreds of years for clever techniques to evaluate just
such integrals and, when occasionally they should discover such a technique
and reveal it to us, why, we record it in books like this, not to forget.

Here is the technique.28 The equations

I =

∫ ∞

−∞
exp

(
−x

2

2

)
dx,

I =

∫ ∞

−∞
exp

(
−y

2

2

)
dy,

express the same integral I in two different ways, the only difference being
in the choice of letter for the dummy variable. What if we multiply the two?
Then

I2 =

∫ ∞

−∞
exp

(
−x

2

2

)
dx

∫ ∞

−∞
exp

(
−y

2

2

)
dy

=

∫ ∞

−∞

∫ ∞

−∞
exp

(
−x

2 + y2

2

)
dx dy.

One, geometrical way to interpret this I2 is as a double integration over a
plane in which (x, y) are rectangular coordinates. If we interpret thus, noth-
ing then prevents us from double-integrating by the cylindrical coordinates
(ρ;φ), instead, as

I2 =

∫ π

−π

∫ ∞

0
exp

(
−ρ

2

2

)
ρ dρ dφ

= 2π

[∫ ∞

0
exp

(
−ρ

2

2

)
ρ dρ

]
.

At a casual glance, the last integral in square brackets seems to differ little
from the integral with which we started, but see: it is not only that the lower
limit of integration and the letter of the dummy variable have changed, but
that an extra factor of the dummy variable has appeared—that the integrand
ends not with dρ but with ρ dρ. Once we have realized this, the integral’s
solution by antiderivative (§ 9.1) becomes suddenly easy to guess:

I2 = 2π

[
− exp

(
−ρ

2

2

)]∞

0

= 2π.

28[46, § I:40-4]



602 CHAPTER 18. THE FOURIER TRANSFORM

So evidently,
I =
√

2π,

which means that ∫ ∞

−∞
exp

(
−ξ

2

2

)
dξ =

√
2π (18.56)

as was to be calculated.
Finally substituting (18.56) into (18.55), we have that

F{Ω(v)} =
exp

(
−v2/2

)
√

2π
,

which in view of (18.54) reveals the remarkable transform pair

Ω(v)
F→ Ω(v). (18.57)

The Gaussian pulse transforms to itself. Old Fourier, who can twist and
knot other curves with ease, seems powerless to bend Gauss’ mighty curve.

It is worth observing incidentally in light of (18.54) and (18.56) that
∫ ∞

−∞
Ω(t) dt = 1, (18.58)

the same as for Π(t), Λ(t), Ψ(t) and indeed δ(t). Section 17.3 and its (17.20)
have recommended the shape of the Gaussian pulse, in the tall, narrow limit,
to implement the Dirac delta δ(t). This section lends more force to the rec-
ommendation, for not only is the Gaussian pulse analytic (unlike the Dirac
delta) but it also behaves uncommonly well under Fourier transformation
(like the Dirac delta), thus rendering the Dirac delta susceptible to an ana-
lytic limiting process which transforms amenably. Too, the Gaussian pulse
is about as tightly localized as a nontrivial, uncontrived analytic function
can be.29 The passion of one of the author’s mentors in extolling the Gaus-
sian pulse as “absolutely a beautiful function” seems well supported by the
practical mathematical virtues exhibited by the function itself.

The Gaussian pulse resembles the natural exponential in its general ver-
satility. Indeed, though the book has required several chapters through this
chapter 18 to develop the fairly deep mathematics underlying the Gaussian
pulse and supporting its basic application, now that we have the Gaussian
pulse in hand we shall find that it ably fills all sorts of roles—not least the
principal role of chapter 20 to come.

29Consider that Ω(t) ≈ 0x0.6621, 0x0.3DF2, 0x0.0DD2, 0x0.0122, 0x0.0009, 0x0.0000 at
t = 0,±1,±2,±3,±4,±5; and that Ω(±8) < 2−0x2F. Away from its middle region |t| . 1,
the Gaussian pulse evidently vanishes rather convincingly.
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18.5 The Fourier transform of the integration op-
eration

Table 18.1, page 585, includes a heretofore unproved Fourier property,

∫ v

−∞
f(τ) dτ

F→ F (v)

iv
+ πF (0)δ(v). (18.59)

This property has remained unproved because, when we compiled the table
in § 18.2, we lacked the needed theory. We have the theory now and can
proceed with the proof.30

The proof begins with the observation that

∫ v

−∞
f(τ) dτ = u(v) ∗ f(v) =

∫ ∞

−∞
u
(v

2
− τ
)
f
(v

2
+ τ
)
dτ,

where the u(t)∗f(t) exercises the convolution operation of § 18.2.7. The con-
volution’s correctness is probably easier to see if the convolution is expressed
according to (18.30) rather than to (18.31), as

∫ v

−∞
f(τ) dτ = u(v) ∗ f(v) =

∫ ∞

−∞
u(v − τ)f(τ) dτ ;

but the two forms are equivalent and, since we are free to work with either
and the earlier is the form that appears in Table 18.2, we will prefer the
earlier form.

Table 18.2 records the transform pair

∫ ∞

−∞
u
(v

2
− τ
)
f
(v

2
+ τ
)
dτ

F→
(√

2π
)

F{u(v)}F (v) =

[
1

iv
+ πδ(v)

]
F (v)

in which F{u(v)} is evaluated according to Table 18.4. Substituting the
observation with which we began,

∫ v

−∞
f(τ) dτ = u(v) ∗ f(v)

F→
[

1

iv
+ πδ(v)

]
F (v).

Sifting, δ(v)F (v) = δ(v)F (0), so the last pair is in fact (18.59) which was to
be proved.

30[68, Prob. 5.33]
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A fact that has incidentally emerged during the proof,

∫ v

−∞
f(τ) dτ = u(v) ∗ f(v), (18.60)

is interesting enough to merit here an equation number of its own.



Chapter 19

Fourier applications and the
Laplace transform

The last chapter has unveiled the Fourier transform. This chapter pursues
some Fourier applications. The chapter also introduces the Laplace trans-
form, a Fourier variant used to solve ordinary linear differential equations
constrained by boundary conditions.

The chapter begins with a review of convolution.

19.1 Convolution

Section 18.2.7 and its (18.39) have mentioned the convolution of two func-
tions,

h(t) ∗ f(t) ≡
∫ ∞

−∞
h

(
t

2
− τ
)
f

(
t

2
+ τ

)
dτ, (19.1)

and have expressed this convolution also in unbalanced style as

h(t) ∗ f(t) ≡
∫ ∞

−∞
h(t− τ)f(τ) dτ, (19.2)

the two styles—whether (19.1) or (19.2)—being equivalent. The two styles
express the same operation and yield the same result.

Convolution is commutative and associative as (18.42) has observed:

f(t) ∗ h(t) = h(t) ∗ f(t);

f(t) ∗ [g(t) ∗ h(t)] = [f(t) ∗ g(t)] ∗ h(t).

605
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Despite exploring a few properties like these, though, and despite giving
a formal definition, we have developed little insight into the convolution
operation. What is convolution, really?

19.1.1 What convolution is

Several answers are possible. In this book, our answer will chiefly be this:

Convolution is the superposition of repetition with
various scale and delay.

Well, that’s fine. The answer is dense with multisyllabic words, at any rate.
What does it mean?

To begin, a superposition is just a sum, especially a sum of functions.
The word comes from the Latin1 super + positio, “above placement,” and
connotes a laying of one atop another, as bricks in a wall. Figure 17.2 of an
earlier chapter has plotted a typical case.

Regarding “repetition with various scale and delay,” an example:2

f(t) = (1) δ

[
t−

(
−0x18

5

)]
+ (1) δ

[
t−

(
−5

2

)]
+

(
3

2

)
δ

[
t− 0

]

+

(
2

3

)
δ

[
t− 1

2

]
+

(
−8

3

)
δ

[
t− 0xB

4

]
;

h(t) = Λ(t).

Here, the 1, 1, 3
2 , 2

3 and −8
3 give scale, while the −0x18

5 , −5
2 , 0, 1

2 and 0xB
4

give delay. Convolving according to (19.2) and sifting by (7.25),

h(t) ∗ f(t) = (1) Λ

[
t−

(
−0x18

5

)]
+ (1) Λ

[
t−

(
−5

2

)]
+

(
3

2

)
Λ

[
t− 0

]

+

(
2

3

)
Λ

[
t− 1

2

]
+

(
−8

3

)
Λ

[
t− 0xB

4

]
.

Figure 19.1 plots.
But what if f(t) is no mere sum of Dirac deltas3 but a more general

function? In that case, one can approximate that

f(t) = lim
∆t→0

∆t
∞∑

k=−∞
f(k∆t)δ(t− k∆t); (19.3)

1[104]
2Patterned after [98].
3Mere! How use accustoms one to the ephemeral!
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Figure 19.1: Convolution.

t

h(t)

t

f(t)

t

h(t) ∗ f(t)
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or, if unsure that one can trust (19.3) as written, that

f(t) = lim
∆t→0

∞∑

k=−∞
f(k∆t)Π

(
t− k∆t

∆t

)
,

which, in view of § 7.7, says the same thing. Processing (19.3) by Fig. 19.1’s
method,

h(t) ∗ f(t) = lim
∆t→0

∆t
∞∑

k=−∞
f(k∆t)h(t− k∆t).

19.1.2 Series coefficients

Given a time-limited pulse

f(t) = 0 for all |t− to| ≥
T1

2
,

one can write that

∫ ∞

−∞
e−iωtf(t) dt =

∫ to+T1/2

to−T1/2
e−iωtf(t) dt,

after which comparison of the Fourier transform (18.5) against the coeffi-
cients (17.22) of the Fourier series reveals that

aj =
∆ω√

2π
F (j∆ω), (19.4)

where ∆ω T1 = 2π as in (17.3). If a time-limited pulse repeats at an in-
terval T1 to form a wave and the interval is long enough that the wave’s
pulses do not overlap, then (19.4) extracts the coefficients of the waveform’s
Fourier series from the transform of the pulse.

If pulses overlap then one must do extra work to reach the same result,
representing the repeating waveform via (19.2) and (7.25) as

f̂(t) ≡
∞∑

k=−∞
f(t− kT1) =

[ ∞∑

k=−∞
δ(t− kT1)

]
∗ f(t). (19.5)

The summation in (19.5) might diverge, in which case the repeating wave-
form would not exist, but if the summation does not diverge then (19.4)
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still obtains despite the overlap. To prove it, beginning from (17.22) by
successive steps,4

aj =
1

T1

∫ to+T1/2

to−T1/2
e−ij∆ω τ f̂(τ) dτ

=
1

T1

∫ ∞

−∞
Π

(
τ − to
T1

)
e−ij∆ω τ f̂(τ) dτ

=

√
2π

T1

[
F

{
Π

(
t− to
T1

)
f̂(t)

}]

ω=j∆ω

=
1

T1

[
F

{
Π

(
t− to
T1

)}
∗F

{
f̂(t)

}]

ω=j∆ω

=
1

T1

[(
e−iωtoF

{
Π

(
t

T1

)})
∗F

{
f̂(t)

}]

ω=j∆ω

,

in which we have used the square pulse of § 17.3 and some properties of

Tables 18.1 and 18.3. Finding in Table 18.4 the transform pair Π(v)
F→

Sa(v/2)/
√

2π, applying (18.28) to this pair with α = 1/T1, observing that
∆ω T1 = 2π, and changing Fvv ← Fωt yields the modified pair

Π

(
t

T1

)
F→
(√

2π
)

Sa(2πω/2 ∆ω)

∆ω
, (19.6)

which, when used against the last expression for aj , gives that

aj =
1

T1

[
e−iωto

(√
2π
)

Sa(2πω/2 ∆ω)

∆ω
∗ F̂ (ω)

]

ω=j∆ω

=
1√
2π

{[
e−iωto Sa

(
2πω

2 ∆ω

)]
∗ F̂ (ω)

}

ω=j∆ω

=
1√
2π

{∫ ∞

−∞
e−i(ω−η)to Sa

[
2π(ω − η)

2 ∆ω

]
F̂ (η) dη

}

ω=j∆ω

=
e−ij∆ω to

√
2π

∫ ∞

−∞
eiηto Sa

[
2π(j∆ω − η)

2 ∆ω

]
F̂ (η) dη.

Transforming (19.5),

F̂ (ω) =

[ ∞∑

k=−∞
δ(ω − k∆ω)

]
F (ω) ∆ω. (19.7)

4G. Andrew Walls has kindly provided the technique at the author’s request. Walls’
original is [136].
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Using (19.7) against the last expression for aj ,

aj =
e−ij∆ω to ∆ω√

2π

×
∫ ∞

−∞
eiηto Sa

[
2π(j∆ω − η)

2 ∆ω

][ ∞∑

k=−∞
δ(η − k∆ω)

]
F (η) dη

=
e−ij∆ω to ∆ω√

2π

×
∞∑

k=−∞

∫ ∞

−∞
eiηto Sa

[
2π(j∆ω − η)

2 ∆ω

]
[δ(η − k∆ω)]F (η) dη.

The integral might not converge but if it does, sifting,

aj =
e−ij∆ω to ∆ω√

2π

∞∑

k=−∞
eik∆ω to Sa

[
2π(j∆ω − k∆ω)

2 ∆ω

]
F (k∆ω)

=
∆ω√

2π

∞∑

k=−∞
ei(k−j) ∆ω to Sa[π(j − k)]F (k∆ω).

The indices j and k being integers,

ei(k−j) ∆ω to Sa[π(j − k)] =

{
1 if j = k,

0 otherwise,

by which the last expression for aj implies (19.4).

19.2 Constructive functions

Section 18.1.5 has introduced the approximation and construction, and sub-
sequent transformation, of an arbitrary pulse. That subsection wants evenly
spaced samples, though. What if the samples are unevenly spaced?

This section develops constructive functions to represent among others
samples that are unevenly spaced.

19.2.1 The irregular triangular pulse

The Fourier transform of the irregular triangular pulse of Fig. 19.2, in which
B > 0 and C > 0, is by
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Figure 19.2: An irregular triangular pulse.

v

firr triangular(v)

A

C−B

(√
2π
)
Firr triangular(v)

A
=

∫ 0

−B
e−ivθ

(
1 +

θ

B

)
dθ +

∫ C

0
e−ivθ

(
1− θ

C

)
dθ

=

[
e−ivθ

(
− 1

iv
− θ

iBv
+

1

Bv2

)]0

θ=−B

+

[
e−ivθ

(
− 1

iv
+

θ

iCv
− 1

Cv2

)]C

θ=0

=

[
1− eiBv
Bv2

− 1

iv

]
+

[
1− e−iCv
Cv2

+
1

iv

]

=
1− eiBv
Bv2

+
1− e−iCv
Cv2

.

Thus,

firr triangular(v)
F→ A√

2π

(
1− eiBv
Bv2

+
1− e−iCv
Cv2

)
, B > 0, C > 0. (19.8)

As v vanishes, 1− eαv → −αv − α2v2/2− · · · , so

lim
v→0

Firr triangular(v) = lim
v→0

A√
2π

(−iBv +B2v2/2 + · · ·
Bv2

+
iCv + C2v2/2 + · · ·

Cv2

)
,

which implies that

Firr triangular(0) =
(A)(B + C)

2
√

2π
, (19.9)

a result that matches the result direct application of (18.4) at v = 0 yields.
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Figure 19.3: A ramp and level.

v

framp and level(v)

A

−B

19.2.2 The ramp and level (failing attempt)

This book like other mathematical books seldom explores failing attempts,
successful attempts wanting pages enough. Nevertheless, the applied math-
ematician in practice, scratching paper with his pencil, spends so much time
in failing attempts that the occasional review of a failing attempt can be
instructive, as follows.

If C →∞ in Fig. 19.2 then the function of Fig. 19.3 emerges, a function
we shall call the ramp and level.

The function’s Fourier transform would be hard to compute directly but,
in the limit, one can carefully extract the transform from (19.8) by letting
C = 1/ε—the ε→ 0+ being a positive infinitesimal—after which (19.8) has
that

framp and level(v)
F→ lim

ε→0+

A√
2π

[
1− eiBv
Bv2

+

(
ε
)(

1− e−iv/ε
)

v2

]
.

That is,

framp and level(v)
F→
(
A
)(

1− eiBv
)

(√
2π
)
Bv2

, v 6= 0, (19.10)

in which the condition on the right that v 6= 0 does not here forbid the v on
the left from vanishing.

So far, so good. However, the reasoning § 19.2.1 has used to reach (19.9)
for vanishing v is insufficiently precise for the present problem. The trouble
is that, in § 19.2.1, only v vanished, whereas now 1/C vanishes also. One
must ask, is the product Cv to vanish? And if it is not, then is the inverse
product 1/Cv alternately to vanish? We must decide.

Noticing the exponential factor e−iCv in (19.8), we might try letting the
product Cv vanish, defining the finite ρ ≡ v/ε2—where by finite we here
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mean that ρ is neither infinite nor infinitesimal (nor zero), and therefore
that v is infinitesimal on the order of ε2. Having thus decided and thus
defined, we make the unnumbered equation preceding (19.10) to be

lim
ε→0+

Framp and level(ε
2ρ)

= lim
ε→0+

A√
2π

(
1− eiBε2ρ
Bε4ρ2

+
1− e−iερ
ε3ρ2

)

= lim
ε→0+

A√
2π

(−iBε2ρ+B2ε4ρ2/2 + · · ·
Bε4ρ2

+
iερ+ ε2ρ2/2− iε3ρ3/6 + · · ·

ε3ρ2

)

= lim
ε→0+

A√
2π

(
1

2ε
+

3B − iρ
6

)
,

a result which might be interesting but which is not obviously helpful.

The technique used—having already prospered in §§ 5.4, 9.7 and 9.10
among others—remains reasonable, so we shall retain the technique in our
toolbox as it were for future use. Notwithstanding, even a reasonable tech-
nique can fail to solve some particular problem. Whether this technique
could with extra effort eventually solve the present problem is not a ques-
tion we will further pursue (for example, one could alternately try letting
1/Cv vanish instead of Cv). We will merely rather observe that, in the
present instance, the technique does not seem to have prospered yet.

Let us shelve the problem for the moment. We will retrieve it from the
shelf, working it via a different technique, in § 19.2.5.

19.2.3 The right-triangular pulse

If B = 0 or C = 0 (but not both) in the irregular triangular pulse of
§ 19.2.1 and Fig. 19.2, then one of the right-triangular pulses of Fig. 19.4
results. Depending on whether the pulse consists of the leftward or the
rightward triangle, the pulse’s Fourier transform is computed as in the earlier
subsections to be

fleftward(v)
F→ A√

2π

(
1− eiBv
Bv2

− 1

iv

)
,

frightward(v)
F→ A√

2π

(
1− e−iCv
Cv2

+
1

iv

)
,

(19.11)
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Figure 19.4: Right-triangular pulses.

v

fleftward(v)

A

−B

v

frightward(v)

A

C

with

Fleftward(0) =
AB

2
√

2π
,

Frightward(0) =
AC

2
√

2π
.

(19.12)

The transform’s slow decay, going only on the order of 1/v, may be worth
noticing, incidentally—the slow decay presumably owing5 to the pulse’s dis-
continuity.

19.2.4 The irregular step

Section 18.3.1 has taken the Fourier transform (18.48) of Heaviside’s unit
step. Scaling Heaviside vertically by a factor of Arightward − Aleftward and
then, using (18.23), shifting the scaled Heaviside vertically by an offset of
Aleftward yields the transform pair

firr step(v)
F→ Arightward −Aleftward(√

2π
)
iv

+
(Arightward +Aleftward)

√
2π

2
δ(v)

(19.13)

5This book will not attempt a general proof of the point.
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Figure 19.5: An irregular step.

v

firr step(v)

Aleftward

Arightward

of the irregular step of Fig. 19.5.

19.2.5 The ramp and level

Sections 19.2.3 and 19.2.4 have drawn their results from a lengthy sequence
of application-level logic, running through chapters 18 and 19, of abstruse
Fourier mathematics. Preceding §§ 19.2.3 and 19.2.4 however was § 19.2.2
which, as you will recall, has left one unsolved problem on the shelf. The
unsolved problem is the ramp and level, Fig. 19.3.

Superimposing the leftward right-triangular pulse of § 19.2.3 upon the
irregular step of § 19.2.4, the latter with Aleftward = 0 and Arightward = A,
now solves the shelved problem immediately:

framp and level
F→ A√

2π

[
1− eiBv
Bv2

+ πδ(v)

]
. (19.14)

As well as the ramp and level, one could likewise define a level and ramp,
the level and ramp mirroring the ramp and level, its level extending not to
the right but to the left as in Fig. 19.6. Its transform is evidently

flevel and ramp
F→ A√

2π

[
1− e−iCv
Cv2

+ πδ(v)

]
. (19.15)

19.2.6 Construction

Section 18.1.5 has employed regular nonanalytic pulses of § 17.3 to approxi-
mate a more or less arbitrary function, but the technique of § 18.1.5 remains
limited in that it

• cannot track a discontinuity or other infinite slope,
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Figure 19.6: A level and ramp.

v

flevel and ramp(v)

A

C

Table 19.1: A sampled function (example).

t f(t)
−50.0 0.00
−10.0 0.15
−2.0 0.92

0.0 1.10
0.5 1.08
4.0 0.60

50.0 0.06

• requires uniform sampling, and

• lacks a practical way to model a function’s leftward or rightward tail
when, as in Figs. 19.3, 19.5 and 19.6, such a tail exists, limv→±∞ f(v)
being nonzero.

This section’s constructive functions are less limited. An example to illus-
trate their use follows.

Consider an imprecisely known function f(t) that, though imperfectly,
were nevertheless experimentally measurable. Suppose that the decimal
samples of Table 19.1 were observed. One might then approximate the
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function as

f(t) ≈
firr triangular,A=0.15,B=(−10.0)−(−50.0),C=( −2.0)−(−10.0)[t− (−10.0)]

+ firr triangular,A=0.92,B=( −2.0)−(−10.0),C=( 0.0)−( −2.0)[t− ( −2.0)]

+ firr triangular,A=1.10,B=( 0.0)−( −2.0),C=( 0.5)−( 0.0)[t− ( 0.0)]

+ firr triangular,A=1.08,B=( 0.5)−( 0.0),C=( 4.0)−( 0.5)[t− ( 0.5)]

+ firr triangular,A=0.60,B=( 4.0)−( 0.5),C=( 50.0)−( 4.0)[t− ( 4.0)]

+ framp and level,A=0.06,B=(50.0)−(4.0)[t− (50.0)],

constructing the approximation from this section’s various constructive func-
tions, each of which is Fourier transformable as the section has shown.

Note the manner in which the example’s several triangular pulses over-
lap. Observe that the example’s approximation exactly fits its experimental
samples, interpolating between along straight lines. Such techniques are
generally useful.

Variations and refinements are possible, like using an irregular raised
cosine (extending § 17.3) in place of the irregular triangle, but this book
will pursue the matter no further.

19.3 the Laplace transform

Fourier straightforwardly transforms pulses like those of Figs. 18.1 (page
571) and 17.3 (page 540) but stumbles on time-unlimited functions like
f(t) = cosωot or even the ridiculously simple f(t) = 1. Only by the clever,
indirect techniques of §§ 18.2 and 18.3 has Fourier been able to transform
such functions at all. Fourier’s clever, indirect techniques are valid and
even interesting but can still prompt a mathematician to wonder whether a
simpler alternative to Fourier did not exist.

At the sometimes acceptable cost of omitting one of the Fourier integral’s
two tails,6 the Laplace transform

F (s) = L {f(t)} ≡
∫ ∞

0−
e−stf(t) dt (19.16)

offers such an alternative. Here, s = iω is the transform variable and, when s
is purely imaginary, the Laplace transform is very like the Fourier; but

6There has been invented a version of the Laplace transform which omits no tail [68,
chapter 3]. This book does not treat it.
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Laplace’s advantage lies in that it encourages the use of a complex s, usually
with a negative real part, which in (19.16)’s integrand tends to suppress even
the tail not omitted, thus effectively converting a time-unlimited function
to an integrable pulse—and Laplace does all this without resort to indirect
techniques.7

The lower limit 0− of
∫∞

0− integration means that the integration includes
t = 0. In other words,

∫∞
0− δ(t) dt = 1 whereas

∫∞
0+ δ(t) dt = 0.

Without resort to clever, indirect techniques, Laplace’s (19.16) can trans-
form

1
L→ 1

s
,

listed among other pairs by Table 19.3. Laplace transform properties, some
of which are derived in the same easy way, are listed in Table 19.2. Further
Laplace properties, also listed in the table, want some technique to derive,
for instance the differentiation property, which comes by

L

{
d

dt
f(t)

}
=

∫ ∞

0−
e−st

d

dt
f(t) dt =

∫ ∞

t=0−
e−st d [f(t)]

= e−stf(t)
∣∣∞
0−

+ s

∫ ∞

0−
e−stf(t) dt

= −f(0−) + sF (s)

via the by-parts method of § 9.4. The integration property merely reverses
the differentiation property on the function g(t) ≡

∫ t
0− f(τ) dτ, for which

g(0−) = 0, filling the “?” with F (s)/s in this pattern:

g(t) =

∫ t

0−
f(τ) dτ

F→ G(s) = ? ;

dg

dt
= f(t)

F→ 0 + sG(s) = F (s).

The ramping property comes by differentiating and negating (19.16) as

− d

ds
F (s) = − d

ds

∫ ∞

0−
e−stf(t) dt =

∫ ∞

0−
e−st[tf(t)] dt = L {tf(t)}.

Higher-order properties come by repeated application. The convolution
property comes as it did in § 18.2.7, beginning

L {[u1(t)h(t)] ∗ [u1(t)f(t)]}

=

∫ ∞

−∞
e−st

∫ ∞

−∞
u1

(
t

2
− ψ

)
h

(
t

2
− ψ

)
u1

(
t

2
+ ψ

)
f

(
t

2
+ ψ

)
dψ dt,

7[68, chapter 3][99, chapter 7][71, chapter 19]
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Table 19.2: Properties of the Laplace transform.

u1(t− to)f(t− to) L→ e−stoF (s), to ≥ 0

e−atf(t)
L→ F (s+ a)

Af(αt)
L→ A

α
F
( s
α

)
, =(α) = 0, <(α) > 0

A1f1(t) +A2f2(t)
L→ A1F1(t) +A2F2(t)

d

dt
f(t)

L→ sF (s)− f(0−)

d2

dt2
f(t)

L→ s2F (s)− sf(0−)−
[
df

dt

]

t=0−

dn

dtn
f(t)

L→ snF (s)−
n−1∑

k=0

{
sk
[
dn−1−k

dtn−1−k f(t)

]

t=0−

}

∫ t

0−
f(τ) dτ

L→ F (s)

s

tf(t)
L→ − d

ds
F (s)

tnf(t)
L→ (−)n

dn

dsn
F (s)

[u1(t)h(t)] ∗ [u1(t)f(t)]
L→ H(s)F (s)

As in § 18.2.7, here also we change φ← t/2 +ψ and µ← φ− 2ψ, eventually
reaching the form

L {[u1(t)h(t)] ∗ [u1(t)f(t)]}

=

[∫ ∞

−∞
e−sµu1(µ)h(µ) dµ

] [∫ ∞

−∞
e−sφu1(φ)f(φ) dφ

]
,

after which we take advantage of the presence of Heaviside’s unit step u1(·)
of (7.22) to curtail each integration to begin at 0− rather than at −∞, thus
completing the convolution property’s proof.

Splitting the sine and cosine functions into their complex exponential
components according to Table 5.1, application of Laplace’s definition
(19.16) to each component yields Table 19.3’s sine and cosine pairs. The

pair t
L→ 1/s2 of the latter table comes by application of the property that
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Table 19.3: Laplace transform pairs.

e−att sinωot
L→ 2(s+ a)ωo

[(s+ a)2 + ω2
o ]

2

δ(t)
L→ 1 e−att cosωot

L→ (s+ a)2 − ω2
o

[(s+ a)2 + ω2
o ]

2

1
L→ 1

s
e−at

L→ 1

s+ a

t
L→ 1

s2
e−att

L→ 1

(s+ a)2

tn
L→ n!

sn+1
e−attn

L→ n!

(s+ a)n+1

sinωot
L→ ωo

s2 + ω2
o

e−at sinωot
L→ ωo

(s+ a)2 + ω2
o

cosωot
L→ s

s2 + ω2
o

e−at cosωot
L→ s+ a

(s+ a)2 + ω2
o

tf(t)
L→ −(d/ds)F (s) to the pair 1

L→ 1/s, and the pair tn
L→ n!/sn+1

comes by repeated application of the same property. The pairs transform-
ing e−att sinωot, e

−att cosωot, e
−att and e−attn come similarly.

During application of either Table 19.2 or Table 19.3, a may be, and s
usually is, complex; but α, ωo and t are normally real.

19.4 Solving differential equations by Laplace

The Laplace transform is curious, but Fourier is admittedly more straight-
forward even if it is harder to analyze. One should probably regard the
Fourier transform to be the principal, more general tool for frequency-
domain analysis—among other reasons because Fourier brings an inverse
transformation formula (18.5) whereas Laplace does not.8

Laplace excels Fourier however in its property of Table 19.2 that

(d/dt)f(t)
L→ sF (s)−f(0−). Fourier’s corresponding property of Table 18.1

lacks the f(0−), an initial condition.

8Actually, formally, Laplace does support an inverse transformation formula,
u1(t)f(t) = (1/i2π)

∫ i∞
−i∞ e

stF (s) ds, but to apply this inverse requires contour integra-
tion [99, eqn. 7.2]. The writer has no experience with it. We’ll not use it. It comes of
changing s← iω in (18.1).
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To see why this matters, consider for example the linear differential
equation9,10

d2

dt2
f(t) + 4

d

dt
f(t) + 3f(t) = e−2t, t ≥ 0;

f(t)|t=0− = 1;

d

dt
f(t)

∣∣∣∣
t=0−

= 2.

Applying the properties of Table 19.2 and transforms of Table 19.3, term by
term, yields the transformed equation

{
s2F (s)− s

[
f(t)

]

t=0−
−
[
d

dt
f(t)

]

t=0−

}

+ 4

{
sF (s)−

[
f(t)

]

t=0−

}
+ 3F (s) =

1

s+ 2
.

That is,

(s2 + 4s+ 3)F (s)− (s+ 4)

[
f(t)

]

t=0−
−
[
d

dt
f(t)

]

t=0−
=

1

s+ 2
.

Applying the known initial conditions,

(s2 + 4s+ 3)F (s)− (s+ 4)[1]− [2] =
1

s+ 2
.

Combining like terms,

(s2 + 4s+ 3)F (s)− (s+ 6) =
1

s+ 2
.

Multiplying by s+ 2 and rearranging,

(s+ 2)(s2 + 4s+ 3)F (s) = s2 + 8s+ 0xD.

9[71, Example 19.31]
10It is enlightening to study the same differential equation in state-space style [99,

chapter 8],
d

dt
f(t) =

[
0 1
−3 −4

]
f(t) +

[
0

e−2t

]
, f(0) =

[
1
2

]
,

where

f(t) ≡
[

1
d/dt

]
f(t).

The effort required to assimilate the notation rewards the student with significant insight
into the manner in which initial conditions—here symbolized f(0)—determine a system’s
subsequent evolution.
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Isolating the heretofore unknown frequency-domain function F (s),

F (s) =
s2 + 8s+ 0xD

(s+ 2)(s2 + 4s+ 3)
.

Factoring the denominator,

F (s) =
s2 + 8s+ 0xD

(s+ 1)(s+ 2)(s+ 3)
.

Expanding in partial fractions (this step being the key to the whole tech-
nique: see § 9.7),

F (s) =
3

s+ 1
− 1

s+ 2
− 1

s+ 3
.

Though we lack an inverse transformation formula, it seems that we do not
need one because—having split the frequency-domain equation into such
simple terms—we can just look up the inverse transformation in Table 19.3,
term by term. The time-domain solution

f(t) = 3e−t − e−2t − e−3t

results. One can verify the solution by substituting it back into differential
equation.

Laplace can solve many linear differential equations in this way.

19.5 Initial and final values by Laplace

The method of § 19.4 though effective is sometimes too much work, when
all one wants to know are the initial and/or final values of a function f(t),
when one is uninterested in the details between. The Laplace transform’s
initial- and final-value theorems,

f(0+) = lim
s→∞

sF (s),

lim
t→∞

f(t) = lim
s→0

sF (s),
(19.17)

meet this want.
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One derives the initial-value theorem via the steps

lim
s→∞

sF (s)− f(0−)

= lim
s→∞

L

{
d

dt
f(t)

}

= lim
s→∞

∫ ∞

0−
e−st

d

dt
f(t) dt

= lim
ε→0+

[∫ ∞

0−
e−st

d

dt
f(t) dt

]

s=1/ε2

= lim
ε→0+

[∫ ε

0−
e−st

d

dt
f(t) dt+

∫ ∞

ε
e−st

d

dt
f(t) dt

]

s=1/ε2

= lim
ε→0+

∫ ε

0−

d

dt
f(t) dt =

∫ 0+

0−

d

dt
f(t) dt = f(0+)− f(0−),

which invoke the time-differentiation property of Table 19.2 and the last of
which implies (19.17)’s first line. For the final value, one begins

lim
s→0

sF (s)− f(0−) = lim
s→0

L

{
d

dt
f(t)

}

= lim
s→0

∫ ∞

0−
e−st

d

dt
f(t) dt

=

∫ ∞

0−

d

dt
f(t) dt = lim

t→∞
f(t)− f(0−),

and (19.17)’s second line follows immediately.11

19.6 The spatial Fourier transform

In the study of wave mechanics, physicists and engineers sometimes elabo-
rate the Fourier transform’s kernel eivθ or eiωt, or by whichever pair of letters
is let to represent the complementary variables of transformation, into the
more general, spatiotemporal phase factor12 ei(±ωt∓k·r); where k and r are
three-dimensional geometrical vectors and r in particular represents a posi-
tion in space. To review the general interpretation and use of such a factor

11[99, § 7.5]
12The choice of sign here is a matter of convention, which differs by discipline. This book

tends to reflect its author’s preference for f(r, t) ∼
∫
ei(+ωt−k·r)F (k, ω) dω dk, convenient

in electrical modeling but slightly less convenient in quantum-mechanical work.
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lies beyond the book’s scope but the factor’s very form,

ei(±ωt∓k·r) = ei(±ωt∓kxx∓kyy∓kzz),

suggests Fourier transformation with respect not merely to time but also to
space. There results the spatial Fourier transform

F (k) =
1

(2π)3/2

∫

V
e+ik·rf(r) dr,

f(r) =
1

(2π)3/2

∫

V
e−ik·rF (k) dk,

(19.18)

analogous to (18.5) but cubing the 1/
√

2π scale factor for the triple in-
tegration and reversing the sign of the kernel’s exponent. The transform
variable k, analogous to ω, is a spatial frequency, also for other reasons
called a propagation vector.

Nothing prevents one from extending (19.18) to four dimensions, includ-
ing a fourth integration to convert time t to temporal frequency ω while
also converting position r to spatial frequency k. On the other hand, one
can restrict it to two dimensions or even one. Thus, various plausibly useful
Fourier transforms include

F (ω) =
1√
2π

∫ ∞

−∞
e−iωtf(t) dt,

F (kz) =
1√
2π

∫ ∞

−∞
e+ikzzf(z) dz,

F (kρ) =
1

2π

∫

S
e+ikρ·ρf(ρ) dρ,

F (k) =
1

(2π)3/2

∫

V
e+ik·rf(r) dr,

F (k, ω) =
1

(2π)2

∫

V

∫ ∞

−∞
ei(−ωt+k·r)f(r, t) dt dr,

among others.
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19.7 The Fourier transform in cyclic frequencies

Many applications prefer13 a clever alternate definition of the Fourier trans-
form,14

Φ(ν) ≡
∫ ∞

−∞
e−i2πνtf(t) dt, (19.19)

ν ≡ ω

2π
, (19.20)

instead of (18.5). In (19.19) and (19.20), cyclic frequency ν appears rather
than angular frequency ω. Comparing against (18.5),

Φ(ν) =
(√

2π
)
F (ω), (19.21)

such that, for example, referring to Table 18.4, if f(t) = Λ(t), then Φ(t) =
Sa2(πν)—or, if you prefer, letting this section use the symbol→ to announce
the cyclic transform (19.19), f(t)→ Sa2(πν).

Substituting (19.20) and (19.21) into (18.5), the inverse cyclic transform
is

f(t) =

∫ ∞

−∞
ei2πνtΦ(ν) dν, (19.22)

an elegant result. Even more elegant are the alternate forms of the con-
volution properties of Table 18.3. Defining s(f) ≡ h(t) ∗ f(t) and letting
Σ(ν), X(ν) and Φ(ν) respectively be the cyclic alternatives to S(ω), H(ω)
and F (ω), we have that Σ(ν) = (

√
2π)S(ω) = 2πH(ω)F (ω) = X(ν)Φ(ν).

Calculating in such a manner,

h(t) ∗ f(t)→ X(ν)Φ(ν),

h(t)f(t)→ X(ν) ∗ Φ(ν),
(19.23)

13[29]
14The Φ of this section is not the Φ of § 18.2. The two sections use the Greek letter Φ

for different purposes.
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the latter because

h(t)f(t)
F→ 1√

2π
[H(ω) ∗ F (ω)]

F→ 1√
2π

∫ ∞

−∞
H
(ω

2
− η
)
F
(ω

2
+ η
)
dη

F→ 1√
2π

∫ ∞

−∞

[
1√
2π

X
(ν

2
− ν ′

)][ 1√
2π

Φ
(ν

2
+ ν ′

)]
2π dν′

F→ 1√
2π

∫ ∞

−∞
X
(ν

2
− ν ′

)
Φ
(ν

2
+ ν ′

)
dν ′

F→ 1√
2π

[X(ν) ∗ Φ(ν)].

Thus we see that, so long as one does not mind forgoing the use of angular
frequencies, the cyclic alternative brings some practical advantages.

Table 19.4 lists some notable Fourier properties in the cyclic style. Ta-
ble 19.5 lists cyclic Fourier transform pairs. Among the properties of Ta-
ble 19.4, the integration property is derived as in § 18.5 using the cyclic
transform of u(v), listed in Table 19.5; and the properties involving δ(v)
appeal to (7.26).

The book you are reading lacks a strong preference between the angu-
lar transform of the rest of the chapter and this section’s cyclic alternative.
The book has nonetheless chosen to standardize on the angular transform
because angular frequencies better comport with expressions like sinωt that
appear in chapters such as 5 and 16, yet the way the cyclic alternative dis-
penses with so many stray factors of

√
2π is indeed attractive. On the other

hand, Ω(t) → (
√

2π)Ω(ν), whereas Ω(t)
F→ Ω(ω), so the angular transform

wins that contest. Applied mathematicians can put both options to good
use.15

15In some countries including the writer’s, engineers have tended to use a third definition
of the transform, Fengineer(ω) = (

√
2π)F (ω). Working with engineers (the writer is one),

the writer has had occasion to employ the third definition many times. Engineers are fine
people but the writer cannot especially recommend their third definition, which obscures
the natural, mutual symmetry of the transform and its inverse.
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Table 19.4: Properties of the cyclic Fourier transform.

Φ(ν) =
(√

2π
)
F (ω)

f(v − a) → e−ia2πvΦ(v)

eiavf(v) → Φ
(
v − a

2π

)

(√
|α|
)
Af(αv) → A√

|α|
Φ
( v
α

)

Af [(α)(v − a)] → Ae−ia2πv

|α| Φ
( v
α

)

=(α) = 0, <(α) 6= 0

dn

dvn
f(v) → (i2πv)nΦ(v)

(−iv)nf(v) → dn

(2π)n dvn
Φ(v)

n ∈ Z, n ≥ 0∫ v

−∞
f(τ) dτ → Φ(v)

i2πv
+

Φ(0)δ(v)

2∫ ∞

−∞
h∗(v)f(v) dv =

∫ ∞

−∞
X∗(v)Φ(v) dv

∫ ∞

−∞
|f(v)|2 dv =

∫ ∞

−∞
|Φ(v)|2 dv

aj = ∆ν Φ(j∆ν)

h(t) ∗ f(t) → X(ν)Φ(ν)

h(t)f(t) → X(ν) ∗ Φ(ν)

Rfh(t) → X∗(ν)Φ(ν)

h∗(t)f(t) → RΦX(ν)

Rff (t) → |Φ(ν)|2
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Table 19.5: Cyclic Fourier transform pairs.

1 → δ(v) δ(v) → 1

Λ(v) → Sa2(πv) u(v) → 1

i2πv
+
δ(v)

2

Λr(v) → Sa(πrv) Sa(πv) Π(v) → Saπv

Ψ(v) → Sa 2πv

[1− (2v)2]
F{Ψ(v)}v=±1/2 =

1

2

Ψr(v) → cos(rπv) Sa(πv)

[1− (2rv)2]
F{Ψr(v)}rv=±1/2 =

2π Sa(πv)

8

=
2π Sa(2π/4r)

8

Sa2(v) → πΛ(πv) Sa(v) → πΠ(πv)

u(v)e−av → 1

a+ i2πv
, <(a) > 0

u(v)e−avvn → n!

(a+ i2πv)n+1
, <(a) > 0, n ∈ Z, n ≥ 0

eiav → δ
(
v − a

2π

)
, =(a) = 0

sin av → 1

i2

[
δ
(
v − a

2π

)
− δ

(
v +

a

2π

)]
, =(a) = 0

cos av → 1

2

[
δ
(
v − a

2π

)
+ δ

(
v +

a

2π

)]
, =(a) = 0

√
T1

∞∑

j=−∞
δ(v − jT1) →

√
∆ν

∞∑

j=−∞
δ(v − j∆ν), ∆ν T1 = 1

Ω
[(√

2π
)
v
]
→ Ω

[(√
2π
)
v
]



Chapter 20

Probability

Of all mathematical fields of study, none may be so counterintuitive and
yet so widely applied as that of probability—whether as probability in the
technical term’s conventional, restricted meaning or as probability in its
expanded or inverted guise as statistics.1 The untrained mind seems to rebel
against the concept. Nevertheless, sustained reflection upon the concept
gradually reveals a fascinating mathematical landscape.

As calculus is the mathematics of change, so probability is the mathemat-
ics of uncertainty. If I tell you that my thumb is three inches long, I likely do
not mean that it is exactly three inches. I mean that it is about three inches.
Quantitatively, I might report the length as 3.0± 0.1 inches, thus indicating
not only the length but the degree of uncertainty in the length. Probability
in its guise as statistics is the mathematics which produces, analyzes and
interprets such quantities.

More obviously statistical is a report that, say, the average 25-year-
old U.S. male is 69 ± 3 inches tall, inferred from actual measurements2 of
some number N > 1 of 25-year-old U.S. males. Deep mathematics underlie
such a report, for the report implies among other things that a little over
two-thirds—(1/

√
2π)

∫ 1
−1 exp(−τ2/2) dτ ≈ 0x0.AEC5, to be precise—of a

typical, randomly chosen sample of 25-year-old U.S. males ought to be found

1The nomenclature is slightly unfortunate. Were statistics called “inferred probability”
or “probabilistic estimation” the name would suggest something like the right taxonomy.
Actually, the nomenclature is fine once you know what it means, but on first encounter it
provokes otherwise unnecessary footnotes like this one.

Statistics (singular noun) the expanded mathematical discipline—as opposed to the
statistics (plural noun) mean and standard deviation of § 20.2—as such lies mostly beyond
this book’s scope, but the chapter will have at least a little to say about it in § 20.6.

2[26, Tables 6 and 12]

629
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to have heights between 66 and 72 inches.

Probability is also met in games of chance and in models of systems
which—from the model’s point of view—logically resemble games of chance,
and in this setting probability is not statistics. The reason it is not is that its
mathematics in this case is based not on observation but on a teleological
assumption of some kind, often an assumption of symmetry such as that
no face of a die or card from a deck ought to turn up more often than
another. Entertaining so plausible an assumption, if you should draw three
cards at random from a standard 52-card3 deck, the deck comprising four
cards each of thirteen ranks, then there would be some finite probability—
which is (3/51)(2/50) = 1/425—that the three cards drawn would share
the same rank (why?). If I should however shuffle the deck, draw three
cards off the top, and look at the three cards without showing them to
you, all before inviting you to draw three, then the probability that your
three would share the same rank were again 1/425 (why?). On the other
hand, if before you drew I let you peek at my three hidden cards, and
you saw that my three hidden cards were ace, queen and ten, then this
knowledge alone must slightly lower your estimate of the probability that
your three would subsequently share the same rank to (40/49)(3/48)(2/47)+
(9/49)(2/48)(1/47) ≈ 1/428 (again, why?).

That the probability should be 1/425 suggests that one would draw three
of the same rank once in 425 tries. That is, were I to shuffle 425 decks and
you to draw three cards from each, then for you to draw three of the same
rank from just one of the 425 decks would be expected. Nevertheless, despite
expectations, you might draw three of the same rank from two, three or four
decks, or from none at all—so what does a probability of 1/425 really mean?
The answer is that it means something like this: were I to shuffle 425 million
decks then you would draw three of the same rank from very nearly 1.0
million decks—almost certainly not from as many as 1.1 million nor as few
as 0.9 million. It means that the ratio of the number of three-of-the-same-
rank events to the number of trials must converge exactly upon 1/425 as
the number of trials tends toward infinity.

See also § 4.2.

If unsure, consider this. Suppose that during six days in an unfamiliar
climate, in a place you had never before visited, it rained twice. Then
suppose that during six throws of a six-sided die, a single pip came up
twice. What would you conclude about the climate? What would you
conclude about the die? See, these are different cases.

3Decimal notation is used here.
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Regarding the climate, the best one can do might be to suppose em-
pirically that, on average, it rained two days out of every six; whereas one
should probably assume a priori that, on average, a single pip were to come
up one throw out of every six. For the die, one would regard the two-throw
observation to represent but a random fluctuation.

Cases of either kind can be quantitatively analyzed. This chapter mostly
(though not solely) analyzes cases of the a priori kind, cases like that of the
die.

Other than by the brief introduction you are reading, this book is not
well placed to offer a gentle tutorial in probabilistic thought.4 What it does
offer, in the form of the present chapter, is the discovery and derivation of
some of the essential mathematical functions of probability theory, plus a
brief investigation of these functions’ principal properties and typical use.

20.1 Definitions and basic concepts

A probability is the chance that a trial of some kind will result in some
specified event of interest. Conceptually,

Pevent ≡ lim
N→∞

Nevent

N
,

where N and Nevent are the numbers respectively of trials and events. A
probability density function (PDF) or distribution is a function f(x) defined
such that

Pba =

∫ b

a
f(x) dx,

1 =

∫ ∞

−∞
f(x) dx,

0 ≤ f(x), =[f(x)] = 0.

(20.1)

where the event of interest is that the random variable x fall5 within the in-
terval6 a < x < b and Pba is the probability of this event. The corresponding

4R. W. Hamming’s [57] ably fills such a role.
5This sentence and the rest of the section condense somewhat lengthy tracts of an

introductory collegiate statistics textbook like [137][2][87][107], among others. If the sen-
tence and section make little sense to you then so likely will the rest of the chapter, but
any statistics text you might find conveniently at hand should fill the gap—which is less
a mathematical gap than a conceptual one. Or, if defiant, you can stay here and work
through the concepts on your own.

6We might as well have expressed the interval a < x < b as a ≤ x ≤ b or even as
a ≤ x < b, except that such notational niceties would distract from the point the notation
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cumulative distribution function (CDF) is

F (x) ≡
∫ x

−∞
f(τ) dτ, (20.2)

where

0 = F (−∞),

1 = F (∞),

Pba = F (b)− F (a).

(20.3)

The quantile F−1(·) inverts the CDF F (x) such that

F−1[F (x)] = x, (20.4)

generally calculable by a Newton-Raphson iteration (4.30) if by no other
means.

It is easy enough to see that the product

P = P1P2 (20.5)

of two probabilities composes the single probability that not just one but
both of two independent events will occur. Harder to see, but just as im-
portant, is that the convolution

f(x) = f1(x) ∗ f2(x) (20.6)

of two probability density functions composes the single probability density
function of the sum of two random variables

x = x1 + x2, (20.7)

where, per Table 18.3,

f2(x) ∗ f1(x) = f1(x) ∗ f2(x) ≡
∫ ∞

−∞
f1

(x
2
− τ
)
f2

(x
2

+ τ
)
dτ.

means to convey. The notation in this case is not really interested in the bounding points
themselves. If we are interested in the bounding points, as for example we would be if
f(x) = δ(x) and a = 0, then we can always write in the style of P(0−)b, P(0+)b, P(a−ε)(b+ε),
P(a+ε)(b−ε) or the like. We can even be most explicit and write in the style of P{a ≤ x ≤ b},
often met in the literature.
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That is, if you think about it in a certain way, the probability that a <
x1 + x2 < b cannot but be

Pba = lim
ε→0+

∞∑

k=−∞

{[∫ b−kε

a−kε
f1(x) dx

][ ∫ (k+1/2)ε

(k−1/2)ε
f2(x) dx

]}

= lim
ε→0+

∞∑

k=−∞

{[∫ b

a
f1(x− kε) dx

][
εf2(kε)

]}

=

∫ ∞

−∞

[ ∫ b

a
f1(x− τ) dx

]
f2(τ) dτ

=

∫ b

a

[∫ ∞

−∞
f1(x− τ)f2(τ) dτ

]
dx

=

∫ b

a

[∫ ∞

−∞
f1

(x
2
− τ
)
f2

(x
2

+ τ
)
dτ

]
dx,

which in consideration of (20.1) implies (20.6).

20.2 The statistics of a distribution

A probability density function f(x) describes a distribution whose mean µ
and standard deviation σ are defined such that

µ ≡ 〈x〉 =

∫ ∞

−∞
f(x)x dx,

σ2 ≡
〈
(x− 〈x〉)2

〉
=

∫ ∞

−∞
f(x)(x− µ)2 dx;

(20.8)

where 〈·〉 indicates the expected value of the quantity enclosed, defined as the
first line of (20.8) suggests. The mean µ is just the distribution’s average,
about which a random variable should center. The standard deviation σ
measures a random variable’s typical excursion from the mean. The mean
and standard deviation are statistics of the distribution.7 When for example
the chapter’s introduction proposed that the average 25-year-old U.S. male
were 69 ± 3 inches tall, it was saying that his height could quantitatively
be modeled as a random variable drawn from a distribution whose statistics
are µ = 69 inches and σ = 3 inches.

The first line of (20.8), defining µ, might seem obvious enough, but one
might ask why σ had not instead been defined to be 〈|x−〈x〉|〉. Would that

7Other statistics than the mean and standard deviation are possible, but these two are
the most important ones and are the two this book will treat.
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not have been more obvious? One answer is8 that, yes, it might have been
more obvious but it would not have been analytic (§§ 2.11.3 and 8.4). An-
other answer is that one likes to regard long excursions from the mean more
seriously than short ones. A third answer is that the second line of (20.8)
comports with the elegant mathematics of least squares and Moore-Penrose
(§ 13.6). Whatever the answer, (20.8) is the definition conventionally used.

20.3 The sum of random variables

The statistics of the sum of two random variables x = x1 +x2 are of interest.
For the mean, substituting (20.6) into the first line of (20.8),

µ =

∫ ∞

−∞
[f1(x) ∗ f2(x)]x dx

=

∫ ∞

−∞

∫ ∞

−∞
f1

(x
2
− τ
)
f2

(x
2

+ τ
)
dτ x dx

=

∫ ∞

−∞
f2(τ)

∫ ∞

−∞
f1(x− τ)x dx dτ

=

∫ ∞

−∞
f2(τ)

∫ ∞

−∞
f1(x)(x+ τ) dx dτ

=

∫ ∞

−∞
f2(τ)

[∫ ∞

−∞
f1(x)x dx+ τ

∫ ∞

−∞
f1(x) dx

]
dτ

=

∫ ∞

−∞
f2(τ)[µ1 + τ ] dτ

= µ1

∫ ∞

−∞
f2(τ) dτ +

∫ ∞

−∞
f2(τ)τ dτ.

That is,
µ = µ1 + µ2, (20.9)

which is no surprise, but at least it is nice to know that our mathematics
is working as it should. The standard deviation of the sum of two random
variables is such that, substituting (20.6) into the second line of (20.8),

σ2 =

∫ ∞

−∞
[f1(x) ∗ f2(x)](x− µ)2 dx

=

∫ ∞

−∞

∫ ∞

−∞
f1

(x
2
− τ
)
f2

(x
2

+ τ
)
dτ (x− µ)2 dx.

8The writer does not know the original, historical answer.
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Applying (20.9),

σ2 =

∫ ∞

−∞

∫ ∞

−∞
f1

(x
2
− τ
)
f2

(x
2

+ τ
)
dτ (x− µ1 − µ2)2 dx

=

∫ ∞

−∞

∫ ∞

−∞
f1

(
x+ µ1

2
− τ
)
f2

(
x+ µ1

2
+ τ

)
dτ (x− µ2)2 dx

=

∫ ∞

−∞
f2(τ)

∫ ∞

−∞
f1(x+ µ1 − τ)(x− µ2)2 dx dτ

=

∫ ∞

−∞
f2(τ)

∫ ∞

−∞
f1(x)[(x− µ1) + (τ − µ2)]2 dx dτ

=

∫ ∞

−∞
f2(τ)

{∫ ∞

−∞
f1(x)(x− µ1)2 dx

+ 2(τ − µ2)

∫ ∞

−∞
f1(x)(x− µ1) dx

+ (τ − µ2)2

∫ ∞

−∞
f1(x) dx

}
dτ

=

∫ ∞

−∞
f2(τ)

{∫ ∞

−∞
f1(x)(x− µ1)2 dx

+ 2(τ − µ2)

∫ ∞

−∞
f1(x)x dx

+ (τ − µ2)(τ − µ2 − 2µ1)

∫ ∞

−∞
f1(x) dx

}
dτ.

Applying (20.8) and (20.1),

σ2 =

∫ ∞

−∞
f2(τ)

{
σ2

1 + 2(τ − µ2)µ1 + (τ − µ2)(τ − µ2 − 2µ1)
}
dτ

=

∫ ∞

−∞
f2(τ)

{
σ2

1 + (τ − µ2)2
}
dτ

= σ2
1

∫ ∞

−∞
f2(τ) dτ +

∫ ∞

−∞
f2(τ)(τ − µ2)2 dτ.

Applying (20.8) and (20.1) again,

σ2 = σ2
1 + σ2

2. (20.10)

If this is right—as indeed it is—then the act of adding random variables
together not only adds the means of the variables’ respective distributions
according to (20.9) but also, according to (20.10), adds the squares of the
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standard deviations. It follows inductively that, if N independent instances
x1, x2, . . . , xN of a random variable are drawn from the same distribution
fo(xk), the distribution’s statistics being µo and σo, then the statistics of
their sum x =

∑N
k=1 xk = x1 + x2 + · · ·+ xN are

µ = Nµo,

σ =
(√
N
)
σo.

(20.11)

20.4 The transformation of a random variable

If xo is a random variable obeying the distribution fo(xo) and g(·) is some
invertible function whose inverse per (2.54) is styled g−1(·), then

x ≡ g(xo)

is itself a random variable obeying the distribution

f(x) =
fo(xo)

|dg/dxo|

∣∣∣∣
xo=g−1(x)

. (20.12)

Another, suaver way to write the same thing is as that

f(x) |dx| = fo(xo) |dxo| . (20.13)

Either way, this is almost obvious if seen from just the right perspective,
but can in any case be supported symbolically by

∫ b

a
fo(xo) dxo =

∣∣∣∣∣

∫ g(b)

g(a)
fo(xo)

dxo
dx

dx

∣∣∣∣∣ =

∫ g(b)

g(a)
fo(xo)

∣∣∣∣
dxo
dg

∣∣∣∣ dx

since, on the other hand

∫ b

a
fo(xo) dxo =

∫ g(b)

g(a)
f(x) dx.

One of the most frequently useful transformations is the simple

x ≡ g(xo) ≡ αxo, =(α) = 0. (20.14)

For this, evidently dg/dxo = α or dx = αdxo, so according to (20.12)
or (20.13)

f(x) =
1

|α|fo
(x
α

)
. (20.15)
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If µo = 0 and σo = 1, then µ = 0 and, applying (20.13) in train of (20.8),

σ2 =

∫ ∞

−∞
f(x)x2 dx =

∫ ∞

−∞
fo(xo)(αxo)

2 dxo = α2;

whereby σ = |α| and, if α > 0, one can rewrite the transformed PDF as

f(x) =
1

σ
fo

(x
σ

)
and µ = 0, if µo = 0 and σo = 1. (20.16)

Assuming null mean, (20.16) states that the act of scaling a random variable
flattens out the variable’s distribution and scales its standard deviation, all
by the same factor—which, naturally, is what one would expect such an act
to do.

20.5 The normal distribution

Combining the ideas of §§ 20.3 and 20.4 can lead one to ask whether a
zero-mean distribution does not exist for which, when independent random
variables drawn from it are added together, the sum obeys the same distri-
bution, only the standard deviations differing. More precisely, the ideas can
lead one to seek a distribution

fo(xo): µo = 0, σo = 1;

for which, if x1 and x2 are random variables drawn respectively from the
distributions

f1(x1) =
1

σ1
fo

(
x1

σ1

)
,

f2(x2) =
1

σ2
fo

(
x2

σ2

)
,

as (20.16) suggests, then

x = x1 + x2

is by construction a random variable drawn from the distribution

f(x) =
1

σ
fo

(x
σ

)
,

where per (20.10),

σ2 = σ2
1 + σ2

2.
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There are several distributions one might try, but eventually the Gaussian
pulse Ω(xo) of §§ 17.3 and 18.4,

Ω(x) =
exp

(
−x2/2

)
√

2π
, (20.17)

recommends itself. This works. The distribution fo(xo) = Ω(xo) meets our
criterion.

20.5.1 Proof

To prove that the distribution fo(xo) = Ω(xo) meets our criterion we shall
have first to show that it is indeed a distribution according to (20.1). Espe-
cially, we shall have to demonstrate that

∫ ∞

−∞
Ω(xo) dxo = 1.

Fortunately as it happens we have already demonstrated this fact in an ear-
lier chapter, while working on Fourier transforms, as (18.58). The function
Ω(xo) had interested us during the earlier chapter because it is an analytic
function that autotransforms, so now in this chapter we observe that, since
Ω(xo) evidently meets the other demands of (20.1), Ω(xo) is apparently
indeed also a proper distribution, whatever its other properties might be.
That µo = 0 for Ω(xo) is obvious by symmetry. That σo = 1 is shown by

σ2 ≡
∫ ∞

−∞
Ω(xo)x

2
o dxo

=
1√
2π

∫ ∞

−∞
exp

(
−x

2
o

2

)
x2
o dxo

=
1√
2π

∫ ∞

−∞

{[
−xo

][
−xo exp

(
−x

2
o

2

)
dxo

]}

= − 1√
2π

∫ ∞

xo=−∞
xo d

[
exp

(
−x

2
o

2

)]

= −xo exp
(
−x2

o/2
)

√
2π

∣∣∣∣∣

∞

−∞

+
1√
2π

∫ ∞

−∞
exp

(
−x

2
o

2

)
dxo

= 0 +

∫ ∞

−∞
Ω(xo) dxo,
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the integration via the by-parts method of § 9.4, the result according to
(18.58) that

σ2 ≡
∫ ∞

−∞
Ω(xo)x

2
o dxo = 1, (20.18)

implying that σ = 1 as was to be shown. Now having justified the assertions
that Ω(xo) is a proper distribution and that its statistics are µo = 0 and
σo = 1, all that remains to be proved per (20.6) is that

[
1

σ1
Ω

(
xo
σ1

)]
∗
[

1

σ2
Ω

(
xo
σ2

)]
=

1

σ
Ω
(xo
σ

)
,

σ2
1 + σ2

2 = σ2,

(20.19)

which is to prove that the sum of Gaussian random variables is itself Gaus-
sian. We will prove it in the Fourier domain of chapter 18 as follows. Ac-
cording to Tables 18.1, 18.3 and 18.5, and to (20.17),

[
1

σ1
Ω

(
xo
σ1

)]
∗
[

1

σ2
Ω

(
xo
σ2

)]

= F−1

{(√
2π
)

F

[
1

σ1
Ω

(
xo
σ1

)]
F

[
1

σ2
Ω

(
xo
σ2

)]}

= F−1
{(√

2π
)

Ω(σ1xo)Ω(σ2xo)
}

= F−1

{
1√
2π

exp

[
−σ

2
1x

2
o

2

]
exp

[
−σ

2
2x

2
o

2

]}

= F−1

{
1√
2π

exp

[
−
(
σ2

1 + σ2
2

)
x2
o

2

]}

= F−1

{
Ω

[(√
σ2

1 + σ2
2

)
xo

]}

=
1√

σ2
1 + σ2

2

Ω

(
xo√

σ2
1 + σ2

2

)
,

the last line of which is (20.19) in other notation, thus completing the proof.

20.5.2 Plots and remarks

In the Fourier context of chapter 18 one usually names Ω(·) the Gaussian
pulse, as we have seen. The function Ω(·) turns out to be even more promi-
nent in probability theory than in Fourier theory, however, and in a proba-
bilistic context it usually goes by the name of the normal distribution. This
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Figure 20.1: The normal distribution Ω(x) ≡ (1/
√

2π) exp(−x2/2) and its
cumulative distribution function FΩ(x) =

∫ x
−∞Ω(τ) dτ .

x

Ω(x)

1/
√
2π

1−1

x

FΩ(x)

1

1−1

is what we will call Ω(·) through the rest of the present chapter. Alternate
conventional names include those of the Gaussian distribution and the bell
curve (the Greek capital Ω vaguely, accidentally resembles a bell, as does the
distribution’s plot, and we will not be too proud to take advantage of the ac-
cident, so that is how you can remember it if you like). By whichever name,
Fig. 20.1 plots the normal distribution Ω(·) and its cumulative distribution
function (20.2).

Regarding the cumulative normal distribution function, one way to cal-
culate it numerically is to integrate the normal distribution’s Taylor series
term by term. As it happens, § 9.12 has worked a similar integral as an
example, so this section will not repeat the details, but the result is that

FΩ(xo) =

∫ xo

−∞
Ω(τ) dτ =

1

2
+

1√
2π

∞∑

k=0

(−)kx2k+1
o

(2k + 1)2kk!

=
1

2
+

xo√
2π

∞∑

k=0

1

2k + 1

k∏

j=1

−x2
o

2j
. (20.20)

Unfortunately, this Taylor series—though always theoretically correct—is
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practical only for small and moderate |xo| . 1. For |xo| � 1, see § 20.10.

The normal distribution tends to be the default distribution in applied
mathematics. When one lacks a reason to do otherwise, one models a ran-
dom quantity as a normally distributed random variable. Section 20.7 tells
more.

20.5.3 Motive

Equation (20.17) seems almost unfair to posit. Once the equation has been
posited, the proof follows, the proof validating the position; so the logic is
valid, but why posit the equation in the first place?9

One answer is that the equation (20.17) is not really all that obscure. To
study expressions that resemble exp(−x2/2) for their own sakes is neither
unreasonable nor especially unlikely. Some mathematician or other must
probably, eventually have thought to try such an expression against the
logic of § 20.5.1. One he had tried it and had shown us his result, we would
know to posit it.

The last paragraph’s answer is actually a pretty good answer. We should
not be embarrassed to give it. Much of mathematics goes that way, after
all.

Nevertheless, an alternate answer is known. Suppose that N coins are
tossed and that 2m is the number of heads in excess of the number of tails
(for example, if 6 heads and 2 tails, then 2m = 6−2 = 4 and N = 6+2 = 8).
According to the combinatorics of § 4.2,

f(m) =

(
N

[N + 2m]/2

)
=
N !/[(N − 2m)/2]!

[(N + 2m)/2]!

computes the probability that m will have a given value.

9This subsection is optional reading for the benefit of the curious. You can skip it
without burdening the rest of the book.
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Since we are merely motivating, we need not be precise, so approximately,

d

dm
ln f(m) =

df/dm

f(m)

≈ f(m+ 1)− f(m− 1)

2f(m)

≈ 1

2

[
f(m+ 1)

f(m)
− f(m− 1)

f(m)

]

≈ 1

2

[
(N − 2m)/2

(N + 2m+ 2)/2
− (N + 2m)/2

(N − 2m+ 2)/2

]

≈ 1

2

[
1− 2m/N

1 + (2m+ 2)/N
− 1 + 2m/N

1− (2m+ 2)/N

]

≈ 1

2

[
(−8m− 4)/N

1− [(2m+ 2)/N ]2

]
≈ 1

2

[−8m− 4

N

][
1 +

(
2m+ 2

N

)2
]

≈ 1

2

[−8m

N

]
= −4m

N
.

Changing x← m and α← 4/N ,

d

dx
ln f(x) =

df/dx

f(x)
≈ −αx.

A function that does this is

f(x) ≈ C exp(−αx2/2),

which motivates (20.17).

20.6 Inference of statistics

Suppose that several, concrete instances of a random variable—the instances
collectively called a sample—were drawn from a distribution f(x) and pre-
sented to you, but that you were not told the shape of f(x). Could you infer
the shape?

The answer is that you could infer the shape with passable accuracy
provided that the number N of instances were large. Typically however one
will be prepared to make some assumption about the shape such as that

f(x) = µ+
1

σ
Ω
(x
σ

)
, (20.21)
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which is to assume that x were normally distributed with unknown statis-
tics µ and σ. The problem then becomes to infer the statistics from the
sample.

20.6.1 Inference of the mean

In the absence of additional information, one can hardly suppose much re-
garding the mean other than that

µ ≈ 1

N

∑

k

xk. (20.22)

One infers the mean to be the average of the instances observed.

20.6.2 An imputed ensemble

One might näıvely think to infer a standard deviation in much the same
way as § 20.6.1 has inferred a mean, except that to calculate the standard
deviation directly according to (20.8) would implicate our imperfect esti-
mate (20.22) of the mean. If we wish to estimate the standard deviation
accurately from the sample then we shall have to proceed more carefully
than that.

Section 20.6.3 will estimate the standard deviation after the subsection
you are reading has prepared the ground on which to do it. To prepare the
ground, let us now define the shifted random variable

u ≡ x− µtrue

in lieu of the random variable x, where µtrue is not the estimated mean
of (20.22) but is the true, unknown mean of the hidden distribution f(x)—
such that an instance uk of the random variable u is in no way independent
of, but is rather wholly dependent on, the corresponding instance xk of the
random variable x; but also, paradoxically, such that the exact value of uk
remains unknown even if the exact value of xk is known. And why does
the exact value of uk remain unknown? It remains unknown because the
separation µtrue (which from the present perspective is no random variable
but a fixed number) between uk and xk remains unknown. At any rate, the
distribution of u is

fu(u) ≡ f(u+ µtrue),

a distribution which by construction is known to have zero true mean,

〈u〉 = 0,
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even though the standard deviation σtrue the two distributions f(x) and
fu(u) share remains unknown.

Statistical reasoning is tricky, isn’t it? No? Quite straightforward, you
say? Good, let us continue.

Regarding not any particular sample of N instances but a conceptually
infinite ensemble of samples, each sample consisting of N instances, two
identities the standard-deviational analysis of § 20.6.3 will be able to use
are that

〈∑

k

u2
k

〉
= Nσ2

true,

〈∑

k

2
uk

〉
= Nσ2

true,

where σtrue is (as the notation suggests and as an earlier paragraph has
observed) the true, unknown standard deviation of the hidden distribution
f(x) and thus also of the shifted distribution fu(u). The first of the two
identities is merely a statement of the leftward part of (20.8)’s second line
with respect to the distribution fu(u) whose mean 〈u〉 = 0 is, as we said,
known to be zero despite that the distribution itself remains unknown. The
second of the two identities considers the sum

∑
k uk itself as a random vari-

able whose mean again is zero but whose standard deviation σΣ according
to (20.10) is such that σ2

Σ = Nσ2
true.

Admittedly, one might wonder how we can speak sensibly of an ensemble
when no concrete ensemble is to be observed. Observation, after all, sees
only the one sample of N instances. However, we have assumed that a
hidden distribution f(x) exists and that the several instances xk, which
are observed, have been drawn from it. Our assumption might be wrong,
of course—in general this is very difficult to judge—but we have assumed
it and the assumption has consequences. Among the consequences is that
f(x) possesses statistics µtrue and σtrue. We do not know—we shall never
know—the right values of these statistics; but our assumption implies that
they do exist and do have values, values one can and should write symbols
to represent.

Section 20.6.3 will employ the symbols, next.
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20.6.3 Inference of the standard deviation

With the definitions and identities of § 20.6.2 in hand, let us construct from
the available sample the quantity

(
σ′
)2 ≡ 1

N

∑

k

(
xk −

1

N

∑

`

x`

)2

,

modeled on (20.8). Evidently,

lim
N→∞

σ′ = σtrue.

However, unlike the σtrue, the σ′ is a quantity we can actually compute
from an observed sample. Let the sample consist of N > 1 instances. By
successive steps,

(
σ′
)2

=
1

N

∑

k

(
[uk + µtrue]−

1

N

∑

`

[u` + µtrue]

)2

=
1

N

∑

k

(
uk −

1

N

∑

`

u`

)2

=
1

N

∑

k

(
u2
k −

2

N
uk
∑

`

u` +
1

N2

∑

`

2
u`

)

=
1

N

∑

k

u2
k −

2

N2

∑

k

uk
∑

`

u` +
1

N2

∑

`

2
u`

=
1

N

∑

k

u2
k −

2

N2

∑

k

2
uk +

1

N2

∑

k

2
uk

=
1

N

∑

k

u2
k −

1

N2

∑

k

2
uk,

the expected value of which over a conceptually infinite ensemble of samples
(each sample consisting—as explained by § 20.6.2—of an equal number N >
1 of instances) is

〈(
σ′
)2〉

=
1

N

〈∑

k

u2
k

〉
− 1

N2

〈∑

k

2
uk

〉
.

Applying the identities of § 20.6.2,

〈(
σ′
)2〉

= σ2
true −

σ2
true

N
=
N − 1

N
σ2

true,
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from which

σ2
true =

N

N − 1

〈(
σ′
)2〉

.

Because the expectation 〈(σ′)〉 is not a quantity whose value we know, we
can only suppose that 〈(σ′)2〉 ≈ (σ′)2, whereby

σ2
true ≈

N

N − 1

(
σ′
)2
.

Substituting the definition of (σ′)2 into the last equation and changing sym-
bols σ ← σtrue, we have that

σ2 ≈ 1

N − 1

∑

k

(
xk −

1

N

∑

`

x`

)2

. (20.23)

This σ2 is apparently a little greater (though, provided that N is sufficiently
large, not much greater) than a näıve assumption that σ equaled σ′ would
have supposed.

Notice according (20.23) that σ, unlike σ′, infers a standard deviation
only when the sample includes at least two instances! Indeed, σ is sensible
to do so, for the one case in which a näıve analysis were right would be when
the true mean µtrue were for some reason a priori exactly known, leaving
only the standard deviation to be inferred. In such a case,

σ2 ≈ 1

N

∑

k

(xk − µtrue)
2 . (20.24)

The estimates (20.22) and (20.23) are known as sample statistics. They
are the statistics one imputes to an unknown distribution based on the
incomplete information a sample of N > 1 instances affords.

20.6.4 Correlation and its inference

The chapter you are reading has made some assumptions, not all of which
it has explicitly stated, or at any rate not all of which it has fully devel-
oped. One assumption the chapter has made is that instances of its ran-
dom variables have been independent. In statistical work however one must
sometimes handle correlated quantities like the height and weight of a 25-
year-old U.S. male—for, obviously, if I point to some 25-year-old over there
and say, “That’s Pfufnik. The average is 187 pounds, but he weighs 250!”
then your estimate of his probable height will change, because height and
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weight are not independent but correlated. The conventional statistical mea-
sure10 of the correlation of a sample of N pairs (xk, yk) of data, such as the
([height]k, [weight]k) of the example, is the correlation coefficient

r ≡
∑

k(xk − µx)(yk − µy)√∑
k(xk − µx)2

∑
k(yk − µy)2

, (20.25)

a unitless quantity whose value is ±1—the ±1 indicating perfect correla-
tion—when yk = xk or even yk = a1xk +a0; but whose value should be near
zero when the paired data are unrelated. See Fig. 13.1 for another example
of the kind of paired data in whose correlation one might be interested: in
the figure, the correlation would be +1 if the points fell all right on the
line. (Beware that the conventional correlation coefficient of eqn. 20.25 can
overstate the relationship between paired data when N is small. Consider
for instance that r = ±1 always when N = 2. The coefficient as given is
nevertheless conventional.)

That r = ±1 when yk = a1xk + a0 is seen by observing that

yk − µy = (a1)

[
xk −

µy − a0

a1

]
= (a1)

[
xk −

(
∑

` y`) /N − a0

a1

]

= (a1)

[
xk −

(
∑

` a1x`) /N

a1

]
= (a1) [xk − µx] ,

which, when substituted into (20.25), yields the stipulated result.

20.6.5 Remarks

If further elaborated, the mathematics of statistics rapidly grows much more
complicated. The book will not pursue the matter further but will mention
that the kinds of questions that arise can, among others, involve the statis-
tics of the statistics themselves, treating the statistics as random variables.
Section 20.6.3 has done this just a bit. The book will avoid doing more of
it.

Such questions confound two, separate uncertainties: the uncertainty
inherent by definition (20.1) in a random variable even were the variable’s
distribution precisely known; and the uncertain knowledge of the distribu-
tion.11 Fortunately, if N � 1, then one can usually tear the two uncertain-
ties from one another without undue violence to accuracy, pretending that

10[137, § 9.9][2, eqns. 12-6 and 12-14]
11The subtle mathematical implications of this far exceed the scope of the present book

but are developed to one degree or another in numerous collegiate statistics texts of which
[24][137][2][87][107] are representative examples.
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one knew the unknown statistics µ and σ to have exactly the values (20.22)
and (20.23) respectively calculate for them, supposing that the distribution
were the normal (20.21), and modeling on this basis.

Unfortunately, that N � 1 is not so for many samples of practical
interest. As the biologist M. G. Bulmer recounts,

‘Student’ had found, however, that in his practical work for Guin-
ness’ brewery he was often forced to deal with samples far too
small for the customary large sample approximations to be ap-
plicable. It was gradually realised after the publication of his
paper, and of R. A. Fisher’s papers on other problems in small
sample theory, that if the sample were large enough the answer
to any question one might ask would be obvious, and that it was
only in the case of small and moderate-sized samples that any
statistical problem arose. [24, chapter 9]

Notwithstanding, the book you are reading will delve no further into the
matter, but will turn attention back to probabilistic topics. It is worth noting
before we turn, however, that it took a pair of biologists—‘Student’ and
Fisher—to broaden the relevant mathematics. Professional mathematicians
might never have discovered the right direction in which to explore on their
own. See §§ 22.3 and 22.5.

20.7 The random walk and its consequences

This section analyzes the simple but oft-encountered statistics of a series of
all-or-nothing attempts.

20.7.1 The random walk

Matthew Sands gave a famous lecture [46, § I:6] to freshmen in physics, on
probability, on behalf of Richard P. Feynman at Caltech in the fall of 1961.
The lecture is a classic and is recommended to every reader who can con-
veniently lay hands on a copy—recommended among other reasons because
the lecture lends needed context to the rather abstruse mathematics this
chapter has presented to the present point. One section of the lecture be-
gins, “There is [an] interesting problem in which the idea of probability is
required. It is the problem of the ‘random walk.’ In its simplest version,
we imagine a ‘game’ in which a ‘player’ starts at the point [D = 0] and at
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each ‘move’ is required to take a step either forward (toward [+D]) or back-
ward (toward [−D]). The choice is to be made randomly, determined, for
example, by the toss of a coin. How shall we describe the resulting motion?”

Sands goes on to observe that, though one cannot guess whether the
“player” will have gone forward or backward after N steps—and, indeed,
that in the absence of other information one must expect that 〈DN 〉 =
0, indicating zero expected net progress—“[one has] the feeling that as N
increases, [the ‘player’] is likely to have strayed farther from the starting
point.” Sands is right, but if 〈DN 〉 is not a suitable measure of this “likely
stray,” so to speak, then what would be?

The measure 〈|DN |〉 might recommend itself but this, being nonanalytic
(§§ 2.11.3 and 8.4), proves inconvenient in practice (you can try it if you
like). Fortunately, an alternate, analytic measure, 〈D2

N 〉, presents itself.
The success of the least-squares technique of § 13.6 encourages us to try it.
When tried, the alternate, analytic measure prospers.

Section 20.2 has actually already introduced 〈D2
N 〉 in another guise as σ2

(the σ2 in this context being the standard deviation of an ensemble of a con-
ceptually infinite number of instances of DN , each instance being the sum
of N random steps). The squared distance D2

N is nonnegative, a quality
necessary to a good index of stray. The squared distance D2

N and its ex-
pectance 〈D2

N 〉 are easy to calculate and, comparatively, also convenient to
use. Moreover, scientists and engineers have long been used to accepting
such quantities and equivalents like σ2 as statistical characterizations. We
will use them for these reasons among others.

In his lecture, Sands observes that, if the symbol DN−1 represents the
“player’s” position after N − 1 steps, if next step is ±1 in size, then the
“player’s” position after N steps must be DN = DN−1 ± 1. The expected
value 〈DN 〉 = 0 is uninteresting as we said, but the expected value 〈D2

N 〉 is
interesting. And what is this expected value? Sands finds two possibilities:
either the “player” steps forward on his Nth step, in which case

〈
D2
N

〉
=
〈
(DN−1 + 1)2

〉
=
〈
D2
N−1

〉
+ 2
〈
DN−1

〉
+ 1;

or he steps backward on his Nth step, in which case

〈
D2
N

〉
=
〈
(DN−1 − 1)2

〉
=
〈
D2
N−1

〉
− 2
〈
DN−1

〉
+ 1.

Since forward and backward are equally likely, the actual expected value
must be the average 〈

D2
N

〉
=
〈
D2
N−1

〉
+ 1
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of the two possibilities. Evidently, the expected value increases by 1 with
each step. Thus by induction, since 〈D2

0〉 = 0,

〈
D2
N

〉
= N.

Observe that the PDF of a single step xk is fo(xo) = [δ(xo + 1) + δ(xo−
1)]/2, where δ(·) is the Dirac delta of Fig. 7.11; and that the corresponding
statistics are µo = 0 and σo = 1. The PDF of DN is more complicated
(though not especially hard to calculate in view of § 4.2), but its statistics
are evidently µN = 0 and σN =

√
N , agreeing with (20.11).

20.7.2 Consequences

An important variation of the random walk comes with the distribution

fo(xo) = (1− po)δ(xo) + poδ(xo − 1), (20.26)

which describes or governs an act whose probability of success is po. This
distribution’s statistics according to (20.8) are such that

µo = po,

σ2
o = (1− po)po.

(20.27)

As an example of the use,12 consider a real-estate agent who expects to
sell one house per 10 times he shows a house to a prospective buyer: po =
1/10 = 0.10. The agent’s expected result from a single showing, according
to (20.27), is to sell µo ± σo = 0.10± 0.30 of a house. The agent’s expected
result from N = 400 showings, according to (20.11), is to sell µ ± σ =

Nµo ±
(√
N
)
σo = 40.0 ± 6.0 houses. Such a conclusion, of course, is valid

only to the extent to which the model is valid—which in a real-estate agent’s
case might be not very—but that nevertheless is how the mathematics of it
work.

As the number N of attempts grows large one finds that the distribution
f(x) of the number of successes begins more and more to take on the bell-
shape of Fig. 20.1’s normal distribution. Indeed, this makes sense, for one
would expect the aforementioned real-estate agent to enjoy a relatively high
probability of selling 39, 40 or 41 houses but a low probability to sell 10
or 70. Of course, not all distributions that make 39, 40 or 41 more likely
than 10 or 70 are normal; but the logic of § 20.5 does suggest that, if there

12Decimal notation is again here employed. Maybe, abstractly, 2π ≈ 0x6.487F, but
even a hexadecimal enthusiast is unlikely to numeralize real-estate sales in hexadecimal.
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were a shape toward which such a distribution tended as N increased, then
that shape could hardly be other than the shape of the normal distribution.
We will leave the argument in that form.13

For such reasons, applications tend to approximate sums of several ran-
dom variables as though the sums were normally distributed; and, more-
over, tend to impute normal distributions to random variables whose true
distributions are unnoticed, uninteresting or unknown. In the theory and
application of probability, the normal distribution is the master distribution,
the distribution of last resort, often the only distribution tried. The banal
suggestion, “When unsure, go normal!” usually prospers in probabilistic
work.

20.8 Other distributions

Many distributions other than the normal one of Fig. 20.1 are possible. This
section will name a few of the most prominent.

20.8.1 The uniform distribution

The uniform distribution can be defined in any of several forms, but the
conventional form is

f(x) = Π

(
x− 1

2

)
=

{
1 if 0 ≤ x < 1,

0 otherwise.
(20.28)

where Π(·) is the square pulse of Fig. 17.3. Besides sometimes being useful
in its own right, this is also the distribution a computer’s pseudorandom-
number generator obeys. One can extract normally distributed (§ 20.5) or
Rayleigh-distributed (§ 20.8.4) random variables from it by the Box-Muller
transformation of § 20.9.

13Admittedly, the argument, which supposes that all (or at least most) aggregate PDFs
must tend toward some common shape as N grows large, is somewhat specious, or at least
unrigorous—though on the other hand it is hard to imagine any plausible conclusion other
than the correct one the argument reaches—but one might construct an alternate though
tedious argument toward the normal distribution on the pattern of § 20.5.3 or on another
pattern. To fill in the tedious details is left as an exercise to the interested (penitent?)
reader. The author confesses that he prefers the specious argument of the narrative.
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20.8.2 The exponential distribution

The exponential distribution is

f(x) =
u(t)

µ
exp

(
−x
µ

)
, (20.29)

the u(t) being Heaviside’s unit step (7.21). The distribution’s mean is

1

µ

∫ ∞

0
exp

(
−x
µ

)
x dx = − exp

(
−x
µ

)
(x+ µ)

∣∣∣∣
∞

0

= µ

as advertised and its standard deviation is such that

σ2 =
1

µ

∫ ∞

0
exp

(
−x
µ

)
(x− µ)2 dx

= − exp

(
−x
µ

)
(x2 + µ2)

∣∣∣∣
∞

0

(the integration by the method of unknown coefficients of § 9.5 or, quicker,
by Table 9.1), which implies that

σ = µ. (20.30)

The exponential’s CDF (20.2) and quantile (20.4) are evidently

F (x) = 1− exp

(
−x
µ

)
, x ≥ 0;

F−1(v) = −µ ln(1− v).

(20.31)

Among other effects, the exponential distribution models the delay until
some imminent event like a mechanical bearing’s failure or the arrival of a
retail establishment’s next customer.

20.8.3 The Poisson distribution

The Poisson distribution is14

f(x) = exp(−µ)
∞∑

k=0

µxδ(x− k)

x!
. (20.32)

It comes from the consideration of a large number N � 1 of individually
unlikely trials, each trial having a probability 0 < ε � 1 of success, such
that the expected number of successes is µ = εN .

14[24, chapter 6]
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• The chance that no trial will succeed is evidently

lim
η→0+

∫ η

−η
f(x) dx = (1− ε)N ≈ exp(−εN) = exp(−µ).

• The chance that exactly one trial will succeed is

lim
η→0+

∫ 1+η

1−η
f(x) dx =

(
N

1

)
(ε)(1− ε)N−1

≈ εN exp(−εN) = µ exp(−µ).

• The chance that exactly two trials will succeed is

lim
η→0+

∫ 2+η

2−η
f(x) dx =

(
N

2

)
(ε2)(1− ε)N−2

≈ (εN)2

2!
exp(−εN) =

µ2 exp(−µ)

2!
.

• And so on.

In the limit as N → ∞ and ε → 0+, the product µ = εN remaining finite,
the approximations become exact and (20.32) results.

Integrating (20.32) to check,

∫ ∞

−∞
f(x) dx = exp(−µ)

∫ ∞

−∞

∞∑

k=0

µxδ(x− k)

x!
dx

= exp(−µ)

∞∑

k=0

∫ ∞

−∞

µxδ(x− k)

x!
dx

= exp(−µ)

∞∑

k=0

µk

k!
= exp(−µ) exp(µ) = 1,

as (20.1) requires.

Compared to the exponential distribution (§ 20.8.2), the Poisson distri-
bution serves to model for example the number of customers to arrive at a
retail establishment during the next hour.
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20.8.4 The Rayleigh distribution

The Rayleigh distribution is a generalization of the normal distribution for
position in a plane. Let each of the x and y coordinates be drawn indepen-
dently from a normal distribution of zero mean and unit standard deviation,
such that

dP ≡ [Ω(x) dx] [Ω(y) dy]

=
1

2π
exp

(
−x

2 + y2

2

)
dx dy

=
1

2π
exp

(
−ρ

2

2

)
ρ dρ dφ,

whence

Pba ≡
∫ π

φ=−π

∫ b

ρ=a
dP

=
1

2π

∫ π

−π

∫ b

a
exp

(
−ρ

2

2

)
ρ dρ dφ

=

∫ b

a
exp

(
−ρ

2

2

)
ρ dρ,

which implies the distribution

f(ρ) = u(ρ)ρ exp

(
−ρ

2

2

)
. (20.33)

This is the Rayleigh distribution. That it is a proper distribution according
to (20.1) is proved by evaluating the integral

∫ ∞

0
f(ρ) dρ = 1 (20.34)

using part of the method of § 18.4. Rayleigh’s CDF (20.2) and quantile (20.4)
are evidently15

F (ρ) = 1− exp

(
−ρ

2

2

)
, ρ ≥ 0;

F−1(v) =
√
−2 ln(1− v).

(20.35)

15[96, § 5.2]
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The Rayleigh distribution models among others the distance ρ by which a
missile might miss its target.

Incidentally, there is nothing in the mathematics to favor any particular
value of φ over another, φ being the azimuth at which the missile misses,
for the integrand exp(−ρ2/2)ρ dρ dφ includes no φ. The azimuth φ must by
symmetry therefore be uniformly distributed.

Rayleigh’s mean and standard deviation are computed via (20.8) to be

µ =

√
2π

2
,

σ2 = 2− 2π

4
.

(20.36)

by

µ =

∫ ∞

0
ρ2 exp

(
−ρ

2

2

)
dρ =

√
2π

2

(compare eqn. 20.18, observing however that the present integral integrates
over only half the domain) and

σ2 =

∫ ∞

0

(
ρ−
√

2π

2

)2

ρ exp

(
−ρ

2

2

)
dρ

=

∫ ∞

0
ρ3 exp

(
−ρ

2

2

)
dρ

−
√

2π

∫ ∞

0
ρ2 exp

(
−ρ

2

2

)
dρ

+
2π

4

∫ ∞

0
ρ exp

(
−ρ

2

2

)
dρ

=

∫ ∞

0
ρ3 exp

(
−ρ

2

2

)
dρ− 2π

2
+

2π

4

= −
∫ ∞

ρ=0
ρ2 d

[
exp

(
−ρ

2

2

)]
− 2π

4

= −ρ2 exp

(
−ρ

2

2

)∣∣∣∣
∞

0

+

∫ ∞

ρ=0
exp

(
−ρ

2

2

)
d
[
ρ2
]
− 2π

4

= 0 + 2

∫ ∞

0
ρ exp

(
−ρ

2

2

)
dρ− 2π

4
= 2− 2π

4
.
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20.8.5 The Maxwell distribution

The Maxwell distribution extends the Rayleigh from two to three dimensions.
Maxwell’s derivation closely resembles Rayleigh’s, with the difference that
Maxwell uses all three of x, y and z and then transforms to spherical rather
than cylindrical coordinates. The distribution which results, the Maxwell
distribution, is

f(r) =
2r2

√
2π

exp

(
−r

2

2

)
, r ≥ 0, (20.37)

which models among others the speed at which an air molecule might
travel.16

20.9 The Box-Muller transformation

The quantiles (20.31) and (20.35) imply easy conversions from the uniform
distribution to the exponential and Rayleigh. Unfortunately, we lack a quan-
tile formula for the normal distribution. However, we can still convert uni-
form to normal by way of Rayleigh as follows.

Section 20.8.4 has associated the Rayleigh distribution with the dis-
tance ρ by which a missile misses its target, the x and y coordinates of
the missile’s impact each being normally distributed over equal standard
deviations. Section 20.8.4 has further drawn out the uniform distribution of
the impact’s azimuth φ. Because we know Rayleigh’s quantiles, we are able
to convert a pair of instances u and v of a uniformly distributed random
variable to Rayleigh’s distance and azimuth by17

ρ =
√
−2 ln(1− u),

φ = (2π)

(
v − 1

2

)
.

(20.38)

But for the reason just given,

x = ρ cosφ,

y = ρ sinφ,
(20.39)

16[46, eqn. I:40.7]
17One can eliminate a little trivial arithmetic by appropriate changes of variable

in (20.38) like u′ ← 1 − u, but to do so saves little computational time and makes the
derivation harder to understand. Still, the interested reader might complete the improve-
ment as an exercise.
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must then constitute two independent instances of a normally distributed
random variable with µ = 0 and σ = 1. Evidently, though we lack an
easy way to convert a single uniform instance to a single normal instance,
we can convert a pair of uniform instances to a pair of normal instances.
Equations (20.38) and (20.39) are the Box-Muller transformation.18

20.10 The normal CDF at large arguments

The Taylor series (20.20) in theory correctly calculates the normal CDF
FΩ(x), an entire function, for any argument x. In practice however—
consider the Taylor series

1− FΩ(6) ≈ −0x0.8000 + 0x2.64C6− 0xE.5CA7 + 0x4D.8DEC− · · ·
Not promising, is it? Using a computer’s standard, double-type floating-
point arithmetic, this calculation fails, swamped by rounding error.

One can always calculate in greater precision,19 of course, asking the
computer to carry extra bits; and, actually, this is not necessarily a bad
approach. There remain however several reasons one might prefer a more
efficient formula.

• One might wish to evaluate the CDF at thousands or millions of points,
not just one. At some scale, even with a computer, the calculation
grows expensive.

• One might wish to evaluate the CDF on a low-power “embedded de-
vice.”

• One might need to evaluate the CDF under a severe time constraint
measured in microseconds, as in aircraft control.

• Hard though it might be for some to imagine, one might actually wish
to evaluate the CDF with a pencil! Or with a slide rule. (Besides
that one might not have a suitable electronic computer conveniently
at hand, that electronic computers will never again be scarce is a
proposition whose probability the author is not prepared to evaluate.)

• The mathematical method by which a more efficient formula is derived
is most instructive.20

18[22][142]
19[108]
20Such methods prompt one to wonder how much useful mathematics our civilization

should have forgone had Leonhard Euler (1707–1783), Carl Friedrich Gauss (1777–1855)
and other hardy mathematical minds of the past had computers to lean on.
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• One might regard a prudent measure of elegance, even in applications,
to be its own reward.

Here is the method.21 Beginning from

1− FΩ(x) =
1√
2π

∫ ∞

x
exp

(
−τ

2

2

)
dτ

=
1√
2π



−

∫ ∞

τ=x

d
[
e−τ

2/2
]

τ





and integrating by parts,

1− FΩ(x) =
1√
2π

{
e−x

2/2

x
−
∫ ∞

x

e−τ
2/2 dτ

τ2

}

=
1√
2π




e−x

2/2

x
+

∫ ∞

τ=x

d
[
e−τ

2/2
]

τ3



 .

Integrating by parts again,

1− FΩ(x) =
1√
2π

{
e−x

2/2

x
− e−x

2/2

x3
+ 3

∫ ∞

x

e−τ
2/2 dτ

τ4

}

=
1√
2π




e−x

2/2

x
− e−x

2/2

x3
− 3

∫ ∞

τ=x

d
[
e−τ

2/2
]

τ5



 .

Integrating by parts repeatedly,

1− FΩ(x) =
1√
2π

{
e−x

2/2

x
− e−x

2/2

x3
+

3e−x
2/2

x5
− · · ·

+
(−)n−1(2n− 3)!!e−x

2/2

x2n−1

+ (−)n(2n− 1)!!

∫ ∞

x

e−τ
2/2 dτ

τ2n

}
,

in which the convenient notation

m!! ≡
{∏(m+1)/2

j=1 (2j − 1) = (m)(m− 2) · · · (5)(3)(1) for odd m,
∏m/2
j=1 (2j) = (m)(m− 2) · · · (6)(4)(2) for even m,

(20.40)

21[84, § 2.2]
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is introduced.22 The last expression for 1− FΩ(x) is better written,

1− FΩ(x) =
Ω(x)

x
[Sn(x) +Rn(x)], (20.41)

Sn(x) ≡
n−1∑

k=0




k∏

j=1

2j − 1

−x2


 =

n−1∑

k=0

(−)k(2k − 1)!!

x2k
,

Rn(x) ≡ (−)n(2n− 1)!!x

∫ ∞

x

e(x2−τ2)/2 dτ

τ2n
.

The series Sn(x) is an asymptotic series, also called a semiconvergent se-
ries.23 So long as x � 1, the first several terms of the series will succes-
sively shrink in magnitude but, no matter how great the argument x might
be, eventually the terms will insist on growing again, growing without limit.
Unlike a Taylor series, S∞(x) diverges for all x.

Fortunately, nothing requires us to let n → ∞, and we remain free to
choose n strategically as we like—for instance to exclude from Sn the series’
least term in magnitude and all the terms following. So excluding leaves us
with the problem of evaluating the integral Rn, but see:

|Rn(x)| ≤ (2n− 1)!! |x|
∫ ∞

x

∣∣∣∣∣
e(x2−τ2)/2 dτ

τ2n

∣∣∣∣∣

≤ (2n− 1)!!

|x|2n
∫ ∞

x

∣∣∣e(x2−τ2)/2τ dτ
∣∣∣ ,

because |x| ≤ |τ |, so |x|2n+1 ≤ |τ |2n+1. Changing ξ2 ← τ2 − x2, whereby
ξ dξ = τ dτ ,

|Rn(x)| ≤ (2n− 1)!!

|x|2n
∫ ∞

0

∣∣∣e−ξ2/2ξ dξ
∣∣∣ .

Using (20.33) and (20.34),

|Rn(x)| ≤ (2n− 1)!!

|x|2n
, =(x) = 0, <(x) > 0, (20.42)

which in view of (20.41) has that the magnitude |Rn| of the error due to
truncating the series after n terms does not exceed the magnitude of the
first omitted term. Equation (20.41) thus provides the efficient means we
have sought to estimate the CDF accurately for large arguments.

22[3, Exercise 2.2.15]
23[3, § 1.4.1]
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20.11 Asymptotic series

Section 20.10 has incidentally introduced the asymptotic series and has
shown how to treat it.

Asymptotic series are strange. They diverge, but only after approaching
a sum of interest. Some asymptotic series approach the sum of interest quite
closely, and moreover do so in such a way that the closeness—that is, the
error in the sum—can with sufficient effort be quantified. The error in the
sum of the asymptotic series of § 20.10 has been found not to exceed the
magnitude of the first omitted term; and though one may have to prove it
specially for each such series, various series one encounters in practice tend
to respect bounds of the same kind.

As § 20.10 has noted, asymptotic series are sometimes alternately called
semiconvergent series.24

An ordinary, convergent series is usually preferable to an asymptotic
series, of course, especially in the subdomain near the convergent series’
expansion point (§ 8.2). However, a convergent series is not always available;
and, even when it is, its expansion point may lie so distant that the series
becomes numerically impractical to total.

An asymptotic series can fill the gap.

Aside from whatever practical applications an asymptotic series can fill,
this writer finds the topic of asymptotic series fascinating. The topic is
curious, is it not? How can a divergent series reach a definite total? The
answer seems to be: it cannot reach a definite total but can draw arbitrarily
close to one. In (20.41) and (20.42) for example, the larger the argument,
the closer the draw. It is a paradox yet, surprisingly, it works.

Asymptotic series arise in the study and application of special functions,
including (as we have seen) the Ω(·) of the present chapter. For this rea-
son and maybe others, the applied mathematician will exercise and exploit
asymptotic series from time to time.

20.12 The normal quantile

Though no straightforward quantile formula to satisfy (20.4) for the normal
distribution seems to be known, nothing prevents one from calculating the

24See footnote 23.
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quantile via the Newton-Raphson iteration (4.30)25

xk+1 = xk −
FΩ(xk)− v

Ω(xk)
,

F−1
Ω (v) = lim

k→∞
xk,

x0 = 0,

(20.43)

where FΩ(x) is as given by (20.20) and/or (20.41) and where Ω(x) is, as
usual, as given by (20.17). The shape of the normal CDF as seen in Fig. 20.1
on page 640—curving downward traveling right from x = 0, upward when
traveling left—evidently guarantees convergence per Fig. 4.6, page 119.

In the large-argument limit,

1− v � 1,

x� 1;

so, according to (20.41),

FΩ(x) ≈ 1− Ω(x)

x

(
1− 1

x2
+ · · ·

)
.

Substituting this into (20.43) yields, by successive steps,

xk+1 ≈ xk −
1

Ω(xk)

[
1− v − Ω(xk)

xk

(
1− 1

x2
k

+ · · ·
)]

≈ xk −
1− v
Ω(xk)

+
1

xk
− 1

x3
k

+ · · ·

≈ xk −
(√

2π
)

(1− v)

1− x2
k/2 + · · · +

1

xk
− 1

x3
k

+ · · ·

≈ xk −
(√

2π

)(
1− v

)(
1 +

x2
k

2
+ · · ·

)
+

1

xk
− 1

x3
k

+ · · ·

≈ xk −
(√

2π

)(
1− v

)
+

1

xk
+ · · · ,

25When implementing numerical algorithms like these on the computer one should do it
intelligently. For example, if FΩ(xk) and v are both likely to be close to 1, then do not ask
the computer to calculate and/or store these quantities. Rather, ask it to calculate and/or
store 1− FΩ(xk) and 1− v. Then, when (20.43) instructs you to calculate a quantity like
FΩ(xk)−v, let the computer instead calculate [1−v]−[1−FΩ(xk)], which is arithmetically
no different but numerically, on the computer, much more precise.
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suggesting somewhat lazy, but usually acceptable convergence in domains
of typical interest (the convergence might be unacceptable if, for example,
x > 0x40, but the writer has never encountered an application of the normal
distribution Ω[x] or its incidents at such large values of x). If unacceptable,
various stratagems might be tried to accelerate the Newton-Raphson, or—if
you have no need to impress anyone with the pure elegance of your technique
but only want the right answer reasonably fast—you might just search for
the root in the näıve way, trying FΩ(20), FΩ(21), FΩ(22) and so on until
identifying a bracket FΩ(2k−1) < v ≤ FΩ(2k); then dividing the bracket in
half, then in half again, then again and again until satisfied with the accuracy
thus achieved, or until the bracket were strait enough for you to set x0 to
the bracket’s lower (not upper) limit and to switch over to (20.43) which
performs well when it starts close enough to the root. In truth, though not
always stylish, the normal quantile of a real argument is relatively quick,
easy and accurate to calculate once you have (20.17), (20.20) and (20.41) in
hand, even when the performance of (20.43) might not quite suit. You only
must remain a little flexible as to the choice of technique.26

26See also § 8.10.4.



Chapter 21

The gamma function

This chapter studies a special function called the gamma function.

21.1 Special functions

The gamma function being a special function, the chapter might begin by
telling what a special function is. However, a definition of the term is hard
to find. N. N. Lebedev begins chapter 1 of his book on special functions,

One of the simplest and most important special functions is the
gamma function.1 [84]

The gamma is a special function and is simple and important, reveals Lebe-
dev; but what a special function is, or why the gamma should be one, is
not stated. Larry C. Andrews begins the preface of his book on special
functions,

Modern engineering and physics applications demand a . . . thor-
ough knowledge of . . . the basic properties of special functions.2

The italics suggest that Andrews might next define the term, but instead
he continues,

These functions commonly arise in such areas of application as
heat conduction, communications systems, electro-optics, . . . [3]

1Emphasis in the original.
2Emphasis in the original.
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In [1], Abramowitz and Stegun deliver two early chapters named “Elemen-
tary analytical methods” and “Elementary transcendental functions” before
launching into a series of nineteen chapters on special functions (exponential
integral, gamma, error/Fresnel, Legendre, Bessel-integer, Bessel-fractional,
Bessel integral, Struve, confluent hypergeometric, Coulomb, hypergeomet-
ric, Jacobian elliptic/theta, elliptic integral, Weierstrass elliptic, parabolic
cylinder, Mathieu, spheroidal wave, orthogonal polynomial and Bernoulli/
Euler/Riemann3), by which one may infer that special functions are nonele-
mentary; but even Abramowitz and Stegun never quite seem to say what
a special function is. Gradshteyn and Ryzhik agree with Abramowitz and
Stegun that special functions are nonelementary:

First, we have the elementary functions: the function f(x) = x;
the exponential function; the hyperbolic functions; the trigono-
metric functions; the logarithmic function; the inverse hyperbolic
functions . . . ; the inverse trigonometric functions.

Then follow the special functions: elliptic integrals; elliptic func-
tions; the logarithm . . . , exponential . . . , sine . . . and . . . co-
sine integral functions; probability integrals and Fresnel’s inte-
grals; the gamma function and related functions; Bessel func-
tions; Mathieu functions; Legendre functions; orthogonal poly-
nomials; hypergeometric functions; degenerate hypergeometric
functions; parabolic cylinder functions; Meijer’s and Mac-
Robert’s functions; Riemann’s zeta function. [55]

No actual definition is seen here, either, though. And W. W. Bell? Bell too
has written a book on special functions. In his book Bell begins chapter 1,

Many special functions arise in the consideration of solutions of
equations of the form P (x) d2y/dx2 + Q(x) dy/dx +
R(x)y = 0. [15]

And so on. The desultory collection of quotations this paragraph has as-
sembled is no exhaustive survey, of course, but special function nevertheless
appears to be a term specialists4 were reluctant to define.

Eric W. Weisstein, like your author a nonspecialist, does define the term:

A special function is a function (usually named after an early
investigator of its properties) having a particular use in mathe-
matical physics or some other branch of mathematics. Prominent

3The book you are reading will treat only a few of the topics of Abramowitz’s and
Stegun’s nineteen chapters.

4Neat word. Take “specialist” either way.
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examples include the gamma function, hypergeometric function,
Whittaker function, and Meijer G-function. [141]

Such a nonspecialist’s definition however, presenting itself chiefly in terms
of examples, differs from the specialists’ nondefinitions less than one might
like.

If specialists like Lebedev, Andrews, Abramowitz, Stegun, Gradshteyn,
Ryzhik and Bell cannot or will not define the term special function more
precisely than they have, then perhaps the book you are reading should leave
the question in the form in which the specialists have left it. Apparently, an
applied mathematician is to recognize a special function when he meets it!
The gamma function is one at any rate, by common consent.

Besides the gamma, we have already met two other special functions in
this book: the sine integral of § 17.6; and the cumulative normal distribution
of §§ 20.5.2 and 20.10. Furthermore, § 20.10 and 20.11 have introduced
asymptotic series, chiefly a special-functions topic.

Special functions tend to have in common that they

• solve differential equations, definite integrals or integral equations
(§ 21.9) of applicationary interest; but

• cannot readily be expressed in terms of polynomials of finite numbers
of terms, nor in terms of combinations of such polynomials with ra-
tios, exponentials, trigonometrics, logarithms and/or inverse trigono-
metrics; and

• may want asymptotic series to calculate their values;

but otherwise special functions are various.

The fascination of special functions to the scientist and engineer lies
in how gracefully they analyze otherwise intractable physical models; in
how reluctantly they yield their mathematical secrets; in how readily they
conform to unexpected applications; in how often they connect seemingly
unrelated phenomena; and in that, the more intrepidly one explores their
realm, the more disquietly one feels that one had barely penetrated the
realm’s frontier. The topic of special functions seems inexhaustible. We
surely will not begin to exhaust the topic in this book; yet, even so, useful
results will start to flow from our study almost at once.

The chapter you are reading mainly regards the gamma function.
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21.2 The definite integral representation

Consider the definite integral

∫ t2

t1

τa−1 dτ,

slightly perplexing in that it diverges if t1 → 0+ and a ≤ 0, yet also diverges
if t2 → ∞ and a ≥ 0; and more perplexing in that it diverges regardless of
the value of a if both t1 → 0+ and t2 →∞, a frequent case even in applied
work. To coërce convergence, various tactics might be tried, among which
is to damp the integrand5 by

∫ t2

t1

e−ττa−1 dτ.

The damped integral converges even if t1 → 0+ and t2 →∞ as long as a is
positive. When z ← a is changed to support complex exponents, the definite
integral6 that results,

Γ(z) ≡
∫ ∞

0
e−ττ z−1 dτ, <(z) > 0, (21.1)

has been found to be sufficiently interesting to merit a name. Its name is
the gamma function. It is this chapter’s chief subject.

5Damping the integrand is a practical technique to force a nonconvergent integral to
converge [23]. Whether this section’s integral is the right kind of integral to damp can be
debated (the book prints the damping attempt because the attempt incidentally discovers
the gamma function) but one might damp other integrals by

lim
ε→0+

∫ ∞
0

e−ε
nατf(τ) dτ

or

lim
ε→0+

∫ ∞
−∞

e−ε
nατ2/2f(τ) dτ

or the like, the n being a small nonnegative integer (typically 0, 1 or 2) and the α being a
positive real number. The present section tries damping by e−ε

nατ with n = 0 and α = 1.
(If unsure what the n is for, then see for example § 19.5 in which n = 2 is used.)

6[84, eqn. 1.1.1][3, eqn. 2.5][1, eqn. 6.1.1][113, eqn. 2]
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21.3 Relationship to the factorial

Expressing Γ(z + 1) according to (21.1) and using (9.11) to integrate by
parts7,

Γ(z + 1) =

∫ ∞

0
e−ττ z dτ

= −
∫ ∞

0
τ z d[e−τ ]

= −e−ττ z
∣∣∞
τ=0

+

∫ ∞

0
e−τ d[τ z]

= 0 + z

∫ ∞

0
e−ττ z−1 dτ.

That is,8

Γ(z + 1) = zΓ(z). (21.2)

According to (21.1),9

Γ(1) = 1, (21.3)

so by induction on (21.2) we conclude that10

n! = Γ(n+ 1). (21.4)

The recursion (21.2) incidentally affords a means to calculate Γ(z) for
<(z) ≤ 0—although, according to (21.2) or (21.4), Γ(z) diverges11 for z < 0
if z ∈ Z.

21.4 Half-integral arguments

Using technique12 like that of § 18.4, changing u2 ← τ and x← z in (21.1),

Γ(x) = 2

∫ ∞

0
e−u

2
u2x−1 du.

Similarly,

Γ(y) = 2

∫ ∞

0
e−v

2
v2y−1 dv.

7[84, § 1.2]
8[84, eqn. 1.2.1][3, eqn. 2.3][1, eqn. 6.1.15]
9[3, eqn. 2.2]

10[3, eqn. 2.4][1, eqn. 6.1.6]
11Section 21.7 will address the gamma function’s analyticity and poles.
12[3, § 2.2.1]
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The product of the last two equations has that

Γ(x)Γ(y) = 4

∫ ∞

0

∫ ∞

0
e−(u2+v2)u2x−1v2y−1 du dv

= 4

∫ 2π/4

0

∫ ∞

0
e−ρ

2
(ρ cosφ)2x−1(ρ sinφ)2y−1ρ dρ dφ

= 4

∫ 2π/4

0

∫ ∞

0
e−ρ

2
ρ2(x+y)−1 cos2x−1 φ sin2y−1 φdρ dφ.

Evaluating at x = 1/2 and y = 1/2,

Γ2

(
1

2

)
= 4

∫ 2π/4

0

∫ ∞

0
e−ρ

2
ρ dρ dφ = 2π

∫ ∞

0
e−ρ

2
ρ dρ = −πe−ρ2

∣∣∣
∞

0
= π.

That is,13 insofar as (21.1) makes Γ(z) to be positive for all real, positive z,

Γ

(
1

2

)
=
√
π. (21.5)

Equations (21.2) and (21.5) together determine Γ(z) for all half-integral
z = n + 1/2, n ∈ Z. For example, Γ(3/2) = (1/2)Γ(1/2) = (

√
π)/2 and

Γ(−1/2) = Γ(1/2)/(−1/2) = −2
√
π.

21.5 Numerical evaluation

Not every method used to expand elementary functions works on a special
function like the gamma but one method that almost works is to expand
the exponential in (21.1) via Table 8.1, obtaining the form

Γ(z) =

∫ ∞

0

∞∑

k=0

(−)kτk+z−1

k!
dτ.

Here, one would like to swap the
∫

integration and
∑

summation signs to
integrate each term but, unfortunately, the term-by-term integrals diverge.

Better is to split (21.1)’s integral at τ = T into two domains as

Γ(z) =

∫ T

0
e−ττ z−1 dτ +

∫ ∞

T
e−ττ z−1 dτ, =(T ) = 0, <(T ) > 0, (21.6)

13[84, eqn. 1.2.5][3, eqn. 2.23][1, eqn. 6.1.8]
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the T being a nonnegative real number one can choose at discretion—the
larger, the numerically harder (a computer needing wider registers with more
bits) but the more accurate the calculation.

The leftward integral now supports the
∫

-
∑

swap we had wanted earlier:

Γ(z) =
∞∑

k=0

∫ T

0

(−)kτk+z−1

k!
dτ +

∫ ∞

T
e−ττ z−1 dτ

=
∞∑

k=0

(−)kT k+z

k!(k + z)
+

∫ ∞

T
e−ττ z−1 dτ. (21.7)

The rightward integral is

I =

∫ ∞

T
e−ττ z−1 dτ. (21.8)

If 0 < <(z) < 1,

|I| <
∣∣T z−1

∣∣
∫ ∞

T
e−τ dτ.

Evaluating,
|I| <

∣∣T z−1
∣∣ e−T for 0 < <(z) < 1. (21.9)

If =(z) = 0 and 0 < z < 1 then (21.9) implies that

0 < I < T z−1e−T ,

since the integrand in (21.8) is never negative in the real-valued case. Indeed,
a yet tighter bound can be established in the real-valued case by observing
the factor τ z−1 in (21.8) and estimating, for τ in the neighborhood of T ,
that

τ z−1 ≈ T z−1e(α)(T−τ)

the estimate evidently being exact at τ = T regardless of the value of α,
the α being an arbitrary parameter with a value to be chosen momentarily.
Differentiating the estimate with respect to τ ,

(z − 1)τ z−2 ≈ −αT z−1e(α)(T−τ).

Preferring the last to be exact at τ = T , we require that

(z − 1)T z−2 = −αT z−1e(α)(T−T )

or, solving, that

α = −z − 1

T
,
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which lets us express the estimate—and here we refer to the original estimate
rather than to its derivative—as

τ z−1 ≈ T z−1e(z−1)(τ/T−1).

For a reason that will soon grow clear, it would be convenient in view of the
last line if

τ z−1 > T z−1e(z−1)(τ/T−1) > 0 (21.10)

for 0 < T < τ, =(T ) = 0, =(τ) = 0,

0 < z < 1, =(z ) = 0,

or, rearranging factors, if

( τ
T

)z−1
> e(z−1)(τ/T−1) > 0

or, raising both sides to the 1/(z − 1) power (where 1/[z − 1] < 0 because
z < 1), if

0 <
τ

T
< eτ/T−1

or, expressing both sides in terms of the exponent, if

0 < 1 +
( τ
T
− 1
)
< eτ/T−1

over the domain (21.10) stipulates. The quantity τ/T−1 being positive over
the domain, a Taylor expansion of the last inequality’s exponential proves
the inequality to be true and, the steps leading to the last inequality being
reversible, thereby verifies (21.10).

Applying (21.10) to (21.8),

I >

∫ ∞

T
e−τT z−1e(z−1)(τ/T−1) dτ = e−(z−1)T z−1

∫ ∞

T
e[(z−1)/T−1]τ dτ.

Unlike the integral of (21.8), the last integral is one we know how to evaluate.
Evaluating it,

I >
e−(z−1)T z−1

(z − 1)/T − 1
e[(z−1)/T−1]τ

∣∣∣∣∣

∞

τ=T

= − e−(z−1)T z−1

(z − 1)/T − 1
e[(z−1)/T−1]T .

That is,

I >
T z−1e−T

1− (z − 1)/T
.
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Combining the last inequality with the unnumbered inequality following
(21.9), we conclude that

T z−1e−T

1− (z − 1)/T
< I < T z−1e−T (21.11)

for 0 < T, =(T ) = 0, 0 < z < 1, =(z) = 0;

and by similar reasoning14 that

T z−1e−T < I <
T z−1e−T

1− (z − 1)/T
(21.12)

for 0 < T, =(T ) = 0, 1 < z, =(z) = 0.

Finally, using (21.8) to condense the representation of (21.7),

Γ(z) =

∞∑

k=0

(−)kT k+z

k!(k + z)
+ I, (21.13)

with either (21.9), in the complex case, or (21.11) or (21.12), in the real case,
providing a bounded estimate of I. Equation (21.7) numerically evaluates
Γ(z).

Several other methods to evaluate Γ(z) are known, incidentally, as for
instance in [1, chapter 6].

Figure 21.1 plots the gamma function per (21.13), with (21.2), over the
real domain.15

21.6 Reflection

If evaluating the gamma function at a certain value of z is inconvenient, the
gamma function’s reflection formula,16

Γ(z)Γ(1− z) =
π

sinπz
, (21.14)

14To reach (21.12), require in (21.10) that τz−1 < T z−1e(z−1)(τ/T−1).
15Similar is [1, Fig. 6.1] but because that figure predated computer plotting, the present

figure is more accurate.
16[1, eqn. 6.1.17][84, eqn. 1.2.2][3, eqn. 2.31]
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Figure 21.1: The gamma function.
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can help. The formula is proved for 0 < <(z) < 1 by writing per (21.1)
that17

Γ(z)Γ(1− z) =

∫ ∞

0
e−ττ z−1 dτ

∫ ∞

0
e−σσ−z dσ

=

∫ ∞

0

e−σ

σ

[∫ ∞

0
e−(σ)(τ/σ)

( τ
σ

)z−1
dτ

]
dσ,

in which the order of integration does not matter18 because the real parts
of both z − 1 and −z lie between −1 and 0. Changing v ← τ/σ within the
inner integral,

Γ(z)Γ(1− z) =

∫ ∞

0
e−σ

[∫ ∞

0
e−σvvz−1 dv

]
dσ

=

∫ ∞

0

[∫ ∞

0
e−(σ)(1+v)vz−1 dv

]
dσ.

Again swapping the order,

Γ(z)Γ(1− z) =

∫ ∞

0
vz−1

[∫ ∞

0
e−(σ)(1+v) dσ

]
dv.

Changing u← (σ)(1 + v) within the inner integral,

Γ(z)Γ(1− z) =

∫ ∞

0

vz−1

1 + v

[∫ ∞

0
e−u du

]
dv

=

∫ ∞

0

vz−1

1 + v
[1] dv =

∫ ∞

0

vz−1 dv

1 + v
.

The last integral is perhaps nonobvious but, fortunately, if one has a sharp
memory regarding integrals earlier worked (and an applied mathematician
ought to cultivate such a memory to the extent to which he can), then one
may recall (9.18) which—after the identity of Table 3.1 that sin(φ ± π) =
− sinφ is applied—yields (21.14) as sought.

The recurrence (21.2) extends the reflection (21.14) to all z (except,
naturally, to the nonanalytic points at z = 0,−1,−2,−3, . . .). For exam-
ple,19 Γ(0xA/3)Γ(−7/3) = [Γ(1/3)(1/3)(4/3)(7/3)][Γ(2/3)/(−1/3)(−4/3)

17[130, §§ 1.86 and 3.123][84, § 1.2]
18As the book has several times noted, justifications of convergence generally interest the

professional mathematician more than they do the applicationist. Nevertheless, even at
the applied level, an occasional, brief justification seems fitting as in the present instance.
Reasoning similarly, the interested reader can justify convergence on the book’s behalf
when other, related instances arise.

19Formally to prove the point via induction is left as an exercise to the interested reader.
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× (−7/3)] = −Γ(1/3)Γ(2/3) = −π/ sin[π(1/3)] = π/ sin[π(3 + 1/3)] =
π/ sin[π(0xA/3)].

21.7 Analyticity, poles and residues

Since eqn. (21.1) makes the gamma function analytic over the domain <(z) >
0, eqn. (21.2) extends the gamma’s analyticity over the whole complex plane
except at the isolated points z = 0,−1,−2,−3, . . . . Why? Because the fact
that

Γ(z) =
Γ(z + 1)

z
,

the Γ(z + 1) being analytic over the domain <(z) > −1, implies that

• Γ(z) too is analytic over the domain <(z) > −1 except at z = 0,

• at z = 0 stands a single pole (§ 2.10), and

• the residue (§ 8.8) associated with the pole is Γ(z + 1)|z=0 = 1.

Similarly, the fact that

Γ(z) =
Γ(z + 2)

(z)(z + 1)
,

the Γ(z + 2) being analytic over the domain <(z) > −2, implies that

• Γ(z) is analytic over the domain <(z) > −2 except at z = 0 and at
z = −1,

• at z = −1 stands a single pole, and

• the residue associated with the pole is Γ(z + 2)/z|z=−1 = −1.

Generalizing,

• Γ(z) is analytic over the whole complex plane except at z = 0,−1,
−2,−3, . . .,

• at each of z = 0,−1,−2,−3, . . . stands a single pole, and

• the residue at z = −n is Γ(z+n+ 1)/(z)(z+ 1) · · · (z+n− 2)(z+n−
1)|z=−n = (−n)(−n+ 1) · · · (−2)(−1).
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That is, the gamma function’s residue at z = −n, n ∈ Z, n ≥ 0, is (−)n/n!.

One can use the residue to estimate Γ(z) in the neighborhood of a pole
to be

Γ(−n+ ε) ≈ (−)n/n!ε, |ε| � 1, n = 0, 1, 2, 3, . . . (21.15)

For example,

Γ(−0x6.FF + i0x0.02) = Γ(7 + 0x0.01 + i0x0.02)

≈ (−)5/7!(0x0.01 + i0x0.02)

≈ (−0x100 + i0x200)/7!(12 + 22)

≈ (−0x100 + i0x200)/7!5

≈ −0x0.02A + i0x0.053.

Among the consequences of this section’s findings is that the reciprocal
gamma function, 1/Γ(z), plotted in Fig. 21.1 over the real domain, is an
entire function (see § 8.6). The gamma function itself is not entire, for it
has poles, but it is meromorphic (see again § 8.6) because its poles are simple
ones and it lacks branches and other singularities.

21.8 The digamma function

The digamma function is the gamma function’s logarithmic derivative

ψ(z) ≡ d

dz
ln Γ(z) =

(d/dz)Γ(z)

Γ(z)
, (21.16)

the logarithmic derivative as an operation having been introduced in § 4.4.10.
Following Lebedev [84, § 1.3], differentiating (21.1),

d

dz
Γ(z) =

∫ ∞

0
e−τ

d
[
τ z−1

]

dz
dτ,

=

∫ ∞

0
e−τ

d
[
e(ln τ)(z−1)

]

dz
dτ

=

∫ ∞

0
e−ττ z−1 ln τ dτ

=

∫ ∞

0
e−ττ z−1 ln

(τ
1

)
dτ.
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For the next step, we shall use Frullani’s integral (9.31). Changing σ ← τ
in (9.31), using e−σ for Frullani’s f(σ), and expanding ln(τ/1) according to
the result,

d

dz
Γ(z) =

∫ ∞

0
e−ττ z−1

∫ ∞

0

e−1σ − e−τσ
σ

dσ dτ

=

∫ ∞

0

1

σ

∫ ∞

0
e−ττ z−1

(
e−σ − e−τσ

)
dτ dσ

=

∫ ∞

0

[
e−σ

∫ ∞

0
e−ττ z−1 dτ −

∫ ∞

0
e−(σ+1)ττ z−1 dτ

]
dσ

σ

=

∫ ∞

0

[
e−σΓ(z)−

∫ ∞

0
e−(σ+1)ττ z−1 dτ

]
dσ

σ
.

Changing t← (σ + 1)τ within the inner integral,

d

dz
Γ(z) =

∫ ∞

0

[
e−σΓ(z)− 1

(σ + 1)z

∫ ∞

0
e−ttz−1 dt

]
dσ

σ

=

∫ ∞

0

[
e−σΓ(z)− 1

(σ + 1)z
Γ(z)

]
dσ

σ

= Γ(z)

∫ ∞

0

[
e−σ − 1

(σ + 1)z

]
dσ

σ
.

Changing τ ← σ, dividing both sides by Γ(z), and applying (21.16),

ψ(z) =

∫ ∞

0

[
e−τ − 1

(τ + 1)z

]
dτ

τ
, <(z) > 0. (21.17)

Equation (21.17) affords the digamma function an integral representation as
eqn. (21.1) has afforded the gamma function one.

21.9 Integral equations (overview)

Section 21.1 has mentioned that special functions solve solve differential
equations, definite integrals and integral equations. Differential equations
and definite integrals are familiar from earlier chapters, but what is an in-
tegral equation?

An integral equation20 is an equation for example like

f(z) = g(z) +

∫ ∞

−∞
K(z, w)f(w) dw, (21.18)

20[134]
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in which the unknown is a function f(z) integrated over a definite domain
such that one cannot convert the equation to a differential equation by the
expedient of differentiating it.

Integral equations are typically less tractable than differential equations.
To solve them wants different techniques.

Actually, we have already met integral equations in disguise, in dis-
cretized form, in matrix notation (chapters 11 through 14) resembling

f = g +Kf ,

which means no more than it seems to mean; so maybe integral equations
are not so strange as they look. The integral equation (21.18) is merely the
matrix equation with

f(i∆z) ∆z ← f [without the integral],

g(i∆z) ∆z ← g,

K(i∆z, j∆w) ∆z ← K,

f(j∆w) ∆w ← f [within the integral]

(the letter i representing here not the imaginary unit but rather an index
as in chapter 11) and with ∆w = ∆z.
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Plan

Future revisions of the book tentatively plan to add the following chapters.

17. Tensors

22. Special integrals

23. Cylinder functions

24. Legendre polynomials

25. Acceleration of convergence

26. The conjugate-gradient algorithm

Future revisions also tentatively plan to develop a method to calculate the
Euler-Mascheroni constant, but that method is not expected to require a
chapter of its own. It should fit in the gamma function’s chapter 21, still in
progress.

679
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Chapter 22

Remarks

A book could tell more about derivations of applied mathematics, maybe
without limit. This book ends here.

If you have learned by reading, I too have learned by writing. An en-
gineer, I have long observed advantages of the applied approach to mathe-
matics. Writing however has let drawbacks of the applied approach impress
themselves as well. Some drawbacks are nonobvious.

22.1 Frege

In 1879, the mathematician and philosopher Gottlob Frege explained,

In apprehending a scientific truth we pass, as a rule, through vari-
ous degrees of certitude. Perhaps first conjectured on the basis of
an insufficient number of particular cases, a general proposition
comes to be more and more securely established by being con-
nected with other truths through chains of inferences, whether
consequences are derived from it that are confirmed in some other
way or whether, conversely, it is seen to be a consequence of
propositions already established. Hence we can inquire, on the
one hand, how we have gradually arrived at a given proposition
and, on the other, how we can finally provide it with the most
secure foundation. The first question may have to be answered
differently for different persons; the second is more definite, and
the answer to it is connected with the inner nature of the propo-
sition considered. The most reliable way of carrying out a proof,
obviously, is to follow pure logic, a way that, disregarding the
particular characteristics of objects, depends solely on those laws

681
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upon which all knowledge rests. . . . To prevent anything intu-
itive from penetrating here unnoticed,1 I had to bend every effort
to keep the chain of emphasis free of gaps. In attempting to com-
ply with this requirement in the strictest possible way I found
the inadequacy of language to be an obstacle; no matter how
unwieldy the expressions I was ready to accept, I was less and
less able, as the relations became more and more complex, to
attain the precision that my purpose required. This deficiency
led me to the idea of [an] ideography [whose] first purpose . . . is
to provide us with the most reliable test of the validity of a chain
of inferences and to point out every presupposition that tries to
sneak in unnoticed, so that its origin can be investigated. [50,
Preface]

Frege’s sentiments are poignant in that, like Gödel and unlike Hilbert, Frege
can fairly be described as a Platonist. (Witness Frege’s words in a later
book: “In arithmetic we are not concerned with objects which we come to
know as something alien from without through the medium of the senses,
but with objects given directly to our reason and, as its nearest kin, utterly
transparent to it. And yet, or rather for that very reason, these objects are
not subjective fantasies. There is nothing more objective than the laws of
arithmetic.”2) To Frege, unlike to Hume or even to Kant, Platonic realism
affords all the more cause to distrust merely human processes of inference
in mathematical matters.

The present book being long enough as it is, one can hardly see how to
have met a truly Fregean standard while covering sufficient applied math-
ematical ground within the covers of a single volume; but yet does Frege
not still have a point? I believe that he does. In some Fregean sense, the
book you are reading has been a book of derivation sketches of various merit
rather than of derivations proper. I am reasonably satisfied that the book
does what it had set out to do, but also observe that a close study of the
book points out the supplementary need too for more formulaic approaches.

22.2 Temperament

The matter in question is, naturally, not one you and I are likely to settle
in a few paragraphs, so for the present purpose let me turn attention to a

1Emphasis added.
2[88]
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facet of the matter which has proved significant at least to me. Though I
am a practicing engineer rather than a teacher, it so happens that (besides
being the father of six, which has made me a teacher of another kind) I
have over the years, on a part-time basis, taught several state-university
courses in electrical engineering, having instructed in sum about 2000 engi-
neering undergraduates in subjects like circuit theory, industrial electronics,
continuous and discrete systems, C++ programming, and electromagnet-
ics. My undergraduates have been U.S. freshmen, sophomores and juniors
mostly aged 18 to 21, so none of the teaching has been very advanced; and
indeed as measured in U.S. academia such occasional instructional expe-
rience as mine, sans academic research, counts for so little that I should
hardly mention it here except for one point: an instructor cannot instruct
so many engineering undergraduates without coming to understand some-
what of how young future engineers think and learn. When an engineering
undergraduate is finding, say, Fourier’s concepts hard to grasp, his engineer-
ing instructor will not extrude the topic into formulations congenial to set
theory. Rather, the instructor will sketch some diagrams, assign some pencil-
and-paper exercises, require the hands-on construction/testing of a suitable
mechanical/chemical/electrical apparatus, and then field questions by en-
gaging the undergraduate’s physical intuition as directly as the instructor
can. Of course, professional mathematicians likewise brandish partly anal-
ogous intuitional techniques from their own instructional arsenals; but the
professional carries the additional burden of preparing his students, by grad-
ual stages, to join mathematics’ grand investigation into foundations—or at
least he carries the burden of teaching his students, in the spirit of Frege,
how to deploy formal methods to preclude error. The engineering student
lacks the time and, usually, the temperament for that. He has a screwdriver
in his hand.

And this state of affairs is right and proper, is it not? Give the profes-
sional his due. While we engineers are off designing bridges or whatever, the
professional mathematician will make it his business to be better at logic
than we.

22.3 Foundations athwart intuition

The experience of writing this book has strengthened my own conviction that
the search for the ultimate foundations of mathematics is probably futile. If
we have not unearthed the ultimate foundations by now, 2500 years on from
when Greek philosophy started excavating, then the coming 2500 years seem
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unlikely to reveal them. Some may think, “We have the computer now. We
have Cantor’s set theory. It is different.” But I am not convinced. Not
a professional mathematician nor a philosopher, I neither expect nor ask
a reader to lend my conviction in such a matter much weight—nor does
this book seriously attempt to support the conviction3—but as for myself,
I doubt that it is in the nature of mortal human intellect to discover or
grasp ultimate foundations of such a kind. Like Father Reginald, I credit
St. Thomas’ last report.4

Even so, unexpectedly, the experience of writing the book has illumi-
nated in my sight a certain mathematical inadequacy of physical-intuitional
methods. Wherever large enough a mathematical structure is built by
mostly physical-intuitional methods, a fact of experience seems to emerge:
the structure begins to creak.

Professional mathematicians would have told us as much.

And yet—the näıve, merely plausible extension of mathematical methods
carries greater impact, and retains more power, than pure mathematics may
like to admit, as in § 20.6.5 for example. Anyway, such näıve extension is
more than merely plausible. Such näıve extension yields correct results in
the main, too, as for example in this book’s applied-level development of
complex exponentials and analytic continuation. Sometimes, bending the
arc of reason to follow the trail of intuition is the right thing to do.

Substantial value subsists in the applied approach.

One seems to notice a gentle, sustained effort by the mathematics pro-
fession gradually to raise the floor of mathematical rigor in the education of
scientists and engineers. How high the floor can be raised, I do not know,
nor do I know (since the future is as hidden to me5 as to any man) whether
the effort will persist, but I am inclined to commend the effort while it lasts.

22.4 Convergence

One of the more debatable choices I have made during the writing of this
book has been to skip explicit justification of the convergence of various
sums and integrals—or, if you prefer, has been to leave the justification
in most instances as an exercise. A pure mathematician would not have

3Try [44] and [45], rather.
4For reasons that have little to do with mathematics, it has been fashionable to impute

such credit to fanaticism. Fashion, however, is as fleeting as it is shallow. You and I must
aim deeper than that. Refer to [76, “St. Thomas Aquinas”].

5From my perspective as writer, after all, you the reader inhabit the future. Therefore,
you may know more of these things than I do.
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done so, not at any rate in the same way. I still recall an undergraduate
engineering lecture, though, decades ago, during which the lean, silver-haired
engineering professor—pausing the second time to justify an interchange of
summing operators—rather turned to the class and confided, “Instead of
justifying the interchange again, let’s just do it, okay?” That professor had
his priorities straight.

Admittedly, to train the intuition, a mathematical education probably
ought at some stage to expose the student to formal, Weierstrassian tests
of convergence. However, except at that stage, the repetitive justification
of convergence soon grows tiresome. If the reader cannot readily tell for
himself, in a given concrete case, whether a sum converges, is this not prob-
ably because the reader fails to understand the term being summed? If the
reader indeed fails to understand, then Weierstrass can hardly help.

Though the proposition remains debatable, I believe—at least insofar as
the book you are reading is an applied work—that the book’s approach to
convergence has been the right one.

22.5 Klein

November 2, 1895, at Göttingen, the mathematician Felix Klein (like Frege
a German) masterfully summarized both sides of these matters. His lecture
and its English translation having passed into the public domain, we are
free to quote Klein at length as follows.

. . . With the contemplation of nature as its starting point, and its
interpretation as object, a philosophical principle, the principle
of continuity, was made fundamental; and the use of this prin-
ciple characterizes the work of the great pioneers, Newton and
Leibnitz, and the mathematicians of the whole of the eighteenth
century—a century of discoveries in the evolution of mathemat-
ics. Gradually, however, a more critical spirit asserted itself and
demanded a logical justification for the innovations made with
such assurance, the establishment, as it were, of law and order
after the long and victorious campaign. This was the time of
Gauss and Abel, of Cauchy and Dirichlet. But this was not
the end of the matter. Gauss, taking for granted the continuity
of space, unhesitatingly used space intuition as a basis for his
proofs; but closer investigation showed not only that many spe-
cial points still needed proof, but also that space intuition had
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led to the too hasty assumption of the generality of certain the-
orems which are by no means general. Hence arose the demand
for exclusively arithmetical means of proof; nothing shall be ac-
cepted as a part of the science unless its rigorous truth can be
clearly demonstrated by the ordinary operations of analysis. . . .
[W]here formerly a diagram served as proof, we now find con-
tinual discussions of quantities which become smaller than, or
which can be taken smaller than, any given small quantity. The
continuity of a variable, and what it implies, are discussed. . . .

Of course even this assigns no absolute standard of exactness;
we can introduce further refinements if still stricter limitations
are placed on the association of the quantities. This is exem-
plified . . . in the efforts to introduce symbols for the different
logical processes, in order to get rid of the association of ideas,
and the lack of accuracy which creeps in unnoticed, and therefore
not allowed for, when ordinary language is used. . . .

Summing up all these developments in the phrase, the arith-
metizing of mathematics, I pass on to consider the influence of
the tendency here described on parts of the science outside the
range of analysis proper. Thus, as you see, while voluntarily
acknowledging the exceptional influence of the tendency, I do
not grant that the arithmetized science is the essence of math-
ematics; and my remarks have therefore the two-fold character
of positive approbation, and negative disapproval. For since I
consider that the essential point is not the mere putting of the
argument into the arithmetical form, but the more rigid logic
obtained by means of this form, it seems to me desirable—and
this is the positive point of my thesis—to subject the remaining
divisions of mathematics to a fresh investigation based on the
arithmetical foundation of analysis. On the other hand I have to
point out most emphatically—and this is the negative part of my
task—that it is not possible to treat mathematics exhaustively
by the method of logical deduction alone. . . .

In the short time at my disposal I must content myself with
presenting the most important points; I begin therefore by trac-
ing the relation of the positive part of my thesis to the domain of
geometry. The arithmetizing of mathematics began originally, as
I pointed out, by ousting space intuition; the first problem that
confronts us as we turn to geometry is therefore that of rec-
onciling the results obtained by arithmetical methods with our
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conception of space. . . . The net result is, on the one hand, a
refinement of the process of space intuition; and on the other, an
advantage due to the clearer view that is hereby obtained of the
analytical results considered, with the consequent elimination of
the paradoxical character that is otherwise apt to attach itself
to them. . . . [T]here still remains the more important question:
What justification have we for regarding the totality of points in
space as a number-manifoldness in which we interpolate the ir-
rational numbers in the usual manner between the rational num-
bers arranged in three dimensions? We ultimately perceive that
space intuition is an inexact conception, and that in order that
we may subject it to mathematical treatment, we idealize it by
means of the so-called axioms. . . .

Another question is this: Practical physics provides us plenti-
fully with experimental results, which we unconsciously general-
ize and adopt as theorems about the idealized objects. . . . [T]he
theorem that every finite elastic body is capable of an infinite
series of harmonic oscillations [belongs to this category]. . . . [Is
such a theorem], taken in the abstract, [an] exact mathemati-
cal [theorem], or how must [it] be limited and defined in order
that [it] may become so? . . . You see here what is the precise ob-
ject of . . . renewed investigations; not any new physical insight,
but abstract mathematical argument in itself, on account of the
clearness and precision which will thereby be added to our view
of experimental facts. If I may use an expression of Jacobi’s in a
somewhat modified sense, it is merely a question of intellectual
integrity, “die Ehre des menschlichen Geistes.”

After expressing myself thus it is not easy, without running
counter to the foregoing conclusions, to secure to intuition her
due share in our science;6 and yet it is exactly on this antithe-
sis that the point of my present statements depends. I am now
thinking not so much of the cultivated intuition just discussed,
which has been developed under the influence of logical deduc-
tion and might almost be called a form of memory; but rather of
the näıve intuition, largely a natural gift, which is unconsciously

6Klein characterizes mathematics as a “science” so often that, insofar as my book is
quoting Klein with approbation, I should note that I have never been persuaded that
science is the right word for it. This is a minor quibble, and my witness may not weigh
much in comparison with that of the eminent Klein, but I would nevertheless prefer rather
to regard mathematics as a branch of philosophy.
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increased by minute study of one branch or other of the science.
The word intuition is perhaps not well chosen; I mean it to in-
clude that instinctive feeling for the proportion of the moving
parts with which the engineer criticises the distribution of power
in any piece of mechanism he has constructed; and even the in-
definite conviction the practiced calculator possesses as to the
convergence of any infinite process that lies before him. I main-
tain that mathematical intuition—so understood—is always far
in advance of logical reasoning and covers a wider field.

I might now introduce an historical excursus, showing that in
the development of most of the branches of our science, intuition
was the starting point, while logical treatment followed. . . . The
question in all such cases, to use the language of analysis, is one
of interpolation, in which less stress is laid on exactness in partic-
ular details than on a consideration of the general conditions. . . .
Logical investigation is not in place until intuition has completed
the task of idealization. . . .

I must add a few words on mathematics from the point of
view of pedagogy. We observe in Germany at the present day a
very remarkable condition of affairs in this respect; two opposing
currents run side by side without affecting one another apprecia-
bly. Among instructors in our Gymnasia [that is, roughly as un-
derstood in North American terms, in Germany’s elite, prepara-
tory high schools] the need of mathematical instruction based on
intuitive methods has now been so strongly and universally em-
phasized that one is compelled to enter a protest, and vigorously
insist on the necessity for strict logical treatment. . . . Among
the university professors of our subject exactly the reverse is the
case; intuition is frequently not only undervalued, but as much as
possible ignored. This is doubtless a consequence of the intrinsic
importance of the arithmetizing tendency in modern mathemat-
ics. But the result reaches far beyond the mark. It is high time
to assert openly once for all that this implies, not only a false
pedagogy, but also a distorted view of the science. I . . . have
always discouraged the laying-down of general rules for higher
mathematical teaching, but this shall not prevent me from say-
ing that two classes at least of mathematical lectures must be
based on intuition; the elementary lectures which actually intro-
duce the beginner to higher mathematics—for the scholar must
naturally follow the same course of development on a smaller
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scale, that the science itself has taken on a larger—and the lec-
tures which are intended for those whose work is largely done
by intuitive methods, namely, natural scientists and engineers.
Through this one-sided adherence to logical form we have lost
among these classes of men much of the prestige properly be-
longing to mathematics, and it is a pressing and urgent duty to
regain this prestige by judicious treatment.

To return to theoretical considerations, the general views
which I uphold in regard to the present problems of mathemati-
cal science need scarcely be specially formulated. While I desire
in every case the fullest logical working out of the material, yet
I demand at the same time an intuitive grasp and investigation
of the subject from all sides. Mathematical developments orig-
inating in intuition must not be considered actual constituents
of the science till they have been brought into a strictly logical
form. Conversely, the mere abstract statements of logical rela-
tions cannot satisfy us until the extent of their application to
every branch of intuition is vividly set forth, and we recognize
the manifold connections of the logical scheme, depending on
the branch which we have chosen, to the other divisions of our
knowledge. The science of mathematics may be compared to a
tree thrusting its roots deeper into the earth and freely spread-
ing out its shady branches into the air. Are we to consider the
roots or the branches as the essential part? Botanists tell us that
the question is badly framed, and that the life of the organism
depends on the mutual interaction of its different parts. [75]

I entertain no illusions that the book whose end you have reached measures
up to Klein’s high standard—nor is the book a product of the mathematical
profession in any case, so Klein’s standard was never one the book precisely
sought to meet—yet more than a century after Klein spoke, I can still think
of no more fitting way to end the book than with Klein’s robust reflections.
During quiet moments, when the applied mathematician is not out throwing
bridges across chasms and such, he may well ponder that which Klein has
taught.

THB
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Appendix A

Hexadecimal and other
notational matters

Convention is a practical necessity in mathematical notation. Consider

5 ; | ; 5 B · · ·�

which (say) means “two plus two equals four,” as long as one grasps that “;”
means two, “�” means four, “ 5 | 5 B” indicates addition, and so on. No
one can actually read such hieroglyphics, though, whereas

2 + 2 = 4

is immediately readable without further explication, however arbitrary con-
ventional symbols like “2,” “4,” “+,” and so on might seem. And how arbi-
trary are the conventional symbols, really? Well, individually, the conven-
tional symbols are arbitrary enough, yet the received body of conventional
mathematical notation is not merely arbitrary. The notation is worn to fit
like an old boot, rather, centuries of mathematical practice being the foot
which has broken the boot in. Today, if one wishes to write mathematical
ideas to others—and indeed, very likely, if one wishes to write mathematical
ideas even to oneself—then one will probably follow convention.

Sometimes however the conventional notation can embody the wrong
idea. Sometimes the notation inadvertently suggests a thought, or lends a
perspective, the writer writing it never meant. Sometimes the notation is
merely awkward, as in Girolamo Cardan’s 1539 letter to Tartaglia:

[T]he cube of one-third of the coefficient of the unknown is
greater in value than the square of one-half of the number. [93]
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Cardan means, (a
3

)3
>
(x

2

)2
.

Fortunately, convention has since 1539 condensed such notation, as you see;
so Cardan’s trouble has little troubled this book.

A.1 The symbol 2π

What has troubled this book, slightly, is the familiar

π ≈ 3.1416.

The notation is familiar because it is conventional, and it is conventional
because, well, that is just how people write mathematics. Nevertheless, for
this book’s purpose, the expression as written—though conventional and
indisputably accurate—inadvertently introduces two questionable ideas the
book’s writer never intended to entertain:

• it inadvertently introduces the idea that π as such were a quantity of
special interest (it isn’t);

• it inadvertently introduces the idea that the tenth, hundredth, thou-
sandth and ten thousandth parts of π deserved the reader’s notice
(they don’t).

Whether such ideas might merit attention in another book is not a question
the appendix you are reading will consider. The question rather is whether
the ideas have come here, unbidden, as uninvited guests.

The book prefers the notation

2π ≈ 0x6.487F.

Though less conventional, this notation dismisses the guests.
Taken as a single symbol 2π seems preferable to π (for π after all rep-

resents only half a circle), but 2π taken as a single symbol remains, maybe,
visually still a bit awkward. One wants instead to introduce some new
symbol1 ξ = 2π, τ = 2π or ππ = 2π (the last being slightly preferred by
this writer). However, inasmuch as the book has already stretched to reach
the more substantive § A.2, next, caution here prevails and the style 2π is
retained.

1See among others [95][10][86].
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A.2 Hexadecimal numerals

Treating 2π sometimes as a single symbol is a small step, unlikely to trouble
readers much. A bolder step is to adopt from the computer-science and
computer-engineering literature the important notational improvement of
the hexadecimal numeral. No incremental step is possible here; either we
leap the ditch or we remain on the wrong side. In this book, we choose to
leap.

Traditional decimal notation seems unobjectionable for measured quan-
tities like 63.7 miles, $1.32 million or 9.81 m/s2, but its iterative tenfold
structure meets little or no aesthetic support in mathematical theory. Con-
sider for instance the decimal numeral 127, whose number suggests a signifi-
cant idea to the computer scientist or computer engineer but whose decimal
notation does nothing to convey the notion of the largest signed integer
storable in a byte. Better is the base-sixteen hexadecimal notation 0x7F,
which clearly expresses the idea of 27 − 1. To the reader who is not a com-
puter scientist or computer engineer, the aesthetical advantage may not seem
immediately clear from the one example, but consider the decimal numeral
2,147,483,647, which represents the largest signed integer storable in a stan-
dard thirty-two bit word. In hexadecimal notation, this is 0x7FFF FFFF,
or in other words 20x1F − 1. The question is: which notation more clearly
captures the idea?

By contrast, decimal notation like 499,999 does not really convey any in-
teresting mathematical idea at all, except with regard to a special focus on
tens—a focus which is of immense practical use but which otherwise tells one
very little about numbers, as numbers. Indeed, one might go so far as to say
that the notation 499,999 were misleading, insofar as it attaches mathemati-
cally false interest to the idea it represents. (The hexadecimal representation
0x7A11F = 499,999 by contrast suggests to the eye at once the arguably,
relatively insignificant character of the number in question. So, which is
the more interesting quantity, all things considered? A 2,147,483,647 or a
499,999?)

Now, one does not wish to sell the hexadecimal numeral too hard. Dec-
imal numerals are fine: the author uses them as often, and likes them as
well, as almost anyone does. Familiar idiosyncrasy has value, after all. Nev-
ertheless, the author had a choice when writing this book, and for this book
the hexadecimal numeral seemed the proper, conceptually elegant choice—
proper and conceptually elegant enough indeed to risk deviating this far
from convention—so that is the numeral he chose.

To readers unfamiliar with the hexadecimal notation, to explain very
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briefly: hexadecimal represents numbers not in tens but rather in sixteens.
The rightmost place in a hexadecimal numeral represents ones; the next
place leftward, sixteens; the next place leftward, sixteens squared; the next,
sixteens cubed, and so on. For instance, the hexadecimal numeral 0x1357
means “seven, plus five times sixteen, plus thrice sixteen times sixteen, plus
once sixteen times sixteen times sixteen” (all of which totals to 4951 in
decimal). In hexadecimal, the sixteen symbols 0123456789ABCDEF respec-
tively represent the numbers zero through fifteen, with sixteen being written
0x10.

All this raises the sensible question: why sixteen?2 The answer is that
sixteen is 24, so hexadecimal (base sixteen) is found to offer a convenient
shorthand for binary (base two, the fundamental, smallest possible base).
Each of the sixteen hexadecimal digits represents a unique sequence of ex-
actly four bits (binary digits). Binary is inherently theoretically interesting,
but direct binary notation is unwieldy (the hexadecimal numeral 0x1357 is
binary 0001 0011 0101 0111), so hexadecimal is written in proxy.

Admittedly, the hexadecimal “0x” notation is bulky and overloads the
letters A through F (letters which otherwise conventionally often represent
matrices or indeterminate coefficients). However, the greater trouble with
the hexadecimal notation is not in the notation itself but rather in the
unfamiliarity with it. The reason it is unfamiliar is that it is not often
encountered outside the computer-science and computer-engineering liter-
ature, but it is not encountered because it is not used, and it is not used
because it is not familiar, and so on in a cycle. It seems to this writer, on
aesthetic grounds, that this particular cycle is worth breaking, so the book
you are reading employs the hexadecimal system for integers larger than 9.
If you have never yet used the hexadecimal system, it is worth your while
to learn it. For the sake of conceptual elegance, at the risk of transgressing
entrenched convention, this book employs hexadecimal throughout.

The book occasionally omits the cumbersome hexadecimal prefix “0x,”
as for example when it arrays hexadecimal numerals in matrices (as in
§ 12.3.1 where A is ten but, unfortunately potentially confusingly, A, set

2An alternative [81, book 6, no. 83] advocated by some nineteenth-century writers
was twelve. (Laplace, cited, was not indeed one of the advocates, or at any rate was
not a strong advocate; however, his context appears to have lain in the promotion of
base twelve by contemporaries.) In base twelve, one quarter, one third and one half are
respectively written 0.3, 0.4 and 0.6. Also, the hour angles (§ 3.6) come in neat increments
of (0.06)(2π) in base twelve, so there are some real advantages to that base. Hexadecimal,
however, besides having momentum from the computer-science and computer-engineering
literature, is preferred for its straightforward proxy of binary.
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in italics, is a matrix; and as in Fig. 4.2).
The book seldom mentions numbers with physical units of measure at-

tached but, when it does, it expresses those in decimal rather than hex-
adecimal notation—for example, vsound = 331 m/s rather than vsound =
0x14B m/s.

A.3 Avoiding notational clutter

Good applied mathematical notation is not cluttered. Good notation does
not necessarily include every possible limit, qualification, superscript and
subscript. For example, the sum

S =
M∑

i=1

N∑

j=1

a2
ij

might be written less thoroughly but more readably as

S =
∑

i,j

a2
ij

if the meaning of the latter were clear from the context.
When to omit subscripts and such is naturally a matter of style and

subjective judgment, but in practice such judgment is often not hard to
render. The balance is between showing few enough symbols that the inter-
esting parts of an equation are not obscured visually in a tangle and a haze
of redundant little letters, strokes and squiggles, on the one hand; and on
the other hand showing enough detail that the reader who opens the book
directly to the page has a fair chance to understand what is printed there
without studying the whole book carefully up to that point. Where appro-
priate, this book often condenses notation and omits redundant symbols.
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Appendix B

The Greek alphabet

Mathematical experience finds the Roman alphabet to lack sufficient sym-
bols to write higher mathematics fluently. Though not completely solving
the problem, the addition of the Greek alphabet helps. See Table B.1.

When first seen in English-language mathematical writing, the Greek
letters can seem to take on a wise, mysterious aura. Nevertheless, the Greek
letters are just letters. We use them not because we want to be wise and
mysterious1 but rather because we simply do not have enough Roman letters.
An equation like

α2 + β2 = γ2

says no more than does an equation like

a2 + b2 = c2,

after all. The letters are just different (though naturally one prefers to use
the letters one’s audience expects when one can).

Applied as well as professional mathematicians tend to use Roman and
Greek letters in certain long-established conventional sets: abcd; fgh; ijk`;
mn; pqr; st; uvw; xyz. For the Greek: αβγ; δε; κλµνξ; ρστ ; φχψω. Greek

1Well, you can use them to be wise and mysterious if you want to. It’s kind of fun,
actually, when you’re dealing with someone who doesn’t understand math—if what you
want is for him to go away and leave you alone. Otherwise, we tend to use Roman
and Greek letters in various conventional ways: Greek minuscules (lower-case letters)
for angles; Roman capitals for matrices; e for the natural logarithmic base; f and g for
unspecified functions; i, j, k, m, n, M and N for integers; P and Q for logical propositions
and metasyntactic elements; t, T and τ for time; d, δ and ∆ for change; A, B and C for
indeterminate coefficients; etc.
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Table B.1: The Roman and Greek alphabets.

ROMAN
Aa Aa Gg Gg Mm Mm Tt Tt
Bb Bb Hh Hh Nn Nn Uu Uu
Cc Cc Ii Ii Oo Oo V v Vv
Dd Dd Jj Jj Pp Pp Ww Ww
Ee Ee Kk Kk Qq Qq Xx Xx
Ff Ff L` Ll Rr Rr Y y Yy

Ss Ss Zz Zz

GREEK
Aα alpha Hη eta Nν nu Tτ tau
Bβ beta Θθ theta Ξξ xi Υυ upsilon
Γγ gamma Iι iota Oo omicron Φφ phi
∆δ delta Kκ kappa Ππ pi Xχ chi
Eε epsilon Λλ lambda Pρ rho Ψψ psi
Zζ zeta Mµ mu Σσ sigma Ωω omega

letters are frequently paired with their Roman congeners as appropriate:
aα; bβ; cgγ; dδ; eε; fφ; kκ; `λ; mµ; nν; pπ; rρ; sσ; tτ ; hxχ; zζ.2

Mathematicians usually avoid letters like the Greek capital H (eta),
which looks just like the Roman capital H, even though H (eta) is an entirely

2The capital pair YΥ is occasionally seen but is awkward both because the Greek
minuscule υ is visually almost indistinguishable from the unrelated (or distantly related)
Roman minuscule v; and because the ancient Romans regarded the letter Y not as a
congener but as the Greek letter itself, seldom used but to spell Greek words in the Roman
alphabet. To use Y and Υ as separate symbols is to display an indifference to, easily
misinterpreted as an ignorance of, the Graeco-Roman sense of the thing—which is silly,
arguably, if you think about it, since no one objects when you differentiate j from i, or u
and w from v—but, anyway, one is probably the wiser to tend to limit the mathematical
use of the symbol Υ to the very few instances in which established convention decrees it.
(In English particularly, there is also an old typographical ambiguity between Y and a
Germanic, non-Roman letter named “thorn” which has practically vanished from English
today, to the point that the typeface in which you are reading these words lacks a glyph
for it—but which sufficiently literate writers are still expected to recognize on sight. This
is one more reason to tend to avoid Υ when you can, a Greek letter that makes you look
ignorant when you use it wrong and pretentious when you use it right. You can’t win.)

The history of the alphabets is extremely interesting. Unfortunately, a footnote in an
appendix to a book on derivations of applied mathematics is probably not the right place
for an essay on the topic, so we’ll let the matter rest there.
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proper member of the Greek alphabet. The Greek minuscule υ (upsilon) is
avoided for like reason, for mathematical symbols are useful only insofar as
we can visually tell them apart. Interestingly, however, the Greek minus-
cules ν (nu) and ω (omega) are often used in applied mathematics, so one
needs to learn to distinguish those ones from the Roman v and w.
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Appendix C

A bare sketch of the pure
theory of the complex
variable

At least three of the various disciplines of pure mathematics stand out for
their pedagogical intricacy and the theoretical depth of their core results.
The first of the three is number theory which, except for the simple results
of § 6.1, scientists and engineers tend to get by largely without. The second
is matrix theory (chapters 11 through 14), a bruiser of a discipline the ap-
plied mathematician of the computer age—try though he might—can hardly
escape. The third is the pure theory of the complex variable.

The introduction’s § 1.4 admires the beauty of the pure theory of the
complex variable even while admitting that that theory’s “arc regrettably
takes off too late and flies too far from applications for such a book as this.”
To develop the pure theory properly is a worthy book-length endeavor of its
own requiring moderately advanced preparation on its reader’s part which,
however, the reader who has reached the end of the present book’s chapter 9
(or even of its section § 8.9) possesses. If the writer doubts the strictly
applied necessity of the pure theory, still, he does not doubt its health to
one’s overall mathematical formation. It provides another way to think
about complex numbers. Scientists and engineers with advanced credentials
occasionally expect one to be acquainted with it for technical-social reasons,
regardless of its practical use. Besides, the pure theory is interesting. This
alone recommends some attention to it.

The pivotal result of pure complex-variable theory is the Taylor series
by Cauchy’s impressed residue theorem. If we will let these few pages of
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appendix replace an entire book on the pure theory, then Cauchy’s and
Taylor’s are the results we will sketch. The bibliography lists presentations
far more complete.

Cauchy’s impressed residue theorem1 is that

f(z) =
1

i2π

∮
f(w)

w − z dw (C.1)

if z lies within the closed complex contour about which the integral is taken
and if f(z) is everywhere analytic (§ 8.4) within and along the contour. More
than one proof of the theorem is known, depending on the assumptions from
which the mathematician prefers to start, but this writer is partial to an
instructively clever proof he has learned from D. N. Arnold2 which goes as
follows. Consider the function

g(z, t) ≡ 1

i2π

∮
f [z + (t)(w − z)]

w − z dw,

whose derivative with respect to the parameter t is3

∂g

∂t
=

1

i2π

∮
f ′[z + (t)(w − z)] dw.

We notice that this is

∂g

∂t
=

1

i2π

∮
∂

∂w

{
f [z + (t)(w − z)]

t

}
dw

=
1

i2π

{
f [z + (t)(w − z)]

t

}b

w=a

,

where a and b respectively represent the contour integration’s beginning and
ending points. But this integration ends where it begins and its integrand

1This is not a standard name. Though they name various associated results after
Cauchy in one way or another, neither [65] nor [7] seems to name this particular result,
though both do feature it. Since (C.1) impresses a pole and thus also a residue on a
function f(z) which in the domain of interest lacks them, the name Cauchy’s impressed
residue theorem ought to serve this appendix’s purpose ably enough.

2[7, § III]
3The book does not often employ Newton’s notation f ′(·) ≡ [(d/dζ)f(ζ)]ζ=(·) of § 4.4

but the notation is handy here because it evades the awkward circumlocution of changing
ζ ← z in (C.1) and then writing,

∂g

∂t
=

1

i2π

∮
[(d/dζ)f(ζ)]ζ=z+(t)(w−z)

w − z dw.



705

(lacking a w in the denominator) is analytic within and along the contour,
so a = b and the factor {·}bw=a in braces vanishes, whereupon

∂g

∂t
= 0,

meaning that g(z, t) does not vary with t. Observing per (8.26) that

1

i2π

∮
dw

w − z = 1,

we have that

f(z) =
f(z)

i2π

∮
dw

w − z = g(z, 0) = g(z, 1) =
1

i2π

∮
f(w)

w − z dw

as was to be proved. (There remains a basic question as to whether the
paragraph’s integration is even valid. Logically, it ought to be valid, since
f [z] being analytic is infinitely differentiable,4 but when the integration is
used as the sole theoretical support for the entire calculus of the complex
variable, well, it seems an awfully slender reed to carry so heavy a load.
Admittedly, maybe this is only a psychological problem, but a professional
mathematician will devote many pages to preparatory theoretical constructs
before even attempting the integral, the result of which lofty effort is not
in the earthier spirit of applied mathematics. On the other hand, now that
the reader has followed the book along its low road and the high integration
is given only in reserve, now that the integration reaches a conclusion al-
ready believed and, once there, is asked to carry the far lighter load of this
appendix only, the applied reader may feel easier about trusting it.)

One could follow Arnold hence toward the proof of the theorem of one
Goursat and further toward various other interesting results, a path of study
the writer recommends to sufficiently interested readers: see [7]. Being in a
tremendous hurry ourselves, however, we will leave Arnold and follow F. B.
Hildebrand5 directly toward the Taylor series. Positing some expansion
point zo and then expanding (C.1) geometrically per (2.34) about it, we

4The professionals minimalistically actually require only that the function be once
differentiable under certain conditions, from which they prove infinite differentiability,
but this is a fine point which will not concern us here.

5[65, § 10.7]
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have that

f(z) =
1

i2π

∮
f(w)

(w − zo)− (z − zo)
dw

=
1

i2π

∮
f(w)

(w − zo)[1− (z − zo)/(w − zo)]
dw

=
1

i2π

∮
f(w)

w − zo

∞∑

k=0

[
z − zo
w − zo

]k
dw

=
∞∑

k=0

{[
1

i2π

∮
f(w)

(w − zo)k+1
dw

]
(z − zo)k

}
,

which, being the power series

f(z) =
∞∑

k=0

(ak)(z − zo)k,

ak ≡
1

i2π

∮
f(w)

(w − zo)k+1
dw,

(C.2)

by definition constitutes the Taylor series (8.19) for f(z) about z = zo,
assuming naturally that |z − zo| < |w − zo| for all w along the contour so
that the geometric expansion above will converge.

The important theoretical implication of (C.2) is that every function
has a Taylor series about any point across whose immediate neighborhood
the function is analytic. There evidently is no such thing as an analytic
function without a Taylor series—a fact we already knew if we have read
and believed chapter 8, but some readers may find it more convincing this
way.

Comparing (C.2) against (8.19), incidentally, we have also that

dkf

dzk

∣∣∣∣
z=zo

=
k!

i2π

∮
f(w)

(w − zo)k+1
dw, (C.3)

which is an alternate way to write (8.31).
Close inspection of the reasoning by which we have reached (C.2) re-

veals, quite by the way, at least one additional result which in itself tends
to vindicate the pure theory’s technique. It is this: that a Taylor series re-
mains everywhere valid out to the distance of the nearest nonanalytic point.
The proposition is explained and proved as follows. For the aforementioned
contour of integration nothing prevents one from choosing a circle, centered
in the Argand plane on the expansion point z = zo, the circle’s radius just as
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large as it can be while still excluding all nonanalytic points. The require-
ment that |z − zo| < |w − zo| for all w along the contour evidently is met for
all z inside such a circle, which means that the Taylor series (C.2) converges
for all z inside the circle, which—precisely because we have stipulated that
the circle be the largest possible centered on the expansion point—implies
and thus proves the proposition in question. As an example of the proposi-
tion’s use, consider the Taylor series Table 8.1 gives for − ln(1 − z), whose
nearest nonanalytic point at z = 1 lies at unit distance from the series’ ex-
pansion point z = 0: according to the result of this paragraph, the series in
question remains valid over the Argand circle out to unit distance, |z| < 1.
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Appendix D

Manuscript history

The book in its present form is based on various unpublished drafts and
notes of mine, plus a few of my wife Kristie’s (née Hancock), going back to
1983 when I was fifteen years of age. What prompted the contest I can no
longer remember, but the notes began one day when I challenged a high-
school classmate to prove the quadratic formula. The classmate responded
that he did not need to prove the quadratic formula because the proof was
in the class’ math textbook and then counterchallenged me to prove the
Pythagorean theorem. Admittedly obnoxious (I was fifteen, after all) but
not to be outdone, I whipped out a pencil and paper on the spot and started
working, but I found that I could not prove the theorem that day.

The next day I did find a proof in the school’s library,1 writing it
down, adding to it the proof of the quadratic formula plus a rather inef-
ficient proof of my own invention to the law of cosines. Soon thereafter
the school’s chemistry instructor happened to mention that the angle be-
tween the tetrahedrally arranged four carbon-hydrogen bonds in a methane
molecule was 109◦, so from a symmetry argument I proved that result to my-
self, too, adding it to my little collection of proofs. That is how it started.2

The book actually has earlier roots than these. In 1979, when I was
twelve years old, my father bought our family’s first eight-bit computer.
The computer’s built-in BASIC programming-language interpreter exposed

1A better proof is found in § 2.9.4 and the introduction to chapter 1.
2Fellow gear-heads who lived through that era at about the same age might want to

date me against the disappearance of the slide rule. Answer: in my country, or at least
at my high school, I was three years too young to use a slide rule. The kids born in 1964
learned the slide rule; those born in 1965 did not. I wasn’t born till 1967, so for better
or for worse I always had a pocket calculator in high school. My family had an eight-bit
computer at home, too, as we shall see.
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functions for calculating sines and cosines of angles. The interpreter’s man-
ual included a diagram much like Fig. 3.1 showing what sines and cosines
were, but it never explained how the computer went about calculating such
quantities. This bothered me at the time. Many hours with a pencil I spent
trying to figure it out, yet the computer’s trigonometric functions remained
mysterious to me. When later in high school I learned of the use of the Tay-
lor series to calculate trigonometrics, into my growing collection of proofs
the series went.

Five years after the Pythagorean incident I was serving the U.S. Army
as an enlisted troop in the former West Germany. Although those were
the last days of the Cold War, there was no shooting war at the time, so
the duty was peacetime duty. My duty was in military signal intelligence,
frequently in the middle of the German night when there often wasn’t much
to do. The platoon sergeant wisely condoned neither novels nor playing
cards on duty, but he did let the troops read the newspaper after midnight
when things were quiet enough. Sometimes I used the time to study my
German—the platoon sergeant allowed this, too—but I owned a copy of
Richard P. Feynman’s Lectures on Physics [46] which sometimes I would
read instead.

Late one night the battalion commander, a lieutenant colonel and West
Point graduate, inspected my platoon’s duty post by surprise. A lieutenant
colonel was a highly uncommon apparition at that hour of a quiet night, so
when that old man appeared suddenly with the sergeant major, the company
commander and the first sergeant in tow—the last two just routed from
their sleep, perhaps—surprise indeed it was. The colonel may possibly have
caught some of my unlucky fellows playing cards that night—I am not sure—
but me, he caught with my boots unpolished, reading the Lectures.

I snapped to attention. The colonel took a long look at my boots without
saying anything, as stormclouds gathered on the first sergeant’s brow at his
left shoulder, and then asked me what I had been reading.

“Feynman’s Lectures on Physics, sir.”
“Why?”
“I am going to attend the university when my three-year enlistment is

up, sir.”
“I see.” Maybe the old man was thinking that I would do better as a

scientist than as a soldier? Maybe he was remembering when he had had
to read some of the Lectures himself at West Point. Or maybe it was just
the singularity of the sight in the man’s eyes, as though he were a medieval
knight at bivouac who had caught one of the peasant levies, thought to be
illiterate, reading Cicero in the original Latin. The truth of this, we shall
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never know. What the old man actually said was, “Good work, son. Keep
it up.”

The stormclouds dissipated from the first sergeant’s face. No one ever
said anything to me about my boots (in fact as far as I remember, the first
sergeant—who saw me seldom in any case—never spoke to me again). The
platoon sergeant thereafter explicitly permitted me to read the Lectures on
duty after midnight on nights when there was nothing else to do, so in the
last several months of my military service I did read a number of them. It
is fair to say that I also kept my boots better polished.

In Volume I, Chapter 6, of the Lectures there is a lovely introduction to
probability theory. It discusses the classic problem of the “random walk”
in some detail and then states without proof that the generalization of the
random walk leads to the Gaussian distribution (§ 20.5),

Ω(x) =
exp(−x2/2σ2)

σ
√

2π
.

For the derivation of this remarkable theorem, I scanned the book in vain.
One had no Internet access in those days, but besides a well-equipped gym
the Army post also had a tiny library, and in one yellowed volume in the
library—who knows how such a book got there?—I did find a derivation
of the 1/σ

√
2π factor.3 The exponential factor, the volume did not derive.

Several days later, I chanced to find myself in Munich with an hour or two
to spare, which I spent in the university library seeking the missing part
of the proof, but lack of time and unfamiliarity with such a German site
defeated me. Back at the Army post, I had to sweat the proof out on my
own over the ensuing weeks. Nevertheless, eventually I did obtain a proof
which made sense to me. Writing the proof down carefully, I pulled the old
high-school math notes out of my military footlocker (for some reason I had
kept the notes and even brought them to Germany), dusted them off, and
added to them the new Gaussian proof.

That is how it has gone. To the old notes, I have added new proofs from
time to time, and though I have somehow misplaced the original high-school
leaves I took to Germany with me the notes have nevertheless grown with
the passing years. These years have brought me the good things years can
bring: marriage, family and career; a good life gratefully lived, details of
which interest me and mine but are mostly unremarkable as seen from the
outside. A life however can take strange turns, reprising earlier themes. I
had become an industrial building construction engineer for a living (and,

3The citation is now unfortunately long lost.
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appropriately enough, had most lately added to the notes a mathematical
justification of the standard industrial building construction technique to
measure the resistance to ground of a new building’s electrical grounding
system4), when at a juncture between construction projects an unexpected
opportunity arose to pursue graduate work in engineering at Virginia Tech,
courtesy (indirectly, as it developed) of a research program not of the United
States Army as last time but this time of the United States Navy. The
Navy’s research problem turned out to be in the highly mathematical fields
of theoretical and computational electromagnetics. Such work naturally
brought a blizzard of new formulas, whose proofs I sought or worked out
and, either way, added to the notes—whence the manuscript and, in due
time, this book.

The book follows in the honorable tradition of Courant’s and Hilbert’s
1924 classic Methods of Mathematical Physics [30]—a tradition subsequently
developed by, among others, Jeffreys and Jeffreys [70], Arfken and Weber [6],
and Weisstein5 [142]. The present book’s chief intended contribution to the
tradition lies in its applied-level derivations of the many results it presents.
Its author always wanted to know why the Pythagorean theorem was so.
The book is presented in this spirit.

A book can follow convention or depart from it; yet, though occasional
departure might render a book original, frequent departure seldom renders
a book good. Whether this particular book is original or good, neither or
both, is for the reader to tell, but in any case the book does both follow and
depart. Convention is a peculiar thing: at its best, it evolves or accumulates
only gradually, patiently storing up the long, hidden wisdom of generations
past; yet herein arises the ancient dilemma. Convention, in all its richness,
in all its profundity, can, sometimes, stagnate at a local maximum, a hillock
whence higher ground is achievable not by gradual ascent but only by descent

4The resistance-to-ground technique is too specialized to find place in this book.
5Weisstein lists results encyclopedically, alphabetically by name. I organize results

more traditionally by topic, leaving alphabetization to the book’s index, that readers who
wish to do so can coherently read the book from front to back.

There is an ironic personal story in this. As children in the 1970s, my brother and I had a
1959 World Book encyclopedia in our bedroom, about twenty volumes. The encyclopedia
was then a bit outdated (in fact the world had changed tremendously during the fifteen
or twenty years following 1959, so the book was more than a bit outdated) but the two
of us still used it sometimes. Only years later did I learn that my father, who in 1959
was fourteen years old, had bought the encyclopedia with money he had earned delivering
newspapers daily before dawn, and then had read the entire encyclopedia, front to back.
My father played linebacker on the football team and worked a job after school, too, so
where he found the time or the inclination to read an entire encyclopedia, I’ll never know.
Nonetheless, it does prove that even an encyclopedia can be read from front to back.
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first—or by a leap. Descent risks a bog. A leap risks a fall. One ought not
run such risks without cause, even in such an inherently unconservative
discipline as mathematics.

Well, the book does risk. It risks one leap at least: it employs hexadeci-
mal numerals.

This book is bound to lose at least a few readers for its unorthodox use
of hexadecimal notation (“The first primes are 2, 3, 5, 7, 0xB, . . .”). Perhaps
it will gain a few readers for the same reason; time will tell. I started keeping
my own theoretical math notes in hex a long time ago; at first to prove to
myself that I could do hexadecimal arithmetic routinely and accurately with
a pencil, later from aesthetic conviction that it was the right thing to do.
Like other applied mathematicians, I’ve several own private notations, and
in general these are not permitted to burden the published text. The hex
notation is not my own, though. It existed before I arrived on the scene and,
since I know of no math book better positioned to risk its use, I have with
hesitation and no little trepidation resolved to let this book use it. Some
readers will approve; some will tolerate; undoubtedly some will do neither.
The views of the last group must be respected, but in the meantime the
book has a mission; and crass popularity can be only one consideration, to
be balanced against other factors. The book might gain even more readers,
after all, had it no formulas, and painted landscapes in place of geometric
diagrams! I like landscapes, too, but anyway you can see where that line of
logic leads.

More substantively: despite the book’s title and despite the brief philo-
sophical discussion in its chapter 1, adverse criticism from some quarters for
lack of rigor is probably inevitable; nor is such criticism necessarily improper
from my point of view. Still, serious books by professional mathematicians
tend to be for professional mathematicians, which is understandable but
does not always help the scientist or engineer who wants to use the math to
model something. The ideal author of such a book as this would probably
hold two doctorates: one in mathematics and the other in engineering or
the like. The ideal author lacking, I have written the book.

So here you have my old high-school notes, extended over thirty years—
years that include professional engineering practice and university study,
research and teaching—now partly typed and revised for the first time as a
LATEX manuscript. Where this manuscript will go in the future is hard to
guess. Perhaps the revision you are reading is the last. Who can say? The
manuscript met an uncommonly enthusiastic reception at Debconf 6 [37]
May 2006 at Oaxtepec, Mexico—a reception that, as far as it goes, augurs
well for the book’s future at least. In the meantime, if anyone should chal-
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lenge you to prove the Pythagorean theorem on the spot, why, whip this
book out and turn to chapter 1. That should confound ’em.

THB
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′, 72, 467
0 (zero), 19

dividing by, 91
matrix, 296
vector, 296, 332

0− and 0+ as limits of integration, 618
1 (one), 19, 65, 297

Fourier transform of, 581
2π, 49, 65

as a symbol, 694
calculating, 227

Gamma, 666
I channel, 594
LU decomposition, 334
Q channel, 594
QR decomposition, 407

inverting a matrix by, 414
T as the cyclic period, 535
∆, 131
Λ as the triangular pulse, 539
Ω as the Gaussian pulse, 543, 599, 637
Π as the rectangular pulse, 539
Ψ as the raised-cosine pulse, 539
≈, 56, 97
δ, 91, 187, 293, 470
ε, 91, 470
≡, 23
∃, 551
∀, 551
∈ R, 551
∈ Z, 27
∈, 27, 49, 551
λ as the wavelength, 538
〈·〉, 633
←, 23
� and �, 91

0x, 695
µ, 633
∇ (del), 491
¬, 551
@, 551
ν as the cyclic frequency, 535
ω as the angular frequency, 535
∂ and d, 101
π, 693, 694
ρ, 511
σ, 633
∨, 551
∧, 551
d and ∂, 101
d, warped or partial, 102
d`, 185
dz, 209, 210
e, 123
evaluatingwhen, 92
givingthat, 92
i, 58
k as the spatial angular frequency, 538
n-dimensional vector, 286, 451
nth root

calculation of by Newton-Raphson,
120

nth-order expression, 269
u, 186
!, 26
!!, 658
a priori probability, 630
reductio ad absurdum, 148, 359
F , 573
L , 617
16th century, 269
19th century, 263
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4th century B.C., 11

AA (angle-angle), 56
AAA (angle-angle-angle), 56
AAS (angle-angle-side), 55
Abel, Niels Henrik (1802–1829), 685
abruptness, 541, 577
absolute integral, 575, 577, 613
absolute rate, 110
absolute value, 59
abstraction, 333
accountant, 470
accretion, 167
accuracy, 661
active region, 296, 299
addition

of matrices, 289
of rows or columns, 419
of vectors, 453
parallel, 155, 270
serial, 155
series, 155

addition operator
downward multitarget, 316
elementary, 303
leftward multitarget, 317
multitarget, 315
rightward multitarget, 317
upward multitarget, 316

addition quasielementary, 315
row, 316

addressing a vector space, 354
adduction, 15
adjoint, 292, 419, 443

of a matrix inverse, 309
aeronautical engineer, 386
aileron, 386
air, 489, 496, 656
aircraft, 657
algebra

classical, 19
formal, 3
fundamental theorem of, 153
higher-order, 269
linear, 285

of the vector, 451
algorithm

conjugate-gradient, 679
Gauss-Jordan, 340
implementation of from an equation,

407
all-or-nothing attempt, 648
alternate form, 253
alternating signs, 218, 561
altitude, 52
AMD, 342
amortization, 242
amplitude, 69, 451
amplitudinity, 69
analytic continuation, 201
analytic function, 63, 201

localized, 602
analyticity, 541

of the gamma function, 674
Anaxagoras (500–428 B.C.), 103
Anaximander (fl. 570 B.C.), 103
Anaximenes (fl. 550 B.C.), 103
angle, 49, 51, 53, 65, 76, 457, 460, 510

congruent, 19
double, 76
half, 76
hour, 76
interior, 49
of a polygon, 50
of a triangle, 49
of rotation, 74
right, 65
square, 65
sum of, 49

angle-angle (AA), 56
angle-angle-angle (AAA), 56
angle-angle-side (AAS), 55
angle-side-angle (ASA), 55
angular frequency, 535, 594
antelope, 490
antenna

parabolic, 480
satellite dish, 480

antiderivative, 167, 237
and the natural logarithm, 238
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guessing, 242
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and logarithms, 266
antiquity, 103, 269
applied mathematics, 2, 187, 196

foundations of, 285
approximation

to a square wave, 531
approximation to an arbitrary function,

615
approximation to an arbitrary pulse, 577
approximation to first order, 218
Aquinas, St. Thomas (1225-1274), 13
Aquinas, St. Thomas (1225-1274), 105,

683
arbitrary function, 615
arbitrary pulse, 577
arc, 65
arccosine, 65, 137

derivative of, 144
in complex exponential form, 138

Archimedes (287–212 B.C.), 103
arcsine, 65, 137

derivative of, 144
in complex exponential form, 138

arctangent, 65, 137
derivative of, 144
in complex exponential form, 138

area, 1, 19, 48, 176, 511, 550
enclosed by a contour, 498
of a circle, 179
of a sphere’s surface, 181
surface, 179
unit, 539
within a parabola, 176

arg, 60
Argand domain and range planes, 201
Argand plane, 59, 131
Argand, Jean-Robert (1768–1822), 59
argument

real, 588
Aristotle (384–322 B.C.), 13
Aristotle (384–322 B.C.), 103, 145
arithmetic, 10, 19, 103, 681

exact, 342, 357, 369, 424, 432

exact and inexact, 388
of matrices, 289

arithmetic mean, 158
arithmetic series, 28
arm, radial, 132
articles “a” and “the”, 387
artillerist, 385
artillery, 263
ASA (angle-side-angle), 55
assertion, 53
assignment, 23
associativity, 19

additive, 19
multiplicative, 19
nonassociativity of the cross prod-

uct, 460
of convolution, 590, 605
of matrix multiplication, 289
of unary linear operators, 494

asymmetry, 402
asymptotic series, 657, 660
attempt

failing, 612
successful, 615

attempt, all-or-nothing, 648
attitude, 53
autocorrelation, 590
autoderivative, 599
automobile, 461
autotransform, 598, 599
autotransform pair, 597
average, 157
axes, 72

changing, 72
invariance under the reorientation

of, 457, 458, 491, 506, 507
reorientation of, 454
rotation of, 72, 451

axiom, 3
axiomatic method, 3
axis, 83

of a cylinder or circle, 463
visual, 203

axle, 465
azimuth, 385, 463, 464, 655
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balanced expression of convolution, 586,
605

band confinement, 576
barometric pressure, 496
baroquity, 281
baseball, 536
Basel problem, 557
basis, 434, 466

complete, 434
constant, 462, 515
converting to and from, 434
cylindrical, 463
orthogonal, 461
secondary cylindrical, 464
spherical, 463
variable, 462

battle, 385
battlefield, 385
bearing, 652
bell curve, 599, 639
Bell, John L. (1945–), 7
belonging, 27, 49
Bertrand Russell (1872–1970), 8, 11, 105
binomial theorem, 95
bisection, 480
bit, 160, 295, 342, 389
bivouac, 710
Black, Thaddeus H. (1967–), 709
blackbody radiation, 43
block, wooden, 92
blockade, 362
bond, 110
borrower, 242
botanist, 689
bound on a power series, 218
boundary condition, 242
boundary element, 501, 503
box, 19
Box, G. E. P. (1919–2013), 656
Box-Muller transformation, 656
bracket, 661
branch, 689
branch point, 58, 203

strategy to avoid, 205
brick, 155, 606

bridge, 4, 105, 683
Brouwer, Luitzen Egbertus Jan (1881–

1966), 104
Bryan, George Hartley (1864–1928), 454
building construction, 390
Bulmer, M. G., 648

C and C++, 21, 23
C++, 682
calculus, 89, 161

fundamental theorem of, 167, 502
of the vector, 489
the two complementary questions of,

89, 161, 167
vector, definitions and identities of,

505
cannon, 385
Cantor, Georg (1845–1918), 11, 105, 553,

683
capacitor, 145
capital

Greek, 543
card, 630
Cardan rotations, 454
Cardan, Girolamo (also known as Car-

dano or Cardanus, 1501–1576),
269, 454

carriage wheel, 385
Cauchy’s impressed residue theorem, 704
Cauchy’s integral formula, 209, 244
Cauchy, Augustin Louis (1789–1857), 209,

244, 685
Cauchy-Schwarz inequality, 402
caveman, 490
CDF (cumulative distribution function),

631
chain rule, derivative, 112
change of variable, 23
change, rate of, 89
channel, 594
characteristic polynomial, 426, 441, 443
checking an integration, 184
checking division, 184
choice of wooden blocks, 92
Cholesky, André-Louis (1875–1918), 450
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Chrysippus (280–206 B.C.), 103
Cicero (106–43 B.C.), 710
circle, 65, 76, 131, 463

area of, 179
secondary, 464
travel about, 132
unit, 65

circuit, 386
circuit theory, 682
circular paraboloidal coordinates, 485
circulation, 498, 503
cis, 136
city street, 386
classical algebra, 19
classical geometry, 19
cleverness, 190, 277, 516, 599, 704
climate, 630
clock, 76
closed analytic form, 266
closed contour

about a multiple pole, 215
closed contour integration, 185
closed form, 266
closed surface integration, 183
clutter, notational, 467, 697
cöıncident properties of the square ma-

trix, 424
coefficient, 285

Fourier, 545, 608
inscrutable, 272
matching of, 41
metric, 510
nontrivial, 332, 428
unknown, 242

coin, 648
collated pulse, 608
column, 286, 343, 381, 409

addition of, 419
null, 418
null, appending a, 377
orthonormal, 413
scaled and repeated, 418
spare, 347, 368

column operator, 291
column rank, 394

full, 366, 368
column vector, 359, 400
combination, 92

properties of, 93, 94
combinatorics, 92

properties of, 93, 94
commutation

hierarchy of, 305
of elementary operators, 305
of matrices, 306
of the identity matrix, 301

commutivity, 19
additive, 19
multiplicative, 19
noncommutivity of matrix multipli-

cation, 289
noncommutivity of the cross prod-

uct, 459
noncommutivity of unary linear op-

erators, 493
of convolution, 590, 605
of the dot product, 457
summational and integrodifferential,

171
compactness, 541
complementary variables of transforma-

tion, the, 573
complete basis, 434
completing the square, 24, 599
complex conjugation, 61
complex contour

about a multiple pole, 215
complex coordinate, 453
complex exponent, 134
complex exponential, 123, 545

and de Moivre’s theorem, 135
derivative of, 140
infinitesimally graded, 573
inverse, derivative of, 140
Laplace transform of, 619
properties of, 139
sampled, 552
superposition of, 531

complex number, 58, 86
actuality of, 144
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being a scalar not a vector, 286
conjugating, 61
imaginary part of, 60
magnitude of, 59
multiplication and division, 60, 86
phase of, 60
real part of, 60

complex number in nature, 144
complex plane, 59
complex power, 98
complex trigonometrics, 135

inverse, 137
complex variable, 15, 108, 703
component

of a vector field, 489
components of a vector by subscript, 467
composite number, 147

compositional uniqueness of, 148
compromise, 541
computer, 657

pseudorandom-number generator, 651
computer memory, 388, 407
computer processor, 342
computer register, 388
concert hall, 45
concision, 466
concluding remarks, 681
condition, 425, 432

of a scalar, 433
conditional convergence, 172
cone

volume of, 180
congruence, 53
conjecture, 395
conjugate, 58, 61, 144, 292

Fourier transform of, 579
of a Fourier series, 555

conjugate transpose, 292
of a matrix inverse, 309

conjugate-gradient algorithm, 679
conjugation, 61
connection, deep, 558
connotation, 69
consensus

vacillating, 106

constant, 44
Fourier transform of, 581

constant expression, 23
constant, indeterminate, 44
constraint, 278
construction of an arbitrary function, 615
construction of an arbitrary pulse, 577
constructive function, 610
continued fraction, 160
continuity, 103
continuous and discrete systems, 682
continuous waveform, 553
continuum, 11
contour, 186, 203, 463

closed, 503
closed planar, 498
complex, 210, 214, 245, 565, 599
complex, about a multiple pole, 215
derivative product rule along, 508

contour infinitesimal, 511, 527
contour integration, 185, 527

closed, 185
closed complex, 209, 244, 564, 601
complex, 210, 599
of a vector quantity, 186, 527

contractor, 390
contradiction, proof by, 148, 359
control, 386
control surface, aeronautical, 386
convention, 623, 693
convergence, 86, 171, 195, 684

conditional, 172
domain of, 223
improvement of, 679
lazy, 661
related to the raised cosine-rolloff

pulse, 575
slow, 223

convolution, 586, 605, 606, 632
associativity of, 590, 605
balanced expression of, 586, 605
by Heaviside’s unit step, 603
commutivity of, 590, 605
definition of, 606
Fourier transform of, 586
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in cyclic frequencies, 625
unbalanced expression of, 586, 605

coordinate, 451
complex, 453
primed and unprimed, 467
real, 453

coordinate grid
parabolic, 482

coordinate rotation, 83
coordinates, 83, 466, 510

circular paraboloidal, 485
cyclic progression of, 459
cylindrical, 83, 510
isotropic, 477
logarithmic cylindrical, 477
parabolic, 478, 526
parabolic cylindrical, 485
parabolic, in two dimensions, 481
parabolic, isotropy of, 484
parabolic, properties of, 484
rectangular, 65, 83
relations among, 84
special, 478
spherical, 83, 510

corner, 541
corner case, 276
corner value, 270
correlation, 586, 646

Fourier transform of, 586
inference of, 646

correlation coefficient, 646
cosine, 65, 457

derivative of, 140, 142
Fourier transform of, 598
in complex exponential form, 135
Laplace transform of, 619
law of, 81

cost function, 393
countability, 536
counterexample, 289
Courant, Richard (1888–1972), 5
Courant-Hilbert-Shilov perspective, the,

5
course, 682
Cramer’s rule, 424

Cramer, Gabriel (1704–1752), 424
crankshaft, 535
creativity, 263
cross product, 457

nonassociativity of, 460
noncommutivity of, 459
perpendicularity of, 460

cross-derivative, 234
cross-directional curl, 500
cross-directional derivative, 500
cross-section

parabolic, 480
cross-term, 234
crosswind, 461
cryptography, 147
cubic expression, 23, 154, 269, 270

roots of, 273
cubic formula, 273
cubing, 274
cue, verbal, 536
cumulative distribution function, 631

estimation of, 659
numerical calculation of, 640
of the normal distribution, 640, 657

cumulative normal distribution function,
640

curl, 498
cross-directional, 500
directional, 498, 503
in cylindrical coordinates, 516
in nonrectangular coordinates, 524
in spherical coordinates, 519
of a curl, 506
of a gradient, 507

current, electric, 69, 145
customer, 652
cycle, 536

integration over a complete, 545
cyclic frequency, 535, 625

convolution in, 625
Fourier transform in, 625
inverse Fourier transform in, 625

cyclic progression of coordinates, 459
cylinder, 463

parabolic, 485
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cylinder function, 679
cylindrical basis, 463
cylindrical coordinates, 83, 451, 510

integration in, 601
parabolic, 485

datum, 389, 390
day, 76
days of the week, 491
de Moivre’s theorem, 86, 135

and the complex exponential, 135
de Moivre, Abraham (1667–1754), 86,

135
Debian, 16
Debian Free Software Guidelines, 16
deck of cards, 630
decomposition

LU , 334
QR, 407
diagonal, 429
differences between the Gram-

Schmidt and Gauss-Jordan, 410
eigenvalue, 429
Gauss-Jordan, 334
Gram-Schmidt, 407
Gram-Schmidt, inverting a matrix

by, 414
orthonormalizing, 407
Schur, 435
singular-value, 447

deduction, 15
deep connection, 558
definite integral, 184

to represent the gamma function, 666
definition, 3, 98, 187

abstract, 3
of vector calculus, 505

definition notation, 23
degenerate linear system, 366
degenerate matrix, 365, 377
degree of freedom, 385
del (∇), 491
delay, 582, 606
delta function, Dirac, 187, 606

alternative to, 539

as implemented by the Gaussian
pulse, 602

Fourier transform of, 581
implementation of, 539
implementation of, subtle, 543
response to, 586
sifting property of, 187, 581, 603,

606
delta, Kronecker, 293, 470

properties of, 472
sifting property of, 293

Democritus (b. c. 458 B.C.), 103
demotion, 363
denominator, 35, 249

vanishing, in the Fourier transform
of a raised cosine-rolloff pulse,
577

density, 175
spectral, 590

density function, probability, 631
dependence, 646
dependent element, 381
dependent variable, 100
Derbyshire, John (1945–), 107
derivation, 1
derivative, 89

balanced form, 99, 108
chain rule for, 112
constant, 496
cross-, 234
cross-directional, 500
definition of, 99
directional, 494
Fourier transform of, 584
higher, 114
higher-order, 108
Jacobian, 328, 392, 399
Laplace transform of, 618
Leibnitz notation for, 100
logarithmic, 110, 126
logarithmic of the natural exponen-

tial, 126
manipulation of, 111
Newton notation for, 99
nonexistent, 108
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of za/a, 238
of a complex exponential, 140
of a field, 489
of a field in cylindrical coordinates,

515
of a field in cylindrical coordinates,

second-order, 517
of a field in spherical coordinates,

519
of a field in spherical coordinates,

second-order, 522
of a field, nonrectangular, 513
of a field, second-order, 506
of a Fourier transform, 584
of a function of a complex variable,

108
of a rational function, 256
of a trigonometric, 142
of a unit basis vector, 513
of an inverse trigonometric, 144
of arcsine, arccosine and arctangent,

144
of sine and cosine, 140
of sine, cosine and tangent, 142
of the natural exponential, 124, 142
of the natural logarithm, 127, 144
of the sine-argument function, 560
of za, 109
partial, 102, 491
product rule for, 112, 114, 240, 329,

504, 508
second, 108, 115
trial, 263
unbalanced form, 99, 108
with respect to position, 490

derivative pattern, 114
derivative product

a pattern of, 114
determinant, 415

and the elementary operator, 420
definition of, 416
inversion by, 423
of a matrix inverse, 422
of a product, 422
of a unitary matrix, 422

product of two, 422
properties of, 417
rank-n, 416
zero, 421

deviation, 396
DFSG (Debian Free Software Guidelines),

16
diag notation, the, 315
diagonal, 1, 51, 52, 65

main, 294, 441
three-dimensional, 52

diagonal decomposition, 429
diagonal matrix, 314, 315
diagonalizability, 430
diagonalizable matrix, 444
diagonalization, 429
die, 630
differentiability, 109
differential equation, 102, 242

ordinary, 102
partial, 102
solution of by the Laplace transform,

620
solution of by unknown coefficients,

242
differentiation

analytical versus numeric, 185
Fourier transform of, 584

digamma function, 675
dimension, 286, 534, 535, 594, 623

visual, 203
dimension-limited matrix, 296
dimensionality, 72, 294, 370
dimensionlessness, 65, 538
Dirac delta function, 187, 606

alternative to, 539
as implemented by the Gaussian

pulse, 602
Fourier transform of, 581
implementation of, 539
implementation of, subtle, 543
response to, 586
sifting property of, 187, 581, 603,

606
Dirac delta pulse train, 550
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Fourier coefficients of, 550
Fourier transform of, 598

Dirac, Paul (1902–1984), 187
direction, 69, 451
directional curl, 498, 503
directional derivative, 494

in cylindrical coordinates, 515
in spherical coordinates, 519

directrix, 479
Dirichlet, J. Peter Gustav Lejeune (1805-

1859), 547
Dirichlet, J. Peter Gustav Lejeune (1805-

1859), 685
disconsolate infinity, 104
discontinuity, 11, 186, 541

in the square pulse, 541
discontinuous waveform, 553, 567
discrete and continuous systems, 682
discreteness, 103
discretization, 551
dish antenna, 480
displacement, 69, 511
displacement infinitesimal, 511, 527
distance, 71
distinct pole, 253
distribution, 631

conversion between two, 636, 656
default, 641, 651
exponential, 652
Gaussian, 639
Maxwell, 656
normal, 637, 639
normal, proof of, 638
Poisson, 652
Rayleigh, 654
uniform, 651

distribution function, cumulative, 631
distributivity, 19

of unary linear operators, 493
divergence, 496, 501, 666

in cylindrical coordinates, 516
in nonrectangular coordinates, 522
in spherical coordinates, 519
of a curl, 507
of a gradient, 506

of the sum of plain inverses, 558
related to the square pulse, 575

divergence theorem, 501
divergence to infinity, 57
divergenceless field, 507
divergent series, 226
dividend, 35
dividing by zero, 91
division, 60, 86

by matching coefficients, 41
checking, 184

divisor, 35
dollar, 537
domain, 56, 223, 381

sidestepping a, 224
time and frequency, 573, 620
transform, 573, 620

domain contour, 203
domain neighborhood, 201
dominant eigenvalue, 431, 432
dot product, 400, 457

abbrevated notation for, 467
commutivity of, 457

double angle, 76
double integral, 175

ill-behaved, 174
double pole, 250, 256
double root, 276
down, 65, 386
downstairs, 490
downward multitarget addition operator,

316
driving vector, 379, 381, 387
duality, 580, 582
dull pulse, 539
dummy variable, 25, 169, 244, 573
duty cycle, 549

vanishing, 550

east, 65, 385, 463
edge

inner and outer, 503
edge case, 15, 275, 332
edge value, 187
efficiency, 657
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efficient implementation, 407
effort, 54
eigensolution, 428

count of, 429
impossibility to share, given inde-

pendent eigenvectors, 429
of a matrix inverse, 428
repeated, 431, 442

eigenvalue, 415, 426
distinct, 428, 430
dominant, 431, 432
large, 432
magnitude of, 432
of a matrix inverse, 427
perturbed, 442
real, 444
repeated, 429, 442
shifting of, 428
small, 432
zero, 427, 432

eigenvalue decomposition, 429
eigenvalue matrix, 429
eigenvector, 426, 427

generalized, 443
independent, 430
linearly independent, 428
of a matrix inverse, 428
orthogonal, 444
repeated, 431, 442

Einstein notation, 469, 512
Einstein’s summation convention, 469, 512
Einstein, Albert (1879–1955), 469
electric capacitor, 145
electric circuit, 386
electric current, 69, 145
electric tension or potential, 69, 145
electrical engineer, 386, 568, 586, 590
electromagnetic power, 460
electromagnetics, 682
electronic signal, 541
electronic signaling, 590
electronics, 682
elegance, 657
element, 286

free and dependent, 381

interior and boundary, 501, 503
elementary function, 663
elementary operator, 302

addition, 303, 308
and the determinant, 420
combination of, 306
commutation of, 305
expansion of, 306
interchange, 302, 307
inverse of, 302, 306
invertibility of, 304
scaling, 303, 308
sorting of, 305
two, of different kinds, 305

elementary similarity transformation, 334
elementary vector, 301, 359, 400

left-over, 361
elevation, 385, 463
elf, 58
embedded control, 657
embedded device, 657
empirical probability, 630
empty set, 332
end, justifying the means, 358
energy, 69, 594

kinetic, 102
potential, 102

energy spectral density, 590
engine, 535
engineer, 386, 568, 586, 623, 626
ensemble, 643
entire function, 206, 223, 230, 601, 675
Epicurus (341–271 B.C.), 103
epistemology, 8, 12
epsilon, Levi-Civita, 470

properties of, 472
equation

simultaneous linear system of, 289,
378

solving a set of simultaneously, 74,
289, 378

superfluous, 379
equator, 181
equidistance, 479
error
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due to rounding, 388
forestalled by rigor, 12
in the solution to a linear system,

433
error bound, 218, 659
error, rounding, 657
essential singularity, 58, 206, 232
estimation of statistics, 642
Euclid (325–265 B.C.), 51
Euclid (325–265 B.C.), 53, 103, 148
Eudoxus (408–355 B.C.), 103
Euler rotations, 456
Euler’s formula, 131

curious consequences of, 134
Euler, Leonhard (1707–1783), 131, 134,

172, 456, 557
Euler-Mascheroni constant, 679
European Renaissance, 14
evaluation, 114
even function, 228

Fourier transform of, 594
even inverse square

sum of, 558
even square

inverse, sum of, 558
evenness, 310
exact arithmetic, 342, 357, 369, 388, 424,

432
exact matrix, 357
exact number, 357
exact quantity, 357
exactly determined linear system, 378
exercises, 157, 189, 261, 583
existence, 258
expansion of 1/(1− z)n+1, 192
expansion point

shifting of, 197
expectation, 630
expected value, 633
experience, 263
experimental measurement, 616
exponent, 28, 46

complex, 134
floating-point, 389
sum of, 33

exponent, floating-point, 342
exponential, 46, 134

approximation of to first order, 218
general, 127
integrating a product of a power and,

264
Laplace transform of, 619
natural, error of, 223
resemblance of to x∞, 130

exponential decay
Fourier transform of, 597

exponential distribution, 652
exponential, complex, 123, 545

and de Moivre’s theorem, 135
sampled, 552

exponential, natural, 123
compared to xa, 128
derivative of, 124, 142
existence of, 123
Fourier transform of, 597
logarithmic derivative of, 126

exponential, real, 123
expression

Pythagorean, 259
extended operator, 295, 297, 414

decomposing, 352
extension, 14
extra column, 347, 368
extremum, 114, 207

global, 561
local, 562
of the sine integral, 562
of the sine-argument function, 561

eye of the mind, 104

factor
truncating, 350

factor of integration, 103, 163
factorial, 26

!!-style, 658
as related to the gamma function,

667
factorization, 23

QR, 407
full-rank, 368, 395, 411



INDEX 741

Gauss-Jordan, 334
Gram-Schmidt, 407
orthonormalizing, 407
prime, 148

failed attempt, 612
failing attempt, 612
failure, 612
failure of a mechanical part, 652
false try, 193, 564
family of solutions, 387
fast function, 128
faux rigor, 93
feedback, 263
Ferrari, Lodovico (1522–1565), 269, 277
Feynman, Richard P. (1918-1988), 648
field, 489

curl of, 498
derivative of, 489
derivative of, in cylindrical coordi-

nates, 515
derivative of, in spherical coordinates,

519
derivative of, nonrectangular, 513
derivative product rule for, 504, 508
directional derivative of, 494
divergence of, 496
divergenceless, 507
gradient of, 494
irrotational, 507
second-order derivative of, 506
solenoidal, 507
source-free, 507

filling of a pattern, 618
final value

of the sine integral, 562
final-value theorem, 622
financial unit, 70
finitude, 612
first-order approximation, 218
first-order Taylor expansion, 98
Fisher, R. A. (1890–1962), 648
flattening, 636
flaw, logical, 150
floating-point exponent, 389
floating-point infinity, 389

floating-point number, 342, 432
floating-point register, 388, 557
floating-point zero, 389
floor, 490
flux, 496, 501
focus, 479
football, 496
forbidden point, 199, 201
force, 69
form, alternate, 253
formal algebra, 3
formal mathematical rigor, 3
formal parameter, 102
formalism, 7, 170
Fortran, 27
foundations of mathematics, 7, 682
fourfold integral, 175
Fourier autotransform, 598, 599
Fourier autotransform pair, 597
Fourier coefficient, 545, 608

as connected to a function’s mean
square, 555

derivation of formula for, 545
of the Dirac delta pulse train, 550
of the rectangular pulse train, 548
of the square wave, 548
real and imaginary parts of, 554
recovery of, 545

Fourier series, 531, 545
as multiplied by its conjugate, 555
in trigonometric form, 554
linearity of, 551
sufficiency of, 551

Fourier transform, 571
applications of, 605
comparison of against the Laplace

transform, 620
differentiation of, 584
dual of, 580, 582
example of, 575
frequency-shifted, 582
in cyclic frequencies, 625
in primitive guise, 531
independent variable and, 573
inverse, 573
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linearity of, 584
metadual of, 582
of a complex conjugate, 579
of a constant, 581
of a convolution, 586
of a correlation, 586
of a delayed function, 582
of a derivative, 584
of a Dirac delta pulse train, 598
of a function whose argument is com-

plex, 588
of a level and ramp, 615
of a product, 586
of a raised cosine-rolloff pulse, 575
of a raised-cosine pulse, 575
of a ramp and level, 612, 615
of a shifted function, 584
of a sinusoid, 598
of a square pulse, 575
of a triangular pulse, 575
of an exponential decay, 597
of an irregular step, 614
of an irregular triangular pulse, 610
of an odd or even function, 594
of an right-triangular pulse, 613
of differentiation, 584
of integration, 603
of selected functions, 595
of the Dirac Delta, 581
of the Heaviside unit step, 597
of the natural exponential, 597
of the sine-argument function, 595
properties of, 578, 618, 619
real and imaginary parts of, 579
reversing the independent variable

of, 580
scaling of, 584
shifting of, 584
spatial, 175, 623
superpositional property of, 584
symmetries of, 578
symmetry of, 626

Fourier transform pair, 573, 596, 618,
620, 628

Fourier’s equation, 571

Fourier, Jean Baptiste Joseph
(1768–1830), 531, 571, 682

fraction, 249
Fraenkel, Abraham (1891–1965), 11
frame offset, 534
free element, 381
freedom, degree of, 385
freeway, 390
Frege, Friedrich Ludwig Gottlob (1848–

1925), 8, 681
frequency, 535, 537, 594

angular, 535, 594
cyclic, 535, 625
infinitesimally graded, 573
primary, 532
shifting of, 545
spatial, 538, 594, 623

frequency content, 573, 594
frequency domain, 573, 620
frequency shift, 582
freshman, 682
frontier, 322
Frullani’s integral, 263
Frullani, Giuliano (1795–1834), 263
full column rank, 366, 368
full rank, 365
full row rank, 366, 405
full-rank factorization, 368, 395, 411
function, 56, 187

analytic, 63, 201
arbitrary, 615
constructive, 610
elementary or nonelementary, 663
entire, 206, 223, 230, 601
experimentally measurable, 616
extremum of, 114
fast, 128
fitting of, 191
inverse of, 56, 636
linear, 171
localized analytic, 602
meromorphic, 206, 230
nonanalytic, 63
nonlinear, 171
odd or even, 228, 594
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of a complex variable, 108
of position, 489
rational, 249
rational, derivatives of, 256
rational, integral of, 254
sample of, 616
single- and multiple-valued, 201, 203
slow, 128
special, 663
sum of, 606
tail of, 615
unreasonable, 202
versatile, 602

fundamental theorem of algebra, 153
fundamental theorem of calculus, 167,

502

Gödel, Kurt Friedrich (1906–1978), 13,
681

Göttingen, 685
game of chance, 630
gamma function, 663

analyticity of, 674
as related to the factorial, 667
definite integral representation of, 666
logarithmic derivative of, 675
numerical evaluation of, 668
of a half-integral argument, 667
pole of, 674
reciprocal, 675
reflection of, 671
residue of, 674

Gauss, Carl Friedrich (1777–1855), 334,
380, 599, 639, 685

Gauss-Jordan algorithm, 340
Gauss-Jordan decomposition, 334

and full column rank, 368
differences of against the Gram-

Schmidt, 410
factors K and S of, 368
inverting the factors of, 349

Gauss-Jordan factorization, 334
Gauss-Jordan factors

properties of, 351
Gauss-Jordan kernel formula, 380

Gaussian distribution, 639
Gaussian pulse, 543, 599, 639

properties of, 543
to implement the Dirac delta by, 602

gear, 537
general exponential, 127
general identity matrix, 297
general interchange operator, 313
General Public License, GNU, 16
general scaling operator, 314
general solution, 388
general triangular matrix, 318, 441
generality, 380
generalized eigenvector, 443
geometric majorization, 221
geometric mean, 158
geometric series, 42

majorization by, 221
variations on, 43

geometrical argument, 4, 522
geometrical intuition, 53
geometrical vector, 69, 451
geometrical visualization, 333, 522
geometry, 10, 48, 103

classical, 19
Gibbs phenomenon, 567
Gibbs, Josiah Willard (1839–1903), 567
GNU General Public License, 16
GNU GPL, 16
goal post and goal line, 496
Goursat, Edouard (1858–1936), 705
GPL, 16
gradient, 494

in cylindrical coordinates, 515
in nonrectangular coordinates, 526
in spherical coordinates, 519
of a divergence, 506

grading, infinitesimal, 573
Gram, Jørgen Pedersen (1850–1916), 405
Gram-Schmidt decomposition, 407

differences of against the Gauss-
Jordan, 410

factor Q of, 411
factor S of, 410
inverting a matrix by, 414
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Gram-Schmidt kernel formula, 412
Gram-Schmidt orthogonal complement,

411
Gram-Schmidt orthogonal-complement

formula, 412
Gram-Schmidt process, 405
grapes, 144
Greek alphabet, 699
Greek capital, 543
Greek philosophy, 683
Greenwich, 76
grid, parabolic coordinate, 482
guessing roots, 281
guessing the form of a solution, 242
gunpowder, 385
Gymnasium, 688

Hadamard, Jacques (1865–1953), 108
half

gamma function of, 667
half angle, 76
Hamilton, William Rowan (1805–1865),

492
Hamming, Richard W. (1915–1998), 12,

161, 196
harmonic mean, 158
harmonic series, 221
headwind, 461
Heaviside unit step function, 186

convolution by, 603
Fourier transform of, 597

Heaviside, Oliver (1850–1925), 5, 144,
186, 492

height, 70, 629
Helmholtz, Hermann Ludwig Ferdinand

von (1821–1894), 507, 508
Heraclitus (fl. 500 B.C.), 103
Hercules, 104
Hermite, Charles (1822–1901), 292, 443
Hermitian matrix, 443
Hersh, Reuben (1927–), 7
hertz, 535
Hessenberg matrix, 443
Hessenberg, Gerhard (1874–1925), 443
hexadecimal, 695

hiding, 253
higher-order algebra, 269
higher-order derivative, 108
Hilbert, David (1862–1943), 5, 681
homogeneous solution, 387
horizontal run, 65
horse, 385
hour, 76
hour angle, 76
house, 650
Hume, David (1711–1776), 681
hut, 490
hyperbolic arccosine, 137
hyperbolic arcsine, 137, 177
hyperbolic arctangent, 137
hyperbolic cosine, 136
hyperbolic functions, 136

inverse, in complex exponential form,
138

properties of, 137
hyperbolic sine, 136
hyperbolic tangent, 136
hyperbolic trigonometrics, 136
hypotenuse, 1, 52
hypothesis, 382

identifying property, 11, 19
identity

additive, 19
arithmetic, 19
differential, of the vector, 503
multiplicative, 19
of vector calculus, 505
vector, algebraic, 475

identity matrix, 297, 300
r-dimensional, 300
commutation of, 301
impossibility to promote of, 359
rank-r, 300

iff, 157, 171, 195
ill-conditioned matrix, 425, 432
imaginary number, 58
imaginary part, 60

of the Fourier transform, 579
imaginary unit, 58, 131
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immovability, 104
implementation

efficient, 407
imprecise quantity, 357, 432
impressed residue theorem, Cauchy’s, 704
improper sequence, 311
improvement of convergence, 679
impulse function, 187
imputed ensemble, 643
incrementation

infinitesimal, 132
indefinite integral, 184
independence, 332, 366, 646
independent infinitesimal

variable, 166
independent variable, 100

Fourier transform and, 573
lack of, 102
multiple, 102
reversal of, 239
scaling of, 240

indeterminate form, 117
index, 25, 288

of multiplication, 25
of summation, 25
swapping of, 402

index of stray, 649
indictment, 11
induction, 61, 194
indulgence, 11, 104
industrial electronics, 682
inequalities

complex vector, 402
vector, 402

inequality, 22, 396
power-related, 33
Schwarz, 402

inexact arithmetic, 388
inexact quantity, 357
inference of statistics, 642
infinite differentiability, 201
infinite dimensionality, 294
infinite rank, 366
infinite slope, 577
infinitesimal, 90

and the Leibnitz notation, 100
displacement, 511, 527
dropping of when negligible, 209
independent, variable, 166
mental image of, 101
practical size of, 91
referential, 108
second- and higher-order, 91
surface, 511, 527
vector, 527
volume, 511

infinitesimal factor of integration, 103,
163

infinitesimal grading, 573
infinitesimal incrementation, 132
infinitesimality, 612
infinitude, 612
infinity, 3, 90

disconsolate, 104
floating-point, 389

inflection, 115
initial condition, 620
initial-value theorem, 622
inner edge, 503
inner product, 400
inner surface, 501
insight, 534
instance, 642
instructor, 682, 688
integer, 25, 28

composite, 147
compositional uniqueness of, 148
prime, 147

integrability, 502
integral, 161

absolute, 575, 577, 613
and series summation, 220
as accretion or area, 162
as antiderivative, 167
as shortcut to a sum, 163
as the continuous limit of a sum, 571
balanced form, 165
closed complex contour, 209, 244,

564, 601
closed contour, 185
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closed surface, 183
complex contour, 210
concept of, 161
contour, 185, 527
definite, 184
double, 175
fourfold, 175
ill-behaved, 174
indefinite, 184
Laplace transform of, 618
magnitude of, 248
multiple, 174
of a rational function, 254
of the sine-argument function, 560
sixfold, 175
surface, 175, 181, 527
swapping one vector form for an-

other in, 502, 503
to represent the gamma function, 666
triple, 175
vector contour, 186, 527
volume, 175

integral equation, 676
integral forms of vector calculus, 501
integral swapping, 174
integrand, 237

magnitude of, 248
integrated circuit, 105
integration

analytical versus numeric, 185
as summation, 567
by antiderivative, 237
by closed contour, 244, 564, 601
by conversion to cylindrical or polar

form, 601
by partial-fraction expansion, 249
by parts, 240, 657
by reversal of the independent vari-

able, 239
by scaling of the independent vari-

able, 240
by substitution, 238
by Taylor series, 266
by unknown coefficients, 242
checking of, 184

double, 624
fourfold, 624
Fourier transform of, 603
infinitesimal factor of, 103, 163
limit of, 163
of a product of exponentials, powers

and logarithms, 264
over a complete cycle, 545
sixfold, 624
surface, 624
triple, 623
volume, 623

integration by the manipulation of a Py-
thagorean expression, 259

integration by the manipulation of a Py-
thagorean nonradical, 262

integration by the manipulation of a Py-
thagorean radical, 259

integration technique, 601
integration techniques, 237
Intel, 342
interchange, 409, 417

refusing an, 368, 407
interchange operator

elementary, 302
general, 313

interchange quasielementary, 313
interest, 110, 242
interior element, 501, 503
internal-combustion engine, 535
interpolation, 617
interval, sampling, 577
intuition, 53
intuitive proposition, 11
invariance under the reorientation of axes,

457, 458, 491, 506, 507
inverse, 535

determinant of, 422
existence of, 376
mutual, 376
of a function, 56, 636
of a matrix product, 309
of a matrix transpose or adjoint, 309
rank-r, 374
sum of, 558
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uniqueness of, 376
inverse complex exponential

derivative of, 140
inverse Fourier transform, 573
inverse hyperbolic functions

in complex exponential form, 138
inverse square

even, sum of, 558
odd, sum of, 558
sum of, 557, 558

inverse time, 535
inverse trigonometric family of functions,

137
inversion, 306, 373, 374

additive, 19
arithmetic, 19
by determinant, 423
multiplicative, 19, 20
symbolic, 415, 423

invertibility, 56, 394, 552
of the elementary operator, 304

irrational number, 151
irreducibility, 3
irregular raised cosine, 617

comparison against the irregular tri-
angular pulse, 617

irregular step
Fourier transform of, 614

irregular triangular pulse
comparison against the irregular

raised cosine, 617
Fourier transform of, 610
overlapping, 617

irrotational field, 507
isotropy, 477

of parabolic coordinates, 484
iteration, 118, 432

Jacobi, Carl Gustav Jacob (1804–1851),
102, 328, 687

Jacobian derivative, 328, 392, 399
Japanese yen, 70
jet engine, 465
Jordan, Wilhelm (1842–1899), 334, 380
jump, 541

junior, 682

Kant, Immanuel (1724–1804), 681
Kelvin, Lord (1824–1907), 531
kernel, 379, 623

alternate formula for, 382
Gauss-Jordan formula for, 380
Gram-Schmidt formula for, 412

kernel matrix, 379
converting between two of, 384

kernel space, 380, 384
kilogram, 71
kinetic energy, 102
Klein, C. Felix (1849–1925), 685
knee, 7
knight, 710
Korté, Herbert, 7
Kronecker delta, 293, 470

properties of, 472
sifting property of, 293

Kronecker, Leopold (1823–1891), 293, 470

l’Hôpital’s rule, 116, 229, 577
l’Hôpital, Guillaume de (1661–1704), 116
labor union, 390
lack of time, 12
language, natural, 681
Laplace transform, 605, 617

comparison of against the Fourier
transform, 620

higher-order properties of, 618
initial and final values by, 622
of a convolution, 618
of a derivative, 618
of an integral, 618
ramping property of, 618
solving a differential equation by, 620

Laplace transform of a sinusoid, 619
Laplace transform of an exponential, 619
Laplace, Pierre-Simon (1749–1827), 506,

605, 617
Laplacian, 506
large-argument form, 657
Latin, 36, 606, 710
Laurent series, 34, 230



748 INDEX

Laurent, Pierre Alphonse (1813–1854),
34, 230

law of cosines, 81
law of sines, 80
lazy convergence, 661
least squares, 390
least-squares solution, 392
lecture, 648
leftward multitarget addition operator,

317
leg, 1, 52
Legendre polynomial, 679
Leibnitz notation, 100, 101, 166
Leibnitz, Gottfried Wilhelm (1646–1716),

89, 100, 101, 685
length, 177, 510

curved, 65
equal, 53
of a parabola, 177
of a wave, 538
preservation of, 413

length infinitesimal, 511, 527
length of a path, 259
letter, 583, 699
Leucippus (fl. 440 B.C.), 103
level and ramp

Fourier transform of, 615
level, ramp and, 612, 615
Levi-Civita epsilon, 470

properties of, 472
Levi-Civita, Tullio (1873–1941), 470
library, programmer’s, 388
light ray, 480
likely stray, 649
limit, 91
limit of integration, 163, 618
line, 72, 386

fitting a, 390
parallel, 19

linear algebra, 285
linear combination, 171, 332, 365
linear dependence, 332, 365
linear expression, 23, 171, 269
linear independence, 332, 366
linear operator, 171

unary, 493
linear quantity, 69
linear superposition, 214
linear system

classification of, 366
degenerate, 366
exactly determined, 378
nonoverdetermined, 387
nonoverdetermined, general solution

of, 388
nonoverdetermined, particular solu-

tion of, 388
overdetermined, 366, 389, 390
taxonomy of, 366
underdetermined, 366

linear transformation, 288
linearity, 171

of a function, 171
of an operator, 171, 493
of the Fourier series, 551

loan, 242
localization, 602
locus, 153
logarithm, 46

integrating a product of a power and,
264

properties of, 47
resemblance of to x0, 130

logarithm, natural, 127
and the antiderivative, 238
compared to xa, 128
derivative of, 127, 144
error of, 222

logarithmic cylindrical coordinates, 477
logarithmic derivative, 110, 126

of the gamma function, 675
of the natural exponential, 126

logic, 358, 683
reverse, 396
symbolic, 358, 551

logical exercise, 54
logical flaw, 150
logical notation, 358, 551
lone-element matrix, 301
long division, 35, 230
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by z − α, 152
procedure for, 38, 40

loop, 408
loop counter, 25
lower triangular matrix, 317
lurking, 253

Maclaurin series, 200
Maclaurin, Colin (1698–1746), 200
magnification, 432
magnitude, 59, 86, 131

of a vector, 401
of an eigenvalue, 432
of an integral, 248
preservation of, 413
unit, 432

main diagonal, 294, 441
majority, 408
majorization, 195, 219, 220

geometric, 221
maneuver, logical, 358
manipulation of a Pythagorean expres-

sion, 259
manipulation of a Pythagorean nonrad-

ical, 262
manipulation of a Pythagorean radical,

259
mantissa, 342, 388
mapping, 56
marking

permutor, 416
marking quasielementary, 416
mason, 155
mass density, 175
matching coefficients, 41
mathematical formalism, 7
mathematical Platonism, 7
mathematician

applied, 2
applied, chief interest of, 8
professional, 3, 150, 258

mathematics
applied, 2, 187, 196
applied, foundations of, 285
professional or pure, 3, 150, 187, 703

matrix, 285, 286
addition of, 289
arithmetic of, 289
associativity of the multiplication of,

289
basic operations of, 288
basic use of, 288
broad, 366, 387
column of, 343, 381, 409
commutation of, 306
condition of, 432
degenerate, 365, 377
diagonalizable, 444
dimension-limited, 296
dimensionality of, 370
eigenvalue, 429
exact, 357
form of, 294
full-rank, 365
general identity, 297
Hermitian, 443
identity, 297, 300
identity, impossibility to promote of,

359
ill-conditioned, 425, 432
inversion of, 306, 373, 374, 423
inversion properties of, 310
large, 388, 424
lone-element, 301
main diagonal of, 294, 441
motivation for, 285, 288
multiplication of, 289, 294
multiplication of by a scalar, 289
noncommutivity of the multiplica-

tion of, 289
nondiagonalizable, 441
nondiagonalizable versus singular, 431
null, 296
null column of, 409
orthogonally complementary, 405
padding of with zeros, 294
parallel unit triangular, properties

of, 325
perpendicular, 405
projection, 449
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provenance of, 288
raised to a complex power, 430
rank of, 363
rank-r inverse of, 310
real, 392
rectangular, 377
row of, 343
scalar, 297
self-adjoint, 443
singular, 377, 432
singular-value, 447
sparse, 298
square, 294, 366, 368, 374
square, cöıncident properties of, 424
tall, 366, 368
triangular, construction of, 319
truncating, 301
unit lower triangular, 317
unit parallel triangular, 321
unit triangular, 317
unit triangular, partial, 326
unit upper triangular, 317
unitary, 412

matrix operator, 294, 493
matrix rudiments, 285, 331
matrix vector, 286, 451
maximum, 114
Maxwell distribution, 656
Maxwell, James Clerk (1831–1879), 656
mean, 157, 633

arithmetic, 158
geometric, 158
harmonic, 158
inference of, 643
of a waveform, 549

mean square, 555
mean-value theorem, 11
means, justified by the end, 358
measure, unit of, 70, 536, 697
measurement

experimental, 616
mechanical bearing, 652
mechanical engineer, 568, 586
Melissus (fl. 440 B.C.), 103
membership, 27, 49

memory, computer, 388, 407
mental energy, 54
mental image of the infinitesimal, 101
meromorphic function, 206, 230, 675
metaduality, 582
method, 11
metric, 393
metric coefficient, 510
mile per hour, 71
mind’s eye, 104
minimum, 114
Minkowski inequality, 404
Minkowski, Hermann (1864–1909), 404
minorization, 220
minute, 536
mirror, 55, 144

parabolic, 480
missile, 654
mnemonic, 457
model, 4, 150, 462, 510
modulus, 59
Moivre, Abraham de (1667–1754), 86,

135
Moore, E. H. (1862–1932), 390
Moore-Penrose pseudoinverse, 390, 411
motion

about a circle, 132
perpendicular to a radial arm, 132

motivation, 378
motive

to posit the normal distribution, 641
mountain road, 386
mountain, barren, 104
Muller, Mervin E. (1928–2018), 656
multiple pole, 57, 250, 256

enclosing, 215
multiple-valued function, 201, 203
multiplication, 25, 60, 86

index of, 25
of a vector, 456
of a vector by a scalar, 456
of matrices, 289, 294
repeated, 131

multiplicative inversion, 20
multiplier, 285
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multitarget addition operator, 315
downward, 316
leftward, 317
rightward, 317
upward, 316

multivariate Newton-Raphson iteration,
399

näıveté, 661
Napoleon, 385
natural exponential, 123

compared to xa, 128
complex, 123
derivative of, 124, 142
error of, 223
existence of, 123
Fourier transform of, 597
logarithmic derivative of, 126
real, 123

natural exponential family of functions,
137

natural language, 681
natural logarithm, 127

and the antiderivative, 238
compared to xa, 128
derivative of, 127, 144
error of, 222
of a complex number, 134

natural logarithmic family of functions,
137

nature
complex number in, 144

neighborhood, 201
nesting, 408
Newton, Sir Isaac (1642–1727), 89, 99,

118, 399, 685
Newton-Raphson iteration, 118, 269, 660

multivariate, 399
Noë, Alva (1964–), 10
noise, 590
nonanalytic function, 63
nonanalytic point, 201, 213
nonanalytic pulse, 539

dual transform of, 580
properties of, 541

support of, 541
unit sum of series of, 541

nonanalyticity, 541
nonassociativity

of the cross product, 460
noncommutivity

of matrix multiplication, 289
of the cross product, 459

nonconvergent series, 226
nondiagonalizable matrix, 441

versus a singular matrix, 431
nonelementary function, 663
noninvertibility, 56, 376
nonlinearity, 385
nonnegative definiteness, 395, 429
nonoverdetermined linear system, 387

general solution of, 388
particular solution of, 388

nonradical, Pythagorean, 262
nonrectangular notation, 512
nonrepeating waveform, 571
nonstandard notation, 102
nonuniform sample, 615
normal distribution, 637, 639

convergence toward, 650
cumulative distribution function of,

640, 657
motive to posit, 641
proof of, 638
quantile of, 660

normal unit vector, 463
normal vector or line, 180
normalization, 405, 409, 432
north, 65, 385
notation, 11

for the vector, concise, 466
for the vector, nonrectangular, 512
logical, 358, 551
nonstandard, 102
of the operator, 493
of the vector, 451

null column, 409
null matrix, 296
null vector, 332
null vector identity, 507
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number, 58
complex, 58, 86
complex, actuality of, 144
exact, 357
imaginary, 58
irrational, 151
rational, 151
real, 58, 453
very large or very small, 90

number theory, 147
numerator, 35, 249

observation, 616, 644
Observatory, Old Royal, 76
Ockham

William of (c. 1287–1347), 145
Ockham’s razor

abusing, 145
odd function, 228

Fourier transform of, 594
odd inverse square

sum of, 558
odd square

inverse, sum of, 558
oddness, 310
off-diagonal entries, 302
offset, 534
Old Royal Observatory, 76
one, 19, 65, 297
ontology, 8, 12
operator, 169, 491, 493

+ and − as, 170
downward multitarget addition, 316
elementary, 302
general interchange, 313
general scaling, 314
leftward multitarget addition, 317
linear, 171, 493
multitarget addition, 315
nonlinear, 171
quasielementary, 312
rightward multitarget addition, 317
truncation, 301
unary, 493
unary linear, 493

unresolved, 494
upward multitarget addition, 316
using a variable up, 169

operator notation, 493
optimality, 393
order, 23

residual, 37
ordinary differential equation, 102
orientation, 72
origin, 65, 71
orthogonal basis, 461

constant, 515
variable, 462

orthogonal complement, 405
by Gram-Schmidt, 411
Gram-Schmidt formula for, 412

orthogonal vector, 401, 457
orthogonalization, 405, 410
orthonormal rows and columns, 413
orthonormal vectors, 83
orthonormalization, 373, 405
orthonormalizing decomposition, 407

inverting a matrix by, 414
oscillation, 567
outer edge, 503
outer surface, 501
overdetermined linear system, 366, 389,

390
overlap, 608, 617
overshot, 567

padding a matrix with zeros, 294
Palais, Bob, 180
parabola, 479

area within, 176
length of, 177

parabolic antenna, 480
parabolic arc, 479
parabolic coordinate grid, 482
parabolic coordinates, 478, 526

in two dimensions, 481
isotropy of, 484
properties of, 484

parabolic cross-section, 480
parabolic cylinder, 485
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parabolic cylindrical coordinates, 485
parabolic mirror, 480
parabolic track, 481
paraboloid, 487
paraboloidal coordinates, 485
parallel addition, 155, 270
parallel lines, 19
parallel sides, 53
parallel subtraction, 157
parallel unit triangular matrix, 321

properties of, 325
parallelogram, 53
parameter, 534

formal, 102
parity, 310, 415, 459

and the Levi-Civita epsilon, 470
Parmenides (b. c. 515 B.C.), 103
Parseval’s equality, 555
Parseval’s principle, 251, 532

application of, 546
Parseval’s theorem, 591
Parseval, Marc-Antoine (1755–1836), 251,

532, 555, 591
partial derivative, 102, 491
partial differential equation, 102
partial sum, 218, 659
partial unit triangular matrix, 326
partial-fraction expansion, 249
partial d, 102
particle, 656
particular solution, 387, 388
Pascal’s triangle, 95

neighbors in, 93
Pascal, Blaise (1623–1662), 95
patch, 527
path integration, 185
path length, 259
pattern

derivative product, 114
filling of, 618

payment rate, 242
PDF (probability density function), 631
peasant levy, 710
pedantry, 3
pencil, 7, 351, 382, 657

Penrose, Roger (1931–), 390
period, 531
permutation, 92
permutation matrix, 313
permutor, 313, 415

marking, 416
perpendicular, 51
perpendicular matrix, 405
perpendicular unit vector, 463
perspective, Courant-Hilbert-Shilov, 5
perturbation, 250, 442
Pfufnik, Gorbag J., 205, 646
phase, 60, 131
phase factor

spatiotemporal, 623
phasor, 5
philosophy, 3

Greek, 683
physical insight, 534
physical unit, 70, 534, 697
physical world, 451
physical-intuitional methods, 683
physicist, 5, 623
pilot, 386
Pinter, Charles C. (1938–), 5
pitch, 454
pivot, 341

small, 388
plain inverse, sum of, 558
Planck, Max (1858–1947), 43
plane, 72, 386

projection onto, 475
Plato (428–348 B.C.), 10, 103
Platonism, 7
plausible assumption, 148
poem, 531
point, 72, 83, 386

in vector notation, 71
Poisson distribution, 652
Poisson’s ramp, 556
Poisson, Siméon Denis (1781–1840), 556,

652
pole, 57, 116, 201, 204, 213, 230

circle of, 251
double, 250, 256
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multiple, 57, 250, 256
multiple, enclosing a, 215
of a trigonometric function, 229
of the gamma function, 674
proper or distinct, 253
repeated, 250, 256
separation of, 250
shadow, 253

polygon, 49
polynomial, 34, 152

characteristic, 426, 441, 443
having at least one root, 153
Legendre, 679
of order N having N roots, 153

position, 641
position vector, 465
positive definiteness, 394, 429
potential

electric, 145
potential energy, 102
potentiometer, 386
power, 28, 69

complex, 98
electromagnetic, 460
fractional, 30
integral, 28
notation for, 28
of a power, 32
of a product, 32
properties of, 29
real, 31

power series, 34, 63
bounds on, 218
common quotients of, 42
derivative of, 100
division of, 35
division of by matching coefficients,

41
extending the technique of, 43
multiplying, 35
shifting the expansion point of, 197
with negative powers, 34

power-related inequality, 33
premise, 11

implied, unstated, 12

pressure, 489
primary frequency, 532
prime factorization, 148
prime mark (′), 72, 467
prime number, 147

infinite supply of, 147
relative, 282

primed coordinate, 467
primitive guise, 531
probability, 629, 631

a priori, 630
definitions pertaining to, 631
empirical, 630
that both of two independent events

will occur, 632
probability density function, 631

flattening of, 636
of a sum of random variables, 632

processor, computer, 342
product, 25

determinant of, 422
dot or inner, 400
Fourier transform of, 586
of a vector and a scalar, 456
of determinants, 422
of vectors, 456

product rule, derivative, 112, 240, 329
a pattern of, 114
of the contour, 508
of the vector, 504

professional mathematician, 150, 258
professional mathematics, 3, 150, 187,

703
professor, 684, 688
profundity, 103
programming, 682
progression of coordinates, cyclic, 459
projectile, 479
projection

onto a plane, 475
projector, 449
prolixity, 466
promotion, 363
proof, 1

by contradiction, 148, 359
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by induction, 61, 194
by sketch, 4, 49, 513, 561
necessity of, 53

propagation speed, 538
propagation vector, 623
proper pole, 253
proper sequence, 311
proportion, 51
proportional rate, 110
proportionality, 53
proposition, 11
proving backward, 159
proviso, 380
prudence, 657
pseudoinverse, 390, 411
pseudorandom number, 651
pulse, 539, 571

arbitrary, 577
basic nonanalytic, 539
basic nonanalytic, dual transform of,

580
basic nonanalytic, properties of, 541
basic nonanalytic, support of, 541
basic nonanalytic, unit sum of series

of, 541
collated, 608
contrasted against a pulse train, 599
Gaussian, 543, 599, 639
Gaussian, properties of, 543
Gaussian, to implement the Dirac

delta by, 602
irregular triangular, 610
of unit area, 539
overlapping, 608
raised cosine-rolloff, 541, 544
raised-cosine, 539
raised-cosine, irregular, 617
right-triangular, 613
rolloff, 541
rolloff, properties of, 543
sharp, 539
square, 539
square, discontinuity in, 541
square, support of, 541
symmetrical, 539

time-limited, 608
trapezoidal, 541
triangular, 539
unit, 539
useful, 539

pulse train, 548, 571
contrasted against a single pulse, 599
Fourier coefficients of, 548
Fourier transform of, 598
rectangular, 548

pure mathematics, 3, 150, 187, 703
put-up job, 9
pyramid

volume of, 180
Pythagoras (c. 580–c. 500 B.C.), 1, 51
Pythagorean expression, 259
Pythagorean nonradical, 262
Pythagorean radical, 259
Pythagorean theorem, 1, 51

and the hyperbolic functions, 136
and the sine and cosine functions,

67
in three dimensions, 52

quadrant, 65
quadratic expression, 23, 154, 269, 272
quadratic formula, 24
quadratics, 23
quadrature, 594
quantile, 631

of the normal distribution, 660
use of to convert between distribu-

tions, 656
quantity

exact, 357
imprecise, 357
inexact, 357
linear, 69
squared, 69

quartic expression, 23, 154, 269, 277
resolvent cubic of, 279
roots of, 280

quartic formula, 280
quasielementary operator, 312

addition, 315
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interchange, 313
marking, 416
row addition, 316
scaling, 314

question
tailoring, 103

quintic expression, 23, 154, 281
quiz, 464, 470
quotient, 35, 41, 249

radial arm, 132
radian, 65, 76, 536
radical

Pythagorean, 259
radius, 65
raised cosine-rolloff pulse, 541, 544

convergence related to, 575
Fourier transform of, 575
vanishing denominator in the Fourier

transform of, 577
raised-cosine pulse, 539

dual transform of, 580
Fourier transform of, 575
irregular, 617

ramp
Poisson’s, 556

ramp and level
Fourier transform of, 612, 615

ramp, level and, 615
ramping property, 618
random variable, 631

scaling of, 636
sum of, 634
transformation of, 636

random walk, 648
consequences of, 650

range, 56, 381
range contour, 203
rank, 357, 363

and independent rows, 348
column, 366, 368, 379, 394
full, 365
impossibility to promote of, 359
infinite, 366
maximum, 348

row, 366, 405
uniqueness of, 363

rank-n determinant, 416
rank-r inverse, 310, 374
Raphson, Joseph (1648–1715), 118, 399
rate, 89

absolute, 110
of interest, 110
proportional, 110
relative, 110

ratio, 31, 249
fully reduced, 151
of gears, 537

rational function, 249
derivatives of, 256
integral of, 254

rational number, 151
rational root, 282
ray, 480
Rayleigh distribution, 654
Rayleigh, John Strutt, 3rd baron (1842–

1919), 654
real argument, 588
real coordinate, 453
real exponential, 123
real number, 58, 453

approximation of as a ratio of inte-
gers, 31

real part, 60
of the Fourier transform, 579

real-estate agent, 650
reciprocal, 20, 377
reciprocal gamma function, 675
reciprocal pair, 376
rectangle, 19

splitting of down the diagonal, 48
rectangular coordinates, 65, 83, 451
rectangular matrix, 377
rectangular pulse train, 548

Fourier coefficients of, 548
reference vector, 494
referential infinitesimal, 108
reflection, 51, 53

of the gamma function, 671
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Reginald of Piperno, Father (c. 1230–
c. 1290), 683

register, computer’s floating-point, 388,
557

regular part, 214, 230
relative primeness, 282
relative rate, 110
remainder, 35

after division by z − α, 152
zero, 152

remarks, concluding, 681
Renaissance, 14
reorientation, 454

invariance under, 457, 458, 491, 506,
507

repeated eigensolution, 442
repeated eigenvalue, 429, 431, 442
repeated pole, 250, 256
repeating waveform, 531, 553
repetition, 606
repetition, unseemly, 470
residual, 221, 389, 657

minimizing the, 395
squared norm of, 390

residual order, 37
residue, 214, 249

of the gamma function, 674
residue theorem, Cauchy’s impressed, 704
resolvent cubic, 279
retail establishment, 652
reversal of the independent variable, 239
reverse logic, 396
reversibility, 334, 363
revolution, 65, 535
Riemann, Georg Friedrich Bernhard

(1826–1866), 8, 205, 553
right triangle, 48, 51, 65
right-hand rule, 72, 459, 462, 487
right-triangular pulse

Fourier transform of, 613
rightward multitarget addition operator,

317
rigor, 3, 172, 196

faux, 93
to forestall error, 12

ringing, 567
rise, 65
road

mountain, 386
winding, 461

Robinson, Abraham (1918–1974), 105,
106

roll, 454
rolloff, 541
rolloff parameter, 541
rolloff pulse, 541

properties of, 543
Roman alphabet, 699
roof, 490
root, 23, 30, 57, 116, 152, 269, 689

double, 276
finding of numerically, 118, 399
guessing of, 281
rational, 282
superfluous, 273
triple, 276

root extraction
from a cubic polynomial, 273
from a quadratic polynomial, 24
from a quartic polynomial, 280

root-length, 478
rotation, 51, 53, 72, 451

angle of, 74
Euler, 456
Tait-Bryan or Cardan, 454

rounding error, 388, 657
row, 286, 343

addition of, 419
null, 418
null, appending a, 377
orthonormal, 413
scaled and repeated, 418

row addition quasielementary, 316
row operator, 291
row rank

full, 366
row vector, 400
Royal Observatory, Old, 76
RPM, 535
rudder, 386
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rudiments, 285, 331
rugby, 107
run, 65

sales, 650
sample, 616, 642

nonuniform, 615
sample statistic, 646
sampling, 577
Sands, Matthew, 648
SAS (side-angle-side), 55
satellite dish antenna, 480
Saturday, 390
scalar, 69, 286

complex, 71
condition of, 433

scalar field, 489, 510
directional derivative of, 494
gradient of, 494

scalar matrix, 297
scalar multiplication

of a vector, 456
scale, 606
scaling, 51, 53, 417, 636
scaling of the independent variable, 240
scaling operator

elementary, 303
general, 314

scaling property of the Fourier transform,
584

scaling quasielementary, 314
schematic, 351, 382
Schmidt, Erhard (1876–1959), 405
Schur decomposition, 435
Schur, Issai (1875–1941), 318, 435
Schwarz inequality, 402
Schwarz, Hermann (1843–1921), 402
screw, 72
screwdriver, 682
sea

wavy surface of, 463
second, 536
second derivative, 108, 115
secondary circle, 464
secondary cylindrical basis, 464

selection from among wooden blocks, 92
self-adjoint matrix, 443
semiconvergent series, 657, 660
separation of poles, 250
sequence

proper or improper, 311
serial addition, 155
series, 25

arithmetic, 28
asymptotic, 657, 660
convergence of, 86
divergent, 226
Fourier, 531, 545
geometric, 42, 221
geometric, variations on, 43
harmonic, 221
multiplication order of, 26
notation for, 25
product of, 25
semiconvergent, 657, 660
sum of, 25
Taylor, 191, 200
truncation of, 218, 659, 660

series addition, 155
set, 3, 27, 49
set notation, 27, 49
set theory, 11, 682
shadow pole, 253
shape

area of, 179
sharp pulse, 539
shelf, 613
shift

in frequency, 582
shift operator, 328, 380
shifting an eigenvalue, 428
shifting an expansion point, 197
Shilov, Georgi E. (1917–75), 5
shortcut to the axis, 561
side

parallel, 53
side-angle-side (SAS), 55
side-side-angle (SSA), 56
side-side-side (SSS), 55
sifting property, 187, 293, 603, 606
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sign
alternating, 218, 561

signal
discretely sampled, 541

signaling, 590
Silverman, Richard A., 93
similar triangles, 51
similarity, 53, 434
similarity transformation, 306, 334, 434
Simpson’s rule, 166
simultaneous system of linear equations,

289, 378
sinc function, 559
sine, 65, 460

approximation of to first order, 218
derivative of, 140, 142
Fourier transform of, 598
in complex exponential form, 136
Laplace transform of, 619
law of, 80

sine integral, 560
evaluation of by complex contour,

564
final value of, 562
properties of, 562
Taylor series for, 560

sine-argument function, 559
derivative of, 560
Fourier transform of, 595
integral of, 560
properties of, 560
Taylor series for, 559

single-valued function, 201, 203
singular matrix, 377, 432

determinant of, 421
versus a nondiagonalizable matrix,

431
singular value, 447
singular-value decomposition, 447
singular-value matrix, 447
singularity, 57

essential, 58, 206, 232
sink, 496
sinusoid, 67, 545

Laplace transform of, 619

superposition of, 531
Sirius, 7
sixfold integral, 175
skepticism, 432
sketch, proof by, 4, 49, 513, 561
sky, 490
slide rule, 657
slope, 65, 115

arbitrarily steep, 553
infinite, 577

slow convergence, 223
slow function, 128
smoothness, 541
soil, 4
soldier, 710
solenoidal field, 507
solid

surface area of, 181
volume of, 176

solution, 373
error in, 433
family of, 387
general, 388
guessing the form of, 242
of least-squares, 392
particular, 388
particular and homogeneous, 387
verification of, 620

sophomore, 682
sound, 44
source, 322, 496
source-free field, 507
south, 65, 385, 463
space, 72, 354, 380, 535, 594, 623

address of, 369
three-dimensional, 460
two-dimensional, 460

space and time, 175
space shot, 105
spare column, 347, 368
sparsity, 298
spatial Fourier transform, 623
spatial frequency, 538, 594, 623
spatiotemporal phase factor, 623
special function, 663
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spectral density, 590
speed, 71, 461

of propagation, 538
sphere, 84, 452, 463

surface area of, 181
volume of, 183

spherical basis, 463
spherical coordinates, 83, 451, 510
spherical surface, 511
split form, 387
square, 76

even inverse, sum of, 558
inverse, sum of, 557, 558
odd inverse, sum of, 558
rotated, 1, 11
sum or difference of, 23
tilted, 1, 11

square matrix, 294, 368, 374
cöıncident properties of, 424
degenerate, 377

square pulse, 539
discontinuity in, 541
divergence related to, 575
dual transform of, 580
Fourier transform of, 575
support of, 541

square root, 30, 58
calculation of by Newton-Raphson,

120
square wave, 531, 548

approximation to, 531
Fourier coefficients of, 548
variant on, 549

square, completing the, 24, 599
squared quantity, 69
squared residual norm, 390
squares, least, 390
squaring, 274
SSA (side-side-angle), 56
SSS (side-side-side), 55
standard deviation, 633

inference of, 645
state space, 621
statistic, 633

inference of, 642

sample, 646
statistics, 629
steepest rate, 495
step in every direction, 532
step, irregular, 614
Stokes’ theorem, 503
Stokes, Sir George Gabriel (1819–1903),

503
stone, 104
stray, 649
strictly triangular matrix, 318
strip, tapered, 181
Student, a statistician, 648
style, 13, 150, 189
suaveness, 636
subimposition, 3
subscript

indicating the components of a vec-
tor by, 467

subtraction
parallel, 157

sum, 25
continuous limit of, 571
partial, 218, 659
weighted, 332

sum of even inverse squares, 558
sum of functions, 606
sum of inverse squares, 557, 558
sum of inverses, 558
sum of odd inverse squares, 558
summation, 25

as integration, 567
compared to integration, 220
convergence of, 86
index of, 25

summation convention, Einstein’s, 469,
512

Sunday, 7
superfluous root, 273
superposition, 144, 214, 418, 606, 615

of complex exponentials, 531
of pulses, 578
of sinusoids, 531

superpositional property of the Fourier
transform, 584
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support
of a basic nonanalytic pulse, 541
of a rolloff pulse, 543

surface, 174
closed, 496, 501
inner and outer, 501
orientation of, 463
spherical, 511

surface area, 181
surface element, 503, 527
surface infinitesimal, 511, 527
surface integration, 175, 181, 527

closed, 183
surface normal, 463
swapping of indices, 402
sweeping out a length, 510
swimming pool, 386
symbolic logic, 358, 551
symmetrical pulse, 539
symmetry, 228, 356, 402

appeal to, 72, 534
in the Fourier transform, 578
of the Fourier transform, 626

system
continuous or discrete, 682

tail
of a function, 615
omission of, 617
suppression of, 617

tailoring the question, 103
Tait, Peter Guthrie (1831–1901), 454
Tait-Bryan rotations, 454
tall matrix, 368
tangent, 65

compared against its argument, 562
derivative of, 142
in complex exponential form, 135

tangent line, 118, 124
tapered strip, 181
target, 322
Tartaglia, Niccolò Fontana (1499–1557),

269
tautology, 466
taxonomy

of the linear system, 366
Taylor expansion, first-order, 98, 218
Taylor series, 191, 200

analog of, 531
converting a power series to, 197
for specific functions, 216
for the sine integral, 560
for the sine-argument function, 559
in 1/z, 232
integration by, 266
multidimensional, 234
transposition of to a different ex-

pansion point, 201
Taylor, Brook (1685–1731), 191, 200
teacher, 682
technician, 386
tension, electric, 69, 145
term

cross-, 234
finite number of, 218, 659

Thales (fl. 585 B.C.), 103
theory, 378
third derivative, 108
three-dimensional geometrical vector, 451
three-dimensional space, 460, 485
thumb, 629
Thursday, 491
time, 535, 594, 623

inverse, 535
lack of, 12

time and space, 175
time domain, 573, 620
time-limited pulse, 608
time-limitedness, 541
toleration, 104
transfer function, 586
transform, 571, 605

Fourier, 571
Laplace, 617

transform domain, 573, 620
transform pair, 573, 596, 618, 620, 628
transformation

Box-Muller, 656
linear, 288
of a random variable, 636
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variable of, 573
transpose, 292, 419

conjugate, 292
of a matrix inverse, 309

trapezoid rule, 166
trapezoidal pulse, 541
travel, 132
tree, 490, 689
trial, 630
trial derivative, 263
triangle, 48, 49, 80

area of, 48
equilateral, 76
right, 48, 51, 65
similar, 51

triangle inequalities, 49
complex, 86, 248
complex vector, 403
vector, 86, 403

triangular matrix, 318, 441
construction of, 319
parallel, properties of, 325
partial, 326
unit parallel, 321

triangular pulse, 539
dual transform of, 580
Fourier transform of, 575
irregular, Fourier transform of, 610
overlapping, 617
right-, Fourier transform of, 613

trigonometric family of functions, 137
trigonometric Fourier series, 554
trigonometric function, 65

derivative of, 142
Fourier transform of, 598
inverse, 65
inverse, derivative of, 144
of a double or half angle, 76
of a sum or difference of angles, 74
of an hour angle, 76
poles of, 229

trigonometrics
complex, 135
hyperbolic, 136
inverse complex, 137

trigonometry, 65
properties of, 68, 82

triple integral, 175, 623
triple root, 276
triviality, 332
truncation, 218, 350, 659, 660
truncation operator, 301
truths of mathematics, the, 104
Tuesday, 491
tuning, 386
two-dimensional geometrical vector, 453
two-dimensional space, 460, 481
Tymoczko, Thomas (1943–1996), 8

U.S. male, 629
unary linear operator, 493
unary operator, 493

unresolved, 494
unbalanced expression of convolution, 586,

605
uncertainty, 629
underdetermined linear system, 366
undergraduate, 682
uniform distribution, 651
uniqueness, 258, 377

of matrix rank, 363
unit, 58, 65, 69

financial, 70
imaginary, 58, 131
of measure, 70, 536, 697
physical, 70, 534, 697
real, 58

unit area, 539
unit basis vector, 69

cylindrical, 83, 512
derivative of, 513
spherical, 83, 512
variable, 83, 512

unit circle, 65
unit lower triangular matrix, 317
unit magnitude, 432
unit normal, 463
unit pulse, 539
unit step function, Heaviside, 186

Fourier transform of, 597
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unit triangular matrix, 317
construction of, 319
parallel, properties of, 325
partial, 326

unit upper triangular matrix, 317
unit vector, 69, 401, 512

normal or perpendicular, 463
unitary matrix, 412

determinant of, 422
unitary similarity, 434
unitary transformation, 434
United States, 682
unity, 19, 65, 69
university, 688
unknown coefficient, 242
unproved assertion, 53
unreasonable function, 202
unresolved operator, 494
unsupported proposition, 11
unsureness, logical, 150
up, 65, 386, 463
upper triangular matrix, 317
upstairs, 490
upward multitarget addition operator, 316
utility variable, 80

vacillating consensus, 106
vanishing denominator

in the Fourier transform of a raised
cosine-rolloff pulse, 577

vanity, 11
variable, 44

assignment, 23
change of, 23
complex, 15, 108, 703
definition notation for, 23
dependent, 44, 100
independent, 44, 100
independent, lack of, 102
independent, multiple, 102
independent, reversal of, 239
independent, scaling of, 240
random, 631
utility, 80

variable independent infinitesimal, 166

variable of transformation, 573
variable dτ , 166
vector, 69, 234, 286, 451

n-dimensional, 286, 451
addition of, 453
algebraic identities of, 475
angle between two, 401, 457
arbitrary, 332, 354
building of from basis vectors, 434
column, 359, 400
concise notation for, 466
derivative of, 489
derivative of, in cylindrical coordi-

nates, 515
derivative of, in spherical coordinates,

519
derivative of, nonrectangular, 513
derivative product rule for, 504, 508
differential identities of, 503
dot or inner product of two, 400, 457
driving, 379, 381, 387
elementary, 301, 359, 400
elementary, left-over, 361
ersatz, 491
generalized, 234, 286
geometrical, 69
integer, 234
local, 465
magnitude of, 401
matrix, 286, 451
multiplication of, 456
nonnegative integer, 234
nonrectangular notation for, 512
normalization of, 405
notation for, 69
orientation of, 400
orthogonal, 401, 457
orthogonalization of, 405
orthonormal, 83
orthonormalization of, 405
point, 71
position, 465
projection of onto a plane, 475
reference, 494
replacement of, 354, 384
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rotation of, 72
row, 400
row of, 286
scalar multiplication of, 456
second-order derivative of, 506
three-dimensional, 70
three-dimensional geometrical, 451
two-dimensional, 69
two-dimensional geometrical, 453
unit, 69, 401, 512
unit basis, 69
unit basis, cylindrical, 83, 512
unit basis, derivative of, 513
unit basis, spherical, 83, 512
unit basis, variable, 83, 512
zero or null, 332

vector algebra, 451
vector analysis, 451
vector calculus, 489

definitions and identities of, 505
integral forms of, 501

vector field, 489
components of, 512
curl of, 498
decomposition of, 512
directional derivative of, 494
divergence of, 496

vector infinitesimal, 527
vector notation, 451
vector space, 354, 380, 381

address of, 369, 384
vector, propagation, 623
velocity, 461, 489

local, 465
verbal cue, 536
verification

of a solution, 620
vertex, 180
vertical rise, 65
Vieta’s parallel transform, 270
Vieta’s substitution, 270
Vieta’s transform, 270, 271
Vieta, Franciscus (François Viète, 1540–

1603), 269, 270
visual dimension or axis, 203

visualization, geometrical, 333
voltage, 145
volume, 19, 174, 176, 511

enclosed by a surface, 496, 501
in a spherical geometry, 511
of a cone or pyramid, 180

volume element, 501
volume infinitesimal, 511
volume integration, 175

walk, random, 648
consequences of, 650

wall, 606
warped d, 102
wave

complex, 144
propagating, 144
square, 531, 548

wave mechanics, 623
wave number, 538
waveform

approximation of, 532
continuous and repeating, 553
discontinuous, 553, 567
mean value of, 549
nonrepeating, 571
real, 554
repeating, 531

wavelength, 538
wavy sea, 463
weather forecast, 105
Wednesday, 491
week

days of, 491
weekday, 7
Weierstrass, Karl Wilhelm Theodor (1815–

1897), 195
weighted sum, 332
west, 65, 385
West Point, 710
Weyl, Hermann (1885–1955), 7, 11, 105
Wilbraham, Henry (1825–1883), 567
wind, 4, 461, 489
winding, 154
winding road, 461
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Wittgenstein, Ludwig (1889–1951), 8, 104
wooden block, 92
worker, 390
world, physical, 451

x86-class computer processor, 342

yaw, 454
yen, Japanese, 70

Zeno of Cition (fl. 250 B.C.), 103
Zeno of Elea (fl. 460 B.C.), 103
Zermelo, Ernst (1871–1953), 11
Zermelo-Fraenkel and Choice set theory

(ZFC), 11
zero, 19, 57

dividing by, 91
floating-point, 389
matrix, 296
padding a matrix with, 294
vector, 296

zero matrix, 296
zero vector, 296, 332
ZFC, 11
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