
Grand Valley State University
ScholarWorks@GVSU

Masters Theses Graduate Research and Creative Practice

12-2018

Power Optimization of Solar Powered Standalone
Wireless Sensor System
Rajan Amatya
Grand Valley State University

Follow this and additional works at: https://scholarworks.gvsu.edu/theses

Part of the Power and Energy Commons

This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted
for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact
scholarworks@gvsu.edu.

Recommended Citation
Amatya, Rajan, "Power Optimization of Solar Powered Standalone Wireless Sensor System" (2018). Masters Theses. 915.
https://scholarworks.gvsu.edu/theses/915

https://scholarworks.gvsu.edu?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/grcp?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gvsu.edu/theses/915?utm_source=scholarworks.gvsu.edu%2Ftheses%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gvsu.edu

Power Optimization of Solar Powered Standalone Wireless Sensor System

Rajan Amatya

A Thesis Submitted to the Graduate Faculty of

GRAND VALLEY STATE UNIVERSITY

In

Partial Fulfillment of the Requirements

For the Degree of

Master of Science in Electrical & Computer Engineering

School of Engineering

December 2018

3

Acknowledgement

I would like to extend my sincere gratitude to Dr. Robert Bossemeyer, for constantly guiding and

supporting me to complete this thesis work. I am very thankful to Dr. Heidi Jiao and Dr. Nabeeh

Kandalaft for providing necessary feedback and suggestion to improve my research. I am

thankful to Dr. Bossemeyer and Dr. Jiao for the Embedded System Interface class, where I was

introduced to Texas Instruments MSP432 board, including analog and digital design techniques.

I would like to thank my lab supervisor Ryan Aldridge for building the LTC3106 board and

helping me debugging the board. Lastly, I would like to thank my graduate advisor Dr. Shabbir

Choudhuri, for guiding me throughout my entire master’s program.

4

Abstract

Wireless sensor systems are common in applications where harsh environmental conditions or

remote locations make it difficult to run wires. Having these sensor systems self-powered is

essential as it is difficult for battery replacement. Using solar as an alternative source of energy

can be a medium to charge the battery in such scenarios. With an increasing number of portable

devices powered by battery; more and more research is focused on low-power design technique.

For this thesis, a microcontroller (Texas Instruments MSP432) was used along with a digital

sensor (Bosch BME280) to provide temperature, pressure and humidity information, and Wi-Fi

module (Espressif ESP8266) to transmit the information to the Internet where it was posted to a

spreadsheet on a web server. Power levels were measured with different modes in order to

compare the power consumption of the MSP432. In addition, a solar charging circuit was

designed to provide management of a Lithium-ion battery to explore the feasibility of operating

this Internet connected sensor system entirely off the power grid. Incremental steps were taken to

reduce the power consumption by the system and a system was designed to run with the lowest

power consumption. The power requirements for each component connected to the

microcontroller were calculated and then optimized. The minimum current required during

transmission was reduced by 25.71%. A 2000mAh battery was selected for the final design to

maintain system operation during extended dark hours. Solar panels were able to charge the

battery whenever sunlight was available with the intent to keep the system running continuously

on battery power. The system was tested for 20 days, and it ran without any interruption.

5

Table of Contents

Acknowledgement .. 3

Abstract ... 4

Table of Contents .. 5

List of Tables .. 8

List of Figures ... 9

Abbreviations .. 11

1. Introduction ... 13

1.1 Background .. 13

1.2 Research Goal .. 14

1.3 Scope .. 14

1.4 Thesis Organization.. 15

2. Description of Components ... 16

2.1 Hardware Description .. 16

2.1.1 MSP432 Launchpad .. 16

2.1.2 ESP8266 .. 18

2.1.3 BME280 .. 19

2.1.4 ST7735 DISPLAY .. 21

2.1.5 LTC3106 ... 22

2.1.6 Solar Panels ... 23

6

2.1.7 Batteries .. 24

2.2 Software Description .. 25

3. Optimization Techniques ... 28

3.1 MSP432 Optimizations .. 28

3.1.1 Reducing operating voltage .. 28

3.1.2 Reducing the operating frequency .. 28

3.1.3 Maximizing the sleep time ... 29

3.1.4 Minimizing the transition time ... 29

3.1.5 Solving intermodular dependencies .. 29

3.2 Power Modes .. 30

4. Design and Implementation of the System .. 32

4.1 Reading the information from Sensors and transmitting to the Google Documents 32

4.1.1 Connecting MSP432 to BME sensor .. 33

4.1.2 Connecting LCD to MSP 432 ... 35

4.1.3 Connecting ESP8266 to MSP432 ... 37

4.1.4 Software Flow... 40

4.2 Optimization in the Power consumed by the system ... 41

4.3 Calculations .. 52

4.4 Using LTC3106 IC and solar panel to charge the system .. 54

5. Observations & Results ... 61

7

6. Conclusion ... 73

6.1 Summary ... 73

6.2 Future Work .. 74

Appendix A ... 75

Appendix B ... 77

Appendix C ... 80

References: .. 100

8

List of Tables

Table 1: Values being posted on Google Spreadsheet .. 38

Table 2: Current consumption in different power modes ... 50

Table 3: Average consumption in different steps in chronological order of the system 51

Table 4: Different pin connection with their function for the LTC3106 IC 55

Table 5: Current readings seen for various loads on the LTC3106 .. 62

Table 6: Readings seen during charging LIR2450 battery on various light conditions 67

Table 7: Data collected for 24 hours with lights on and off ... 69

Table 8: Data snippet recorded during the test in normal condition ... 72

9

List of Figures

Figure 1: MSP432 Launchpad Diagram[6]... 17

Figure 2: ESP8266 breakout board ... 18

Figure 3: Communication path between MSP432 to the Internet via ESP8266 19

Figure 4: BME280 sensor on a breakout board .. 20

Figure 5: Forced mode timing diagram [11] ... 21

Figure 6: ST7735 display .. 22

Figure 7: PV System [15] ... 24

Figure 8: Pulse density and current flow .. 26

Figure 9: ULP Advisor and Energy Trace Technology [22] .. 27

Figure 10: Advice given by ULP Advisor for optimization ... 27

Figure 11: Wake up sources from Low Power Modes [5] .. 30

Figure 12: General block diagram of the overall system .. 32

Figure 13: Block diagram to read value from sensor, display and post data in Spreadsheet....... 33

Figure 14: Block diagram of MSP432 connection with BME280 .. 34

Figure 15: MSP432 eUSCI in I2C mode ... 35

Figure 16: Block diagram for connection of ST7735 display with MSP432 36

Figure 17: Block diagram for MSP432 connection with ESP8266 .. 37

Figure 18: Software flow for the main program ... 40

Figure 19: Energy consumed by the MSP432 when nothing was connected 41

Figure 20: Energy consumed by the MSP432 when setting all unused pins as output 42

Figure 21: Energy consumed by the MSP432 when BME is connected in the system 42

Figure 22: Energy consumed when LCD is introduced to the system .. 43

10

Figure 23: Relative power consumption by the system when the backlight is on and off 44

Figure 24: Energy consumed when the LCD was turned off .. 45

Figure 25: EnergyTrace stopped ... 45

Figure 26: Readings for ESP8266 taken from DC power supply ... 46

Figure 27: Current measurement of ESP8266 when waking up form power down mode 47

Figure 28: Current consumption for the ESP8266 when CH_PD signal goes high 48

Figure 29: Adding supercapacitor to provide the surge currents .. 49

Figure 30: Current consumption for first minute of the system running 52

Figure 31: LTC3106 printed circuit board .. 54

Figure 32: ADC measurement circuit for solar, battery and LTC output 57

Figure 33: Display showing the ADC result values and BME sensor .. 57

Figure 34: Voltage reading verification using multimeters .. 58

Figure 35: Current reading verification using multimeters... 59

Figure 36: Complete circuit diagram of the system .. 60

Figure 37: Test setup in sunlight ... 63

Figure 38: Test setup with solar panel placed near 500-watt twin head lights 64

Figure 39: Test setup inside an ELH halogen light box.. 65

Figure 40: Charging rate for LIR2450, Li-ion rechargeable battery .. 67

Figure 41: Test setup for the final system in a normal environment .. 71

11

Abbreviations

API

: Application Programming Interface

ARM : Advanced RISC Machines

ADC : Analog to Digital Conversion

AP : Access Point

CS : Chip Select

DCO : Device Configuration Overlay

ESD : Electrostatic Discharge

GPIO : General Purpose Input Output

HFXT : High Frequency Crystal Oscillator

IDE : Integrated Development Environment

IC : Integrated Circuits

I/O : Input Output

IrDA : Infrared Data Association

IEEEE : Institute of Electrical & Electronics Engineering

JTAG : Joint Test Action Group

LCD : Liquid Crystal Display

LDO : Low Dropout Regulator

LFXT : Low Frequency Crystal Oscillator

LPM : Low Power Mode

MSPS : Mega Samples Per Second

MODOSC : Module Oscillator

MIMO : Multiple Input Multiple Output

12

P2P : Point to Point

PV : Photo Voltaic

PWM : Pulse Width Modulation

PCM : Pulse Width Modulation

PSM : Power Supply System

RO : Reference Oscillator

RTC : Real Time Clock

SYSOC : System Oscillator

SAR : Successive Approximation

SPI : Serial Peripheral Interface

SRAM : Static Random-Access Memory

SDA : Serial Data Acquisition

SCL : Serial Clock

STC : Standard Testing Condition

TCP/IP : Transmission Control Protocol Internet Protocol

TFT : Thin Film Transistor

ULP : Ultra-Low Power

UART : Universal Asynchronous Receiver

VLFO : Very Low Frequency Oscillator

Wi-Fi : Wireless Fidelity

13

1. Introduction

Background

Wireless sensor systems are designed to collect data using dedicated sensors to monitor and

to record environmental or humanitarian physical conditions [1]. Wireless sensor systems are

used for measuring different conditions such as temperature, sound, humidity, pressure, pollution

levels, water level and so on. When the weather condition is harsh, it is not possible to reach a

location and take the required measurements. It is difficult to run wires to all the places. In such

locations, the wireless sensor system is important.

As it is difficult to run wires to some remote sensor systems, it is also difficult to power such

devices. A battery usually powers these systems. The limited battery life demands the need of

self-powering system or a means of charging the battery. Self-powering systems harvest ambient

energy from the environment that is usually unused. There are an abundant number of resources

in the environment from which power can be generated. Some common environmental energy

sources include light, air flow, heat, vibrations, acoustics, and chemical reactions. These power

sources can also be used to recharge the battery.

As the device is being powered by an environmental energy, one major challenge would be

to minimize the power consumption of the system. Minimizing the power consumption is

necessary due to the limitation on the amount of energy that can be generated from the

environment. The size of the energy collector plays a crucial role in the amount of energy to be

generated. For instance, a photovoltaic solar cell only uses about 17% of the available energy

from the sunlight [2]. Hence to generate more electricity multiple solar cells are required

combined in an array increasing the size of the energy collector. Minimizing the size of the

system is also a major concern to place the system conveniently in various locations.

14

The need for low power requirements becomes crucial when determining the lifetime of the

device. Over time, batteries start losing the power density, hence need to be replaced for proper

continuous operation. One option could be using a rechargeable battery, however even

rechargeable batteries lose their power density over time [1]. Another option for power storage

could be to use a supercapacitor. Supercapacitors are similar to conventional capacitors with

much higher capacitors on the order of hundred millifarads to several farads [3]. Ultimately the

selection of an energy storage device is dependent on the expected lifetime of the final

application.

Research Goal

The goal of this research is to design and study the feasibility of operation of a sensor system

consisting of MSP432 Launchpad with ESP8266 Wi-Fi module. The other goal is to optimize

the designed system, so it can operate autonomously.

Scope

The scope of this thesis is to build a system using MSP432 as a controller to transmit the data

of BME280 sensor to a Google Spreadsheets using ESP8266 Wi-Fi module. The system was

designed by investigating different communication protocols for communicating MSP432 with

the BME280 sensor and ESP8266 Wi-Fi module. The MSP432 datasheet and the Technical

Reference manual were explored to make the control device consume the lowest possible power.

The ESP8266 and BME280 datasheets were explored for optimization of the overall power

consumption of the system. The power consumption before and after the optimization was

observed. The optimized system was powered from the Li-ion rechargeable battery. A small

solar panel was chosen to charge the battery in a normal lighting condition. LTC3106 buck-boost

15

converter was chosen to manage power of the system. The optimized system was tested for a 20-

day period to make sure the system is power independent and self-sustainable.

Thesis Organization

This thesis is organized into six chapters. This chapter includes the research goals and

provides the background information about the wireless sensor system and the need for energy

optimization of the system. It also defines the objectives of this research. Chapter 2 describes

different hardware components and the software tools used to build the system and measure

power consumption. Chapter 3 discusses different optimization techniques available for reduced

power operation of the MSP432 and different power modes that can be applied to meet the

research goals. Chapter 4 explains the process involved in designing the system, power

optimization process, and managing power to the system. Chapter 5 includes different tests

performed and the results obtained during those tests. Chapter 6 outlines conclusions made from

the testing and provides insight into probable future work to further decrease the power

requirements of the wireless sensor system and improve the battery power sub-system.

16

2. Description of Components

Hardware Description

Different hardware components were used for this thesis. A microcontroller, Texas

Instruments MSP432 was used to collect data from a sensor and send it over to a wireless

connection. A sensor module (Bosch BME280) interfaced to the MSP432 was used to measure

temperature, pressure, and humidity from the environment. A Wi-Fi module (Espressif

ESP8266) interfaced to the MSP432 was used for transmitting the sensor readings to a router

connected to the Internet where they are posted to a Google Sheets document. A 1.8" Liquid

Crystal Display with 128*160 color pixels was used to display the readings of the system. A

buck-boost voltage converter (Linear Technology LTC3106 IC) was used to manage power to

the system where solar panels were used as a primary source and a Li-ion rechargeable battery as

a secondary source. More details about the hardware components are listed below.

2.1.1 MSP432 Launchpad

The MSP432 Launchpad development kit enables users to develop high-performance

applications using low power modes [4]. It includes MSP432 microcontroller from Texas

Instruments, an onboard emulator with Energy Trace feature which helps in debugging the

program without any additional tools and measures total energy consumption of the system

[4][5]. Figure 1 is the MSP432 Launchpad board.

17

Figure 1: MSP432 Launchpad Diagram[6]

The Launchpad development kit includes an MSP432 microcontroller. Its core is an ARM

Cortex M4F processor that provides a high performance, low-power, low-cost platform. ARM

technology is in use in 95% of smartphones, 80% of digital cameras and 35% of all electronic

devices according to the ARM company database, 2017 [7].

Some of the key features of the microcontroller that was essential for choosing this device for

this thesis are:

• Flexible clocking features.

• 256 KB flash main memory

• 64KB SRAM and 32KB ROM with MSP432 Peripheral Driver Libraries.

• Ultra-Low Power Operating Modes

• Four 16-bit timers with capture/compare/PWM, two 32-bit timers and Real Time Clock

(RTC)

• Up to eight serial communication channels (I2C, Serial Peripheral Interface (SPI), UART,

and IrDA)

• 14- Bit 1-MSPS SAR ADC that includes Differential and Single- Ended Inputs

18

• Internal Voltage Reference with 10-ppm/͘°C

• Ultra-low leakage I/O s (+-20nA)

• Up to 48 I/O s with interrupt and wake-up capability

The Launchpad development board integrates an onboard debug probe. This eliminates the

need for expensive programmers. It is a simpler low-cost debug probe that supports nearly all TI

ARM device derivatives. The on-board circuitry on the XDS110 debug probe was used to

measure the energy consumption of the system. The hardware circuitry provides high-accuracy

energy consumption with a low bandwidth current and power readings. The energy profiling

range covers from 1-µA to 75-mA current draw, above which the tool displays an overcurrent

alert and shutdown. The sampling time for this tool is about 500µsec. The energy trace feature

can be easily accessed through Code Composer Studio, the software that was used for

implementing and debugging the program. Most of the energy measurement are done using this

feature. More details about the MSP432 Launchpad is included in Appendix A.

2.1.2 ESP8266

The ESP8266 is a low-cost Wi-Fi Module with full TCP/IP protocol stack and has a

microcontroller capability [8][9]. The ESP8266 is capable of hosting an application or

offloading all Wi-Fi networking functions from another application processor.

Figure 2: ESP8266 breakout board

19

Each ESP8266 module comes pre-programmed with an AT command set firmware,

meaning it can be interfaced to a microcontroller and connected to the Internet [8]. Although it

has a powerful onboard processing capability which allows to integrate it to different sensors and

other devices through its interface pins, the device was used merely to provide the MSP432 with

wireless access to the Internet.

For this thesis, ESP8266 was used for adding Wi-Fi functionality to the MSP432 via a

UART serial connection. The ESP8266 was configured to work on station mode enabling the

module to be connected to a Wi-Fi network. The sensor readings were transmitted to a

workstation wirelessly via TCP/IP Client-Server module. Client-Server computing is a model in

which client and server computers communicate with each other in a network. A server takes

request from a client computer and shares its resources and a client is a computing device that

initiates contact with a server to make use of sharable resource. The ESP8266 acts as a client

getting connected to an access point (router) with access to the Internet as shown in Figure 3.

The HTTP request sent from the MSP432 to receive/transmit data from the Internet is handled by

the TCP/IP network to the server to post sensor readings.

Figure 3: Communication path between MSP432 to the Internet via ESP8266

2.1.3 BME280

BME280 is a module that integrates three precision sensors from Bosch. A breakout

20

board that includes this module makes it easy to interface with a microcontroller. The BME280

is a combined digital humidity, pressure and temperature sensor designed for smartphone

applications [10]. The precision sensor from Bosch is the best low-cost sensing solution for

measuring humidity with ±3% accuracy, barometric pressure with ±1hPa absolute accuracy, and

temperature with ±1.0°C accuracy [11]. Its small dimensions and low power consumption allow

the implementation of battery-driven devices such as smartphones, GPS modules or watches.

Figure 4 shows the BME280 sensor on a small PCB.

Figure 4: BME280 sensor on a breakout board

BME sensor supports 3 different modes of operations: sleep mode, forced mode and

normal mode. For weather monitoring applications forced mode is recommended in the

datasheet. In the forced mode, a single measurement is performed, and the sensor goes to sleep.

To get the measurement result, the data registers can be read. Figure 5 shows the timing diagram

for the forced mode in BME280.

21

Figure 5: Forced mode timing diagram [11]

The measurement period of BME280 consists of temperature, pressure and humidity

readings with selectable oversampling. The temperature and pressure values are passed through

an optional IIR filter which removes the short-term fluctuations in pressure.

The data was read using the burst read which resulted in an uncompensated value of

readings. The BME280 API, available from Bosch Sensortec, was used to compensate the

values. The data from the BME was read using I2C communication. The I2C interface consists of

the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to VCC through

a pull-up resistor. The current master generates the clock signal.

2.1.4 ST7735 DISPLAY

The ST7735 is a 1.8" diagonal TFT display. It has a microSD interface for storing files

and images. It uses a 4-wire SPI to communicate and has its own pixel-addressable frame buffer

[12]. The ST7735 can display full 18-bit, 128*160 color pixels. Figure 6 shows the ST7735

display. It includes a transistor Q1 in the breakout board, which is a built-in-driver transistor for

backlight. This transistor was used as a switch to control the backlight of the LCD, which helped

in turning off the LCD when not required and eventually saving power.

22

Figure 6: ST7735 display

The main purpose for using the display was to display the real-time readings of the

sensors. The breakout board also includes SD card slot for storing the data. The data is being

stored in a Google Spreadsheets in a continuous interval, so the SD card feature was not

explored. The SD card could be helpful in storing the data in cases when the Wi-Fi connection is

lost in case of a low battery. It can be used as an alternative way of storing the data. A

synchronous serial communication protocol (SPI) was used for sending data to the display.

2.1.5 LTC3106

The LTC3106 is a low voltage buck-boost DC/DC converter with automatic Power Path

management optimized for multisource, low power systems [13]. It can be powered from 2

sources, and when the primary source is unavailable, it switches to the backup power source. It is

compatible with either rechargeable or primary cell batteries and can charge the battery

whenever there is an energy surplus available. The output voltage is programmed digitally,

reducing the required number of external components. It draws 1.6 µA current at no load.

For this research, LTC3106 is used for managing power to the system. A solar panel is

connected as a primary source and a Lithium-ion rechargeable battery as a secondary source. The

MSP432 board requires 3.3 Volt power supply which was powered by 2 Volt solar panel and 3.7

23

Volt Li-ion rechargeable battery. More details about different pin connection of LTC3106 is

included in Appendix B.

2.1.6 Solar Panels

Solar panels are devices that convert light into electricity. A collection of solar cells makes a

solar panel. Many small solar cells spread over a large area can work together to provide enough

power to be useful. The more light that strikes a cell, the more electricity it produces.

Solar cell is basically a p-n junction diode but constructed a little bit differently than

conventional p-n junction diode. When a semiconductor is exposed to light it can exhibit

photovoltaic effect, thus are also called photovoltaics (PV) cells. Regardless of size, a typical

solar cell produces about 0.5-0.6-volt DC under open-circuit, no load conditions [14]. The power

output of the solar cell depends on its efficiency and size (surface area) and is proportional to the

intensity of sunlight striking the surface of a cell [14].

Photovoltaic or solar cells are connected electrically to each other in series to produce higher

voltages or in parallel to produce higher currents. Photovoltaic module consists of PV cell

circuits sealed in an environmentally protective laminate and are the fundamental building blocks

of the PV systems. A photovoltaic panel includes one or more PV modules assembled as a pre-

wired, field-installable unit. A solar array is the complete power-generating unit, consisting of

any number of solar module and panels. This cycle can be understood more clearly from Figure

7.

24

Figure 7: PV System [15]

The performance of these solar modules and arrays are rated according to their maximum

power output in watts under Standard Test Conditions (STC). Standard Test Conditions are

defined by a module (cell) operating temperature of 25° C (77°F), incident solar irradiance level

of 1000 W/m2, and under Air Mass 1.5 spectral distribution [16]. However, the actual

performance of the solar modules and arrays is usually 85 to 90 percent of STC rating. This is

because the conditions are not always typical of how these modules operate in the field. The

photovoltaic modules available today are extremely safe and reliable products with minimal

failure rates. The projected service life of these modules are about 20 to 30 years. For this

research, solar energy was used as a primary source to power the system. The excess energy

coming from the solar cells was used to charge the battery. For this system, a 2 Volt, 160 mA

[17] solar panel was chosen to power the system.

2.1.7 Batteries

An electrical battery is a combination of two or more electrochemical cells used to convert

stored chemical energy into electrical energy [18]. Batteries are a common power source for

many households and industrial applications. The basic unit inside a battery is called a cell and

25

consists of three main components. There are two electrodes (electric terminal) and a chemical

called an electrolyte between them. The difference between a battery and a cell is simply that

two or more cells are hooked up in a battery, so their power adds together.

The Li-ion rechargeable battery was selected for the system which requires 100 mA currents.

The Li-ion rechargeable batteries are commonly available in 4.2 Volts and was available in

different current ratings. Just a single Li-ion battery could supply the required voltage and

current. Thus, it was an optimum choice for the system.

Software Description

Code Composer Studio was the Integrated Development Environment (IDE) used for this

project. The code was written in C programming language. The compiler version used was TI

v18.1.1.LTS. The energy optimizing features of CCS is detailed below.

Energy Trace Technology

Energy Trace Technology is an energy-based code analysis tool that measures and

displays the application’s energy profile and helps to optimize it for ultra-low power applications

[19]. MSP432 devices include built-in Energy Trace technology allows real-time monitoring of

many internal device states while user program code executes. They enable analog energy

measurement to determine the energy consumption of an application. The energy trace

technology is available for all MSP432 devices with selected debuggers, including the Code

Composer Studio IDE.

Debuggers with Energy Trace Technology support include a unique way to continuously

measure the energy supplied to a target microcontroller that differs considerably from a well-

known method of amplifying and sampling the voltage drop over a shunt resistor. A software-

26

controlled dc-dc converter is used to generate the target power supply. A built-in-on-the-fly

calibration circuit defines the energy equivalent of a single dc-dc charge pulse. The figure below

shows the energy measurement principle. Periods with a small number of charge pulses per time

unit indicate low energy consumption and thus low current flow. Periods with a high number of

charge pulses per time unit indicate high energy consumption and high current consumption.

Each charge pulse leads to a rise of the output voltage VOUT, which results in an unavoidable

voltage ripple typical to all dc-dc converters [20].

Figure 8: Pulse density and current flow

By sampling continuously even the shortest device activity that consumes energy

contributes to the overall recorded energy.

ULP Advisor

ULP (Ultra-Low Power) Advisor is a tool for guiding developers to write efficient code

to fully utilize the ultra-low power features of MSP microcontrollers. The ULP advisor checks

the code against a thorough ULP checklist to reduce the current consumption as much as

possible [21]. At build time, ULP Advisor provides notification and remarks to highlight areas of

the code that can be optimized further for reducing the power consumption. The integration of

ULP Advisor with the Energy Trace is helpful in the optimization process. Figure 9 demonstrates

the integration of ULP Advisor and Energy Trace Technology in the development process.

27

Figure 9: ULP Advisor and Energy Trace Technology [22]

There were a few optimizations done in the program following the ULP Advisor

guidance. Some of them were changing the type of the variables to a smaller size, setting the

uninitialized ports as outputs. Figure 10 is the advice given by the ULP while running the code.

Figure 10: Advice given by ULP Advisor for optimization

Some of the common issues the ULP Advisor found were uninitialized GPIO ports,

improper initializations of functions, type of the variables.

28

3. Optimization Techniques

MSP432 Optimizations

With growing complexity in the microcontroller (MCU) applications, minimizing the

overall energy consumption of a system is one of the most challenging problems [23]. Multiple

aspects, such as the hardware components used onboard and the application software, must be

considered [23]. Some obvious generic technique, such as reducing the frequency, might not

significantly reduce the energy consumption independently but taken as a whole, the result might

be significant, as there are many interdependencies across these components [23]. The MSP432

microcontroller includes several power enhancements features to reduce the overall power

consumption. The device provides various options and power configurations that enable

developers to optimize the power consumption for a specific application.

3.1.1 Reducing operating voltage

Power is the product of current and voltage. By reducing the supply voltage in certain

applications, power consumption can be reduced. The constraint here is that the minimum

voltage requirement is met.

3.1.2 Reducing the operating frequency

Power and current consumption are directly proportional to the operating frequency. In

most cases, higher operating frequency means the CPU can execute the codes and complete the

task faster. In a real-time scenario, many applications are time-dependent or event-driven. There

are cases when CPU is running faster in an idle loop waiting for a certain event to trigger. The

CPU can spend a lot of time waiting for serial data to come in at a lower baud rate. This can

consume additional power which can be reduced by reducing the operating frequency.

29

3.1.3 Maximizing the sleep time

There are two modes generally considered in low power designs- active mode and low

power mode. During active mode, it executes the designed tasks. The low power mode is the

period where there is minimal activity, other than timekeeping or waiting for an interrupt or

event to wake up to the active mode. Low power mode consumes less current compared to active

mode. There are different low power modes in the MSP432 microcontroller where current

consumption can be as low as 700 nA, while active mode current can be up to several milliamps.

Maximizing the low power mode can significantly reduce the power consumption.

3.1.4 Minimizing the transition time

Beside time allocation for active and low-power modes, some applications might

unknowingly spend a considerable amount of time transitioning between these power modes. If

this transition time goes unnoticed, this might contribute to an increase in the total energy

consumption. For power optimization, it is essential to identify the system transitions to

determine if they can be reduced or removed.

3.1.5 Solving intermodular dependencies

The previously mentioned vectors are all possible options to optimize individually. These

vectors might have some interdependencies for a given microcontroller platform. Optimizing a

vector might affect another vector. For example, reducing the frequency of might increase the

duty cycle of the system which might lead to more power consumption. Thus, it is even more

important to consider the intermodular dependencies and determine optimal conditions of

settings for a given platform. When clock was reduced to work on low-frequency mode it did not

support the LCD, thus 48MHz clock source was chosen.

30

Power Modes

The MSP432 device supports several power modes. Active modes are the power modes

in which CPU execution is possible. LMP0, LMP3, LPM4 and LPMx.5 modes do not allow the

CPU execution. Figure 11 illustrates different peripherals and their wake-up sources for different

power modes.

Figure 11: Wake up sources from Low Power Modes [5]

For this research, the system was running on active mode when the system was working

and LPM3 mode when staying idle. In active mode, the display and the BME run perfectly.

Initially, the lowest power consumption mode (LPM3.5) was tried to set up when the system was

in a standby condition. The system was unable to wake up from the LMP3.5 mode. The example

31

code available in the MSP432 library was tried and it was not running properly. So, the LMP3.5

mode was discarded and LPM3 mode was chosen. It was one step below the lowest power mode.

The system ran properly without any problem in this power mode.

The PCM Control 0 Register (PCMCTL0) is the primary mechanism for changing the power

modes. The PCMCTL0 contains 2 fields:

• Active Mode Request (AMR): It is used to change from one active mode to another.

• Low Power Mode Request (LPMR): It is used to enter different low power modes such as

LPM3, LPM4, LPM3.5, and LPM4.5.

The AMR has the highest priority over the LMPR settings. The low power modes are entered

when proper values are written to LPMR regardless of AMR settings. The Current Power Mode

(CPM) bits that reside in the PCMCTL0 registers are read-only and reflects the current power

mode of the system. CPM is updated when the power mode request is completed.

32

4. Design and Implementation of the System

The design process involved 3 sub parts i.e. to build a system, optimize the power consumed

and self-sustainable. The readings of the sensor were displayed on the LCD. The block diagram

of the major component is shown in Figure 12.

Figure 12: General block diagram of the overall system

The objective of this work is to optimize the overall power consumption dissipated by the

system. Different hardware and software optimization techniques were applied to reduce the

overall power consumption. After the power optimization process, a buck-boost converter was

selected to reduce power using a 2 Volt solar panel and a 3.7 Volt Li-ion rechargeable battery.

The LTC3106 IC was used to manage power of the system when there was enough sunlight, as

well as in the absence of sunlight, and have the system run continuously without any

interruption.

4.1 Reading the information from Sensors and transmitting to the Google Documents

Figure 13 shows the hardware set of the system. The major components used for the initial

condition were MSP432 microcontroller, BME 280 sensor, LCD and ESP8266 Wi-Fi module.

33

Figure 13: Block diagram to read value from sensor, display and post data in Spreadsheet

4.1.1 Connecting MSP432 to BME sensor

The first step in the application was to read the values from the BME sensor. The BME280

communicated with MSP432 using the I2C protocol. The eUSCI module was enabled for the

MSP432. The baud rate for the eUSCI was set to 100KHz meaning that the rate at which bits are

sent are synchronized with a 100KHz clock signal in the MSP432. GPIO pins 6.4 and 6.5 were

used for communication between MSP432 and the BME280 sensor beside the supply and

Ground. The pin 6.4 could read I2C SDA channel and the pin 6.5 was able to read the I2C SCL

channel.

34

Figure 14: Block diagram of MSP432 connection with BME280

For reading the data stored in the register of the BME280, the eUSCI port on the MSP432

was configured to communicate with an I2C slave device. A block diagram of the MSP432 serial

port is shown in Figure 15. The clock source was selected to create the signal that drives the I2C

clock line in UCxSCL. The slave address was loaded into the Slave Address buffer that was

automatically loaded into the Transmit Shift Register and shifted out the I2C SDA line following

the start bit. Once the flag was set indicating the slave address and read/write bit had been sent,

the data was loaded to the Transmit Buffer, automatically transferred into the shift register, and

put on the SDA line bit by bit in synchrony with the SCL transitions. The shift register output

drive the MOSFET that pulled down the SDA line. The clock was pulled down by another

MOSFET driven by the clock generator.

To read the data stored in a register on the BME280 IC, the I2C interface first sends the

device address and the write bit. Then when the BME280 acknowledges its address, the MSP432

master sends the register address to it. After the slave acknowledges, the MSP432 master then

sends a stop signal, switches to read mode and puts the device address on the bus along with the

read/write bit set to read. The BME280 then puts the contents of its byte wide register located at

the register address on the bus. The MSP432 I2C bus master collects the bits in the receive shift

register and transfers them to the receive buffer. When filled, the receive buffer sets a flag that is

35

monitored by the MSP432 that then releases the bus and stores the value. It was now ready for

the next transaction. This process can be seen in Figure 15.

Figure 15: MSP432 eUSCI in I2C mode

4.1.2 Connecting LCD to MSP 432

The MSP432 microcontroller was connected to the LCD using the SPI interface. The

LCD was used to display the values from the sensors, and the date and time in the RTC clock.

The figure below shows the pin connection of the MSP432 and the ST7735 display. For the SPI

communication SCK was connected to P9.5 (UCA3CLK), MOSI to P9.7(UCA3SIMO), TFT_CS

to P9.4 (UCA3STE) respectively. The reset, backlight, and DC(Data/Command) signal was

36

provided using GPIOs. The baud rate was set to 4 MHz which means that the rate at which bits

are sent are synchronized with a 4 MHz clock signal originating in the MSP432.

Figure 16: Block diagram for connection of ST7735 display with MSP432

The interface between the LCD module and the MSP432 used a synchronous serial

communication protocol (SPI). It was implemented by configuring the eUSCI port on the

MSP432 for sending data in synchrony with the clock signal to enable the LCD module to

receive data. In addition, the MSP432 was configured to reset the LCD module upon startup to

be configured to received data or commands. To display color pixels on the screen, the 16-bit

data was sent two bytes at a time per pixel with the color information for each pixel encoded in

red, green and blue intensity. A preceding command points to a memory location in the LCD

module where the following pixel information was sent as data is to be stored incrementally in

RAM memory on the LCD module. The LCD module electronics then controlled the color and

intensity of pixels from information encoded in the bytes stored in its RAM memory space. Pixel

location on the LCD was mapped directly from the pixel location in RAM. The reading from the

sensor i.e. the temperature, pressure and the humidity value was displayed on the LCD. A GPIO

pin was used to control a transistor switch that in turn-controlled power to the backlight of the

37

display. When the GPIO pin was high the display was on and when it was low the display was

off.

4.1.3 Connecting ESP8266 to MSP432

Figure 17: Block diagram for MSP432 connection with ESP8266

The ESP8266 was connected to MSP432 in UART mode, as shown in Figure 17. UART

A2 serial port was used to communicate between the MSP432 and ESP8266. The GPIO pins of

the MSP432 controlled the CH_PD and RST pins. The CH_PD pin was used to power down the

ESP8266 when it was not transmitting and a pull-down resistor of 250KOHM was used so that

the pin was not left floating. The RST pin was used as a reset for the ESP8266. AT commands

were sent from the code for the MSP432 to communicate with the ESP8266. They are standard

command sets developed to control modems. AT stands for attention. The ESP8266 was used as

a station mode to connect to the microcontroller to the Internet and then send the reading values

of the sensor to the Google Spreadsheet.

To send values of the sensor readings to the Google spreadsheet pushingbox.com API

was used. The pushingbox.com API acted as an intermediate in posting the data to a Google

spreadsheet. Initially, a google spreadsheet was accessed through an API URL. For ESP8266

38

URL redirection was not a straightforward process. URL redirection is a technique that sending a

user from one URL to another. The ESP8266 needs to correctly decode the header information

received from the first server to extract the redirect URL and make a second GET request to the

new server. An HTTP redirect was created at pushingbox.com and a TCP request was sent with

the sensor readings. The pushingbox scenario directs the necessary request to the Google

spreadsheet API and formats it as an HTTPS for security reasons.

Table 1 shows the data that was sent to the Google spreadsheet. For testing purposes, the

values were transmitted every 3 minutes.

Table 1: Values being posted on Google Spreadsheet

Date Humidity(%rh) Temperature(͘͘͘⁰C) Pressure (inHg)

10/12/2018 12:36:44 49.11 19.57 30.05

10/12/2018 12:39:39 49.21 19.79 30.05

10/12/2018 12:42:42 47.89 19.67 30.03

10/12/2018 12:45:49 47.56 19.7 30.03

10/12/2018 12:48:44 47.69 19.65 30.04

10/12/2018 12:51:52 46.27 20.57 29.97

10/12/2018 12:54:50 45.96 20.65 29.97

10/12/2018 12:57:50 45.96 20.65 29.97

10/12/2018 13:00:45 45.02 20.96 29.97

10/12/2018 13:03:45 45.29 21.01 29.97

10/13/2018 13:06:33 37.99 20.75 30.04

10/13/2018 13:09:39 38.25 20.81 30.04

10/13/2018 13:12:39 40.24 20.95 30.04

10/13/2018 13:15:07 43.39 21.44 30.05

10/13/2018 13:18:10 46.9 21.54 30.05

10/13/2018 13:21:32 49.13 21.46 30.05

10/13/2018 13:24:03 27.91 22.42 29.98

10/13/2018 13:27:57 27.95 22.52 29.98

10/15/2018 13:30:22 41.14 24.01 30.18

39

After designing a proper working system, the current consumed was measured using a

BK Precision 1761 DC Power Supply [24]. The minimum current required to run the system was

105 mA. It must be realized that at this stage all components were drawing current from the

power supply.

40

4.1.4 Software Flow

Figure 18 shows the flow chart of the system.

Figure 18: Software flow for the main program

41

4.2 Optimization in the Power consumed by the system

Initially, without any optimization technique, the minimum current required to run the

system was around 105 mA when all components were turned on and functioning. The MSP432

power consumption was measured as a standalone device without any connectivity. Initially, the

current consumption was about 1.6 mA.

Figure 19: Energy consumed by the MSP432 when nothing was connected

The first step in the optimization was to reduce the power consumed by the unused I/O

port pins. This was carried out by setting all the pins as output. To prevent the floating input and

to reduce the power consumption, the unused I/O pins should be configured as I/O function,

output direction and left unconnected on the PC board. There was a slight reduction in the power

consumed by noise on the input pins due to rapid switching as shown in Figure 20.

42

Figure 20: Energy consumed by the MSP432 when setting all unused pins as output

Next the BME sensor was added to the system. The I2C communication required a clock.

The current consumption of the system when the BME was connected increased to 5.6 mA.

Here, 48MHz external high-frequency crystal oscillator was used to set up the clock. There was

no change in the current consumption when the internal DCO was used as the source for the

clock. The SMCLK was set to 12MHz. The readings can be seen in Figure 21.

Figure 21: Energy consumed by the MSP432 when BME is connected in the system

43

The next addition to the system was the display. The LCD was added to display the

readings from the BME sensor. The LCD worked on SPI communication and it required a high

clock to display 128*160 color pixels. The LCD refresh was the limiting factor on how slowly

the microcontroller clock could operate as it was clocking the LCD controller IC. To generate an

RGB color 3 segments are required. These 3 segments individually pass light through a red,

green and a blue filter to make a group of segments or an RGB pixel, i.e., 128*3=384 segments

(columns) and 160 rows are required. Displays can drive 3 segments (1 pixel) per clock cycle.

Thus, the 48MHz external high-frequency crystal was used to set up the clock. When the LCD

was introduced to display the readings from the sensor the system consumed around 24 mA of

current.

Figure 22: Energy consumed when LCD is introduced to the system

For reducing the current consumption, the backlight of the LCD was controlled by a

GPIO pin of the MSP432. The LCD backlight was controlled from the interrupt of the push

button in the microcontroller. The push button was used for turning on and off the LCD

backlight.

44

The graph below represents the power consumption by the system when the backlight of

LCD was turned on and turned off. Initially when the program started the backlight of the LCD

was on and it consumed around 24 mA (75mW) power. When the backlight of display was

turned off from the push button the power consumption reduced to around 8.81 mA (27mW). By

controlling the backlight of the display, the current consumption can be reduced drastically as

seen in Figure 23.

Figure 23: Relative power consumption by the system when the backlight is on and off

When the backlight of the LCD was off, display off command was sent to the LCD to put

the display register off. The current consumption reduced to around 6 mA when display off

command was sent. The current readings after sending display off command to LCD is seen in

Figure 24.

45

Figure 24: Energy consumed when the LCD was turned off

After integration of the LCD on the system an ESP8266 module was integrated to

communicate with the Internet. The objective was to post the value obtained from the sensor to a

Google document. The Energy Trace Software was not able to capture the energy consumed

when ESP8266 was integrated to the system. The system consumed more than 75 mA current, as

the Energy Trace Software stopped showing an error that it cannot measure current above 75

mA.

Figure 25: EnergyTrace stopped

46

Realizing this condition, the system was powered externally through a DC power supply

[24] which had the capability to measure the current consumption. When the current

consumption was measured the entire system consumed about 95 mA in the startup. The system

consumed 95 mA during the start and then settled to about 26 mA. The current consumption

increased when the system was transmitting to the Google Document.

Figure 26 shows the test setup to measure the power consumption by the ESP8266 using

a DC power supply. There are 2 readings seen of which only the right-side reading is being used.

The power was supplied from the right side of the power source. The reading seen on the right

side is the current consumption reading. The left side power supply was not used.

Figure 26: Readings for ESP8266 taken from DC power supply

To reduce the current consumed by the ESP8266, the CH_PD pin was set to power down

mode. The MSP432 GPIO pin was used to provide the CH_PD signal to the ESP8266. The

CH_PD was high during the transmission of data and was set to low when not needed to transmit

data. This reduced the current consumed by the ESP8266 that stays in a “modem-sleep” mode

between transmissions by default. The current consumption by the system was reduced to around

6 mA when CH_PD was set to low, and LCD was off.

47

The ESP8266 current was monitored in more detail to measure the surge current drawn

by the ESP8266 when it is powered, as the CH_PD signal goes high. The current consumed by

the ESP8266 was monitored when the system was waking up from the power down mode. This

would give us a clear idea of how much current is required to start up the system or during wake-

up from sleep mode. To monitor the current required by the ESP8266, the ADC in the MSP432

Launchpad was used. A 1 OHM resistor was used to measure the differential voltage that could

be converted to current going across the ESP8266 power pin. The push button in the MSP432

was used to change the state of the CH_PD and then start the sampling. The sampling rate was

set to 10KHz and the samples for the first 200 milliseconds was stored in a buffer. Then the

buffer was read and displayed using the serial monitor to figure out the surge current.

Figure 27: Current measurement of ESP8266 when waking up form power down mode

Figure 27 shows the circuit diagram for differential current measurement across 1 OHM

resistor when the CH_PD was set high from the powered down mode. The current was measured

by triggering the ADC periodically using a timer. The sampling was done for 10,000 times per

48

second for a 0.1ms sample resolution to monitor the current surge during the ESP8266 power on.

This current was observed using a serial monitor. A short interval of 20 samples was captured

before the CH_PD line goes high. This was done to establish a baseline current to the ESP8266

prior to power on. Tera Term was the software using as a serial monitor. The eUSCI A UART

module of the MSP432 was used at a baud rate of 115200 to communicate with the Tera Term.

Based on the readings observed in a serial monitor a graph is plotted in Figure 28.

Figure 28: Current consumption for the ESP8266 when CH_PD signal goes high

The ESP8266 required surge currents during the startup of the system. The ESP8266

consumed up to 280 mA currents for about 50 milliseconds. A supercapacitor [25] was placed in

the output side of the LTC3106 board to provide the required surge current consumed by the

ESP8266 for a very short period.

49

Figure 29: Adding supercapacitor to provide the surge currents

A 1 Farad, 5.5 Volt supercapacitor was chosen. The supercapacitor was chosen with a

low leakage current so that it does not unnecessarily drain the battery. It has a low internal

resistance, providing high power density capability. The supercapacitors can store and release

energy almost instantly, so it gets charged slowly during normal operation of the system and

provide the surge current required for the short period of time. It helped the system to run

continuously by providing the surge current when required.

When the system was in an idle condition the MSP432 was set to a Low Power Mode.

Different power modes were applied to determine the current drawn by the system and LPM3

mode was selected for the idle condition. The active mode had everything operating in normal

condition. When the system was in LPM0 mode the CPU was not operating but all the other

peripherals were operating. The current reduced to about 5.43 mA compared to earlier 6.05 mA

in active mode. When setting the system to LPM3 mode the display was not functioning as the

CPU remained inactive and only RTC clock was operating in a very low frequency of 32.76

KHz. The high-frequency clock was disabled. The display was turned off before entering LPM3

mode by sending the display off command to the LCD.

When the push button of the MSP432 is pressed the system wakes up from the deep sleep

mode and updates the sensor reading and displays. The backlight of display was set to turn off

50

after 20 seconds so that a display was on for a sufficient time for a user to read the sensor

readings. After displaying the values, the system goes to deep sleep mode.

Every hour the system wakes up to transmit data to google sheet and once the

transmission process is completed it goes to deep sleep. The backlight of the LCD is off in this

process so there is nothing being displayed on the screen. The process goes on continuously and

the sensor values are updated in the Google Sheet in every hour. Current consumption for the

system in different power modes after the transmission process is complete and the backlight of

the display is turned off is shown in Table 2.

Table 2: Current consumption in different power modes

Power Mode

Current

Consumption

(mA)

Active Mode 6.05

LPM0 5.43

LPM3 less than 1

The current consumption in the entire process explained above can be summed up in

Table 3. Here for this table, the surge current of the ESP8266 is not included and the average

current consumption of the ESP8266 was taken. The value was observed from the DC power

supply. For other readings, the values were taken based on the Energy Trace.

51

Table 3: Average consumption in different steps in chronological order of the system

Mode
Current in

milliampere(mA)

Power Consumed

By

When MSP432 is turned ON 1.6 MSP432

All pins are set as Output 1.2 MSP432

When BME is included in the system 5.43 MSP432+ BME

When LCD is included in the system 23
MSP432+ BME+

LCD

When LCD backlight is turned Off 6.05
MSP432+ BME+

LCD

ESP included in the system, System is

running, and backlight of LCD is ON
40

MSP432+ BME+

LCD+ ESP8266

Transmitting to Google Document,

backlight ON in LCD
94

MSP432+ BME+

LCD+ ESP8266

Transmission is completed, LCD

backlight is turned OFF
16

MSP432+ BME+

LCD+ ESP8266

The CH_PD of ESP8266 is powered

low
6.05

MSP432+

BME+LCD

The system goes to LPM3 mode, only

RTC clock operating
Less than 1 MSP432+BME

Transmitting to Google Document,

backlight OFF in LCD
78

MSP432+ BME+

ESP8266

Table 3 is the stepwise optimization that was followed to reduce the current consumption.

After all the optimization was complete, the current was measured for different modes for the

running system. The energy consumption is displayed in Figure 30, when the system was

running.

52

Figure 30: Current consumption for first minute of the system running

Figure 30 shows the current consumption reading for the first 70 seconds after the system

was turned on, based on the DC power supply that was used to measure the current. The system

consumed 94 mA current maximum when the ESP8266 started and the backlight of the display

was on. Then the current consumption was irregular for some time which can be explained as

ESP8266 was trying to connect to the internet. After getting connected to the internet the current

consumption reduced to 40 mA. The display was on during this period. Then, the sensor values

were posted to the google spreadsheet which increased the current consumption to 94 mA and

settled down to 16 mA. When the CH_PD was off this value got reduced to about 6 mA currents.

The system went to deep sleep mode with display turning off. In this mode, there was very

minimal current consumption of less than 1 mA.

4.3 Calculations

After the optimization process the minimum current required during transmission was

reduced from 105 mA to about 78 mA. The system was set to sleep mode whenever it was

needed. The power required to the system was properly managed. The LCD was included in the

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

C
u

rr
en

t
(m

A
)

Time (seconds)

Current consumption by the system

53

system for user convenience. The backlight of the LCD was turned off after it was on for 20

seconds so that the backlight of LCD does not drain unnecessary currents.

Minimum current calculations,

As discussed earlier, the minimum current required for transmission:

Without any optimization = 105 mA (1)

After optimization = 78 mA (2)

Current reduced
=

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝐹𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
∗ 100 %

=

105𝑚𝐴 − 78𝑚𝐴

105𝑚𝐴
∗ 100%

 = 25.71 % (3)

The minimum current requirement for running the system can be reduced by 25.71% by

managing the individual components.

Duty cycle for peak current demand:

The duty cycle for the peak current demand is the ratio of time for the peak current to the

time between the transmissions.

Duty Cycle for peak

current

=
𝑃𝑒𝑎𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒

𝑇𝑖𝑚𝑒 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

(4)

=

 50 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠

1 ℎ𝑜𝑢𝑟

=
0.05 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

60 ∗ 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

54

 = 0.0001388 (5)

The duty cycle for the peak current demand is 0.0001388.

4.4 Using LTC3106 IC and solar panel to charge the system

For this process LTC3106 IC, a uxcell 2 Volt, 160 mA solar panel [17] and a PKCELL

LP552035, a 3.7 Volt, 350mAh Li-ion rechargeable battery [26] were chosen. The solar panel

was selected as the primary source and the battery as the secondary source for the LTC3106 IC.

A printed circuit board of the LTC3106, shown in Figure 31 was used to generate the required

current [27]. For this thesis, the pins were connected as according to Table 4.

Figure 31: LTC3106 printed circuit board

55

Table 4: Different pin connection with their function for the LTC3106 IC

PIN

Number
PIN Function Connections

1 VSTORE Secondary Supply Input
Rechargeable battery

connected

2 VCAP VSTORE isolation pin Tied to VSTORE

3 VOUT Programmable Output Voltage Output

4 NC No Connection Left Unconnected

5 Vaux Auxiliary Voltage Connected to GND.

6 VCC
Internal supply rail to power

internal connection

7 OS1
VOUT Select Programming

Input
Connected to VCC

8 OS2
VOUT Select Programming

Input
Connected to GND.

9 PGOOD Power Good Indicator

10 MPP
Set Maximum Power Point

Control
Connected to VCC

11 SS1
VSTORE Select Programming

Input
Connected to GND.

12 SS2
VSTORE Select Programming

Input
Connected to GND.

13 PRI Primary Battery Enable Input Connected to GND.

14 ILIMSEL Current Limit Input Select Tied to Vcc.

15 RUN

Input to enable IC and to set

custom Vin undervoltage

threshold

Tied to Vin.

16 ENVSTR Enable VSTORE Input Tie to VSTORE

17 GND Internal ground connection

18 Vin Main supply input.
Connected to solar

power

19 SW2
Buck- boost convertor switch

pins.

20 SW1
Buck- boost convertor switch

pins.

The pins in LTC3106 are connected in such a way that the solar panel was set as a

primary source and the rechargeable battery as a secondary source. The aim was to make sure

that if the solar energy was enough to make the overall system run, the excess energy was used

to charge the battery. The system would run via battery in the absence of solar power. Two solar

56

panels were connected in parallel to get the required amount of current for the load during the

daytime.

The ADC was used for measuring the voltage from the solar panel, LTC and the battery

and the current from the solar panel and the LTC. The single ended mode of the ADC was used

for measuring the voltage. The voltage from the solar cells and the MSP432 was measured with

the MSP432 ADC but for the battery voltage, a voltage divider circuit and a buffer op-amp were

used to drop down the maximum voltage of the battery that could go as high as 4.2 Volts when

fully charged below 3.3 Volts. The MSP432 pins can measure a maximum of 3.3 Volts. A 10

KOHM and a 36 KOHM resistors were used for the voltage divider circuit to drop down the

voltage. An LM324 op-amp was used as a buffer to match the impedance level of the battery and

the MSP432. The obtained value was converted to the equivalent battery voltage using a linear

regression equation. The equation was generated with a known voltage source values and then

was verified. For current measurement, 1 OHM resistor was placed as shown in the figure below

and the differential voltage across each resistor was measured using the differential mode of

ADC of the MSP432. The battery current was not measured directly but the current available to

charge the battery can be calculated using the solar current and LTC current. When there was no

solar energy available, the battery was sourcing the current to the LTC. When solar energy was

available there were some current left for charging the battery, after boosting the output voltage.

The currents and voltages were displayed on the system LCD.

57

Figure 32: ADC measurement circuit for solar, battery and LTC output

The readings were shown in Figure 33. The reading shows that when two solar panels are

connected in parallel, they are supplying 78.13 mA of the current of which 21.12 mA is sourced

to the load and 31.01 mA sourced to the battery. The voltages for the solar panels, load and battery

are 1.96 V, 3.26 V, and 3.9 V respectively. The values were updated every five seconds using the

RTC clock of the MSP432.

Figure 33: Display showing the ADC result values and BME sensor

58

The ADC values were verified using digital multimeters. First, the voltage values from

the ADC were verified. Three voltmeters were placed parallel to the solar voltage, LTC voltage,

and battery voltage. Figure 34 shows the voltage reading verification. The voltmeter and the

display were showing almost the same readings.

Figure 34: Voltage reading verification using multimeters

After verifying the voltage readings, current readings were also verified by placing

multimeters in series to the solar panels, LTC output and battery. The current readings in the

display were almost similar to the readings obtained in the multimeters. The battery current

reading was discarded as it was not measured directly. The circuit diagram of the final system is

shown in Figure 36.

59

Figure 35: Current reading verification using multimeters

60

Figure 36: Complete circuit diagram of the system

61

5. Observations & Results

 For this research, a rechargeable Li-ion battery was chosen as a secondary source to power

the system. A 2000mAh Ni-MH battery was tested, but it was mostly available in 1.2 Volts, thus

required multiple batteries connected in series for providing the required current. While

connecting the batteries in series the output voltage gets added. While testing 2 Ni-MH batteries

in series, it was only providing current for some time, but not enough time required for ESP8266

during its setup process in the beginning. Even though supercapacitors provided the surge current

the initial Wi-Fi connectivity time could last up to a minute, as a result, the system was not able

to startup all the time. Thus, Li-ion battery was a better option.

 The currents drawn by different load resistors were observed when powered from a full

charged 3.7 Volt, 350mAh Li-ion battery serving as a secondary source to the LTC3106. From

the observation across different load resistor, it can be observed that the LTC3106 has an output

current limitation of 180 mA when the LTC is powered from a Li-ion battery that when fully

charged has an output voltage of 4.2V.

62

Table 5: Current readings for various loads on the LTC3106

INPUT SUPPLIED
Expected

Current
OUTPUT

Voltage

(Volts)
Resistance Current(mA)

Voltage

(Volts)
Current(mA)

4.2 220 KΩ 0.015 3.27 0.015

4.2 22 KΩ 0.15 3.26 0.14

4.2 10 KΩ 0.33 3.26 0.32

4.2 4.7 KΩ 0.7 3.26 0.68

4.2 1 KΩ 3.3 3.26 3.27

4.2 470 Ω 7.02 3.26 6.81

4.2 220 Ω 15 3.25 14.25

4.2 100 Ω 33 3.25 30.4

4.2 47 Ω 70.21 3.24 59.9

4.2 20 Ω 165 3.24 120.8

4.2 10 Ω 330 3.221 187.7

4.2 1 Ω (1 watt) 3300 1.59 197.9

4.2 1Ω (2 watt) 3300 1.625 198.2

After the integration of the system described in the previous chapter, a test was done by

placing the entire system in outdoor sunlight. A voltmeter was connected to measure the voltage

coming from the solar panel and the voltage coming out from the LTC. The light meter LT300,

from Extech Instruments [24] was used to measure the light intensity. When the intensity of

sunlight was about 22600 Lux, the system was running from a 2 Volt solar panel and was able to

charge a 3.7 Volt, 350mAh Li-ion rechargeable battery. The solar panel was supplying around

120 mA current where the excessive current was used up in charging the rechargeable battery.

The current and voltage were recorded using multimeters.

63

Figure 37: Test setup in sunlight

Another test was done by placing the solar panel in the 500-Watt twin head halogen

lights [28]. The intensity of the light was not as good as it was in bright sunlight. The luminous

intensity that could be received was 15,000 Lux. The voltage from the solar was intermittent as a

result the system was not able to start up all the time just from the solar power. Whenever the

solar voltage was above 2.08 Volts the solar power was able to start the system up and was able

to charge the battery as well. Adding a supercapacitor in the VOUT pin in the LTC3106 was able

to get the system run in the regular intervals. As the solar intensity was not consistent the

supercapacitor provided the surge current that was required for the ESP8266. Just using the solar

power without using a battery did not seem appropriate for running the system where less light is

available. With a Li-ion rechargeable battery as a secondary source, the system started more

smoothly.

64

Figure 38: Test setup with solar panel placed near 500-watt twin head lights

Another test was done with placing the entire system in a ELH halogen [28] lightbox.

There was not much change in intensity compared to the previous testing condition. It was

difficult to get just the solar panels to start the system. But when the system was powered from

battery, the solar panels were able to charge the battery and then provide enough current to run

the system.

65

Figure 39: Test setup inside an ELH halogen light box

Then, the program was changed to set the ESP8266 to transmit only when there were 3.7

Volts or above in the battery. When the battery voltage fell below 3.7 Volts the ESP8266 would

skip transmission and wait for the battery to charge from the solar panel before starting the

transmission. With enough voltage available in the battery the data was transmitted in every hour

to the Google Spreadsheets. The battery voltage was constantly monitored so that the system

could space out the transmission when the voltage drops below 3.7 Volts.

Discharging of battery:

A 350mAh battery was used to power the system without the solar primary source to

recharge it. The battery lasted for 193 hours before the ESP8266 stopped transmitting.

Based on this observation the average current consumed by the system,

Average Current

=
 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

(6)

66

=
350 𝑚𝐴ℎ

193 ℎ𝑟𝑠

 = 1.81 mA

(7)

A 2 Volt, 160mA solar panel was tested to figure out the charging time required for a Li-

ion rechargeable battery. A 350mAh Li-ion rechargeable battery was observed for finding the

charging rate in a light source with the intensity of 15000 Lux. The charging time was 30 hours

27 minutes.

 Charging time for 350mAh Li-ion battery = 30 hours 27 minutes (8)

The charging time was too long to observe the charging phenomena. A LIR2450 [29],

100 mA Li-ion coin cell rechargeable battery was chosen. It took around 500 minutes to charge

the battery fully from 2.7 Volts when the light intensity was 15000 Lux. The light was provided

by 500-Watt twin head halogen lights [28] and the light meter used was LT300 [24]. The ADC in

the MSP432 was used to measure the current coming from the solar panel and the voltage of the

battery. The detail about the ADC setup is in the previous chapter. The readings were printed

every minute in a serial monitor like it was done for the measurement of current for the CH_PD

signal. The data was verified by connecting multimeter to measure the current and voltage. An

ammeter was placed in series with the solar panel and the input source of the LTC3106. A

voltmeter was placed parallel with the VSTORE voltage. Figure 40 shows the charging rate for the

battery as observed in the serial monitor.

67

Figure 40: Charging rate for LIR2450, Li-ion rechargeable battery

After testing in the controlled environment, the charging rate was observed for different

lighting conditions and it was almost constant under all the conditions. The solar panel provided

a constant current at the rate of 37mAh.

Table 6: Readings during charging LIR2450 battery on various light conditions

Condition Intensity of light Battery Charge

Time

Bright Sunny Above 50000 Lux 8hrs 20 minutes

Sunny 40000-50000 Lux 8hrs 30 minutes

ELH Halogen Light

Box

25000 Lux 8hrs 35 minutes

ELH Halogen Light

Box

15000 Lux 8hrs 45 minutes

 500-watt Twin

Headed Light

Source

15000-20000 Lux 8hrs 45 minutes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600

B
at

te
ry

 V
o

lt
ag

e

TIme (in minutes)

Li-ion rechargable battery Charging Rate

68

Ideal condition calculations:

Based on the readings for charging and discharging time for the Li-ion rechargeable

battery

Charging time for 350mAh battery = 30 hours 27 minutes

Discharging time for 350mAh battery = 193 hours

Since the battery charging time is quicker than battery discharging time and the battery is

charging when the solar current exceeds the system load, it can be inferred that the system

should run continuously provided 12 hours of a sunny day and 12 hours of dark while

transmitting the data every hour and then going to sleep. The system was tested in a controlled

lighting condition where for 12 hours the lights were turned on and for 12 hours it was off. Two

solar panels were connected in parallel as a primary source and a 350mAh battery as a secondary

source. The system was able to transmit the data every hour and sleep in between transmission.

The current consumption was minimal during sleep times, as a result, the solar panels were able

to charge the battery when the lights were on. The table below is the readings seen for a day

when for 12 hours the light was turned on and for 12 hours the lights were off. The sensor was

read just after the ESP8266 was powered up and were ready to transmit the data.

69

Table 7: Data collected for 24 hours with lights on and off

Date/ Time

(mm:dd:yy

hh:mm)

Humidity

(%rh)

Temp(

⁰C)

Pressure(

inHg)

Solar

Voltage(

V)

Solar

Current(

mA)

LTC

Voltage

(V)

LTC

Current(

mA)

Battery

Voltage

(V)

11/2/2018

 10:37 44.28 16.07 29.88
1.81 106.23 3.3 53.7 4.0

11/2/2018

11:37 43.56 16.41 29.88
2.23 108.83 3.3 53.28 4.0

11/2/2018

12:37 43.76 16.65 29.89
2.12 107.21 3.3 47.99 4.0

11/2/2018

13:37 46.33 16.64 29.89
2.13 105.56 3.3 57.09 4.0

11/2/2018

14:37 45.25 16.59 29.87
2.12 108.26 3.3 52.77 4.0

11/2/2018

15:37 43.87 16.43 29.86
2.17 109.57 3.3 52.77 4.0

11/2/2018

16:37 45.1 16.78 29.86
2.18 108.83 3.3 52.77 4.0

11/2/2018

17:37 41.7 17.17 29.87
2.24 109.26 3.3 54.91 4.0

11/2/2018

18:37 40.95 17.16 29.88
2.18 98.12 3.3 49.88 4.0

11/2/2018

19:37 42.36 17.78 29.88
1.86 103.26 3.3 46.03 4.0

11/2/2018

20:37 40.5 18.52 29.9
1.94 107.26 3.3 53.22 4.0

11/2/2018

21:37 42.67 18.31 29.92
2.08 108.12 3.3 54.16 4.0

11/2/2018

22:37 40.6 18.17 29.91
0 0 3.3 51.77 4.0

11/2/2018

23:37 39.91 17.71 29.92
0 0 3.3 52.77 4.0

 11/3/2018

0:37 40.53 17.58 29.92
0 0 3.3 35.71 3.9

 11/3/2018

1:37 40.3 17.83 29.92
0 0 3.3 52.77 3.9

 11/3/2018

2:37 39.77 17.86 29.92
0 0 3.3 50.76 3.9

 11/3/2018

3:37 40.03 17.6 29.94
0 0 3.3 52.77 3.9

 11/3/2018

4:37 40.74 17.27 29.95
0 0 3.3 52.77 3.9

 11/3/2018

5:38 40.79 17.41 29.96
0 0 3.3 52.77 3.9

 11/3/2018

6:38 39.59 17.69 29.99
0 0 3.3 44.19 3.9

 11/3/2018

7:38 39.79 17.5 30.01
0 0 3.3 52.12 3.9

 11/3/2018

8:38 40.53 17.16 30.03
0 0 3.3 58.15 3.9

 11/3/2018

9:38 41.21 17.11 30.07
0 0 3.3 47.29 3.9

70

Data was collected for the first 12 hours. Lights were on and the solar panel was able to

power up the system and charge the battery with the excess energy. The temperature, pressure,

and humidity were observed as well as the voltage and current of the solar panel, LTC and

battery. When the lights were on the solar panel supplied currents to run the load and was also

able to charge the battery.

The solar voltage was fluctuating around 2 Volts when the lights were on. Most of the

time it was above 2 Volts but there were times it fell below 2 Volts. The LTC output voltage

value was constant 3.3 Volts. The battery was charging very slowly in the presence of solar

panels. The battery had 4.0 Volts during the start of the system and its voltage increased slightly

to 4.01 Volts. But after the lights were removed the voltage got reduced slowly.

Later the system was tested in a regular environment where it could receive sunlight

during the day hours. The battery powered the system during the night time and solar panels

recharged the battery when there was sunlight. The system ran through the battery power, and

when sunlight was available it was able to compensate the charge lost by the battery. For this

final setup, an LP803860 a PKCELL 2000mAh Li-ion rechargeable battery [26] was chosen so

that the battery could last for longer days when there is less sunlight.

71

Figure 41: Test setup for the final system in a normal environment

With changing the battery to a 2000mAh, the system was tested for 20 days period. The

system ran continuously for 20 days without any interruption. There was very minimal sunlight

available during the testing condition but whenever there was sunlight the solar panels were able

to charge the rechargeable battery. Table 8 shows the snippet for data collected over the period.

72

Table 8: Data snippet recorded during the test in normal condition

Date/ Time

(mm:dd:yy

hh:mm)

Humidity

(%rh)

Temp(

⁰C)

Pressure(

inHg)

Solar

Voltage(V)

Solar

Current

(mA)

LTC

Voltage (V)

LTC

Current(

mA)

Battery

Voltage

(V)

11/9/2018

9:43:03
26.55 22.97 30.19 0.5 0 3.3 46.18 4.0

11/9/2018

10:43:07
22.25 23.95 30.23 0.5 0 3.3 33.84 4.0

11/9/2018

11:43:17
23.68 22.32 30.27 0.5 0 3.3 47.18 4.0

11/9/2018

12:43:28
23.22 23.2 30.32 0.3 6.45 3.3 52.74 4.0

11/9/2018

13:43:35
18.69 25.53 30.32 2.2 33.44 3.3 46.52 4.0

11/9/2018

14:43:27
28.56 24.03 30.02 0 0 3.3 54.08 4.0

11/9/2018

12:43:28
25.12 22.16 30.05 0.4 0 3.3 13.29 4.0

11/9/2018

15:43:35
24.22 22.84 30.05 0.7 1.21 3.3 32.22 4.0

...

…

…

11/18/2018

10:44:26
17.38 27.24 30.59 2 30.4 3.3 35.71 3.9

11/18/2018

11:44:28
17.3 27.34 30.59 2.3 24.98 3.3 17.72 3.9

11/18/2018

12:44:25
16.31 29.6 30.58 2.3 27.98 3.3 34.43 4.0

11/18/2018

13:44:23
16.22 29.78 30.57 0.7 3.22 3.3 42.42 3.9

11/18/2018

14:44:22
17.88 25.7 30.54 1 4.83 3.3 37.25 3.9

11/18/2018

15:44:25
`16.89 24.01 29.98 0.6 0.4 3.3 24.57 3.9

11/18/2018

16:44:23
16.35 21.47 29.96 0.8 0 3.3 44.5 3.9

…

…

…

11/28/2018

19:47:46
35.48 21.81 30.06 0.7 0 3.3 53.12 3.9

11/28/2018

20:47:45
34.24 20.16 30.24 0.7 0 3.3 45.66 3.9

11/28/2018

21:47:45
33.18 20.27 30.12 0.7 0 3.3 28.12 3.9

11/28/2018

22:47:45
33.28 20.41 29.13 0.7 0 3.3 31.11 3.9

11/28/2018

23:47:45
35.48 21.81 30.06 0.7 0 3.3 33.15 3.9

73

6. Conclusion

6.1 Summary

A system was designed to collect- the temperature, pressure and humidity data sensor. The

data was transmitted to a workstation in a remote location by connecting to a router with an

Internet connection. The current consumption of the system was measured, and successive steps

were taken to optimize the overall system. The process started with optimization in the MSP432

board, followed by BME sensor, LCD display and the Wi-Fi module. The sleep mode feature of

the MSP432 was used to set the system to sleep when the system is not transmitting any data or

displaying the values. The minimum current required during transmission was reduced by

25.71% after the optimization process.

The LTC3106 was used for managing power to the system. The solar panel was used as a

primary source and a Li-ion battery as a secondary source. The current and voltage coming from

the solar panels, coming out form the LTC3106 and the voltage from the battery was measured

using the ADC in the MSP432 board. When solar energy was available, the LTC was consuming

some current to boost the voltage, some of the difference was available to charge the battery. The

battery charging current should be in the opposite polarity from the current supplied by the

battery.

Based on observations on different lighting condition a 350mAh battery was chosen for

testing the charging and discharging rate. The system transmitted the sensor readings to the

Google Spreadsheets continuously for about 8 days (193 hours) on battery power alone with an

average current consumption of 1.81 mA due to the low duty cycle of 0.0001388 of peak current

demand. Then the system was tested in a controlled environment where the charge lost during

dark hours was compensated by the solar power received during day hours. After making sure

74

the system runs smoothly in a controlled environment the system was placed in a normal

environment where the solar energy was able to charge the system whenever sunlight was

available. For the final system a 2000mAh battery was chosen to compensate longer dark hours.

The final system was tested for a period of 20 days. The system ran continuously without any

interruption.

6.2 Future Work

The data was transmitted to the Google documents every hour. By logging data to the SD

card more frequently than it is posted in a Google Sheet the values can be read more often than

hourly basis. Power savings has always been a major concern in the present technology world.

This research was performed on the MSP432 microcontroller. Different ways were analyzed to

save power. Similar techniques can be applied to other types of microcontroller to figure out the

most optimized case for a required scenario. This research work was solely involved in

optimizing the power and was done on a breadboard with different kinds of configurations. This

work can be taken into a next level by building a product that can be useful in the real-world

application. By replacing the sensor and using different other sensors the data recording and

transmitting can be useful in different industrial and other applications.

The ESP8266 is a power consuming device and most of the power in this system was

consumed by the ESP8266 device during transmission of data and its startup. Different other

possibilities can be explored to figure out better alternatives for this Wi-Fi module.

75

Appendix A

This chapter includes more detail about the MSP432 Launchpad board used for this research. It

describes about the Launchpad, including the block diagram and functional description.

MSP432 Launchpad

Figure A1: MSP432 Launchpad board

The MSP 432 Launchpad board includes different pins as shown in Figure A1. The jumper

J1 to J4 are the 40 pins booster pack connector. Booster pack is the modular plug-in board that

fits on top of the launchpad as seen in Figure A1. These pins are used to make connections to the

sensor and Wi-Fi modules. The regular function of the pins is to perform I/O functions however

most of the pins have one or more other functions.

The launchpad also includes two push buttons and two LEDs for user interaction. Figure A2

shows the general block diagram for the MSP432 Launchpad. It includes how the components

are linked with each other inside the launchpad.

76

Figure A2: Block diagram of Launchpad [5]

Figure A2 shows the functional block diagram of the MSP432 devices and how they are

interconnected on the IC. The Cortex-M4F processor is built on a high-performance core with 3-

stage pipeline Harvard architecture making it suitable for demanding embedded applications.

Figure A3: Functional block diagram of MSP432 device [30]

77

Appendix B

This chapter includes the description of the LTC3106 board used for this thesis. It details

about different pins in the LTC3106 board and its functions.

LTC3106 Breakout Board

A 20-pin breakout board was used for connecting different pins of the LTC3106. The pins for

the LTC3106 and its features are detailed below:

1) NC: No Connect. It is not connected electrically. It can be connected to PCB ground or

left floating.

2) VOUT: It is a programmable output voltage pin. It must be connected with at least 22µF

low ESR capacitor to GND. The size of the capacitor is dependent on the application.

3) VAUX: This pin is a generated voltage rail used for powering the internal circuitry It must

be connected to a 2.2µF minimum ceramic capacitor to GND.

4) VCC: This is an internal supply rail which is used for powering the internal circuitry. It

must be decoupled with a 0.1µF ceramic capacitor.

5) OS1, OS2: These pins are used for programming the VOUT selectable input. The output

voltage can be generated into 4 different values based on the following selection in.

Table B1: Output Voltage Selection

6) PGOOD: Power Good Indicator. This pin is pulled to ground if the VOUT falls 8% below

the programmed voltage.

78

7) MPP: It is a Maximum Power Point control pin.

8) SS1, SS2: These pins are for the VSTORE select programmable inputs. Based on Table the

pins need to be connected.

Table B2: VSTORE voltage selection

9) PRI: Primary Battery Enable Input. This pin is connected to Vcc for enabling the use of a

non-rechargeable battery and to disable VSTORE pin charge capability. The pin is

connected to GND to use a secondary battery and enable charging.

10) ILLIMSEL: This pin is used for selecting the Current Limit Input. The pin is configured

for the different current condition as the current requirement shown in Table B3.

Table B3: Current Limit Adjustment

11) RUN: This pin is an input to enable the IC and set custom VIN undervoltage thresholds.

A voltage greater than 400mV will enable certain IC function. The threshold set at

600mV enables VIN as input.

12) ENVSTR: This pin enables VSTORE as input. It is tied to VSTORE to enable it as a backup

input. It is tied to GND to disable VSTORE as a backup input source.

13) GND: This pin is the ground pin and is connected to PCB ground for internal electrical

ground connection.

79

14) VIN: This is the main supply input pin. It must be decoupled with a minimum 10uF

capacitor.

15) SW1, SW2: These pins are Buck-Boost Converter switch pins. An inductor is connected

between these two pins.

16) VSTORE: This pin is connected with the secondary input supply. A rechargeable battery

may be connected with this pin to GND to power the system when the input voltage is

lost. This pin must be tied to VCAP for primary or high capacity secondary battery

application.

17) VCAP: This pin isolates VSTORE from the decoupling capacitor for low capacity backup

batteries.

80

Appendix C

Source Code

Main.c

//***
/* MSP432 - Main file
* This is the main file for this project.
* Different header files are included which includes different functions used for this research like
initialization of pins, clock, LCD display, BME sensor.
* The program check the battery voltage and if it is above 3.7V then it turns on the ESP8266 and updates
the sensor readings to Google Spreadsheet
*If battery is below 3.7V it displays the reading of the sensor. After displaying the reading the system
goes to sleep mode. A state machine is designed to handle the operation for different steps in this
program.
*The sensor reads the value from the function in the file bmeinterfacing.h
*RTC interrupt handler is for the Real Time Clock interrupts
*Port1 interrupt handler is for the interrupt received from the button press to turn on and off the LCD
* When the battery voltage falls below 3.7V, it stops transmitting and only transmit when the battery
voltage is again above 3.7V making the system run continuously without any interruption.

//**

/*Header files*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>

#include "msp.h"
#include "driverlib.h"

/*Different header files created for running the project*/
#include "bme280Interfacing.h"
#include "i2c.h"
#include "uart.h"
#include "ST7735.h"
#include "rtc.h"
#include "clk.h"
#include "gpio.h"

void getDateAndTime();
void Delay1ms();
uint8_t writecommand(uint8_t c);

typedef enum {
 screen1=0,
 screen2
}_screen;
_screen screen= screen1;

/*Variables created to store different values*/
uint8_t U2RXData;
bool timeset= 0;
int twoSecondToggle = 0;
bool timeBlinker = 0;
bool spreadsheet =0;
int sensorCount=0;
int screenOff=0;
int wakeup=0;
int less_battery=0;
int connection_entered=0;

81

int gotdata=0;
int batteryVoltage= 0;

RTC_C_Calendar newTime; //to store updated time
RTC_C_Calendar currentTime; //to store updated time

char receivingBuffer[2500];
char timeBuffer[32];
int bufferposition = 0;
char displayBuff [20];
char at_commands [100];
char get_command[300];

/*SSID username and password*/
char SSID [] = "SM-G950U66E";
char password [] = "6163041458";

/*Device id to connect to pushingbox.com*/
char deviceId []= "v76E7A8A355A371B";

#define ST7735_DIS0N 0x29
#define ST7735_DISPOFF 0x28

/*Readings to be displayed on the screen*/
volatile char temperature[7];
volatile char pressure[7];
volatile char humidity[7];
volatile char current_solar[9];
volatile char voltage[7];
volatile char current_ltc[9];
volatile char voltage2[7];
volatile char voltage3[7];
volatile char current_battery[9];

/*State machine for different modes*/
typedef enum {CheckAdc, ESPReset, ConnectionSetUp, SetESPMode, ConnectToRouter,
TCPConnect,LCDinit,UpdateData,END,Display,ConnectSpreadSheet} states;
states CurrentState;

/*Delay 10milliseconds*/
void DelayWait10ms(uint32_t n){
 Delay1ms(n*10);
}

/*Function to load values to the display*/
void display(int row, int col, char *str, int front, int back, int size)
{
 int8_t i = 0;
 for(i = 0; str[i]!= '\0';i++)
 {
 ST7735_DrawCharS(row*8 +6*i*size, col * 6*size , str[i], front, back, size);
 }

}

/*UART A2 handler
* UART A2 handler is used for communication of the MSP432 with the ESP8266
* It receives the values from the web and store it in a receiving buffer
*/
void EUSCIA2_IRQHandler(void)
{
 uint32_t status = MAP_UART_getEnabledInterruptStatus(EUSCI_A2_BASE);
 MAP_UART_clearInterruptFlag(EUSCI_A2_BASE,status);

 if (status & EUSCI_A_IE_RXIE)
 {

 U2RXData = MAP_UART_receiveData(EUSCI_A2_BASE);

82

 if(bufferposition >= 2500)
 bufferposition = 0;
 receivingBuffer [bufferposition++] = U2RXData;
 while(!(UCA0IFG & UCTXIFG));
 UCA0TXBUF = U2RXData;

 }
}

/*Function to check if the received string is OK*/
int checkforOK()
{
 char* charPointer = strstr(receivingBuffer,"OK");
 //lastIndex = bufferposition;
 if (charPointer != NULL)
 return 1;
 else
 return 0;

}

/*Function to check if the received string is CLOSED*/
int checkforClosed()
{
 //printf("Response: %s",receivingBuffer);
 char* charPointer = strstr(receivingBuffer,"CLOSED");
 //lastIndex = bufferposition;

 if (charPointer != NULL)
 return 1;
 else
 return 0;

}

/*Function to check if the received string is ERROR*/
int checkforError()
{
 //printf("Response: %s",receivingBuffer);
 char* charPointer = strstr(receivingBuffer,"ERROR");
 //lastIndex = bufferposition;

 if (charPointer != NULL)
 return 1;
 else
 return 0;

}

/*Function to check if the received string is ALREADY CONNECTED*/
int alreadyConnected()
{
 char* charPointer = strstr(receivingBuffer,"ALREADY CONNECTED");
 //lastIndex = bufferposition;

 if (charPointer != NULL)
 return 1;
 else
 return 0;
}

/*Function to check if the received string is IPD51*/
char* getTime()
{
 char *timePointer = strstr(receivingBuffer,"+IPD,51:");
 if (timePointer != NULL)
 return timePointer;
 else
 return 0;

83

}

/*Function stores the value of Date and Time in Time buffer*/
void updateDateAndTime(){
 char* pointintTotime;
 pointintTotime = getTime();
 if(pointintTotime){
 memcpy(timeBuffer,pointintTotime,32);
 getDateAndTime();
 }

}

/*Function is used to convert the ASCII values received to actual values in appropriate time zone*/
void getDateAndTime()
{
 newTime.year = (int)(timeBuffer[15]-48)*10+(int)(timeBuffer[16]-48);
 newTime.month = (int)(timeBuffer[18]-48)*10+(int)(timeBuffer[19]-48);
 newTime.dayOfmonth = (int)(timeBuffer[21]-48)*10+(int)(timeBuffer[22]-48);
 newTime.hours = (int)(timeBuffer[24]-48)*10+(int)(timeBuffer[25]-48);
 newTime.minutes = (int)(timeBuffer[27]-48)*10+(int)(timeBuffer[28]-48);

 if (newTime.hours == 0)
 {
 newTime.hours = 24;
 newTime.dayOfmonth -=1;
 }
 newTime.hours -= 4;

 MAP_RTC_C_initCalendar(&newTime, RTC_C_FORMAT_BINARY);//passing the entered input in RTC in binary
format
 /* Specify an interrupt to assert every minute */
 MAP_RTC_C_setCalendarEvent(RTC_C_CALENDAREVENT_MINUTECHANGE);
 MAP_RTC_C_startClock();
 timeset = 1;
 DelayWait10ms(5);
 ST7735_FillScreen(ST7735_BLACK);
 CurrentState = ConnectSpreadSheet;
}

/*Function check if the recieved string is IPD*/
int checkForIPD()
{
 char* ipdPointer = strstr(receivingBuffer,"+IPD");
 if (ipdPointer != NULL)
 return 1;
 else
 return 0;

}

/*Function to send character to ESP8266*/
void send_to_ESP8266(char *sendStr)
{ int i;
 // printf(" Sending: %s",sendStr);
 for(i=0;i<strlen(sendStr);i++)
 MAP_UART_transmitData(EUSCI_A2_BASE,sendStr[i]);
}

/*Function to reset Buffer*/
void resetBuffer()
{
 memset(receivingBuffer,0,2500);
 bufferposition = 0;
}

/*Function used to display data in the LCD screen*/
void displayData(){

84

 if(screen==screen1) //when the backlight of display is ON
 if(gotdata==1)
 {
 gotdata=2;
 ST7735_FillScreen(ST7735_BLACK);

 }
 writecommand(ST7735_DIS0N); //to turn on the display
 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //to turn on the backlight of the display

 /*Command to print values on the display*/
 display(0,6,"Temp:", ST7735_CYAN,ST7735_BLACK,1);
 display(8,6,temperature, ST7735_GREEN,ST7735_BLACK,1);
 display(13,6,"Cel", ST7735_GREEN,ST7735_BLACK,1);
 display(0,8,"Pressure:",ST7735_CYAN,ST7735_BLACK,1);
 display(8,8,pressure, ST7735_GREEN,ST7735_BLACK,1);
 display(13,8,"inHg", ST7735_GREEN,ST7735_BLACK,1);
 display(0,10,"Humidity:",ST7735_CYAN,ST7735_BLACK,1);
 display(8,10,humidity, ST7735_GREEN,ST7735_BLACK,1);
 display(13,10,"%rh", ST7735_GREEN,ST7735_BLACK,1);

 display(0,13, "Solar Panel:", ST7735_GREEN,ST7735_BLACK,1);
 display(0,15,"I:",ST7735_CYAN,ST7735_BLACK,1);
 display(2,15," ", ST7735_GREEN,ST7735_BLACK,1);
 display(2,15,current_solar, ST7735_GREEN,ST7735_BLACK,1);
 display(8,15, "mA", ST7735_GREEN,ST7735_BLACK,1);
 display(10,15,"V:",ST7735_CYAN,ST7735_BLACK,1);
 display(12,15,voltage, ST7735_GREEN,ST7735_BLACK,1);
 display(15,15,"V", ST7735_GREEN,ST7735_BLACK,1);
 display(0,17, "LTC:", ST7735_GREEN,ST7735_BLACK,1);
 display(0,19,"I:",ST7735_CYAN,ST7735_BLACK,1);
 display(2,19," ", ST7735_GREEN,ST7735_BLACK,1);
 display(2,19,current_ltc, ST7735_GREEN,ST7735_BLACK,1);
 display(8,19,"mA", ST7735_GREEN,ST7735_BLACK,1);

 display(10,19,"V:",ST7735_CYAN,ST7735_BLACK,1);
 display(12,19,voltage2, ST7735_GREEN,ST7735_BLACK,1);
 display(15,19,"V", ST7735_GREEN,ST7735_BLACK,1);

 display(0,21, "Battery:", ST7735_GREEN,ST7735_BLACK,1);
 display(0,23,"V:",ST7735_CYAN,ST7735_BLACK,1);
 display(2,23,voltage3, ST7735_GREEN,ST7735_BLACK,1);
 display(6,23,"V", ST7735_GREEN,ST7735_BLACK,1);

 MAP_PCM_gotoLPM0(); //send the system to Low Power Mode 0

 }

 else if(screen== screen2) //when backlight of dispaly is OFF
 {
 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN5); //set the backlight OFF
 writecommand(ST7735_DISPOFF); //set the display OFF
 MAP_PCM_gotoLPM3(); //send the system to Low Power Mode 3 mode
 }
}

/* To initialize the Chip Select*/
void CS_Init(void)
{
 FlashCtl_setWaitState(FLASH_BANK0, 2);
 FlashCtl_setWaitState(FLASH_BANK1, 2);
 PCM_setCoreVoltageLevel(PCM_VCORE1);
 CS_setDCOCenteredFrequency(CS_DCO_FREQUENCY_24);
}

/*ESP8266 HardReset*/
void ESP8266_HardReset(void)
{
 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN5);

85

 DelayWait10ms(10);
 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN5);
}

/*Main function
*/

void main(void)
{

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
 boardInit(); //intialization for GPIO pins as output
 clk_init(); //clock initialization
 port6_init();
 CS_Init();
 port1_init();

 rtc_init(); //initialize rtc clock
 MAP_Interrupt_enableMaster();
 adcInit(); //initialize adc
 bme280Init(); //initialize bme
 ST7735_InitR(INITR_REDTAB); //enabling LCD

MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //gpio pin for controlling ST7735 display
backlight

 MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN5); //gpio pin for reset of ESP8266
 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4);//gpio pin to control ch_pd signal

 uartA2_init();
 DelayWait10ms(5);

 CurrentState = CheckAdc;

 while(1)
 {

 /*State Machine for different cases*/
 switch(CurrentState){

 case CheckAdc:
 {

 getSensorValues(&temperature,&pressure,&humidity,¤t_solar, &voltage, ¤t_ltc,
&voltage2, &voltage3, ¤t_battery);

 DelayWait10ms(5);
 batteryVoltage= (int)(voltage3[0]-48);
 /* Check if battery volatge is enought to starupthe system*/
 if(batteryVoltage>=3.7)
 {
 CurrentState= ESPReset;
 }
 else
 {
 CurrentState= END;
 less_battery=1;
 }

 resetBuffer();
 break;

 }
 case ESPReset:
 {
 {
 /*Hard Reset ESP8266*/
 ESP8266_HardReset();
 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN4);
 DelayWait10ms(5);
 ST7735_FillScreen(ST7735_BLACK);

86

 CurrentState =ConnectionSetUp;
 connection_entered=1;
 }

 resetBuffer();
 break;

 }

 case ConnectionSetUp:
 {
 less_battery=2;
 DelayWait10ms(5);

 display(0,7,"Loading",ST7735_GREEN,ST7735_BLACK,2);

 send_to_ESP8266("AT\r\n");
 DelayWait10ms(5);
 if(checkforOK())
 {
 send_to_ESP8266("AT+RST\r\n");
 CurrentState = SetESPMode;
 DelayWait10ms(5);

 }
 resetBuffer();
 break;
 }

 case SetESPMode:
 {
 send_to_ESP8266("AT+CWMODE=1\r\n");

 DelayWait10ms(5);
 if(checkforOK())
 {
 CurrentState = ConnectToRouter;

 DelayWait10ms(5);
 }
 resetBuffer();

 break;
 }
 /*Connect to the Router*/
 case ConnectToRouter:
 {
 sprintf(at_commands,"AT+CWJAP=\"%s\",\"%s\"\r\n",SSID,password);
 send_to_ESP8266(at_commands);
 DelayWait10ms(2000);
 if(checkforOK())
 {
 CurrentState = TCPConnect;
 DelayWait10ms(200);

 }
 resetBuffer();
 break;

 }

 /*TCP Connection*/
 case TCPConnect:
 {
 while(!timeset){
 send_to_ESP8266("AT+CIPSTART=\"TCP\",\"time.nist.gov\",13\r\n");
 DelayWait10ms(200);

 if (alreadyConnected())

87

 {
 send_to_ESP8266("AT+CIPCLOSE\r\n");
 }
 if(checkforClosed())
 {
 updateDateAndTime();
 }
 else
 {
 DelayWait10ms(300);
 }

 }
 resetBuffer();
 break;
 }

 case ConnectSpreadSheet:
 {
 /*Check if battery voltage is above 3.7 before transmission to Google Spreadsheet*/
 if(batteryVoltage< 3,7)
 {
 CurrentState= END;
 resetBuffer();
 break;
 }

 clk_init();
 uartA2_init();

 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN4);

/*Get the readings from the sensor, voltage and current*/

getSensorValues(&temperature,&pressure,&humidity,¤t_solar, &voltage,
¤t_ltc, &voltage2, &voltage3, ¤t_battery);

DelayWait10ms(5);

 /* Send TCP connection request to pushingbox API*/
 send_to_ESP8266("AT+CIPSTART=\"TCP\",\"api.pushingbox.com\",80\r\n");
 DelayWait10ms(200);
 if(checkforOK())
 {
 CurrentState = UpdateData;
 DelayWait10ms(5);
 }
 resetBuffer();
 break;

 }

 case UpdateData:
 {

sprintf(get_command,"GET
/pushingbox?devid=%s&humidityData=%s&celData=%s&fehrData=%s&voltageSolar=%s&curre
ntSolar=%s&voltageLTC=%s¤tLTC=%s&voltageBattery=%s HTTP/1.1\r\nHost:
api.pushingbox.com\r\nUser-Agent: ESP8266/1.0\r\nConnection:close
\r\n\r\n",deviceId,humidity,temperature,pressure,voltage,current_solar,voltage2,
current_ltc,voltage3);

 /* Send values to the pushing box API */
 sprintf(at_commands,"AT+CIPSEND=%d\r\n",strlen(get_command));
 send_to_ESP8266(at_commands);
 DelayWait10ms(10);
 send_to_ESP8266(get_command);
 DelayWait10ms(200);

88

 /*Set the CH_PD low after transmission of readings*/
 MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4);
 connection_entered=0;
 spreadsheet=0;
 gotdata=1;
 CurrentState = END;
 resetBuffer();
 break;
 }

 case END:
 {

 /*Get sensor, voltage and current readings*/

getSensorValues(&temperature,&pressure,&humidity,¤t_solar, &voltage,
¤t_ltc, &voltage2, &voltage3, ¤t_battery);

 batteryVoltage= (int)(voltage3[0]-48);
 /*Condition check when the system is not transmitting*/
 if(less_battery==1)
 {
 if(batteryVoltage>=3.7)
 {
 CurrentState= ESPReset; //reset state
 writecommand(ST7735_DIS0N);
 MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5);
 DelayWait10ms(5);
 resetBuffer();
 break;
 }
 }
 displayData();
 break;
 }
 default:
 break;
 }
 }
}

/*RTC clock interrupt handler function
//RTC interrupt is used to time keeping for different purpose of this research. It counts for 20 seconds
for turning the backlight off.
//Minute interrupt is used for counting 60 minutes for posting data to the spreadsheet.
*/
void RTC_C_IRQHandler(void)
{
 uint32_t status;

 status = MAP_RTC_C_getEnabledInterruptStatus();
 MAP_RTC_C_clearInterruptFlag(status);

 if (status & RTC_C_CLOCK_READ_READY_INTERRUPT)//taking interrupt in each second
 {
 currentTime = MAP_RTC_C_getCalendarTime();//storing the updated value
 timeBlinker = !timeBlinker;
 if(connection_entered!=1)
 {
 if(spreadsheet!=1)
 {
 timerDelay++;

 if(timerDelay==2)
 {
 timerDelay=0;

89

 CurrentState=END;
 }
 }
 screenOff++;
 if(screenOff==20)
 {
 screenOff=0;
 if(screen== screen1)
 {
 screen=screen2;
 }
 }
 }
 }

 if (status & RTC_C_TIME_EVENT_INTERRUPT)
 {//taking interrupt in each minute
 twoSecondToggle++; //counter to count 60 seconds
 if(twoSecondToggle == 60)
 {
 twoSecondToggle = 0;
 if(less_battery!=1)
 {
 spreadsheet= 1;
 CurrentState = ConnectSpreadSheet;
 }
 }
 }

 if (status & RTC_C_CLOCK_ALARM_INTERRUPT)//interrupts when time reaches alarm time
 {

 }

}

/* GPIO ISR
This interrupt handler is used to receive an interrupt from the GPIO pin in Port 1.
Based on the interrupt form the Pin1 and Pin4 the LCD backlight display is turned on and off.
*/

void PORT1_IRQHandler(void)
{
 uint32_t status;
 status = MAP_GPIO_getEnabledInterruptStatus(GPIO_PORT_P1);
 MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, status);

 /* Toggling the output on the LED */
 if(status & GPIO_PIN1)

 {
 if(screen==screen1)
 {
 screen= screen2;
 }

 }

 if(status & GPIO_PIN4)
 {
 if(screen==screen2)
 {
 screen=screen1;
 }
 }
}

90

BMEINTERFACING.C

/*
 * bme280nterfacing.c
 *
 * Created on: Mar 8, 2017
 * Author: Rajan
 *
 */
#include "bme280Interfacing.h"
#include "driverlib.h"
#include <string.h>
#include <math.h>
#include <stdio.h>

s8 BME280_I2C_bus_write(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
 s32 iError = BME280_INIT_VALUE;
 u8 array[I2C_BUFFER_LEN];
 u8 stringpos = BME280_INIT_VALUE;
 array[BME280_INIT_VALUE] = reg_addr;
 uint8_t i;
 uint16_t rtnval, debugdump;

 for (stringpos = BME280_INIT_VALUE; stringpos < cnt; stringpos++) {
 array[stringpos + BME280_DATA_INDEX] = *(reg_data + stringpos);
 }
 /*
 * Please take the below function as your reference for
 * write the data using I2C communication
 * "IERROR = I2C_WRITE_STRING(DEV_ADDR, array, cnt+1)"
 * add your I2C write function here
 * iError is an return value of I2C read function
 * Please select your valid return value
 * In the driver SUCCESS defined as 0
 * and FAILURE defined as -1
 * Note :
 * This is a full duplex operation,
 * The first read data is discarded, for that extra write operation
 * have to be initiated. For that cnt+1 operation done in the I2C write string function
 * For more information please refer data sheet SPI communication:
 */

 while(UCB1STATW&0x0010){}; // wait for I2C ready
 UCB1CTLW0 |= 0x0001; // hold the eUSCI module in reset mode
 UCB1TBCNT = cnt+1; // generate stop condition after this many bytes
 UCB1CTLW0 &= ~0x0001; // enable eUSCI module
 UCB1I2CSA = dev_addr; // I2CCSA[6:0] is slave address
 UCB1CTLW0 = ((UCB1CTLW0&~0x0004) // clear bit2 (UCTXSTP) for no transmit stop condition
 // set bit1 (UCTXSTT) for transmit start condition
 | 0x0012); // set bit4 (UCTR) for transmit mode
 while((UCB1IFG&0x0002) == 0){}; // wait for slave address sent

 for(i=0; i<cnt; i++) {
 UCB1TXBUF = array[i]&0xFF; // TXBUF[7:0] is data
 while((UCB1IFG&0x0002) == 0){ // wait for data sent
 if(UCB1IFG&0x0030){ // bit5 set on not-acknowledge; bit4 set on arbitration lost
 debugdump = UCB1IFG; // snapshot flag register for calling program
 I2C_Init(); // reset to known state
 return iError=-1;
 }
 }
 }
 UCB1TXBUF = array[i]&0xFF; // TXBUF[7:0] is last data

91

 while(UCB1STATW&0x0010){ // wait for I2C idle
 if(UCB1IFG&0x0030){ // bit5 set on not-acknowledge; bit4 set on arbitration lost
 debugdump = UCB1IFG; // snapshot flag register for calling program
 I2C_Init(); // reset to known state
 return iError=-1;
 }
 }
 return iError=0;
}

/* \Brief: The function is used as I2C bus read
* \Return : Status of the I2C read
* \param dev_addr : The device address of the sensor
* \param reg_addr : Address of the first register, will data is going to be read
* \param reg_data : This data read from the sensor, which is hold in an array
* \param cnt : The no of data byte of to be read
*/
s8 BME280_I2C_bus_read(u8 dev_addr, u8 reg_addr, u8 *reg_data, u8 cnt)
{
 s32 iError = BME280_INIT_VALUE;
 uint8_t i;
 uint16_t rtnval, debugdump;
 u8 array[I2C_BUFFER_LEN] = {BME280_INIT_VALUE};
 u8 stringpos = BME280_INIT_VALUE;
 array[BME280_INIT_VALUE] = reg_addr;
 /* Please take the below function as your reference
 * for read the data using I2C communication
 * add your I2C read function here.
 * "IERROR = I2C_WRITE_READ_STRING(DEV_ADDR, ARRAY, ARRAY, 1, CNT)"
 * iError is an return value of write function
 * Please select your valid return value
 * In the driver SUCCESS defined as 0
 * and FAILURE defined as -1
 */

 // set pointer to register address
 while(UCB1STATW&0x0010){}; // wait for I2C ready
 UCB1CTLW0 |= 0x0001; // hold the eUSCI module in reset mode
 UCB1TBCNT = 1; // generate stop condition after this many bytes
 UCB1CTLW0 &= ~0x0001; // enable eUSCI module
 UCB1I2CSA = dev_addr; // I2CCSA[6:0] is slave address
 UCB1CTLW0 = ((UCB1CTLW0&~0x0004) // clear bit2 (UCTXSTP) for no transmit stop condition
 // set bit1 (UCTXSTT) for transmit start condition
 | 0x0012); // set bit4 (UCTR) for transmit mode
 while(UCB1CTLW0&0x0002){}; // wait for slave address sent
 UCB1TXBUF = reg_addr&0xFF; // TXBUF[7:0] is data
 while(UCB1STATW&0x0010){ // wait for I2C idle
 if(UCB1IFG&0x0030){ // bit5 set on not-acknowledge; bit4 set on arbitration lost
 debugdump = UCB1IFG; // snapshot flag register for calling program
 I2C_Init(); // reset to known state
 return iError=-1;
 }
 }

 // receive bytes from registers on BME280 device

 while(UCB1STATW&0x0010){}; // wait for I2C ready
 UCB1CTLW0 |= 0x0001; // hold the eUSCI module in reset mode
 UCB1TBCNT = cnt; // generate stop condition after this many bytes
 UCB1CTLW0 &= ~0x0001; // enable eUSCI module
 UCB1I2CSA = dev_addr; // I2CCSA[6:0] is slave address
 UCB1CTLW0 = ((UCB1CTLW0&~0x0014) // clear bit4 (UCTR) for receive mode
 // clear bit2 (UCTXSTP) for no transmit stop condition
 | 0x0002); // set bit1 (UCTXSTT) for transmit start condition
 for(i=0; i<cnt; i++) {
 while((UCB1IFG&0x0001) == 0){ // wait for complete character received
 if(UCB1IFG&0x0030){ // bit5 set on not-acknowledge; bit4 set on arbitration lost

92

 I2C_Init(); // reset to known state
 return 0xFFFF;
 }
 }
 *reg_data++= UCB1RXBUF&0xFF; // get the reply
 }

 return (s8)iError;
}

/* Brief : The delay routine
* \param : delay in ms
*/

/* delay */
void BME280_delay_msek(u32 msek)
{
 Delay1ms(10);
 }

/*--*
* The following function is used to map the I2C bus read, write, delay and
* device address with global structure bme280
---/
s8 I2C_routine(void) {
/*--*
* By using bme280 the following structure parameter can be accessed
* Bus write function pointer: BME280_WR_FUNC_PTR
* Bus read function pointer: BME280_RD_FUNC_PTR
* Delay function pointer: delay_msec
* I2C address: dev_addr
--/
 bme280.bus_write = BME280_I2C_bus_write;
 bme280.bus_read = BME280_I2C_bus_read;
 bme280.dev_addr = BME280_I2C_ADDRESS1;
 bme280.delay_msec = BME280_delay_msek;

 return BME280_INIT_VALUE;
}

void bme280Init()
{
 I2C_Init(); // initialize eUSCI
 memset(resultsBuffer,0x00, 16);

 /* The variable used to assign the standby time*/
 v_stand_by_time_u8 = BME280_INIT_VALUE;
 /* The variable used to read uncompensated temperature*/
 v_data_uncomp_temp_s32 = BME280_INIT_VALUE;
 /* The variable used to read uncompensated pressure*/
 v_data_uncomp_pres_s32 = BME280_INIT_VALUE;
 /* The variable used to read uncompensated pressure*/
 v_data_uncomp_hum_s32 = BME280_INIT_VALUE;
 /* The variable used to read compensated temperature*/
 u32 v_comp_temp_s32[2] = {BME280_INIT_VALUE, BME280_INIT_VALUE};
 /* The variable used to read compensated pressure*/
 u32 v_comp_press_u32[2] = {BME280_INIT_VALUE, BME280_INIT_VALUE};
 /* The variable used to read compensated humidity*/
 u32 v_comp_humidity_u32[2] = {BME280_INIT_VALUE, BME280_INIT_VALUE};

 /* result of communication results*/
 s32 com_rslt = ERROR;

 /*********************** START INITIALIZATION ************************/
 /* Based on the user need configure I2C or SPI interface.
 * It is example code to explain how to use the bme280 API*/
 I2C_routine();

93

 /*SPI_routine();*/
 /*--*
 * This function used to assign the value/reference of
 * the following parameters
 * I2C address
 * Bus Write
 * Bus read
 * Chip id
 ---/
 com_rslt = bme280_init(&bme280);

 /* For initialization it is required to set the mode of
 * the sensor as "NORMAL"
 * data acquisition/read/write is possible in this mode
 * by using the below API able to set the power mode as NORMAL*/
 /* Set the power mode as NORMAL*/
 com_rslt += bme280_set_power_mode(BME280_NORMAL_MODE);
 /* For reading the pressure, humidity and temperature data it is required to
 * set the OSS setting of humidity, pressure and temperature
 * The "BME280_CTRLHUM_REG_OSRSH" register sets the humidity
 * data acquisition options of the device.
 * changes to this registers only become effective after a write operation to
 * "BME280_CTRLMEAS_REG" register.
 * In the code automated reading and writing of "BME280_CTRLHUM_REG_OSRSH"
 * register first set the "BME280_CTRLHUM_REG_OSRSH" and then read and write
 * the "BME280_CTRLMEAS_REG" register in the function*/
 com_rslt += bme280_set_oversamp_humidity(BME280_OVERSAMP_1X);

 /* set the pressure oversampling*/
 com_rslt += bme280_set_oversamp_pressure(BME280_OVERSAMP_1X);
 /* set the temperature oversampling*/
 com_rslt += bme280_set_oversamp_temperature(BME280_OVERSAMP_1X);
 /*--*/
 /*--*
 ************************* START GET and SET FUNCTIONS DATA ****************
 ---/
 /* This API used to Write the standby time of the sensor input
 * value have to be given
 * Normal mode comprises an automated perpetual cycling between an (active)
 * Measurement period and an (inactive) standby period.
 * The standby time is determined by the contents of the register t_sb.
 * Standby time can be set using BME280_STANDBYTIME_125_MS.
 * Usage Hint : bme280_set_standbydur(BME280_STANDBYTIME_125_MS)*/

 com_rslt += bme280_set_standby_durn(BME280_STANDBY_TIME_1_MS);
 // com_rslt += bme280_set_standby_durn(BME280_STANDBY_TIME_1000_MS);

 /* This API used to read back the written value of standby time*/
 com_rslt += bme280_get_standby_durn(&v_stand_by_time_u8);
 /*---*
 ************************* END GET and SET FUNCTIONS ****************
 --/
 // get registers

 BME280_I2C_bus_read(p_bme280->dev_addr, 0xF2, regData, 12);
 /************************* END INITIALIZATION *************************/
 /*---*
 ************************* START DE-INITIALIZATION ***********************
 ---/
 /* For de-initialization it is required to set the mode of
 * the sensor as "SLEEP"
 * the device reaches the lowest power consumption only
 * In SLEEP mode no measurements are performed
 * All registers are accessible
 * by using the below API able to set the power mode as SLEEP*/
 /* Set the power mode as SLEEP*/
 com_rslt += bme280_set_power_mode(BME280_SLEEP_MODE);
 /*---*
 ************************* END DE-INITIALIZATION **********************

94

 ---/

}

void getSensorValues(char *temperature,char *pressure,char *humidity, char *light, char *voltage, char
*light2, char *voltage2, char *voltage3, char *light3)
{
 com_rslt= bme280_set_power_mode(0x01); // set power mode to forced to generate reading
 Delay1ms(10);
 if(timerDelay==0)
 {

 // get registers

 BME280_I2C_bus_read(p_bme280->dev_addr, 0xF2, regData, 12);

 /*--*
 ************ START READ UNCOMPENSATED PRESSURE, TEMPERATURE
 AND HUMIDITY DATA ********
 ---/
 /* API is used to read the uncompensated temperature*/
 com_rslt += bme280_read_uncomp_temperature(&v_data_uncomp_temp_s32);

 /* API is used to read the uncompensated pressure*/
 com_rslt += bme280_read_uncomp_pressure(&v_data_uncomp_pres_s32);

 /* API is used to read the uncompensated humidity*/
 com_rslt += bme280_read_uncomp_humidity(&v_data_uncomp_hum_s32);

 /* API is used to read the uncompensated temperature,pressure
 and humidity data */
// com_rslt += bme280_read_uncomp_pressure_temperature_humidity(
// &v_data_uncomp_temp_s32, &v_data_uncomp_pres_s32, &v_data_uncomp_hum_s32);
 /*--*
 ************ END READ UNCOMPENSATED PRESSURE AND TEMPERATURE********
 ---/

 /*--*

 ************ START READ COMPENSATED PRESSURE, TEMPERATURE
 AND HUMIDITY DATA ********
 ---/
 /* API is used to compute the compensated temperature*/
 v_comp_temp_s32[0] = bme280_compensate_temperature_int32(
 v_data_uncomp_temp_s32);

 /* API is used to compute the compensated pressure*/
 v_comp_press_u32[0] = bme280_compensate_pressure_int32(
 v_data_uncomp_pres_s32);

 /* API is used to compute the compensated humidity*/
 v_comp_humidity_u32[0] = bme280_compensate_humidity_int32(
 v_data_uncomp_hum_s32);

 /* API is used to read the compensated temperature, humidity and pressure*/
// com_rslt += bme280_read_pressure_temperature_humidity(
// &v_comp_press_u32[1], &v_comp_temp_s32[1], &v_comp_humidity_u32[1]);
 /*--*
 ************ END READ COMPENSATED PRESSURE, TEMPERATURE AND HUMIDITY ********
 ---/
 uint32_t t = v_comp_temp_s32[0];
 uint32_t p = v_comp_press_u32[0];
 uint32_t h = v_comp_humidity_u32[0];
 /*---*/
 pressureCompensation = v_comp_press_u32[0] + 2340;

 temperature_bme280 = (float) v_comp_temp_s32[0] * 0.01;
 pressure_bme280 = (float) pressureCompensation *0.01 * 0.02953;
 humidity_bme280 = (float) v_comp_humidity_u32[0] /1024;

95

 sprintf(temperature,"%0.2f",temperature_bme280);
 sprintf(pressure,"%0.2f",pressure_bme280);
 sprintf(humidity,"%0.2f",humidity_bme280);

 MAP_ADC14_toggleConversionTrigger();

 sprintf(light,"%0.2f",current);
 sprintf(voltage,"%0.1f",voltage_read);
 sprintf(light2,"%0.2f",current2);
 sprintf(voltage2,"%0.1f",voltage_read2);
 sprintf(voltage3,"%0.1f",battery_volt);
 sprintf(light3,"%0.2f",current3);
 timerDelay++;
 }
}

/* ADC Interrupt Handler. This handler is called whenever there is a conversion
 * that is finished for ADC_MEM0.
 * The converted value is stored in different buffer for required conversion process
 */
void ADC14_IRQHandler(void)
{
 uint64_t status = MAP_ADC14_getEnabledInterruptStatus();
 MAP_ADC14_clearInterruptFlag(status);

 if (ADC_INT8 & status)
 {
 MAP_ADC14_getMultiSequenceResult(resultsBuffer);
 // flag=1;

 /* Getting values for current and voltage from the result buffer*/
 curADCResult0= (int16_t)resultsBuffer[0]-8192;

 current= (float)((((curADCResult0*3.3)/8192)*1000));

 if(current<0)
 {
 current=0;
 }

 curADCResult1= (int16_t)resultsBuffer[4]-8192;

current2= (float)((((curADCResult1*3.3)/8192)*1000));
if(current2<=0)
{

current2=0;
}

current3= (float)(current - current2);
voltage_read= (resultsBuffer[6]*3.3)/16384;
voltage_read2= (resultsBuffer[7]*3.3)/16384;
voltage_read3= (resultsBuffer[8]*3.3)/16384;
battery_volt= 1.1045*voltage_read3+1.6589;

}
}

ADC.C

/*
 * adc.c

96

 *
 * Created on: Jul 27, 2018
 * Author: Rajan
 */

#include "clk.h"
#include "driverlib.h"

void adcInit(){

 /* Initializing ADC (MCLK/1/4) */
 MAP_ADC14_enableModule();
 MAP_ADC14_initModule(ADC_CLOCKSOURCE_MCLK , ADC_PREDIVIDER_4, ADC_DIVIDER_6,
 0);

 /* Configuring ADC Memory in Multisequence mode */
 MAP_ADC14_configureMultiSequenceMode (ADC_MEM0, ADC_MEM8, false);

 /* Setting up GPIO pins as analog inputs */

 /* Pin 5 & Pin 4 for getting current for the Solar, Pin 0 & Pin 1 for measuring current
from LTC */

 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P5,
 GPIO_PIN5 | GPIO_PIN4| GPIO_PIN0| GPIO_PIN1, GPIO_TERTIARY_MODULE_FUNCTION);

 /* Setting up GPIO pins as analog inputs */
 /* Port 4, pin 5,6,7 for measuring voltage from solar, ltc and battery */
 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P4,
 GPIO_PIN6 | GPIO_PIN7| GPIO_PIN5, GPIO_TERTIARY_MODULE_FUNCTION);

 /* Setting A0 & A1 and A4& A5 in differential mode */
 MAP_ADC14_configureConversionMemory(ADC_MEM0, ADC_VREFPOS_AVCC_VREFNEG_VSS ,
 ADC_INPUT_A0, true);

 MAP_ADC14_configureConversionMemory(ADC_MEM4, ADC_VREFPOS_AVCC_VREFNEG_VSS ,
 ADC_INPUT_A4, true);

 /* Setting A6, A7 & A8 in single ended mode */
 MAP_ADC14_configureConversionMemory(ADC_MEM6, ADC_VREFPOS_AVCC_VREFNEG_VSS ,
 ADC_INPUT_A6, false);

 MAP_ADC14_configureConversionMemory(ADC_MEM7, ADC_VREFPOS_AVCC_VREFNEG_VSS ,
 ADC_INPUT_A7, false);

 MAP_ADC14_configureConversionMemory(ADC_MEM8, ADC_VREFPOS_AVCC_VREFNEG_VSS ,
 ADC_INPUT_A8, false);

 /* Configuring Sample Timer */
 MAP_ADC14_enableSampleTimer(ADC_AUTOMATIC_ITERATION);

 /* Enabling interrupts */
 MAP_ADC14_enableInterrupt(ADC_INT8);

 /* Enabling/Toggling Conversion */
 MAP_ADC14_enableConversion();
 MAP_ADC14_toggleConversionTrigger();
 MAP_Interrupt_enableInterrupt(INT_ADC14);

}

CLK.C

* clk.c
 *
 * Created on: Feb 7, 2018

97

 * Author: Rajan
 */

#include "driverlib.h"
#include "debug.h"

uint32_t g_SMCLKfreq;
uint32_t g_MCLKfreq;

static void clockInit48MHzXTL(void)
{ // sets the clock module to use the external 48 MHz crystal

 /* Configuring pins for peripheral/crystal usage */
 MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_PJ,
 GPIO_PIN3 | GPIO_PIN2, GPIO_PRIMARY_MODULE_FUNCTION);
 MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

 CS_setExternalClockSourceFrequency(32000,48000000); // enables getMCLK, getSMCLK to know externally
set frequencies

 /* Starting HFXT in non-bypass mode without a timeout. Before we start
 * we have to change VCORE to 1 to support the 48MHz frequency */
 MAP_PCM_setCoreVoltageLevel(PCM_VCORE1);
 MAP_FlashCtl_setWaitState(FLASH_BANK0, 2);
 MAP_FlashCtl_setWaitState(FLASH_BANK1, 2);
 CS_startHFXT(false); // false means that there are no timeouts set, will return when stable

 /* Initializing MCLK to HFXT (effectively 48MHz) */
 MAP_CS_initClockSignal(CS_MCLK, CS_HFXTCLK_SELECT, CS_CLOCK_DIVIDER_1);
}

void clk_init(){
 clockInit48MHzXTL(); // set up the clock to use the crystal oscillator on the Launchpad
 MAP_CS_initClockSignal(CS_MCLK, CS_HFXTCLK_SELECT, CS_CLOCK_DIVIDER_1); /* MCLK = 48 Mhz*/
 MAP_CS_initClockSignal(CS_SMCLK, CS_HFXTCLK_SELECT, CS_CLOCK_DIVIDER_4); /* SMCLK = 48/4 = 12Mhz*/
 g_SMCLKfreq=MAP_CS_getSMCLK(); // get SMCLK value to verify it was set correctly
 g_MCLKfreq=MAP_CS_getMCLK(); // get MCLK value
 }

/*

UART.C

/*
 * uart.c
 *
 * Created on: Feb 21, 2018
 * Author: Rajan
 */

#include "driverlib.h"

const eUSCI_UART_Config uartConfig =
{
 EUSCI_A_UART_CLOCKSOURCE_SMCLK, // SMCLK Clock Source
 6, // BRDIV = 26
 8, // UCxBRF = 0
 0x11, // UCxBRS = 0
 EUSCI_A_UART_NO_PARITY, // No Parity
 EUSCI_A_UART_LSB_FIRST, // MSB First
 EUSCI_A_UART_ONE_STOP_BIT, // One stop bit
 EUSCI_A_UART_MODE, // UART mode
 EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION // Low Frequency Mode
};

void uartA0_init()

98

{
 /* Selecting P1.2 and P1.3 in UART mode. */
 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,
 GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);

 /* Configuring UART Module */
 MAP_UART_initModule(EUSCI_A0_BASE, &uartConfig);

 /* Enable UART module */
 MAP_UART_enableModule(EUSCI_A0_BASE);

 UART_enableInterrupt(EUSCI_A0_BASE, EUSCI_A_UART_RECEIVE_INTERRUPT);
 Interrupt_enableInterrupt(INT_EUSCIA0);

}

void uartA2_init()
{
 /* Selecting P3.2 and P3.3 in UART mode. */
 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P3,
 GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);
 /* Configuring UART Module */
 MAP_UART_initModule(EUSCI_A2_BASE, &uartConfig);

 /* Enable UART module */
 MAP_UART_enableModule(EUSCI_A2_BASE);

 UART_enableInterrupt(EUSCI_A2_BASE, EUSCI_A_UART_RECEIVE_INTERRUPT);
 Interrupt_enableInterrupt(INT_EUSCIA2);

 /* Configuring P1.1 as an input and enabling interrupts */
 MAP_GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);
 MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);
 MAP_GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);
 MAP_Interrupt_enableInterrupt(INT_PORT1);

}

RTC.C

/*
 * rtc.c
 *
 * Created on: Feb 21, 2018
 * Author: Rajan
 */

#include "driverlib.h"

void rtc_init()
{

 /* Specify an interrupt to assert every minute */
 MAP_RTC_C_setCalendarEvent(RTC_C_CALENDAREVENT_MINUTECHANGE);

 /* Enable interrupt for RTC Ready Status, which asserts when the RTC
 * Calendar registers are ready to read.
 * Also, enable interrupts for the Calendar alarm and Calendar event. */
 MAP_RTC_C_clearInterruptFlag(
 RTC_C_CLOCK_READ_READY_INTERRUPT | RTC_C_TIME_EVENT_INTERRUPT
 | RTC_C_CLOCK_ALARM_INTERRUPT);
 MAP_RTC_C_enableInterrupt(
 RTC_C_CLOCK_READ_READY_INTERRUPT | RTC_C_TIME_EVENT_INTERRUPT
 | RTC_C_CLOCK_ALARM_INTERRUPT);

 MAP_Interrupt_enableInterrupt(INT_RTC_C);
 RTC_C->AMINHR= 0x00;

99

 MAP_RTC_C_startClock();
}

GPIO.C

/*
 * gpio.c
 *
 * Created on: Feb 21, 2018
 * Author: Rajan
 */

#include "driverlib.h"
#include <stdio.h>

void port6_init(void)
{
 /* Selecting P6.4 for Reset*/
 MAP_GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P6, GPIO_PIN4);

 MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P6,
 GPIO_PIN4 + GPIO_PIN5, GPIO_PRIMARY_MODULE_FUNCTION);
}

void port1_init(void)
{
 /* Configuring P1.1 as an input and enabling interrupts */
 MAP_GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1| GPIO_PIN4);
 MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1|GPIO_PIN4);
 MAP_GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1|GPIO_PIN4);
 MAP_Interrupt_enableInterrupt(INT_PORT1);
 /* Configuring P3.0 as output and P3.5 (switch) for LCD display intensity control */
 MAP_GPIO_setAsOutputPin(GPIO_PORT_P3, GPIO_PIN5);
}

void boardInit(void)
{
 // GPIO Port Configuration for lowest power configuration
 P1->OUT = 0x00; P1->DIR = 0xFF;
 P2->OUT = 0x00; P2->DIR = 0xFF;
 P3->OUT = 0x00; P3->DIR = 0xFF;
 // P4->OUT = 0x00; P4->DIR = 0xFF;
 // P5->OUT = 0x00; P5->DIR = 0xFF;
 P6->OUT = 0x00; P6->DIR = 0xFF;
 P7->OUT = 0x00; P7->DIR = 0xFF;
 P8->OUT = 0x00; P8->DIR = 0xFF;
 P9->OUT = 0x00; P9->DIR = 0xFF;
 P10->OUT = 0x00; P10->DIR = 0xFF;
 PJ->OUT = 0x00; PJ->DIR = 0xFF;
}

Some other codes used:

• BME.c [2016 Bosch Sesortech GmBh)

• ST7735.c [Adrafruit 1.8” SPI library)

100

References:

[1] S. Roundy, P. K. Wright, and J. M. Rabaey, “Energy scavenging for wireless sensor

networks,” Norwell, pp. 45–47, 2003.

[2] S. Philipps, F. Ise, W. Warmuth, P. Conferences, and C. GmbH, “PHOTOVOLTAICS

REPORT,” 2018. [Online]. Available: www.ise.fraunhofer.de. [Accessed: 28-Aug-2018].

[3] “Cap-XX, “GW1 Series – Double Layer Supercapacitor,” 2006.

[4] “MSP-EXP432P401R SimpleLinkTM MSP432P401R high-precision ADC LaunchPadTM

Development Kit | TI.com.” [Online]. Available: http://www.ti.com/tool/MSP-

EXP432P401R. [Accessed: 27-Aug-2018].

[5] “MSP432P4xx SimpleLinkTM Microcontrollers Technical Reference Manual,” 2015.

[6] “TI-RSLK Texas Instruments Robotics System Learning Kit.”

[7] “Architecting a Smarter World – Arm.” [Online]. Available: https://www.arm.com/.

[Accessed: 24-Oct-2018].

[8] “ESP8266EX Datasheet.” [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/0a-

esp8266ex_datasheet_en.pdf.

[9] “ESP8266 WiFi Module Quick Start Guide.” [Online]. Available:

https://www.mpja.com/download/esp8266 wifi module quick start guide v 1.0.4.pdf.

[10] “BME280.” [Online]. Available: https://www.bosch-

sensortec.com/bst/products/all_products/bme280. [Accessed: 27-Aug-2018].

[11] “datasheet BME280.” [Online]. Available:

https://www.digchip.com/datasheets/parts/datasheet/1727/BME280-pdf.php. [Accessed:

27-Aug-2018].

[12] “1.8 Color TFT LCD display with MicroSD Card Breakout [ST7735R] ID: 358 - $19.95 :

Adafruit Industries, Unique & fun DIY electronics and kits.” [Online]. Available:

https://www.adafruit.com/product/358. [Accessed: 27-Aug-2018].

[13] L. Technology Corporation, “LTC3106 - 300mA Low Voltage Buck-Boost Converter

with PowerPath and 1.6μA Quiescent Current.”

[14] “Working Principle of Photodiode, Characteristics And Applications.” [Online].

Available: https://www.elprocus.com/photodiode-working-principle-applications/.

[Accessed: 28-Aug-2018].

[15] “User:Rfassbind - Wikimedia Commons.” [Online]. Available:

101

https://commons.wikimedia.org/wiki/User:Rfassbind. [Accessed: 28-Aug-2018].

[16] “How do batteries work? A simple introduction - Explain that Stuff.” [Online]. Available:

https://www.explainthatstuff.com/batteries.html. [Accessed: 28-Aug-2018].

[17] “Amazon.com: uxcell 5Pcs 2V 160mA Poly Mini Solar Cell Panel Module DIY for Phone

Light Toys Charger 60mm x 60mm: Automotive.” [Online]. Available:

https://www.amazon.com/gp/product/B073Y3KFKV/ref=oh_aui_detailpage_o04_s00?ie=

UTF8&psc=1. [Accessed: 21-Nov-2018].

[18] “Battery Reference Book - Thomas P J Crompton - Google Books.” [Online]. Available:

https://books.google.ca/books?id=QmVR7qiB5AUC&lpg=PA11&ots=ckHhIPVdcC&dq=

battery one or more cells&pg=PA11#v=onepage&q&f=false. [Accessed: 28-Aug-2018].

[19] “EnergyTrace for MSP432 - Texas Instruments Wiki.” [Online]. Available:

http://processors.wiki.ti.com/index.php/EnergyTrace_for_MSP432. [Accessed: 28-Aug-

2018].

[20] “Code Composer Studio Integrated Development Environment | TI.com.” [Online].

Available: http://www.ti.com/tools-software/ccs.html. [Accessed: 28-Aug-2018].

[21] “How Do Breakpoints Work - Texas Instruments Wiki.” [Online]. Available:

http://processors.wiki.ti.com/index.php/How_Do_Breakpoints_Work. [Accessed: 29-Aug-

2018].

[22] B. Finch and W. Goh MSP, “Application Report MSP430TM Advanced Power

Optimizations: ULP AdvisorTM Software and EnergyTraceTM Technology,” 2014.

[23] “Designing an Ultra-Low-Power (ULP) Application With SimpleLinkTM MSP432TM

Microcontrollers Application Report,” 2015.

[24] “Model 1761, Triple Output DC Power Supplies - B&K Precision.” [Online].

Available: http://www.bkprecision.com/products/power-supplies/1761-4-digit-triple-

output-dc-power-supply-20-35v-0-3a-12-65v-5a.html. [Accessed: 02-Dec-2018].

[25] “KR Supercapacitors Coin cells,” 2016.

[26] L.-P. Battery and X. Li, “Li-Polymer Battery Technology Specification Customer Part

name Wenfei liang,” 2015.

[27] R. Aldridge and H. Jiao, “LTC3106 Evaluation Board,” Grand Rapids, MI, 2018.

[28] “Optical & medical equipment Halogen reflector Special Lamps Halogen reflector

lamps-proven reliability.”

[29] “Power Stream Li2450 datasheet.”

[30] “MSP432 datasheet,” 2015.

	Grand Valley State University
	ScholarWorks@GVSU
	12-2018

	Power Optimization of Solar Powered Standalone Wireless Sensor System
	Rajan Amatya
	Recommended Citation

	tmp.1547139167.pdf.WU0gM

