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Abstract

Background: The recent emergence of leptospirosis has been linked to many environmental drivers of disease transmission.
Accurate epidemiological data are lacking because of under-diagnosis, poor laboratory capacity, and inadequate
surveillance. Predictive risk maps have been produced for many diseases to identify high-risk areas for infection and guide
allocation of public health resources, and are particularly useful where disease surveillance is poor. To date, no predictive
risk maps have been produced for leptospirosis. The objectives of this study were to estimate leptospirosis seroprevalence
at geographic locations based on environmental factors, produce a predictive disease risk map for American Samoa, and
assess the accuracy of the maps in predicting infection risk.

Methodology and Principal Findings: Data on seroprevalence and risk factors were obtained from a recent study of
leptospirosis in American Samoa. Data on environmental variables were obtained from local sources, and included rainfall,
altitude, vegetation, soil type, and location of backyard piggeries. Multivariable logistic regression was performed to
investigate associations between seropositivity and risk factors. Using the multivariable models, seroprevalence at
geographic locations was predicted based on environmental variables. Goodness of fit of models was measured using area
under the curve of the receiver operating characteristic, and the percentage of cases correctly classified as seropositive.
Environmental predictors of seroprevalence included living below median altitude of a village, in agricultural areas, on clay
soil, and higher density of piggeries above the house. Models had acceptable goodness of fit, and correctly classified ,84%
of cases.

Conclusions and Significance: Environmental variables could be used to identify high-risk areas for leptospirosis.
Environmental monitoring could potentially be a valuable strategy for leptospirosis control, and allow us to move from
disease surveillance to environmental health hazard surveillance as a more cost-effective tool for directing public health
interventions.
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Introduction

Leptospirosis is the most common bacterial zoonosis around the

world [1], and its emergence has been linked to many

environmental and ecological drivers of disease transmission.

Varying environmental health hazards operate in different

settings, and include climate, flooding, land use, urbanisation,

poor sanitation (e.g. urban slums), international trade and travel,

environmental degradation, and loss of biodiversity [2–11].

Accurate data on disease incidence and outbreaks are lacking in

many parts of the world because of the combination of poor

awareness of the disease, low clinical suspicion, varied clinical

presentations leading to misdiagnosis, and the lack of laboratory

facilities to confirm diagnoses [12].

Reported incidence of leptospirosis in the Pacific Islands is high

compared to other parts of the world [13–16], and outbreaks have

been reported recently [17–19]. However, most Pacific Islands do

not have accurate epidemiological data on leptospirosis, making it

difficult to quantify the importance of risk factors or predict

outbreaks.

Environmental data, geographic information systems (GIS),

spatial statistical analysis, and predictive risk maps have been used

for the investigation and management of a range of infectious

diseases including schistosomiasis [20], malaria [21–24], trachoma

[25] and Rift Valley fever [26]. These maps identify geographic

areas with high disease prevalence and/or risk of outbreaks, and

are useful for guiding allocation of scarce public health resources
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and interventions. Such maps are particularly useful where disease

surveillance data are poor or lacking. To date, no predictive risk

maps have been produced for leptospirosis.

This study follows our reports on a seroprevelance study of

leptospirosis in American Samoa in 2010 [27,28]. The overall

seroprevalence was 15.5% for the five islands surveyed, and 16.2%

on the main island of Tutuila where over 95% of the population

lived. The three most common reactive serovars on Tutuila were

L. interrogans serovars Hebdomadis, LT 751, and LT 1163, with

seroprevalences of 10%, 4.3%, and 3.5% respectively. Significant

risk factors for seropositivity included male gender, outdoor

occupation, low income, lack of knowledge about leptospirosis,

living below median altitude of the village, and high density of

piggeries around the home [27]. The three predominant serovars

differed in their geographic distribution [28], and were associated

with different risk factors [27].

This study further examined potential environmental health

hazards for disease transmission using environmental data and

geospatial analysis. The objectives of this study were to estimate

leptospirosis seroprevalence at geographic locations based on

environmental factors, produce a predictive disease risk map for

American Samoa, and assess the accuracy of the maps in

predicting infection risk. The results demonstrated that environ-

mental health hazard surveillance could be a valuable strategy for

identifying high-risk areas for disease transmission, and potentially

be used as an adjunct or alternative to disease surveillance for

targeting public health interventions for leptospirosis [29].

Methods

Data
Seroprevalence study. The data for this study were

obtained from a seroprevalence study conducted in American

Samoa from May to July 2010. Blood samples were collected from

807 participants on five islands, and questionnaire data were used

to explore associations between seropositivity and individual-level

risk factors (demographics, and exposures at home, work, and

during recreation). Geo-referenced environmental data were used

to explore associations between seropositivity and environmental

factors around the home. The study design, study population,

sampling technique, laboratory methods, and results have been

described in detail in a recent report [27].

Ethics approvals were obtained from the American Samoa

Institutional Review Board, the Medical Research Ethics Com-

mittee of The University of Queensland (2010000114), and

Queensland Health Forensic and Scientific Services Human

Ethics Committee (HREC/10/QFSS/1). Permission was also

sought from the Department of Samoan Affairs and village chiefs

before village visits. Verbal and written information on the study

were provided in Samoan and/or English according to the

participants’ preference, and written informed consent was

obtained from all participants. All data were de-identified prior

to analyses.

For this study of disease risk mapping, only data from the main

island of Tutuila were included. There were 721 participants from

592 households, and 84% of households had only one participant.

The populations and inhabited areas on the other islands were too

small for geospatial analysis to be meaningful. Figure 1 shows the

population distribution on Tutuila and the other islands of

American Samoa.

Environmental data. Participants were geo-located to their

place of residence, and all environmental variables were assessed

at the household level. Data were collated, stored, linked and

mapped using the GIS software, ArcMap v10.0 (Environmental

Systems Research Institute, Redlands, CA).

Environmental data on coastline, rainfall, streams, flooding risk

(as determined by a flood insurance risk map), location of houses

and other buildings, and soil type were obtained from the

American Samoa Geographic Information Systems User Group

[30]. Altitudes of houses and piggeries were obtained using a

digital elevation model [31] of American Samoa, and houses were

classified into those above or below the median altitude of the

village. Vegetation type was obtained from a recent vegetation

mapping project [32], and classified into agricultural (vegetated

land used for commercial production), urban built-up (impervious

urban surfaces such as houses and paved roads), urban cultivated

(vegetated areas within a general urban boundary, including fruit

trees around homes, gardens, parks, sports fields, and lawns), or

other vegetation types (including forests, scrubs, marshes, swamps,

mangroves, and beaches). Geo-referenced data on the location of

piggeries were provided by the American Samoa Environmental

Protection Agency (ASEPA) [33]. Using counts of piggeries within

250 m buffers of houses and the relative altitude of houses and

piggeries, an aggregate variable ‘‘number of piggeries within

250 m and above the house’’ was calculated for all house

locations. Additional environmental variables calculated or

extracted from these sources included density of houses around

sampled locations (measured by number of houses within 250 m

buffers of sampled houses), slope, distance to the closest stream,

distance to the closest forested area, and distance to the closest

coast.

The seroprevalence study also collected questionnaire data on a

number of household-level environmental variables. Some vari-

ables were associated with specific serovars and were discussed in

detail in a previous paper [27], but none were found to be

significantly associated with overall seropositivity and therefore

were not used for predictive risk mapping in this study. Variables

assessed in the questionnaire included owning animals (dogs, cats,

pigs, chickens), bats around the home, sighting or touching rats,

Author Summary

Leptospirosis is the most common bacterial infection
transmitted from animals to humans. Infected animals
excrete the bacteria in their urine, and humans can
become infected through contact with animals or a
contaminated environment such as water and soil.
Environmental factors are important in determining the
risk of human infection, and differ between ecological
settings. The wide range of risk factors include high rainfall
and flooding; poor sanitation and hygiene; urbanisation
and overcrowding; contact with animals (including ro-
dents, livestock, pets, and wildlife); outdoor recreation and
ecotourism; and environmental degradation. Predictive
risk maps have been produced for many infectious
diseases to identify high-risk areas for transmission and
guide allocation of public health resources. Maps are
particularly useful where disease surveillance and epide-
miological data are poor. The objectives of this study were
to estimate leptospirosis seroprevalence at geographic
locations based on environmental factors, produce a
predictive disease risk map for American Samoa, and
assess the accuracy of the maps in predicting infection risk.
This study demonstrated the value of geographic infor-
mation systems and disease mapping for identifying
environmental risk factors for leptospirosis, and enhancing
our understanding of disease transmission. Similar princi-
ples could be used to investigate the epidemiology of
leptospirosis in other areas.

Leptospirosis Predictive Risk Mapping
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working with animals, exposure to flooding, having an indoor

toilet and/or shower, bathing in streams, growing vegetables and/

or fruit trees around the home, type of sewage system, and the

availability of garbage collection services [27].

Statistical Analysis
Spatial cluster detection. SaTScan software [34] was used

to identify spatial clustering of seropositive and seronegative cases.

Kulldorff’s scan statistic was calculated by using a moving circular

window to test whether cases were distributed randomly over

space, and to identify both high and low seroprevalence clusters.

The statistic was set to include a maximum of 50% of the data. A

Bernoulli model was used because the outcome variable was

dichotomous (seropositive or seronegative). Statistically significant

clusters were identified using p,0.05. SaTScan analyses were

performed for all serovars, and separately for each of the three

most commonly identified serovars.

Logistic Regression Analysis. Logistic regression for

grouped data was used to take into consideration that some

households (16%) had multiple participants. Multivariable logistic

regression analysis was performed to investigate the association

between risk factors and seropositivity (for all serovars). Univariate

logistic regression analysis was initially performed for all variables,

and variables with p,0.1 were retained in a multivariable model.

Using a backwards stepwise approach, variables with p,0.05 on

multivariable analysis were retained in the final model. STATA

v11.1 software (StataCorp, College Station, Texas) was used for

statistical analyses.

Two logistic regression models were developed

N Model A: included environmental risk factors only

N Model B: incorporated both individual-level and environmen-

tal risk factors

Residuals of multivariable models were explored for spatial

autocorrelation using semi-variograms. This was performed in the

R statistical software package, version 2.9.0 (The R Foundation for

Statistical Computing), using the geoR package.

Model goodness of fit. Statistical measures used to assess

and compare the goodness of fit of the two models included Akaike

information criterion (AIC); measures of in-sample predictive

ability using area under the curve of the receiver operating

characteristic (AUC); and the percentage of cases that were

correctly classified as seropositive or seronegative using the

models.

Model validation. The models were cross-validated by

measuring out-of-sample predictive ability of the model. The

dataset was randomly divided into four subgroups of equal

numbers. Multivariable models were developed with data from

three subgroups, and used to predict seroprevalence for the fourth

group. This procedure was repeated four times by using different

combinations of three subgroups to develop the multivariable

model, and predicting seroprevalence in the remaining subgroup.

The accuracy of predictions of each model was validated by

comparing the predicted occurrence with observed occurrence of

seropositive cases, using a seroprevalence threshold of 50% to

predict seropositive cases. The discriminatory performance of each

Figure 1. Population distribution on the islands of American Samoa, 2010 [28].
doi:10.1371/journal.pntd.0001669.g001

Leptospirosis Predictive Risk Mapping
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model was measured using AUC, and the percentage of

seropositive cases that were correctly classified. An AUC of 0.7

was deemed to indicate an adequate predictive ability of the model

[35,36].

Predicting spatial variation in seroprevalence. To elim-

inate uninhabited areas of the island from analyses, areas further

than 250 m from existing buildings were excluded. Using the

multivariable logistic regression models described above, coeffi-

cients of covariates were used to predict seroprevalence for the

locations of the nodes of a 50 m650 m grid overlaid on a map of

Tutuila. For both models, predicted seroprevalence varied

spatially according to the values of the environmental covariates.

For Model B, seroprevalence was predicted for different combi-

nations of the individual-level covariates, including: i) the

combination of individual-level covariates that generated the

highest risk (i.e. males, outdoor workers, and people who had no

knowledge of leptospirosis), and ii) the combination of individual-

level covariates that generated the lowest risk (i.e. females, indoor

workers, and people who had knowledge of leptospirosis). Because

the effects of the individual-level covariates are constant through

space, this resulted in maps with high and low mean predicted

seroprevalence, but similar spatial patterns in seroprevalence

relative to the mean.

Results

Spatial clustering
Four statistically significant clusters (three seropositive and one

seronegative) were identified. When scanning all serovars, one

seropositive cluster was identified in an area where over 50% of

participants were seropositive. When scanning for individual

serovars, two seropositive clusters were identified (one each for LT

751 and LT 1163), and a seronegative cluster was identified for LT

1163 in an area where none of the 290 participants tested positive

for this serovar. Statistical details of the clusters are shown in

Table 1, and locations of the clusters are shown in Figures 2 and 3.

Multivariable models and goodness of fit
Statistically significant covariates on multivariable analyses and

measures of goodness of fit for models A and B are shown in

Table 2. Four significant environmental risk factors were identified

and included in Model A: (i) living below median altitude within a

village, (ii) living on agricultural land, (iii) living on clay loam soils,

and (iv) number of piggeries located within 250 m and above the

house. Additionally, three individual-level risk factors were

identified: (i) male gender, (ii) occupational risk (outdoor workers

and fish cleaners), and (iii) lack of knowledge about leptospirosis.

Model B incorporated both environmental and individual-level

risk factors. No significant residual spatial autocorrelation was

found, suggesting that spatial clustering was largely explained by

the covariates included in the models.

Model validation
Using the four subsets of the models for validation, the average

AUC was 0.63 for Model A and 0.70 for Model B. An average of

84.05% and 83.11% of cases in the fourth subset were correctly

classified in Model A and Model B respectively, indicating that

model had acceptable predictive performance.

Spatial variation in predicted seroprevalence
The following seroprevalence prediction maps were generated:

N Using Model A, based on environmental risk factors only

(Figure 4)

N Using Model B, based on environmental risk factors and the

combination of individual risk factors that generated the

HIGHEST risk, i.e. males, outdoor workers/fish cleaners, and

people who had never heard of leptospirosis (Figure 5)

N Using Model B, based on environmental risk factors and the

combination of individual risk factors that generated the

LOWEST risk, i.e. females, indoor workers, and people who

had heard of leptospirosis (Figure 6)

Number of houses with different levels of predicted
seroprevalence

Based on Model A and the map in Figure 4, the predicted

seroprevalence was extracted for all houses on Tutuila to provide

information on the proportion of the population exposed to

different levels of risk. Figure 7 shows that based on environmental

covariates alone, 58.3% of houses had a predicted seroprevalence

of 10 to 20%, and 90.9% of houses had a predicted seroprevalence

of 1 to 30%.

Seroprevalence prediction chart
A seroprevalence prediction chart was generated based on the

four statistically significant environmental variables (‘‘number of

piggeries within 250 m and above the house’’, altitude, vegetation

type, soil type). Figure 8 shows that individuals who have two or

fewer piggeries within 250 m and above their home, live above the

median altitude of their village, in urban built-up areas, and on

clay soil have a predicted seroprevalence of 4%; whereas those

who have more than six piggeries within 250 m and above their

home, live below the median altitude of their village, in

agricultural areas, and on non-clay soils have a predicted

seroprevalence of 51.1%.

Table 1. Statistically significant clusters of participants seropositive and seronegative for leptospirosis in American Samoa, 2010.

SEROPOSITIVE CLUSTERS SERONEGATIVE CLUSTER

All serovars LT 751a LT 1163b LT 1163b

Relative risk 5.34 16.24 5.94 0

P value 0.022 0.00032 0.02 0.0016

Number of participants 10 13 130 290

Number of seropositive cases 8 7 14 0

aLeptospira interrogans serovar LT 751.
bLeptospira interrogans serovar LT 1163.
doi:10.1371/journal.pntd.0001669.t001

Leptospirosis Predictive Risk Mapping
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Figure 3. Statistically significant clusters of participants seropositive and seronegative for leptospirosis (specific serovars).
Seropositive cluster for LT 751 included 7 positive cases out of 13 sampled (RR 16.24, p = 0.0032); seropositive cluster for LT 1163 included 14 positive
cases out of 130 sampled (RR 5.94, p = 0.02); seronegative cluster for LT 1163 included 0 positives out of 290 sampled (RR 0, p = 0.0016). Calculated
using Kulldorff’s spatial scan statistic [34]. RR = relative risk.
doi:10.1371/journal.pntd.0001669.g003

Figure 2. Statistically significant cluster of participants seropositive for leptospirosis (all serovars). Cluster included 8 positive cases out
of 10 sampled (relative risk 5.34, p = 0.022). Calculated using Kulldorff’s spatial scan statistic [34].
doi:10.1371/journal.pntd.0001669.g002
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Discussion

In American Samoa, seropositivity to leptospirosis was associ-

ated with environmental as well as individual-level factors.

Significant household-level environmental hazards included those

related to the natural environment (altitude and soil type) as well as

anthropogenic activities (agriculture and piggeries). Results of this

study corroborate findings from other studies that the household

environment is an important determinant of leptospirosis infection

risk [8,37–39].

Living below the median altitude of a village was associated with

seropositivity, and was likely to be related to greater exposure to

run-off from higher parts of the village, carrying pathogens

including leptospires. Lower altitudes would also be more prone

to flooding. Living on clay soil was associated with a lower risk of

infection. Clay soils absorb water poorly and would allow rain to run

off rapidly. In contrast, clay loams and other soils absorb and hold

water (and leptospires) for longer periods of time, and could thereby

increase the exposure risk for those who lived in these areas. Soil

temperature and acidity could also potentially affect leptospire

survival in the environment [40], but there were insufficient data on

soil characteristics to explore this explanation. Living in agricultural

areas was associated with seropositivity, and was likely to be related

to farming activities and exposure to animals.

The large number of pigs and backyard piggeries in AS have

previously been implicated in leptospirosis transmission [41]. In

2010, there were approximately 430 backyard piggeries housing

3500 pigs (ASEPA, pers. comm), and efforts have been made to

control and regulate their numbers and design [33]. In this study,

piggery density was measured by counting the number of piggeries

located within 250 m of houses and at a higher altitude. Similar

analysis using greater buffer distances of 350 m, 500 m, 750 m,

and 1000 m also produced statistically significantly results, but the

strength of association decreased with increasing buffer distances.

Larger buffers often included other valleys and watersheds, and

were therefore deemed inappropriate. Analysis with buffer

distances of 100 m did not produce any significant results,

probably because there were few piggeries located within 100 m

of houses. A buffer distance of 250 m was chosen for analysis

because it provided the best prediction of seropositivity.

Table 2. Multivariable logistic regression models of leptospirosis seropositivity in American Samoa, 2010.

SIGNIFICANT RISK FACTORS
MODEL A
Odds Ratio (95% CI)

MODEL B
Odds Ratio (95% CI)

QUESTIONNAIRE VARIABLES:

Malea - 2.77 (1.74–4.42)

Occupational groups:

N Indoor - 1

N Outdoor (including fish cleaners) - 2.77 (1.40–5.49)

N Mixed Indoor/Outdoor - 1.14 (0.46–2.87)

N Unemployed - 1.59 (0.85–2.98)

Heard of leptospirosisb - 0.60 (0.38–0.96)

ENVIRONMENTAL VARIABLES:

House below median altitude of village:

N No 1 1

N Yes 1.47 (0.96–2.27) 1.58 (1.00–2.49)

Vegetation type:

N Urban built up 1 1

N Urban cultivated 1.22 (0.74–1.99) 1.13 (0.67–1.88)

N Agricultural 2.33 (1.28–4.23) 2.09 (1.12–3.89)

N Other 2.21 (0.69–7.07) 1.66 (0.49–5.61)

Soil type:

N Clay 1 1

N Clay loams 3.11 (1.27–7.61) 2.72 (1.08–6.85)

N Urban 2.04 (0.81–5.10) 1.86 (0.72–4.78)

N Other 2.20 (0.79–6.14) 2.09 (0.73–5.98)

Piggeries within 250 m and above house c: 1.16 (1.07–1.26) 1.15 (1.05–1.26)

MEASURES OF MODEL GOODNESS OF FIT:

Akaike information criterion (AIC) 624.62 585.83

Area under the curve of ROC (AUC) 0.65 (0.60–0.71) 0.74 (0.69–0.79)

% of cases correctly classified 84.05% 84.43%

Model A based on environmental risk factors. Model B based on a combination of individual-level and environmental risk factors.
aCompared to females.
bCompared to people who had never heard of leptospirosis.
cContinuous variable. Odds ratio reflects increase in risk for each extra piggery within 250 m and at a higher altitude than the house.
Statistically significant odds ratios highlighted in bold.
doi:10.1371/journal.pntd.0001669.t002

Leptospirosis Predictive Risk Mapping
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The number of piggeries located at a lower altitude than houses

was not associated with seropositivity for any of the above buffer

distances, suggesting that drainage of refuse downhill from

piggeries is an important source of infection. The association

between piggeries and leptospirosis seropositivity was potentially

epidemiological rather than causal, and the true source of infection

could have been the rodents around piggeries rather than the pigs.

Despite this, proper management of piggery waste should still

reduce the risk of exposure for people living downhill from

piggeries. Further studies involving the collection of samples from

animals would be required to determine which animal species are

the primary carriers of leptospiral serovars responsible for human

infection.

This study showed that both individual-level and environ-

mental risk factors combined to determine the overall risk of

human leptospirosis in American Samoa. Effective public health

Figure 4. Predicted leptospirosis seroprevalence based on environmental variables. Predicted values were calculated using Model A,
based on four environmental variables (altitude, piggeries, vegetation, and soil type).
doi:10.1371/journal.pntd.0001669.g004

Figure 5. Predicted leptospirosis seroprevalence based on environmental variables and individual-level variables associated with
the highest risk. Predicted values were calculated using Model B, based on four environmental variables (altitude, piggeries, vegetation, and soil
type), and three individual-level variables associated with the highest risk (males, outdoor workers, and no knowledge of leptospirosis).
doi:10.1371/journal.pntd.0001669.g005

Leptospirosis Predictive Risk Mapping

www.plosntds.org 7 May 2012 | Volume 6 | Issue 5 | e1669



interventions would therefore need to include strategies to

reduce individual risk as well as environmental exposures [27].

Strategies to reduce exposure risk in individuals include

improvements in occupational health and safety (e.g. by wearing

protective clothing) and community knowledge about leptospi-

rosis. At the community level, proper management of piggeries

and building piggeries further away from homes could reduce

exposure to piggery waste. Altitude and soil type were associated

with infection risk and as discussed above, are likely to be related

to the risk of flooding. In the Pacific, flooding is predicted to

occur more frequently with global climate change as a result of

more intense rainfall and cyclones. It would therefore be

important to reduce flooding risk by improving drainage and

keeping drains clear of garbage and debris. Communities should

also be advised to avoid floodwaters.

In contrast to many other studies, rainfall and flooding risk were

not statistically significantly associated with seropositivity in this

study. American Samoa is one of the wettest inhabited places in

the world with an average annual rainfall of more than 3000 m,

and it was therefore possible that all areas of the island were at

high risk in this environment. The flood risk map available was

produced to identify areas susceptible to severe damage for

insurance purposes, and was possibly a poor indicator of overall

flooding risk and exposure [27].

Figure 6. Predicted leptospirosis seroprevalence based on environmental variables and individual-level variables associated with
the lowest risk. Predicted values were calculated using Model B, based on four environmental variables (altitude, piggeries, vegetation, and soil
type), and three individual-level variables associated with the lowest risk (females, indoor workers, and knowledge of leptospirosis).
doi:10.1371/journal.pntd.0001669.g006

Figure 7. Number of houses with different levels of predicted leptospirosis seroprevalence. Values were calculated by overlaying a map
of house locations over the risk prediction map in Figure 4.
doi:10.1371/journal.pntd.0001669.g007

Leptospirosis Predictive Risk Mapping
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The questionnaire used in the seroprevalence study explored many

household-level environmental exposures known to be associated

with leptospirosis infection, but none were found to be associated with

overall seropositivity [27]. However, some of the exposures were

widespread, making it difficult to determine their effect on infection

risk. For example, 65% of participants reported sighting rats or mice

at home and 75% reported bats around the home. Water and

sanitation services were also very similar for all participants. Ninety-

six % had piped water, 90% had an indoor toilet, 89% had an indoor

shower, 87% had garbage collection services, and only one person did

not have a sewage system (mains sewage or septic tank) at home.

Furthermore, owning animals was not associated with seropositivity

possibly because people in American Samoa were often exposed to

animals even though they were not the owners. In this study, 67% of

participants reported owning dogs but almost the entire population

would be exposed to the large numbers of unrestrained dogs

responsible for one of the highest reported incidence of dog bites in

the world [42]. Similarly owning pigs was not associated with

seropositivity, but geospatial analysis described in this study showed

that piggeries around the home were associated with infection risk. In

this study, geo-referenced data were more useful than questionnaire

data for identifying environmental risk factors.

The maps in Figures 2 and 3 show that there were geographic

areas with significant clusters of seropositive and seronegative

cases. Clusters varied between serovars, suggesting different

environmental and ecological drivers of disease transmission. In

a recent related paper that explored the ecological drivers of

leptospiral serovar emergence in American Samoa, serovar LT

1163 was found to be completely absent in the more highly

populated parts of the island [28]. Figure 3 shows that serovar LT

1163 was only found in the less populated parts of the island, and

the seronegative cluster corresponds to the most densely populated

area. In this study of predictive risk mapping, all serovars were

combined in the analysis and there was no significant association

between population density and overall seroprevalence. Serovar-

specific predictive risk maps could be produced if future studies

collected larger datasets, and might be more accurate than maps

that include all serovars.

The map in Figure 4 shows the variation in predicted

seroprevalence based on environmental health hazards alone.

Figures 5 and 6 show the predicted seroprevalence for the highest

and lowest risk individuals living in different parts of the island,

and that infection risk could be significantly increased by

individual-level factors. The statistically significant positive cluster

for all serovars on SaTScan (Figure 2) corresponds accurately to

an area of predicted high seroprevalence on the risk maps in

Figures 4 to 6. This area was situated on a steep hill, where there

were large numbers of piggeries located behind and above houses.

Figure 7 shows that the majority of houses in Tutuila were

located in areas with a predicted seroprevalence of 10 to 20%, and

was consistent with the observed population seroprevalence of

15.5% in our study in 2010. The number of houses in different risk

categories was determined by the predicted seroprevalence as well

as house density at each location, and provided an indication of

overall disease burden. The seroprevalence prediction chart in

Figure 8 shows the combined effects of the four environmental

factors in determining infection risk, and provided a more accurate

estimate of seroprevalence than individual risk factors alone, or a

simple count of multiple risk factors.

The limitations of the seroprevalence study have been

previously discussed [27]. The cross-sectional study design did

not allow assessment of variations in disease incidence or risk

factors over time. If available, long-term incidence data could

provide additional information on the effect of seasons, rainfall,

and natural disasters. There were also limitations to the use of

serological tests for leptospirosis, and isolates of leptospires would

be required to confirm the study findings. There were likely to be

other environmental risk factors that were not explored in this

study, and further research would be required to identify these

hazards. The potential role that other animal species play in

disease transmission should also be investigated. The accuracy of

the models and risk maps were limited by the accuracy of

environmental data, and changes in environmental variables over

time. Prediction models and risk maps would need to be updated

as environmental conditions change, and could be refined as

additional information and data become available.

Figure 8. Seroprevalence prediction chart based environmental risk factors at home. The chart shows the combined effects of four
environmental variables (altitude, piggeries, soil type, vegetation type) in determining overall risk.
doi:10.1371/journal.pntd.0001669.g008
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This study showed that it was possible to identify high-risk areas

for leptospirosis based on environmental variables alone, and this

approach could be useful for stratifying geographic locations

according to risk, particularly when disease surveillance data are

lacking. Environmental health hazard surveillance could therefore

be a useful strategy for identifying high-risk locations for disease

transmission, and should be considered as an alternative or

complement to disease surveillance, which would generally be

more costly, complex and difficult to manage. This strategy could

potentially provide valuable information for targeting public

health interventions and optimising resource allocation, particu-

larly in areas with limited financial and public health resources,

such as the Pacific Islands.

This study demonstrated the value of GIS and disease mapping

for investigating the spatial distribution of leptospirosis infection,

identifying geographic and environmental risk factors, and

enhancing our understanding of disease transmission dynamics.

The ability to accurately assess, predict, and map environmental

drivers of disease transmission could also allow us to move from

disease surveillance to environmental health hazard surveillance as

a more cost-effective tool for directing public health interventions.

Although this study was specific to the cultural and environ-

mental conditions in American Samoa, the principles might also

be applicable to other endemic areas for leptospirosis, and the

findings might be pertinent to other Pacific Islands with similar

climate, ecosystems, animal reservoirs, lifestyle and culture.
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