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Abstract 
The aim of this study was to determine if runoff estimates from the curve 
number model were affected by seasons for different land covers. Eighteen 
watersheds with varying land covers were delineated using three methods. 
The delineation methods differ in how internal drainage is evaluated. Runoff 
estimates from storms for spring, summer, and fall were compared to ob-
served runoff from USGS gaging station data. Errors (difference between es-
timate runoff and observed runoff) were found to be highest for fall by 3% for 
all the two delineation methods which do not consider internal drainage. 
Watersheds were categorized by their dominant land cover (agriculture, for-
est, or urban). Seasonal differences were found to be significant for certain 
land covers. The greatest differences between observed and estimated data 
were found in agriculture and urban especially spring versus fall for all delin-
eations. Forest land cover was found to have no seasonal difference for all 
three delineation methods. The research suggests that this work contributes 
to the growing body of research suggesting that vegetative seasonal differenc-
es have a greater impact on runoff than is accounted for in the runoff model. 
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1. Introduction

The ability to accurately model runoff is paramount to watershed and land use 
management. One of the prevalent models used to estimate runoff is the SCS 
curve number method (CN method) [1] [2] [3]. The CN method is widely used 
in part because it has few input conditions and requires knowledge of only two 
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variables: hydrologic soil type and land cover [4]. It still remains the dominant 
model in use today both in the US and in many other countries [5] [6]. Despite 
its limitations, efforts continue to expand its use to other countries. [5] [6] [7] 

Most watershed-scale models rely on satellite spatial data to make estimations 
[8] [9]. A significant source of error is associated with using algorithms to deli-
neate the watershed boundary [10]. Improvements have been made in this re-
gard by refining watershed delineation algorithms especially in regions with low 
relief, karst topography, substantial internal drainage features (such as wet-
lands), and/or thick sand layers [11] [12] [13] [14] [15].  

One of the most prevalent models for watershed delineation is called the D8 
method or standard fill model (SFM) and relies upon elevation differences [8] 
[9]. This method is part of the toolbox that comes with ArcMap 10.2 Hydrology 
package and is widely used to delineate watersheds [12] [13] [14] [15]. It as-
sumes that all area included within the watershed contributes to the outlet. The 
term “standard fill” comes from the tool that fills in any depressions that create 
internal drainage within the spatial elevation data. This process of filling in these 
depressions can overestimate runoff where areas within the watershed are not 
contributing to the outlet [14] [15].  

A minor modification to the SFM method is to “cut out” the internal drainage 
area from the original watershed [13] [15]. Typically, this involves removing 
wetlands and small depressions found in the watershed. This cut method (CM) 
does reduce a modest amount of the overestimation, but in areas where wetlands 
were modified over a century ago, modern spatial land cover satellite data does 
not capture these features.  

A more meticulous approach to watershed delineation is to evaluate the po-
tential contributing source areas (PCSAM) to the outlet. This method uses an 
algorithm that evaluates the streams, wetlands, and areas adjacent to these fea-
tures. It also examines the upstream gradient to the outlet where these features 
are directly connected [11]. A drawback is that this method requires substantial-
ly more data and processing time. It also has a bias towards underestimating 
runoff [13] [14] [15].  

A second substantial source of error is associated with assumptions about the 
land cover data, especially in areas with vegetation [16]. For example, agricultur-
al land covers will have different roughness seasonally. During spring most 
models including the CN method may underestimate runoff, and during early 
fall (before harvest) runoff may be overestimated.  

Vegetative impacts on surface runoff are reasonably well established in the re-
search literature [16]. Vegetative seasonal change impacts on runoff are less well 
understood [5] [6] [7] [17]. A growing body of research indicates that vegetative 
seasonal changes may significantly impact the CN method model. These studies 
have focused on both shifts in vegetation and the growing season due to climate 
changes [18] [19].  

Gal et al. (2017) found that vegetative differences explained over 42% of the 
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difference between past runoff and present runoff in the Sahel [20]. Geng et al. 
(2020) established that the climatic impacts have extended the growing season, 
changed the vegetative phenology, and reduced runoff in the Luanhe River Basin 
in North China [18]. Ji et al. (2021) discovered that vegetative change impacted 
runoff changes by 64% [21]. Similar findings by Hwang et al. (2018) indicate that 
changes in vegetation have affected the surface hydrology and runoff response in 
forested wetlands in Appalachia [19].  

The objective of this paper is to examine how runoff is modeled for different 
land covers for three different methods of delineation for the spring, summer, 
and fall seasons. It is a unique study because it includes a large number of wa-
tersheds with robust datasets for discharge and precipitation. Using the CN me-
thod, the modeled runoff will be compared to observed runoff at a USGS gaging 
station. A metric called the standard error is used to compare the differences 
between observed versus modeled runoff. The expectation is that observed sea-
sonal runoff will have the greatest difference in land cover that changes with 
season (e.g. agricultural) and the least seasonal difference in urban land cover. 
The SFM and CM are expected to show greater differences in standard error 
compared to the PCSAM method over the seasons. The significance of this study 
is to determine if curve number models would be improved with a consideration 
of season in the curve number coefficient.  

2. Study Area 

Wisconsin has varied geology across the state that includes complex internal 
drainage and sinks such as wetlands and karst topography [22]. Eighteen water-
sheds across the state of Wisconsin were selected for this study to include the 
karst, glaciated, and outwash plains region of the state. Watersheds were selected 
using three criteria: 1) Stations with 15 years of USGS gaging station daily dis-
charge data [23]; 2) Corresponding NCDC daily precipitation data [24]; 3) A va-
riety of land cover types within the watershed so that no single land type domi-
nated. The watersheds and their locations across the state of Wisconsin are 
shown in Figure 1. 

3. Methods 

The watersheds were delineated using ArcMap 10.2 using three different algo-
rithms and required different spatial data inputs. All methods require a spatial 
elevation grid called a Digital Elevation Model (DEM). The DEMs in this project 
are at 10-meter resolution and are a product of the USGS National Elevation 
Dataset (NED) [25]. The 2011 National Land Cover database was used for land 
use and land cover [26]. Hydrologic Soil Type was obtained from the US De-
partment of Agriculture [27]. Stream hydrography data was obtained from the 
Wisconsin Department of Natural Resources [28]. The details of the different 
algorithms are described in detail in Miller and Clancy (2017) [15]. For conven-
ience, the algorithms will be summarized with the pertinent details related.  
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Figure 1. Location of watersheds based on Miller and Clancy (2017) [15]. 

3.1. Algorithm 1: Standard Fill Method 

The standard fill method (SFM) is the algorithm that comes with the ArcMap 
10.2 hydrologic package. As with all the algorithms described in this research, 
the SFM requires the DEM. The DEM is smoothed through a tool called “fill” 
that removes depressions that could create internal drainage. The process of fill-
ing depressions affects the shape and size of the final delineated watershed. This 
method assumes that all the water upstream will drain to the outlet. Boundaries 
for watersheds delineated with this method are assumed to be areas of high ele-
vation such as ridges. After the fill layer is created, a flow direction grid is de-
veloped using the eight-pour point direction method [9]. The flow direction grid 
is used to delineate the watershed [15].  

3.2. Algorithm 2: The Cut Method 

The Cut Method (CM) uses the watershed delineated from the SFM and com-
pares it to the original DEM, by using the raster calculator tool in ArcMap to 
subtract the watershed from the DEM [13]. This process will produce a layer that 
has zeros and negative values. The negative values represent the depressions that 
were smoothed using the “fill” tool in ArcMap. Negative values are removed 
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from the original watershed. Watersheds with little internal drainage will not 
differ from the SFM watershed [13] [14]. Watersheds with substantial internal 
drainage will have a “swiss cheese” appearance compared to the original SFM 
watershed as showing in Figure 2 [13] [14] [15].  

3.3. Algorithm 2: The Potentially Contributing Source Areas  
Method 

The Potentially Contributing Source Areas Method (PCSAM) uses several addi-
tional inputs to the SFM and CM. It also uses a technique to examine directly 
connected areas of drainage. The details of the original method can be found in 
the publication by its developers (Richards and Brenner, 2004) [11]. It was up-
dated and improved upon by Macholl et al. (2011) [12] and Troolin and Clancy 
(2015) [14]. The details of the updated PCSAM are described step by step in 
Miller and Clancy so that a reader can reproduce the method [15]. The summa-
rized salient details of the PCSAM are summarized for the reader’s convenience 
in the following text.  

Like the CM, the PCSAM uses the SFM watershed as an input. It also requires 
land use raster and a rasterized version of streams and water bodies. Wetlands 
are identified and isolated in the wetland land cover. A buffer of 100 meters is 
developed around the wetlands and streams and is used in the algorithm [15]. 

The PCSAM algorithm assumes that areas that are directly connected up-
stream of waterways via wetland and are part of the watershed or “source area.” 
[11] The algorithm also will iteratively calculate upstream slopes from the wet-
land/stream source areas and add those to the “source area.” Once the gradient 
towards the source areas changes direction away from the source area, the algo-
rithm is completed, and the watershed boundaries are designated. Most water-
sheds delineated with this method will look substantially different from the 
original SFM as shown in Figure 2. Research indicates that in areas with internal 
drainage, this method is more representative of the watershed because it ex-
amines land use, water bodies, and local slope [11] [12] [13] [14] [15]. 

 

 
Figure 2. Example of the differences in the watershed delineation using the Standard Fill Method 
(SFM), Cut Method (CM) and the Potential Contributing Source Areas Method (PCSAM) Yahara 
River at McFarland, WI based on Miller and Clancy (2017) [15]. 
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3.4. Runoff Calculations 

The National Resource Conservation Service curve number model is an empiri-
cal model that parameterizes many of the complexities associated with runoff 
using two variables: Curve Number (CN) and Storage (S). The method is ex-
tremely popular for quickly assessing runoff impacts and makes several simpli-
fying assumptions. The model assumes that “rainfall excess” occurs when preci-
pitation exceeds the storage capacity or S of the land [1] [2] [3]. S is determined 
from empirically derived relationships that account for soil type and land cover. 
S is calculated as follows:  

S = 2540/CN − 254                     (1) 

where S is storage in mm and CN is an empirical variable that is determined 
from a lookup table that requires knowing the soil type and land cover of the 
area. The storage variable S assumes that all precipitation that is available for 
runoff can be absorbed into the soil (if pore space is available). Soil type is classi-
fied into four categories: A, B, C, and D [1]. The values A-D are a gradient where 
A represents high infiltration and low runoff potential and D represents low in-
filtration and high runoff potential. The land cover is based on the land type 
categories, typically forest, agriculture, wetland, and urban, making up the four 
major land cover types. The land cover categories do not fall on a continuum 
like the soil type category, but it is noted that areas with more urban regions are 
likely to have low storage capacity and high runoff potential, while areas with 
more forested regions will have higher storage capacity and lower runoff poten-
tial.  

The combination of land cover/use and soil type result in a CN, where high 
CNs represent higher runoff and lower S. An example of this would be a forested 
region with a Hydrologic Soil Type D will have a lower S than a forested region 
with soil type A.  

After S is calculated, its value is compared to the storm’s total precipitation 
(P), and the following condition must be met before calculating runoff: 

P > 0.2 S                            (2) 

This ensures that within the model the precipitation threshold was exceeded 
for runoff to occur. Otherwise the assumption is that the storage provided by the 
soil is large enough to store the precipitation [1] [2] [3]. If this assumption is sa-
tisfied, then runoff is assumed to occur and is calculated as follows: 

R = (P − 0.2 S)2/(P + 0.8 S)                 (3) 

where P is total precipitation (mm), S is storage (mm) and R is runoff (mm). For 
each grid a land cover and soil type can be determined, a corresponding storage 
and runoff grid can be calculated for different precipitation events.  

3.5. Storm Selection (Precipitation) 

As indicated by Equation (2), storm selection requires that the precipitation ex-
ceeds storage capacity. To ensure this requirement was met, the minimum curve 
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number was determined for each watershed. Using the minimum CN value and 
Equations (1) and (3), a minimum precipitation can be solved for by substitu-
tion. Once the minimum precipitation data is determined, storms can be se-
lected from NCDC [24]. For each watershed, 10 - 12 storms were selected within 
the past 20 years (1999-2020). Storms with less than the minimum precipitation 
were discarded. Storms that occurred between April to October were evaluated. 
Due to early and late freezing temperatures, storms past October and earlier 
than April were not considered. 

A second consideration in storm selection was ensuring storm independence. 
Dependent storm events occur in the daily discharge record when a storm oc-
curs close in time to a prior storm event. If the stream hydrograph has not re-
turned to baseflow and another storm event affects the hydrograph, the dis-
charge associated with the second storm is dependent on the first precipitation 
event as well as the second. This causes an anomalously high discharge value to 
be paired with a precipitation event. To ensure that only independent storms 
were chosen, the precipitation daily record was checked to see if there were no 
precipitation events prior to or after it. The time period before and after varied, 
but the daily discharge hydrograph was examined to ensure the hydrograph had 
been at baseflow levels before the event and returned to baseflow levels after the 
event.  

Seasonality of local vegetation and temperatures were considered for segre-
gating the precipitation events into spring, summer, and fall. Precipitation 
events that occurred in April, May, and June were designated as “spring” events. 
Usually, the ground has thawed, and young plants are beginning to emerge, but 
they are not fully grown. In some cases, emergence of certain plants occurs in 
early June. July and August were designated as “summer” where many crops are 
at their fullness and some harvesting has begun. September and October were 
designated as fall. During this time leaves are beginning to fall from deciduous 
trees and harvest is changing the roughness characteristics of the land cover in 
agricultural landscapes.  

3.6. Storm Evaluation (Precipitation and USGS Gaging Station  
Data) 

For each precipitation event, a corresponding set of daily discharge data from 
each watershed’s USGS gaging station was obtained [23]. The daily discharge 
was separated into baseflow and runoff using a 5-day minimum moving average 
by the USGS’s Hydrograph Separation Program (HYSEP) [29] and the USGS 
Web Hydrograph Analysis Tool (WHAT) [30].  

Observed runoff to correspond to precipitation event was determined by ex-
amining the dates after the precipitation event. If runoff occurred after a preci-
pitation event, it would be summed up until flow resumed to baseflow levels. 
Aggregated runoff was converted from m3/s by dividing by the watershed area 
(as determined by the algorithm) in square meters and multiplied by the dura-
tion of the event. This produced a runoff value in linear units that is comparable 

https://doi.org/10.4236/jwarp.2021.139039


K. Clancy 
 

 

DOI: 10.4236/jwarp.2021.139039 757 Journal of Water Resource and Protection 
 

to the runoff value generated from the curve number model.  

3.7. Statistics and Evaluation of the CN Model 

The observed runoff was compared to the modeled runoff for each of the deline-
ation methods. To compare these observed runoff values from the modeled ru-
noff, the standard error was developed. Recall that each delineation method has 
different total area and differences in the land cover included. The error statistic 
was developed in Miller and Clancy, 2016 [15] and is used in this research. The 
equation is as follows: 

Standard Error = (Qmodeled − Qobserved)/(SFM Watershed Area)     (4) 

where Qmodeled is the curve number model derived discharge in cubic meters per 
second and Qobserved is the runoff derived from the gaging station data after the 
baseflow has been separated from the runoff portion of the total daily discharge 
(cubic meters per second). The SFM watershed is the standard fill watershed (in 
square meters) that is left to compare all the watersheds and the three delinea-
tion methods.  

To evaluate the significant differences in the standard error and storm data, 
the analysis of variance was determined using the statistical package in Rstudio 
(version 1.4.17). A level of significance (alpha) of 0.1 was used to evaluate the 
data. Boxplot graphs were created to display the relationship between data sets.  

3.8. Major Land Cover 

Although watersheds were chosen with diverse land cover, most watersheds had 
a dominate land cover (>30 percent). For example, many of the watersheds had 
cover types that were in the 30 - 40 percent range for agriculture and forest. Sev-
eral watersheds had over ten percent urban land use. Even though ten percent 
appears comparatively small, research suggests that urban land use of ten per-
cent or more has a substantial impact on runoff [21]. Watersheds with greater 
than 35 percent forest, 35 percent agriculture, and 10 percent urban were identi-
fied and examined to see if this land cover dominance introduced bias. 

4. Results 
4.1. The Watersheds and the Delineation Method 

The eighteen watersheds used in this study are listed in Table 1. The SFM wa-
tershed is the input for both the CM and PCSAM. Watershed delineated using 
the SFM will always be equal or larger than watersheds delineated from the other 
methods. The CM watersheds are very similar to the PCSAM in size except for 
watersheds that have substantial internal drainage as indicated by lakes or wet-
lands. Many of the wetlands have been drained since before the 1900s [22]. CM 
watersheds that have seventy-five percent of the SFM watershed are Fish, White, 
Allequash, and Bear. These watersheds are in the northern part of the state, 
which is relatively untouched by urbanization and drainage and channelization 
associated agriculture.  
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Table 1. List of the watersheds with the watershed area listed by delineation method for the Standard Fill Method (SFM), Cut 
Method (CM), and Potential Contributing Source Area Method (PCSAM). The input for both the CM and the PCSA method is 
the SFM watershed, so watershed delineated using those methods will always equal or smaller than the SFM watershed. The CM is 
very close in delineation size to the SFM. The PCSAM is substantially smaller than the SFM and CM for several watershed. 

USGS Name Short name SFM (km) CM (km) PCSAM (km) CM percent PCSAM percent 

Menomonee River at Wauwatosa Menomonee 321.16 314.68 45.71 0.979823 0.142328 

Yellow River at Babcock Yellow 556.85 554.36 85.7 0.995528 0.153901 

La Crosse River at Sparta La Crosse 421.08 420.51 73.09 0.998646 0.173577 

Fox River at Waukesha Fox 318.05 312.72 58.53 0.983242 0.184028 

North Fish Creek near Moquah Fish 220.41 162.39 64.49 0.736763 0.292591 

Kickapoo River at La Farge KLF 686.45 683.06 247.34 0.995062 0.360318 

Kickapoo River at State Highway 33 at Ontario Ontario 302.95 301.63 120.31 0.995643 0.397128 

Prairie River near Merrill Prairie 604.32 548.09 245.3 0.906953 0.405911 

White River near Ashland White 709.02 526.13 318.83 0.742052 0.449677 

Yahara River at McFarland Yahara 876.36 815.42 450.57 0.930462 0.514138 

Allequash Creek at County Highway M near Boulder Junction Allequash 40.57 31.59 22.26 0.778654 0.548681 

Bear River near Manitowish Waters Bear 225.32 166.36 142.9 0.738328 0.634209 

Little Turtle Creek at Carvers Rock Road near Clinton Clinton 517.48 495.57 358.14 0.95766 0.692085 

Spirit River at Spirit Falls Spirit 224.55 217.3 167.3123 0.967713 0.7451 

Baraboo River near Baraboo Baraboo 1575.09 1545.3 1196.48 0.981087 0.759626 

Platte River near Rockville Platte 367.49 364.87 328.17 0.992871 0.893004 

Grant River at Burton Grant 697.14 692.93 630.04 0.993961 0.90375 

Pecatonica River at Darlington PTD 705.25 700.59 642.58 0.993392 0.911138 

 
The PCSAM watersheds sizes are nearly all less than seventy five percent of 

the SFM except for Platte, Grant, and PTD. The aforementioned watersheds are 
in the southwestern part of the state and subject to substantial agricultural mod-
ifications such as drainage and channelization. Alternatively, Menomonee, Yel-
low, Sparta, Fox, and Fish watersheds have PCSAM areas less than one third of 
the SFM. The aforementioned watersheds are spread across the state with no 
specific geographic concentration.  

4.2. Seasonal Precipitation Statistics 

As mentioned in the methods section storm events were divided into spring 
(April, May, June), Summer (July, August) and Fall (September, October) with 
the storm count being 71, 65, and 35 respectively (Table 2). Figure 3 shows that 
the average for the storm events was higher for fall but not significantly different 
average storm events for spring and summer (p > 0.1). Figure 4 shows that the 
average intensity of the storm events was slightly higher for fall, but again not 
significantly different from spring and summer (p > 0.1). Max intensity was 
higher for summer and spring (5.5, 5.2 mm/hr, respectively) than fall (3.8 
mm/hr), but the variance was not significantly different for fall, spring, and 
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summer (p > 0.1). The average storm intensity for fall was significantly different 
from spring (p = 0.09). 

In Figure 5, the standard error versus precipitation intensity is presented for 
each delineation method. The PCSAM is biased towards a negative standard er-
ror [14] [15]. This means that the modeled runoff is biased towards calculating a 
runoff value less than the observed, while the CM and SFM over calculate the 
modeled runoff. Over ninety percent of the standard error values fall within 
±0.1.  

 
Table 2. Statistics for the precipitation events for each season. The seasons spring (May and June), summer (July, August) and fall 
(September, October) were categorized based on vegetative grown in Wisconsin.  

Season 
Average Storm  

(mm) 
Max Storm  

(mm) 
Min Storm  

Precipitation (mm) 
Mean Intensity  

(mm/hr) 
Max Intensity  

(mm/hr) 
Min Intensity 

(mm/hr) 
Count 

Fall 82.2 162.1 54.6 2.0 3.8 0.9 35.0 

Spring 72.0 147.3 25.4 1.7 5.5 0.4 71.0 

Summer 76.5 162.6 10.7 1.9 5.2 0.4 65.0 

 

 
Figure 3. No statistically significant difference in the daily precipita-
tion events across the seasons. As mentioned in the text, winter is 
omitted because of rain on snow events impacting discharge. 

 

 
Figure 4. Precipitation intensity was not significantly different for the 
three seasons. Storm intensity is obtained from daily precipitation. 
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Figure 5. For the selected storm events, over 85% of the stan-
dard error for precipitation intensity was within ±0.1.  

4.3. Seasonal Runoff Statistics 

In Table 1, the runoff error percentage per season for each delineation method 
is presented. Fall is higher than the other seasons by almost three percent. It is 
not surprising that overall the errors are lower for the PCSAM delineation com-
pared to the SFM and CM as internal drainage is accounted for in the PCSAM 
delineation.  

The core investigation of this research is presented in Figures 6-8. In Figure 
6, a boxplot graph summarizes the relationship of standard error versus season 
grouped by delineation. Within the PCSAM watershed, the standard error is not 
significant different (p > 0.1) for the spring, summer, and fall seasons. The CM 
and SFM are significantly different from the PCSAM for the fall and summer 
seasons (p < 0.1). Of note is that the CM and SFM within group for spring and 
summer are significantly different from the fall (p < 0.1).  

In Figure 7, the watersheds with greater than 35 percent forest, 35 percent 
agriculture, and 10 percent urban were examined and compared in a boxplot 
graph for each of the seasons and associated standard error for the SFM. Urban 
watersheds during the summer and agricultural watersheds during the fall have 
the highest average standard error. Forested land cover was not significantly dif-
ferent (p > 0.1) for all three seasons.  

In Figure 8, the standard error versus delineation type grouped by land use is 
presented in a boxplot graph. It is expected that that the PCSAM will have the 
lowest standard error compared to the other methods (as shown in Figure 5). It 
is also expected that the CM and SFM have similar standard errors. For all three 
delineations methods, the forest watersheds have the lowest standard error and 
are not significantly different than one another. Agriculture land cover has the 
highest land standard error for the SFM and CM and the lowest standard error 
for PCSAM. Of interest is that agriculture and urban standard errors are similar 
for CM and SFM, but the pattern is different for the PCSAM. Forest has a higher 
absolute value for standard error for PCSAM compared to SFM and CM. Within 
the PCSAM, the urban appears to be significantly different compared to agri-
culture.  
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Figure 6. PCSAM showed the greatest difference in summer statistically different (p 
< 0.1) and was consistently the same throughout the three seasons examined. Fall 
and Summer seasons were statistically different for the CM and SFM. Winter was 
not included due to the rain on snow events that skew observed runoff. 

 

 
Figure 7. Forest land cover was not significantly different (p > 0.1) for all three sea-
sons. Urban spring was statistically different from fall and summer (p < 0.1). Agri-
cultural fall was statistically different from spring and summer (p < 0.1). Winter was 
not included due to the rain on snow events that skew observed runoff. 

 

 
Figure 8. For all three delineation types both forest and agriculture are not statisti-
cally different (p > 0.1) while the PCSAM urban watershed are statistically different 
from the SFM and CM (p < 0.1). Winter was not included due to the rain on snow 
events that skew observed runoff. 
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5. Discussion 
5.1. Precipitation Events 

Storm intensities affect runoff. However, storm intensity is not a variable that is 
considered in curve number in a direct way but rather as a byproduct of the 
drainage associated with the Hydrologic Soil Group and the storm type [15]. The 
storms selected for this study are (Figure 4) not statistically significantly differ-
ent nor providing a hidden impact on the seasons. In Figure 5, the delineation 
method standard errors generally fall with ±0.1. The standard error does not 
significantly change with in increasing intensity, so storm intensity appears to be 
an unlikely source of error for this study.  

5.2. Delineation Methods 

The significance of Figure 6 is that the PCSAM method, which considered wa-
terbodies, streams, and wetlands in the delineation, does not change significantly 
with the seasons. Summer and fall for the SFM and CM are statistically different. 
Fall has a much higher average (0.28 m) compared to summer average (0.09 m). 
In fall cases the CM standard error is a little lower than the SFM. The PCSAM 
method remaining static through the seasons suggests that it is a controlling va-
riable. This finding is also supported by the result in Table 1, where fall has the 
highest error for the SFM and CM. 

5.3. Land Use and Seasonality 

In Figure 7, the seasons are grouped by major land covers. Spring standard er-
rors are not statistically different from one another, but summer and fall are sta-
tistically different. This may suggest that during a cold spring, when vegetation 
has not emerged, the impact of vegetation is not as pronounced as it is during 
summer and fall. Also of note is that the largest difference in standard error for 
the seasons grouped by land cover is between summer and fall agricultural do-
minant watersheds. This effect is seen in Geng et al. (2020) [18] and Hwang et al. 
(2018) [19], where climate had impacted the vegetative type.  

The growing season length and average monthly and annual temperatures 
were not considered in this study. Years with longer growing seasons may dis-
tort the standard error. Another consideration may be to examine the earlier 
spring months (e.g. March and April) and later fall months (October and No-
vember) and to include storms from these months in the data. The seasonal im-
pact may be more pronounced using data from a broader seasonal timeline. A 
future study that considers an extension in the seasonal timeline and growing 
season is forthcoming using these data.  

In Figure 7 the urban land cover is weakly statistically different in spring 
compared to fall and summer (p < 0.1). Urban land cover was aggregated for 
low, medium, and high intensity development. Generally medium and low in-
tensity urban development has a percentage of land cover allocated to yards and 
grass. The emergence of grass in spring that is consistently mowed in summer 
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and fall might account for no seasonal difference in summer and fall. 
It is not surprising to see that the CM and SFM watersheds are different from 

the PCSAM method, but what is interesting about Figure 8 is that forest domi-
nated watersheds are statistically distinct from urban and agriculture in all de-
lineation methods. Additionally, the relative pattern of the standard error is dif-
ferent for the PCSAM. In the SFM and CM watershed, agriculture and urban 
standard errors are similar. SFM and CM forest watersheds had the lowest abso-
lute value of standard error. In the PCSAM agricultural dominated watersheds 
have the lowest absolute value of standard error, followed by forest and then ur-
ban. What this observation suggests is that the PCSAM does the best job of 
modeling agriculture watersheds and forest dominated and urban dominated 
have a lower standard error. Forest type may also play a role in affecting the 
standard error. The forests within this study are largely evergreen, so the stan-
dard error may be affected differently in watersheds with deciduous forests.  

6. Conclusion 

Observed runoff from a gaging station compared to the CN method for estimat-
ing runoff has the highest errors during summer. The CN method shows that the 
highest runoff overestimates occur in agriculture and urban land covers during 
summer. Spring months have the lowest standard error. Agricultural land cover 
standard error is most affected by seasonal differences compared to forest, which 
has the least seasonal differences in standard error. This study highly suggests 
that lower curve numbers are required in watersheds dominated by agriculture.  
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