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ABSTRACT Objective: Stress is a significant risk factor for various diseases such as hypertension, heart
attack, stroke, and even sudden death. Stress can also lead to psychological and behavioral disorders. Heart
rate variability (HRV) can reflect changes in stress levels while other physiological factors, like blood
pressure, are within acceptable ranges. Electroencephalogram (EEG) is a vital technique for studying brain
activities and provides useful data regarding changes in mental status. This study incorporates EEG and a
detailed HRV analysis to have a better understanding and analysis of stress. Investigating the correlation
between EEG and HRV under stress conditions is valuable since they provide complementary information
regarding stress.Methods: Simultaneous electrocardiogram (ECG) and EEG recordings were obtained from
fifteen subjects. HRV /EEG features were analyzed and compared in rest, stress, and meditation conditions.
A one-way ANOVA and correlation coefficient were used for statistical analysis to explore the correlation
between HRV features and features extracted from EEG. Results: The HRV features LF (low frequency),
HF (high frequency), LF/HF, and rMSSD (root mean square of the successive differences) correlated with
EEG features, including alpha power band in the left hemisphere and alpha band power asymmetry. Con-
clusion: This study demonstrated five significant relationships between EEG and HRV features associated
with stress. The ability to use stress-related EEG features in combination with correlated HRV features could
help improve detecting stress and monitoring the progress of stress treatments/therapies. The outcomes of
this study could enhance the efficiency of stress management technologies such as meditation studies and
bio-feedback training.

INDEX TERMS Stress, EEG, ECG, HRV, meditation.
Clinical and Translational Impact Statement— The findings pave the way for a clinical/home use device
whichwould improve detection, management and treatment of stress and relatedmedical conditions including
mental, cardiovascular, and neurological diseases.

I. INTRODUCTION
Stress is a process that burdens a person’s adaptive capac-
ity and leads to both psychological and biological changes,
which are potential risks for diseases [1]. These diseases
might include hypertension, coronary artery disease, cardiac
arrest, stroke, and mental disorders such as depression and
anxiety [2]. The stress condition could be classified into
short-term acute stress and long-term chronic stress types.
Finally, the parasympathetic nervous system (PSNS) returns
the body to normalcy [3].

The stress reaction can be measured and evaluated in
terms of perceptual, behavioral, and physical responses. For
measuring an individual’s perceptual level of stress, self-
report questionnaires are commonly used [4]. Several phys-
ical and physiological features sensitive to stress have been
studied in the past. For example, the salivary cortisol test
is routinely used as a biomarker test [5]. Also, the HR,
BP, Galvanic skin response (GSR), and respiratory sinus
arrhythmia (RSA) are expanded during stress while skin
temperature (ST) is decreased during stress [6], [7]. The ECG
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TABLE 1. HRV feature calculations in time and frequency domain.

records the electrical changes on the skin that appear because
of the depolarization of the heart muscle [8]. Heart Rate
Variability (HRV) is computed from RR time intervals (the
time difference between two ECG R peaks) [9].

The sympathetic nervous system (SNS) is responsible for
increases, whereas the PSNS is responsible for decreases
in the heart rate (HR). The HR is continuously modified
due to the interactions between the PSNS and the SNS.
Therefore, the HR is a measure of the autonomic nervous
system (ANS) and a marker for assessment of the balance
between the SNS and the PSNS. For example, when the
SNS dominates, the HR is increased, and when the PSNS
dominates, the HR is reduced [9]. It has been shown that a low
HRV suggests that the body is under stress, and high HRV
means the body has a strong ability to tolerate stress [10].
The HRVmeasures investigated in this study are summarized
in Table 1. The neuroimaging modalities such as EEG [11],
functional magnetic resonance imaging (fMRI) [12], and
positron emission tomography (PET) [13] examine the func-
tional changes in brain activity. However, EEG is the most
convenient modality to analyze the cortical response to stress
due to its low-cost and practical use. Additionally, since EEG
has a high temporal resolution, it provides useful information
to analyze variability in a mental state [14]. EEG also serves
as a useful tool for neurofeedback-based rehabilitation. The
10–20 system shown in Figure 1 is the standard electrode
location method used to collect EEG data and is the standard
for most current databases [15]. Based on that system, each
electrode placement site is represented by a letter to classify
the lobe. Also, even numbers indicate the right side and odd
numbers indicate the left side of the brain.

The EEG signal amplitude is in the microvolt range. The
raw EEG time series data are transformed into the frequency
data and classified into five frequency bands: delta band

FIGURE 1. The 10-20 electrode placements.

(0.2–4 Hz), theta band (4–8 Hz), alpha band (8–13 Hz),
beta band (13–30 Hz), and gamma band (>30 Hz). There
have been several EEG based studies that analyze stress.
For example, one study has shown that the right hemisphere
of the brain becomes dominant in comparison to the left
hemisphere of the brain with the onset of stress, and the
right hemisphere is more associated with the processing of
negative emotions [16]. These differences are illustrated by
an emotional processing model in which the frontal cortex
performs a key role [17]. Alpha power asymmetry is defined
as the functional difference between the left and the right
hemispheres; it measures the difference in EEG band power
between the measurements from the homologous electrodes
located on these hemispheres [18]. It has been shown that
alpha power asymmetry and inter-hemispheric asymmetry
indicate mental stress [19]. Previous research has focused
on different EEG features, including frequency band power,
the ratio of power spectral densities of alpha and beta bands,
and cross-correlation between band powers [20]. It has been
reported that EEG activity is well correlated with mental
stress in terms of reduction in alpha power [21] and an
increase in beta power [22]. In this study, EEG recording from
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TABLE 2. EEG features.

the four electrodes F3, F4, Fp1, Fp2 were investigated with
Fz as the reference electrode as shown in Figure 1. The EEG
measures evaluated in this study are listed in Table 2. A pre-
vious study has reported that meditation leads to increased
power of alpha waves [23]. Therefore, we also included a
meditation session after the stress-inducing period. The goal
was to include a sequence of rest, stress, and meditation
sessions and to compare the resultant HRV and EEG mea-
surements. There are many studies that use either EEG or
ECG for stress assessment [24]. However, there are only
three previous studies that combined ECG and EEG for stress
assessment [25]–[27]. In the first study, they used only one
HRV feature and found that there was a significant negative
correlation between SDNN (the standard deviation of NN
intervals) and relatively high beta power [25]. The second
study focused on building a brain device with HRV and EEG
recording from three electrodes. Only one electrode was used
on the forehead for stress assessment [26]. This study con-
cluded that stress level detection accuracy was significantly
higher using support vector machine algorithms when EEG
features were used in combination with ECG features [26].
However, we recorded data from frontal lobe and five frontal
pole electrodes as these areas are known to be the major
sites in terms of response to stressors, as mentioned before.
The third study [27] does not involve HRV analysis other
than the mean and standard deviation of heart rate data, and
it used only one EEG feature (theta Fz/alpha Pz) for stress
assessment. In this study, six HRV features and ten EEG
features were extracted and evaluated (Table 1 and Table 2).

We increased the number of features for EEG to discover
unforeseen relationships between stress and the frontal brain
area. In addition, we used short time meditation after a stress-
inducing condition to evaluate its effect on the fourmentioned
electrodes. The alpha band power and beta band power were
calculated from each electrode and for both hemispheres. The
alpha asymmetrywas also tested from left to right hemisphere
for (F3, F4) and (Fp1, Fp2) electrodes.

II. METHODS AND PROCEDURES
This study proposes to examine EEG, and HRV fea-
tures simultaneously and their roles in the determination
of stress levels. Fifteen healthy volunteers participated in
the study. The Stroop Color-Word Test (SCWT) technique
was employed to induce a level of stress. The Stroop
Color and Word Test have long been an approved test in
neuropsychological assessment. It measures cognitive pro-
cessing and provides quantifiable diagnostic knowledge on
brain dysfunction. The SCWT is developed on the concept
that individuals can read words much faster than they can
recognize and name colors. The test is quick, and its easy
administration, validity, and reliability make it a highly use-
ful tool [28]. EEG and HRV were measured simultaneously
during rest, stress, and meditation sessions.

EEG measurements were performed using a DSI-24 dry
electrode EEG headset (DSI-24, Wearable Sensing, San
Diego, CA, USA). The DSI-24 is a wireless EEG head-
set that contains 21 sensors at positions corresponding to
the 10-20 international system, and the EEG signals were
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acquired using DSI-streamer (Wearable Sensing, San Diego,
CA, USA) at a sampling rate of 300 Hz [31].

The ECG was acquired using a wireless data acquisi-
tion system named BioRadio 150 (BioRadio Great Lakes
Neuro Technologies, OH, USA) during the three conditions
at 960 samples/s [32]. The BioRadio is a 12-channel sys-
tem that displays and records physiological signals, includ-
ing the ECG. Three single-use dynamic ECG electrodes,
(PB-50-060, Myovision, Seattle, USA) were placed as fol-
lows: One was placed about 2 inches below the left under-
arm; the second electrode was placed approximately 2 inches
below the right underarm. These two locations were selected
instead of the arms to reduce motion artifacts. The ground
electrode was placed on the right side of the abdominal
cavity, above the iliac crest to minimize power line noise from
interfering with the ECG signal. Lead I ECG was used for
computing the R-R intervals.

A. SUBJECTS
A total number of 15 EEG and ECG recordings were obtained
from 15 right-handed participants. There were seven female
and eight male subjects with mean ages of 19.7 ± 1.5 years
and 21.3± 3.4 years, respectively. A signed consent formwas
obtained from all the subjects. A digital questionnaire (PSS)
that provided general medical and anthropometric informa-
tion was completed by each person. All the testing procedures
with human subjects and the recording sites were approved
on August 26, 2018 by the Office of Compliance and Risk
Management Institutional Review Board (IRB Approval
Number: 18-125) at Florida Institute of Technology,
Melbourne, FL, USA.

B. STUDY DESIGN AND HUMAN SUBJECT PROTOCOL
Physiological and anthropometrical features such as weight,
height, age, and sex were gathered from the questionnaire that
the subjects filled out. The participants had their EEG signals
and HRV recorded for a total duration of 15 minutes. The test
began with 5 minutes of ‘rest session’, and then 5 minutes
of ‘stress session’ (which is induced by the elaborate Stroop
Color-Word Test). Finally, 5 minutes of ‘meditation session’
was performed (where they were watching and listening to
soothing ocean waves video and breathing slowly). We used
this video because recent studies show that the beach can be
a healing treatment for a patient who is suffering from stress.

C. DATA ANALYSIS
For the EEG signal preprocessing stage, the raw EEG data
were separated into three sections: (1) rest (2) stress, and
(3) meditation. Band-pass filtering (1–35 Hz) was applied
to remove physiological and non-physiological artifacts. The
EEG analysis was performed using MATLAB (ver. R2017a,
MathWorks, MA, USA). Table 2 lists the name, description,
and equation of each feature extracted from the EEG. The
EEG data computation starts by selecting the data from the
four electrodes: two electrodes in the left-hemisphere (F3,
Fp1), and two electrodes in the right-hemisphere (F4, Fp2) in

reference to electrode Fz. For power spectral density (PSD)
estimation, the Welch’s method, a nonparametric method
which is a modified approach of Fast Fourier Transform
(FFT) algorithm [33] was used to classify the signals based
on frequency into five frequency bands: Delta (0.2 – 3 Hz),
Theta (3 - 8 Hz), Alpha (8 – 13 Hz), Beta (13 – 30 Hz) and
Gamma from 30 Hz and up. The alpha band power asym-
metry between the left and right hemisphere was calculated
using the equation in Table 2. The HRV frequency and time-
domain analyses were performed usingKubios HRV software
(ver. 2.2, Kubios, Eastern Finland).

For ECG signal preprocessing stage, the Pan-Tompkins
algorithm was used for QRS detection, R-peak identification,
and the HRV analysis [30]. The HRV was interpolated at
4 Hz, and a cubic spline interpolation was used to improve
the time resolution of the detection [31].

The ECG signals come with noise, including baseline
wanders, powerline interference, electromyographic (EMG)
noise, and electrode motion artifact noise. To reduce noise,
the cutoff frequencies of the high-pass filter and low-pass
filter were set to 0.5 Hz and 70 Hz, respectively.

The HRV signals were classified based on their frequency
ranges and separated into low frequency (LF), high frequency
(HF), and LF/HF ratios were calculated based on those.

D. STATISTICAL ANALYSIS
One-way ANOVA and Pearson’s correlation coefficient
were used as two statistical approaches in this study.
All groups of datasets were checked for homoscedastic-
ity/heteroscedasticity condition using Levene’s Absolute
Deviation test. ANOVAwas used for all significant difference
tests since three groups (rest, stress, and meditation) were
compared with each other. The significance level was set
at 5% Type I Error level for all the statistical tests. Post-
hoc analysis for pairwise comparisons was performed using
the Tukey-Kramer test which is the default test for ANOVA
in MATLAB. Pearson’s correlation was used to determine
the significance of the correlation between EEG and ECG-
derived features. All statistical analyses were performed
using MATLAB R2017a software.

III. RESULTS
Levene’s Absolute Deviation test results showed that only
one feature (LBPFp1) was statistically significant for het-
eroscedasticity (p-value: 0.045) indicating unequal variance
and all the rest of the datasets demonstrated homoscedas-
ticity condition. Based on the Levene’s Absolute Devi-
ation test results, Welch correction was applied for one
feature (LBFp1). Using Welch’s correction, the p-value for
LBFp1 was calculated. Welch correction indicated that the
differences in LBPFp1 values among the three groups were
statistically insignificant (p = 0.6317). The stress-related
features obtained from HRV, and their trends over different
conditions are shown in Table 3. The results shown in Table 3
and Table 4 are expressed as the mean± the standard error of
the mean (SEM). ANOVA analysis showed that there were no
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TABLE 3. Effects of stress and meditation on HRV features
(sample size = 15).

FIGURE 2. A) Bar graph that compares the LF values for rest, stress and
meditation sessions B) Bar graph that compares the HF values for rest,
stress and meditation sessions C) Bar graph that compares the LF/HF
values for rest, stress and meditation sessions. The error bars refer to the
SEMs.

significant differences (p> 0.05) among any of the conditions
in any of the time domain features (SDNN, pNN50, and
rMSSD) even though the trends were as expected. However,
there were significant differences among all the frequency
domain features considered in this study.

LF under stress (p = 0.007) and meditation (p < 0.001)
were significantly different from the ‘rest’ session. HF under
stress (p = 0.006) and meditation (p < 0.001) were signifi-
cantly different from the ‘rest’ session. LF/HF under no-stress
was significantly different from the meditation session
(p < 0.003) as shown in Figure 2. The error bars
in Figure 2 show the SEMs for LF, HF, and LF/HF during
rest, stress, and meditation.

The stress-related features computed from the EEG and
their trends over different sessions are shown in Table 4. The
EEG results from F3, F4, Fp1 and Fp2 show an increase
in normalized left hemisphere alpha band power (F3, Fp1),
normalized right hemisphere alpha band power (F4, Fp2),
normalized left hemisphere beta band power (F3, Fp1), and
normalized right hemisphere beta band power (F4, Fp2) with
the onset of stress.

In addition, alpha band power asymmetry (F3, F4), and
alpha band power asymmetry (Fp1, Fp2) amplified dur-
ing stress. The short time meditation results show vari-
ous trends among the frontal brain lobes. The alpha band

TABLE 4. Effects of stress and meditation on EEG features (sample
size = 15).

TABLE 5. HRV and EEG correlation results during stress (sample
size = 15).

power asymmetry (F3, F4), and alpha band power asymmetry
(Fp1, Fp2) were less negative in meditation situation. The
other EEG features showed decreasing trend in meditation
sessions.

Using Pearson’s correlation coefficients, five correlations
were computed between the HRV and EEG features in the
stress condition, as shown in Table 5.

The results showed that there was a negative correlation
between LF/HF and LAPF3, a positive correlation between
HF and LAPFp1 as shown in Figure 3, a positive correlation
between HF and LAPF3, a negative correlation between LF
and LAPFp1 as shown in Figure 4 and between rMSSD and
APA1 as shown in Figure 5.

IV. DISCUSSION
In this study, a comprehensive set of comparisons was per-
formed between the extracted parameters from the ECG and
the EEG signals. The goal of these comparisons was to exam-
ine the correlation between the response of the autonomic
nervous system (HRV) and the response of the brain (EEG)
to stress and meditation.
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FIGURE 3. Relationship between high frequency and left hemisphere
alpha band power (Fp1) (r = 0.53, p < 0.05).

FIGURE 4. Relationship between low frequency and left hemisphere
alpha band power (Fp1) (r = −0.54, p < 0.05).

FIGURE 5. Relationship between the rMSSD and APA1 (based on F3 and
F4 electrodes) (r = −0.60, p < 0.05).

As discussed in the introduction section, there are only
three previous studies that combined ECG and EEG for short-
term stress assessment. The first study used only one HRV
feature and found a significant negative correlation between
SDNN and relatively high beta power [25]. The second study
used only three electrodes with one electrode on the forehead
for stress assessment and concluded that stress level detection
accuracy using a machine learning algorithm (support vector
machine) was significantly higher when EEG features were
used in combination with HRV features [26]. We recorded
data from frontal lobe and five frontal pole electrodes as these
areas are known to be the major sites in terms of response to
stressors, as mentioned before. The third study [27] included

HRV analysis with only the mean and standard deviation
of heart rate data, and it used only one EEG feature (theta
Fz/alpha Pz) for stress assessment. These studies did not
include meditation sessions either.

This present study demonstrated that there are five con-
siderable relationships among EEG and HRV features asso-
ciated with stress. The four HRV frequency domain features
(LF, HF, LF/HF and rMSSD) correlated with left alpha and
beta bands during stress sessions and rMSSD correlated with
alpha power asymmetry. Those results confirmed that cardiac
stimulation during stress was followed with cortical activa-
tion. In addition to confirming the results of previous studies,
our results suggest that stress may be reliably assessed by
frequency-domain features and relative left alpha EEG power
at anterior frontal sites. Indeed, these correlations could be
used as markers for diseases associated with stress.

The results showed that the HRV time-domain features
(SDNN, rMSSD, and pNN50) decreased under the ‘stress’
condition compared to the ‘rest’ condition indicating sym-
pathetic activation. Conversely, the short time meditation
session showed the opposite direction in those HRV time
features as expected.

The frequency domain features with stress showed an
increase in the LF and LF/HF which represented sympathetic
activation and a decrease in HF which indicated lowered
parasympathetic activation. The results were similar to the
findings in a previous review of HRV analysis and mental
stress [24]. The short time meditation showed an increase in
HF, and a decrease in LF and LF/HF in comparison to the
stress condition suggesting a parasympathetic activation and
a sympathetic reduction.

The frontal activity is heavily involved in the emotional
stress regulation [16], [32]. During rest, the frontal alpha
amplitude symmetry is associated with lower stress. With the
onset of stress, alpha power asymmetry becomes more evi-
dent. As indicated, both APA1 and APA2 were more negative
during stress than at rest and meditation which demonstrate
that the right alpha power was reduced considerably more
than the left alpha power during stress situation. These results
are in line with the physiological expectations that increased
cortical activity in the right hemisphere is associatedwith pro-
cessing of negative emotions such as stress [16], [32], [33].

One of the limitations of this study might be the number of
subjects; however, this study provides a profound preliminary
data analysis. Data from a larger sample size might lead
to a more robust statistical analysis and it might reveal or
de-emphasize other correlations. In addition, mental stress
might increase with duration, but in terms of HRV analysis,
all the previous studies were performed for either 5-minutes
(short-term) or 24-hour (long-term) [10]. Long-term stress
analysis might reveal different dynamics; for example, long-
term stress is a better predictor of depressive symptoms as
compared to short-term stress [39]. A general problem with
EEG can be the low spatial resolution on the scalp and a
reduced signal-to-noise ratio. Thus, relatively large amounts
of subjects will improve our findings. For our future study,
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we plan to build a wearable device with ECG and EEG
measurements to monitor and manage people suffering from
stress.

V. CONCLUSION
Investigating the correlation between EEG and HRV
under stress conditions is significant since they provide
complementary information regarding stress. The ability and
outcomes of EEG and ECG might allow for improved diag-
nosis and monitoring of the progress of treatment/ therapy,
performance, learning, and decision making in people that
suffer from stress. Another contribution of this study can be
stress management with the HRV and EEG data as inputs
for treatment applications, including meditation studies, bio-
feedback training, attention disorder, attention deficit hyper-
activity disorder, depression, and anxiety disorders.
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