Abstract:
The exchangeable fraction of soil potassium (K) has been viewed as the most important source of plant-available K, with other sources playing smaller roles that do not influence the predictive value of a soil test. Thus, as K mass balance changes, the soil test should change correspondingly to be associated with greater or reduced plant availability. However, soil test changes and the availability of K to plants are influenced by many other factors. This chapter reviews research on soil test K changes and the relation to crop uptake and yield. A mass-balance relationship is rarely achieved from the measurement of exchangeable K because of the potential for buffering of K removal from structural K in feldspars and from interlayer K in primary and secondary layer silicates. Similarly, surplus K additions can be fixed in interlayer positions in secondary layer silicates, or potentially sequestered in sparingly soluble neoformed secondary minerals, neither of which is measured as exchangeable K. In addition, soil moisture, temporal differences in exchangeable K with K uptake by crops, K leaching from residues, clay type, organic matter contribution to the soil CEC, and type of K amendment confound attempts to relate
K additions and losses with an exchangeable K soil test. Research is needed to create
regionally specific K soil test procedures that can predict crop response for a subset
of clays and K-bearing minerals within specific cropping systems.